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Abstract 

This thesis investigates two major classes of Evolutionary Algorithms, Genetic 

Algorithms (GAs) and Evolution Strategies (ESs), and their application to the 

Orthogonal Packing Problems (OPP). OPP are canonical models for NP-hard 

problems, the class of problems widely conceived to be unsolvable on a polynomial 

deterministic Turing machine, although they underlie many optimisation problems 

in the real world. With the increasing power of modern computers, GAs and ESs 

have been developed in the past decades to provide high quality solutions for a 

wide range of optimisation and learning problems. These algorithms are inspired 

by Darwinian nature selection mechanism that iteratively select better solutions 

in populations derived from recombining and mutating existing solutions. The 

algorithms have gained huge success in many areas, however, being stochastic 

processes, the algorithms' behaviour on different problems is still far from being 

fully understood. The work of this thesis provides insights to better understand 

both the algorithms and the problems. 

The thesis begins with an investigation of hyper-heuristics as a more gen-

eral search paradigm based on standard EAs. Hyper-heuristics are shown to be 

able to overcome the difficulty of many standard approaches which only search 

in partial solution space. The thesis also looks into the fundamental theory of 

GAs, the schemata theorem and the building block hypothesis, by developing the 

Grouping Genetic Algorithms (GGA) for high dimensional problems and provid-

ing supportive yet qualified empirical evidences for the hypothesis. Realising the 

difficulties of genetic encoding over combinatorial search domains, the thesis pro-

poses a phenotype representation together with Evolution Strategies that operates 

on such representation. ESs were previously applied mainly to continuous numer-

ical optimisation, therefore being less understood when searching in combinatorial 

domains. The work in this thesis develops highly competent ES algorithms for 

OPP and opens the door for future research in this area. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Orthogonal Packing Problems (OPP) belong to the large family of cutting and 

packing problems [60, 178], where the objective is to optimise the arrangement 

of items into a number of containers. It fits into the paradigm of optimisation, 

that minimise (or maximise) an objective function (such as the cost of material), 

subject to a set of other constraints (such as limit of weights or sizes). The 

problem arises in many industrial settings, from stock-cutting in paper, metal, 

glass and many other raw material industries to container, pallet loading in logistic 

industries, or even multi-processor scheduling, portfolio management and other 

resource allocation problems. Though having a wide variety of applications, the 

problem is very difficult to solve, except for small-sized instances which may be 

solvable by exact methods. Underlying these applications is the fact that they are 

NP-hard problems [79]. NP-hard problems are a class of problems that are widely 

believed not to be solvable in polynomial time on a deterministic Turing machine 

(not to mention limited memory size in reality). The problem has been receiving 

attention from many disciplines for a long time. From an operational research 

(or management science) perspective, it remains an extremely challenging topic in 
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optimization problems and complexity theory. 

One of the traditional ways for tackling these problems is by exact meth-

ods such as Mathematical Programming 181, 82]' and Dynamic Programming 

1118, 175]. These methods can guarantee optimality but only for small-sized in-

stances. Another approach is to use heuristics which usually gives fast, feasible 

results even for large sized problems but without the guarantee of global optimality. 

For some sub-classes of NP-hard problems, there are some heuristics (Polynomial 

Time Approximation Scheme (PTAS)) that can produce approximate solutions 

within a constant factor to the optima 164]. However, there are also limitations 

that many sub-classes of problems have not had any suitable approximation algo-

rithms 1180]; or for those problems having such PTAS, there may exist an optimal 

approximation ratio which imposes a gap to optima 1123] that cannot be overcome. 

ｾ ｯ ｲ ･ e recently Evolutionary Algorithms (EAs), among other meta-heuristics, has 

been a fruitful research area for Combinatorial Optimisation Problems thanks to 

the increasing computational power of modern computers. Meta-heuristics are 

often inspired by natural phenomena and work amazingly well across a broad 

categories of problems. EAs adopt a more stochastic search paradigm and nor-

mally consists of the mechanisms of recombination, mutation and selection on a 

population of candidate solutions. However, EAs are still far from being fully un-

derstood, despite the increased literature in theoretical and empirical studies. For 

example, Evolution Strategies (ES) originated for numerical optimisation in real 

valued domain, and it remains unknown if some of the search strategies developed 

in that area apply to the discrete domain like COP 116]. The dynamics of many 

search strategies and parameter settings are still topics that attract interest from 

both researchers and industrial practitioners. Orthogonal Packing Problems are 

one of the basic models for testing and understanding complex algorithms, sharing 

the same combinatorial features as many other problems such as the Travelling 

Salesman Problems (TSP), Scheduling, and Timetabling, etc., but has its own 
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distinctive properties. 

In this thesis, we addresses the use of Evolutionary Algorithms to solve Or-

thogonal Packing Problems. Our first aim is to contribute to the literature by 

using OPP as a test-bed to provide empirical studies that can help reveal impor-

tant properties of EAs on the combinatorial search domain. We also design more 

efficient algorithms to provide high quality solutions that are suitahle for use in 

the real world. 

1.2 Contributions 

The work of this thesis makes contribution to both the theory and its application, 

and in both meta-heuristics and orthogonal packing problems in general. From 

a theoretical perspective, several models and frameworks have been proposed to 

better understand the problem and the properties of different algorithms, and 

extensive empirical studies also provide relevant evidence: 

1. We propose a framework to help understand the capability of multiple de-

coder hyper-heuristics in being able to search larger solution spaces than 

single-decoder meta-heuristics. The analysis of the framework is supported 

by strong evidence from empirical studies on a class of instances (see Chapter 

3). 

2. For the on-going debate on the Building Block Hypothesis of Genetic Al-

gorithms, example cases are surprisingly hard to find [161. We use OPP as 

a model to explicitly trace the Building Blocks (BBs) and find supportive 

evidence that BBs can effectively guide GAs into promising search areas. 

However, we also show the risk that the number of BBs may increase ex-

ponentially and eventually hamper the performance of GAs (see Chapter 

4). 
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3. For orthogonal packing problems, especially multi-dimensional cases, phe-

notype representation is uncommon. The reason is due to the expensive 

computation involved in direct alteration of packings. We propose a pheno-

type representation that suits OPP of any dimension, as well as two generic 

operators, split and merge, that can manipulate the phenotype in efficient 

ways (see Chapter 5). 

4. Evolution Strategies have been mainly applied to numerical optimisation in 

real-valued domains, or combinatorial problems which have simple represen-

tations. With the help of the phenotype representation and operators, our 

work is the first, as far as we are aware, that extends ES applications to the 

more complex domain of OPP (see Chapter 5). 

5. The behaviour of ESs for combinatorial domains are much less understood 

than for real-valued domains. Discrete search space causes scalability issues 

and asymptotic success rate may not exist. Compared to real-valued do-

mains, our study on ESs has revealed a different picture of the relationship 

between mutation strength and success rate for OPPs (see Chapter 5). 

From an application perspective, we have designed algorithms that can pro-

vide high quality solutions for general OPP cases or address specific difficulties 

encountered for certain sub-classes of the problems. 

1. The operators for adding and removing shapes from a packing, which we 

use throughout the thesis, is a unified approach that cope well with one to 

multi-dimension orthogonal packings. 

2. The hyper-heuristic approach in chapter 3 can take advantage of multiple 

heuristics and solve more classes of OPPs than conventional meta-heuristics. 

The HH exhibits the same efficiency as standard approaches with the same 

convergence speed. 

4 



3. In chapter 4, the Grouping GA performs particularly well when high quality 

solutions are required and problem sizes are not too large. The best known 

results in the literature is able to solve benchmark instances to optimality for 

up to 20 shapes, while the GGA has pushed this boundary up to 40 shapes. 

4. The self-adaptive ES and Grouping ES in chapter 5 are also efficient solvers 

and can be applied to a more general range of instances (even very large sized 

problems). They produce results comparable to some of the best results 

reported in the scientific literature. 

1.3 Overview 

Chapter 2 provides a survey of both the Orthogonal Packing Problems and the 

state-of-the-art algorithms for solving this problem. The chapter begins with a 

brief review of the definition and Mathematic Programming models for OPP, along 

with an introduction to the topology of the cutting and packing problems. The 

overview on models and topology makes clear both the similarity and distinction 

between OPP and other cutting and packing problems. In the following sec-

tions, we present the algorithms in four categories: exact algorithms, heuristics, 

meta-heuristics and hyper-heuristics. In particular, we discuss the strength and 

weakness of various current approaches, and also explain our motivation to set the 

stage for the algorithms we present in the rest of the chapters. 

Chapters 3 and 4 consider approaches based on Genetic Algorithms. In Chap-

ter 3 we develop a hyper-heuristic which utilises multiple low-level decoding heuris-

tics. The hyper-heuristic is based on, and compared with, more conventional GAs. 

The difference is the hyper-heuristic approach utilizes multiple low-level heuristic 

decoders, which is developed specially to address a problem of many standard 

meta-heuristics that fail to search entire solution space due to the bias of using 

only one low-level heuristic. A theory framework of our hyper-heuristic approach 
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is discussed which explains the capability of the algorithm to search through a 

low-level heuristic search space. In the empirical study, we construct a set of new 

instances that standard GAs have difficulty to find the optimal while the hyper-

heuristics achieves better results. The results for the new instances provide strong 

evidence that the hyper-heuristic can more effectively search the solution space. 

We also test benchmark instances from the scientific literature and show that the 

hyper-heuristic maintains the same efficiency as more standard approaches. Al-

though the hyper-heuristic we developed is adopting GA as an example, the idea 

can be extended to benefit other meta-heuristics. 

Chapter 4 is more focused on the search strategy of GAs, in particular, re-

combination of genetic encoding based on the Building Block Hypothesis (BBH) 

[871. We investigate the Grouping Genetic Algorithms(GGA) which improves the 

performance of a standard GA by enhancing the genetic encoding with explicit 

encoding for BBs. The algorithm was first designed only for one-dimensional bin 

packing problems [661. To extend it to suit more general cutting and packing 

situations, including higher dimensions and single bin (strip) packing, it requires 

a versatile definition of groups, therefore a new type of chromosome is introduced. 

The new genetic encoding varies in length and consists of individual shapes and 

blocks (groups of shapes which have no waste area). The blocks are explicit encod-

ing for BBs, which the algorithm tries to discover during the evolutionary search 

process. The blocks, as partial solutions, also incorporate phenotype information 

into the genotype encoding. Compared to other algorithms, the GGA can success-

fully solve instances of much larger size. Our empirical study supports the claim 

that building blocks play an important role in GA evolution for OPP. However, 

we also show the number of BBs grows exponentially with increasing instance 

size, which decreases the performance of GGA if we do not contain the problem 

carefully. Potential improvements are suggested at the end of the chapter, one 

of which, Grouping Evolution Strategies, using more static grouping technique is 
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developed in the next chapter. 

Chapter 5 is devoted to Evolution Strategies (ESs) which use phenotype rep-

resentation as its search space, as opposed to genotype encoding in GAs. ESs 

are rarely used for cutting and packing problems, because ESs mutate phenotypes 

directly which is difficult for combinatorial optimization. In the literature, ESs 

theories are mostly derived from problems in continuous domains. For example, 

the asymptotic property of mutation strength underlying the standard search con-

trol strategy. To apply ESs to OPP, we first need to design novel, but still generic, 

neighbourhood search operators that suit the phenotype presentation. The central 

concern of this chapter is to find ES search strategies for combinatorial problems 

like OPP, which have very different characteristics than problems in continuous 

domains due to the highly interactive variables in solutions and in-differentiable 

stepping size in neighbourhood structure. By empirical studies, we discovered, 

surprisingly but not unreasonably, two clusters of promising settings for mutation 

strength in such a highly constrained and discrete search domain. Through fur-

ther exploring the OPP fitness landscape, we derive a strategy called Grouping 

Evolution Strategy (GES), which groups shapes into static groups and applies 

different search strategy for different groups. Compared to other ESs, the GES 

outperforms other algorithms on most of the benchmark instances. 

Finally in Chapter 6 we summarize our key findings and propose some sugges-

tions for future research. 

7 



Chapter 2 

Literature Review 

2 .1 Introduction 

This chapter is presented in two parts; an overview of the problem and a survey of 

various algorithmic approaches. In the first part, section 2.2 describes the typology 

of Cutting and Packing Problems (CPP), and section 2.3 presents the modelling 

and formulation of these problems. The second part of the review consists a survey 

of exact algorithms (section 2.4), heuristics (section 2.5), meta-heuristics (section 

2.6) and hyper-heuristics (section 2.7). 

A typology provides a classification of various related problems. It is espe-

cially helpful to have a good typology as a road map to the vast amount of the 

papers in the literature on closely related topics. We review two typologies pro-

posed by Dyckhoff [60] and Wascher et al. [178], which provide the context of our 

research and make clear the relationship between other classic problems and the 

Orthogonal Packing Problems (OPP) that will be studied in this thesis. Some of 

the OPP (especially one-dimensional problems) can be expressed in a mathemati-

cal programming (MP) formulation. The mathematical programming formulation 

captures essential aspects of these problems and can be tackled by efficient al-

gorithms when instance size is limited. When dealing with higher dimensional 

8 



problems, it is much harder to formulate and solve the problems with mathemat-

ical programming, due to the increase in the number of variables and constraints. 

Consequently, researchers often resort to alternative models to understand the 

properties of the problems. A useful model is proposed by Fekete and Schep-

ers [74] which utilises interval graphs as an abstraction of a class of equivalent 

packings. 

Many of the exact algorithms are indeed based on the MP formulations pre-

sented in the previous section. The purpose of the review is to highlight the 

advantages and disadvantages of the exact methods. Especially, unless a problem 

has special structures that submit itself to linear (sub-linear) algorithms, most of 

the OPPs belong to NP; and unless N = NP, most of the OPPs can only be solved 

to optimality when the problem sizes are relatively small. 

In section 2.5 we review heuristic approaches to OPPs. Heuristic approaches 

are studied by researchers for two purposes. First, as an alternative to exact meth-

ods, they provide fast solutions to instances even with very large sizes. Examples 

include greedy strategies such as First Fit(FF) and Best Fit(BF) [40]. Some 

heuristics for certain classes of problems have been proved to be bounded with 

approximate ratios, constant factors to optimal [40]. On the other hand heuristics 

normally generate solutions with good quality, even if they cannot guarantee op-

timality or bounds. For this reason, heuristics are often utilised by meta-heuristic 

approaches as a sub-routine which we will discuss in section 2.6. 

Meta-heuristics iteratively search for, and hopefully improve, existing solutions 

based on certain search strategies. \Ve concentrate on two types of strategies; 

Genetic Algorithms (GA) and Evolution Strategies (ES), while also reviewing 

many other different strategies. Most of these seemingly different strategies are 

actually based on a similar idea that a successful search strategy needs to balance 

the process of exploration and exploitation. Indeed, De Jong provides a unified 

view of various approaches [54], and another type of more general approach, hyper-
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heuristics, have emerged in recent years that attempts to hybridise and raise the 

generality of search methodologies [23]. 

GA and ES belong to the relatively new paradigm of search strategy known as 

Evolutionary Algorithms (EA). One of the distinctive feature of these algorithms is 

that they maintain a population of candidate solutions and draw upon historical 

and parallel information to carry out the search process. We will review the 

theories of these algorithms, which also includes some studies not in OPP domain 

but illustrates the behaviour of EAs more clearly. We also examine previous 

applications of the EA strategies being applied to OPP. 

2.2 Typologies 

According to Haessler and Sweeney [98] the earliest formulation of stock cutting 

problem can be traced back to 1939 by the Russian economist Kantorovich [119]. 

Since then the problem has evolved into a large family of problems with quite 

diversified objective functions and constraints. On the application side they cover 

many real-world problems and often appear under different names, such as the 

knapsack problem [161]' stock cutting [80], trim loss [61, 105], bin packing [39], 

container loading [160], and multi-processor scheduling [78], etc. (formal defini-

tions of many of these problems will be introduced in section 2.3). Most of these 

problems remain open due to them being NP-hard [79] even for the one dimen-

sional problem. 

A difficulty we face in structuring a literature review for the cutting and packing 

problems is the various ways we could categories the problems. Almost all articles 

can be looked at from different angles and can be categorized in at least one of 

the following ways: 

• according to problems tackled, e.g. is it about one-dimensional knapsack 

problem, two-dimensional stock cutting, or any other variant problems; 
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• according to topics addressed, e.g. is it introducing new modelling methods, 

algorithms, or analysis of performance of existing techniques; according to 

techniques applied, e.g. is it proposing new exact or heuristic or iterative 

searching methods. 

In fact, classifying the problems is itself a complex task, and two papers [60, 

178] are dedicated to this typology specifically. In 1990 Dyckhoff published the 

first proposal [60]. He has observed many important characteristics of Cutting 

and Packing Problems: dimensionality, quantity measurement, shape of objects, 

assortment, availability, pattern restrictions, assignment restrictions, objectives, 

states of information and variability. Despite the complexity, he tries to simplify 

the categories by concentrating only on 96 types formed by combinations of four 

main characteristics: 

Dimensionality : 

(1) One-dimensional. 

(2) Two-dimensional. 

(3) Three-dimensional. 

(N) N-dimensional with N > 3. 

Kind of assignment : 

(B) All objects and a selection of items. 

(V) A selection of objects and all items. 

Assortment of large objects 

(0) One object. 

(I) Identical objects. 

(D) Different objects. 

Assortment of small items 

(F) Few items (of different figures). 
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(M) Many items of many different figures. 

(R) Many items of relatively few different (non-congruent) figures. 

(C) Congruent figures. 

The above system is easy to use. However, it also causes ambiguity as some 

problems cannot be put into a unique category. More recently Wascher et aL!178! 

took a more refined approach, which firstly excludes problems having other ad-

ditional aspects than pure cutting and packing problems. For pure cutting and 

packing problems, the following characteristics are considered for classification: 

• kind of assignment whether the objective function is a maximisation function 

(when only a subset of small items can be accommodated, e.g. knapsack 

problem), a minimisation one (when all small items need to be packed with 

least cost) or multi-objective optimisation; 

• assortment of small objects whether small items are identical in sizes, weakly 

heterogeneous or strongly heterogeneous; 

• assortment of large objects whether the container{s) is{are) rectangular, ho-

mogeneous or inhomogeneous. This characteristic separates problems into 

different categories, e.g. pallet loading (one large object with fixed sizes), 

strip packing (one large object with infinite sizes on some dimensions), bin 

packing (multiple large objects with identical sizes); 

• dimensionality whether the problem is of one, two or more dimensions; 

• shape of small items whether the small items is orthogonal or non-orthogonal. 

This characteristic distinguishes cases between regular and non-regular shapes. 

For refined problems, if there are no additional constraints, is it then one of the 

'standard' types; otherwise further steps are taken to put it in one of the special 
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problems. The scientific papers from 1995 to 2004 have been classified according 

to this system. New papers, along with a categorized bibliography can be found 

on the ESICUP website (http://paginas . fe. up. ptresicup/). 

Another classification method has been presented by Sweeney and Paternoster 1 17 4]. 

They collected more than 400 papers, omitting those on complexity and worst-

case analysis, and assigned them into categories forming a 3x3 matrix. Rows of 

the matrix are defined by dimensionality from 1 to 3, columns are formed by 

solution approaches: sequential heuristics, single pattern oriented (e.g. dynamic 

programming based) algorithms, and multi-pattern oriented (e.g. math program-

ming based) algorithms. Some of the mostly studied topics are listed separately, 

such as assortment problems, and multi-stage problems. A follow-up work 162], in 

1997, selected more than 150 annotated references on various topics grouped into 

several topics, which are based on the dimensionality of the problems. 

In 1979 Hinxman 1105] published a survey on trim-loss and assortment prob-

lems, considering problems of I-dimension, 1.5-dimensions and 2-dimensions. Haessler 

and Sweeney published updated reviews 197, 98] in 1991 and 1992. They gave de-

tailed mathematical programming formulations of these problems and their vari-

ations. In particular, they explained the differences in staged, guillotine/non-

guillotine, non-orthogonal pattern generation. 

Dowsland and Dowsland [56] reviewed various classes of 2-dimensional prob-

lems, including guillotine and non-guillotine patterns, bounded and unbounded 

pieces of small items, pallet loading, bin packing and strip packing. They also 

briefly discussed works up to 1990 on 3-dimensional and non-rectangular prob-

lems. 

Other surveys and reviews on specific sub-area are: [40] on worst-case and 

average-case analysis of packing heuristics for one dimension problems, 1145] on 

empirical study of exact algorithms of 0-1 variant knapsack problems, 176] on 

multidimensional 0-1 knapsack problems, [135, 136, 139, 145] on two dimensional 
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problems (including [107] on genetic algorithms), [154] on three dimensional prob-

lems and [15] on irregular shape nesting problems. 

2.3 Orthogonal Packing Formulation 

2.3.1 One-dimensional Problems 

The mathematical formulation of the one-dimensional problems is usually given 

as a linear program. 

1. The classical 0-1 Knapsack Problem (KP) is defined in [147] as a set of items 

i E (1,2" .. ,n) each of which has associated values of cost Ci and profit Pi, 

the objective is to choose a subset of items to maximize the total profit while 

keeping the cost under a capacity limit, C, of the knapsack, i.e. 

max 

s.t. "" c·x· < C ｾ ~ t t_ 

Xi E (0,1) 

(2.1a) 

(2.1 b) 

(2.1c) 

for i = 1,2, ... ,n. Xi is a binary variable indicating if item i is selected into 

the knapsack. The inequality constraint 2.1 b specifies total cost of selected 

items must be equal or less than C. 

2. Bounded or constrained Knapsack Problems [159]: This is the first variant 

of classical KP, by simply changing equation 2.1b to 

Xi E {a, b} (2.2) 

where a, b are non-negative integers and a S b; 

3. Unbounded Knapsack Problems [149]: This is another variant of KP, by 
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changing equation 2.2 to a = 0, b = 00. 

4. Multiple Knapsack Problems (MKP) 11491: This is also called the 0-1 multi-

knapsack problem (or multi-dimensional 0-1 KP in some of the literature, 

we do not use multi-dimensional 0-1 KP to avoid confusion with geometrical 

multi-dimensional problems). It is also one of the most extensively studied 

problems. Instead of having a single capacity we have multiple bins, therefore 

multiple capacities. Instead of one limit of C, we have a set of limits Cj 

(j E {I, 2, ... ,m}) for each knapsack, accordingly equation 2.1b is then 

changed to 

(2.3) 

and normally we assume Cli = C2i = ... = Cji (which means unit cost of an 

item does not change whichever knapsack it is put in). 

5. Stock Cutting Problems (SCP) 11761: This type of problem is slightly differ-

ent from the knapsack problem. The standard one-dimensional version can 

be described as, a stock of rods with the same length C have to be cut into 

m different smaller pieces of length Ci i E {I, 2, . . . ,m} , and least qi piece 

of item i is required. The objective is to minimise the total number of stocks 

used. 

In the seminal paper of Gilmore and Gomory 181], they proposed a innovative 

formulation and a column generation method to tackle the problem. They 

used column vectors [alj, a2j' ... ,amj]T to represent j different patterns, 

with aij, i E {I, 2, ... ,m} denotes the number of item type i in the jth 

pattern. Integer variable Xj indicates the number of pattern j in the solution. 

The formulation is written as 
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mm LXj (2.4a) 
j 

.'J.t. Lax >n IJ J _ I (2.4h) 
j 

X· > 0 J - (2.4c) 

6. Trim Loss: This problem relates to the SCP by altering the objective func-

tion to minimizing the total wasted "trims". 

7. Bin Packing Problems (BPP) [40]: BPP are also closely related to SCPo 

The bins (analogues to stocks) often have the same capacity of C and the 

objective is to minimize the total number of bins needed. 

n 

mm LYj (2.5a) 
j=1 
m 

s.t. L CiXij ::; CYj (2.5b) 
i=1 
m n 

LLXij = 1 (2.5c) 
i=1 j=l 

Xij E {O, 1} (2.50) 

Yj E {O, 1} (2.5e) 

for i E {1,2,··. ,n}, and j E {1,2,··· ,m}, n and TTl are the number of 

items and bins respectively. The binary variables Xij, Yj are defined in the 

way that if bin j is used in packing Yj = 1, otherwise Yj = 0; similarly if item 

i is placed in bin j then Xij = 1, otherwise Xij = O. Therefore, the meaning 

of 2.5c is that each item must be placed in exactly one of the bins, and in 

2.5b all items in bin j must not exceed the total limit of that bin. 
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The above are all strict integer programming models commonly found in the 

literature. Other innovative approaches of mathematical programming have also 

been studied, such as in [591. However, the mathematical formulations are difficult 

to solve in most cases due to the size of the search space. Nonetheless early 

research still found ways of applying mathematical programming, such as column-

generation[81, 82, 84], to resolve small-sized problem instances as we will discuss in 

the algorithm section (section 2.4). In [311 Caprara provides a detailed discussion 

on the properties of integer programming (IP) and associated relaxations. It is also 

popular to use relaxed integer programming formulations to obtain lower/upper 

bounds. 

Beside mathematical programming models, heuristics can generally be re-

garded as another way of modelling problems (as well as solution approaches) 

with a view to obtain approximate results within reasonable computational times. 

These will be introduced below in the heuristic algorithms section (section 2.5). 

2.3.2 Multi-dimensional Problems 

When extending cutting and packing problems to two or more dimensions, some 

new difficult issues arise. The first issue is the exponentially increasing number of 

variables and constraints associated with the higher dimension, which is basically 

due to these being NP problems. It is also more difficult to generate feasible 

patterns. This means the feasible search space is harder to define, because to 

maintain a feasibility in one dimension, we are normally subject to restrictions in 

other dimensions. And such restrictions change dynamically as packing procedure 

progresses. There are also many interesting variations of the problem, particularly 

those requiring certain patterns of layout to be generated. 

In a basic two-dimensional problem both small shapes and large containers 

have associated widths and heights. The following are some of the most popular 

problem variants that have been studied: 
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Bin Packing, Strip Packing These categories are extensions to the one-dimensional 

problems under the same names, and can be modelled by classical LP meth-

ods and by introducing variables on each dimension (see below). Thus a 

two-dimensional bin packing problem refers to a minimization problem in 

the context of two dimensions, while the multi-dimensional stock cutting is 

to maximize profit value. Multi-dimensional strip packing can be viewed as 

a special case of multi-dimensional bin packing, where only one large con-

tainer with infinite height is provided, and the objective is to minimize the 

total height of the layout. 

Orientation (Rotation) If the width and height of a small item can be ex-

changed, we say the problem allows rotation or that the items are non-

oriented. Otherwise we say the problem is of fixed orientation. 

Guillotine and non-Guillotine Guillotine pattern can be found in many real-

world cutting applications, such as paper and glass industries. It requires a 

cut goes from one edge to an opposite edge. Non-guillotine patterns are free 

from such a restriction. 

Tetris As suggested by its name (after the famous game), some applications 

require items start from top and, before settling permanently, move in any 

direction except trespass on space already occupied by other items. Such 

cases can be easily found in many industrial applications, such as shipping 

container loading. 

Pallet Loading Sometimes items are of homogeneous nature and can be rotated. 

The objective is to load as many of these small items as possible. 

Due to the strong connections between one-dimensional and multi-dimensional 

problems, classical linear programming and integer programming models can be 

extended to higher dimensional problems. In fact, the first integer programming 
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model for one-dimensional problem (in 181]) was soon applied to two-dimensional 

problems by the same authors in 1831. To limit the complexity of defining patterns, 

the authors studied a special two stage guillotine cut. 

Another approach taken by Beasley 1121 and Hadjiconstantinou et a1. 1951 can 

be more generally applied to non-guillotine patterns. The model uses Euclidean 

coordinates to explicitly define layout patterns. Let binary variable Xipq be equal 

to 1 if item i is placed with its bottom-left corner at coordinate of (p, q), and 0 if 

otherwise. The 0-1 integer programming can be written as follows, where Vi and 

aipq are associated profit and cost of item i: 

max L L L ViXipq 

iEM pEL qEW 

s. t. L L L aipqXipq ｾ ~ 1 
iEM pEL qEW 

ｾ ~ ｾ ~ LLXiPq ｾ ~ Qi 

pEL qEW 

Xipq E {O, I} 

(2.6a) 

(2.6b) 

(2.6c) 

(2.6d) 

for i E {1,2,··· ,m} (or the set M), p E {1,2,··· ,I} (or the set L) and q E 

{I, 2,··· , w} (or the set W). Pi and Qi are lower and upper bounds of the quantity 

of item i. 

The above LP models suffer from a large number of variables and the problem 

of redundancy. To avoid these problems, another novel approach by Fekete and 

Schepers 171-74], proposed in 1997, takes advantage of interval graph theory to 

from a class of packing patterns. These patterns, though having different internal 

layout, form enclosed rectangles with equal widths and heights. The idea is for 

each pattern, we can always project it to a x and y axis, with item width and height 

as intervals along the two axis respectively. The following example (see Figure 2.1) 

from their papers illustrates 5 items VI, V2, V3, V4, V5 packed as the pattern shown, 

and their projection on x and y axes can be presented in a pair of interval graphs, 
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one for ach dim n ion. Th nod in an int rval graph represent it m , and an 

edg exi t b tween two node if their proje tion on the dimen ion v rlap . 

. " .. 
y , , , , 

Figure 2.1: A two-dimensional packing and the interval graphs GI , G2 induced by 
the axis-parallel projection (from [72]) 

The formal expression of graph presentation is: Let Gi = (V, E i ) be induced 

graph from proje tion i (i = 1,2, ··· ,d) , (for two-dimensional problems d = 2), 

the set of graphs for d dim nsion form a feasible packing class if and only if they 

satisfy the following properti : PI: Each Gi = (V, E i ) is an interval graph; P2: 

Each tabl et S of Gi i x i-feasible, i.e. where p(b) is the starting point of item 

band w(b) i the length of b; W is the total length of bin. P3: nt=l Ei = 0 An 

advantage of this presentation is a pair of interval graphs can actually represent 

more than one packing, but a who I class of packing, which are list d below (figure 

2.2). Thi is a desirable thing a it can greatly reduce duplication of equivalent 

patterns. 

This model ha two major drawbacks. Fir t , it may be the ca e that search 

over the graph rather than binary variables, can effectively redu redundan-

cie . However, unfortunately, the ba ic NP-hard problem still exists as it relies on 

hecking if ach graph form an interval graph, and this decision problem is still 

open in graph th ory. Secondly, treating the shapes indifferently a nodes (non-

weighted nod ) is ignoring the size information of ach shape. While this may 
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Figure 2.2: All feasible packings of a packing class have the same interval graph 
representation as in 2.1 (from [72]) 

simplify the model, it can cause infeasible solutions in degenerated cases details 

will be discussed in chapter 5 (Figure 5.1). Therefore, we believe this is a flaw in 

the original publication when applying this approach to construct a packing from 

a pair of interval graphs. However, the interval graphs are still a good abstraction 

of packing class, which can be useful to some extent. For example, we can use the 

graphs as an abstraction to compare similarity between two packings (see chapter 

5 for details.) 

There are some other modelling methods exist in the literature which are less 

studied, such as a block structure proposed by Mukhacheva and Mukhacheva [153]. 
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The block structure uses virtual cuts to split packings vertically and horizontally 

before assigning to each piece a notion of ordering defined by the vertical and 

horizontal sequences. Imahori et a1. [111, 112J used a sequence pair representation 

which is the orders of a shape on x and y dimension. There are also models for 

specific variant problems, such as in [140J for level packing and in [37J for container 

loading. 

In the last part of this section, we define the Orthogonal Strip Packing Prob-

lems (OSPP) which will be studied in the remainder of the thesis. In the classical 

Orthogonal Strip Packing Problems [l1J, we are given a large container C, with 

width Wand infinite height. We are required to pack into C a set of small rect-

angles R = {Ti' T2, ... , Tn} with (Wi, hi) denoting the width and height for each 

Ti E R. The objective is to minimise the total height of the packed rectangles. 

Typical assumptions, as summarized by Fekete and Schepers [72], are: 

1. Each edge of the rectangles has to be parallel to one edge of the container 

(orthogonal) ; 

2. We do not require guillotine cutting (free-from); 

3. All rectangles must be within the container (closeness); 

4. Rectangles must not overlap with each other (disjoint); 

5. Rectangles cannot be rotated (fixed orientation). 

The problem can be classified as two-dimensional regular open dimensional 

packing (2D-R-ODP) according to the typology proposed by Wascher et a1.[178J. 

As with its one dimensional counterpart, the two-dimensional orthogonal packing 

is also strongly NP-hard [l1J. 
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2.4 Exact Algorithms 

Many exact algorithms have been used to tackle one-dimensional problems. Most 

of these algorithms are based on the integer programming models in the previous 

section. There are two main issues for these models. The first is how to deal with 

large instances. The second is how to search through the feasible solution space 

effectively. Here we review the most important methods to tackle the difficulties 

involved in integer programming: column generation and branch and bound. We 

will also look at methods for computing bounds separately. 

2.4.1 Approaches to One-dimensional Problems 

Column generation To address the large-scale issue, in early 1960s Gilmore 

and Gomory [81] first presented a column generation method to trim loss 

problem. They used a column vector to represent a possible cutting pattern 

from one stock rod, which has m elements each represents how many pieces 

of the mth type is cut from the pattern. The problem is then decomposed 

to two stages, the first is to decide if a pattern is feasible, the second is to 

decide if a pattern should be added into the solution so as to minimise the 

waste. To choose a pattern for a subsequent LP, they first solve an auxiliary 

knapsack problem which can be solved more easily. Haessler in [961 improved 

the methods by placing restrictions on the coefficients, which led to solutions 

with fewer patterns and was easier to round to integer values. 

Branch and bound Branch and bound algorithms are probably one of the most 

widely used exact algorithm. The basic method can be illustrated as a tree 

search. The tree is constructed from the root, which in an initial state 

with some variables being arbitrarily fixed to certain values. Along branches 

the search space is partitioned into disjoint parts, as each branch explicitly 

includes or excludes certain conditions. The search starts from the root, 
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and prunes the tree, testing on upper or lower bounds (depending on the 

objective function) to avoid enumerative evaluation on each leaf node. It 

has been noticed by many the performance of this type of algorithm depends 

heavily on how tight the bounds are. In addition, calculating the bounds is 

often computationally expensive. 

Bounds 

To derive an effective bound, Martello and Toth [147, 148, 1511 used a type of 

continuous upper bound for the knapsack problems. The bound is obtained by 

sorting items then placing them successively into the knapsack according to the 

ratio of profit p to cost C of all n items: 

Pj > Pj+l 

Cj CHI 
(2.7) 

(for each item j = 1,··· ,n - 1) and until no more items can be placed, a critical 

point s is defined as: 

s:= min{i: LCj > C} 
j=1 

where C the total capacity of the knapsack. 

(2.8) 

If there is any unutilized space, it can be filled by an item with the biggest 

unit value of &., (since more valuable items before the critical point are all used 
Cs 

up). The bound can be written as: 

(2.9) 

Lower bounds for the bin packing problems (as we are dealing with minimiza-

tion problem) can be computed in a similar fashion, though other methods exist 

in the literature, such as Lagrangian, and surrogate relaxation of equation 2.5 (in 

section 2.3). The first trivial bound is the sum of total volume of small items, 
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according to 1150], which has computational complexity of O(n) and worst-case 

performance of 1/2. And this bound Ll () dominates the Lagrangian relaxation. 

(2.10) 

Another tighter bound is obtained through a very similar idea for the knapsack 

problem. It takes advantage of items larger than half of the bin size, such that no 

two items can be placed together. The remaining space of used bins is filled by 

smaller items. If any mid-sized items remain unpacked, they open up new bins 

with lower bound given by (2.10). Mathematical expression of the idea is, for item 

set 1 any arbitrary value c E [0,1/2]: 

(2.11a) 

(2.11b) 

(where 1 is the set of all items and I{i E Ilci > 1 - dl means the number of 

items whose volume exceed the threshold I-c). According to [150J the worst-case 

performance is 2/3 and the complexity is O(n). L2()is improved by Labbe et al. 

in 1129J by further exploiting the characteristics of items within the range of 1/3 

to 1/2 of bin size, as two of such items can be put together into a bin. Define a 

set 13 for these items, the expression of the bound is: 

L3(I) = arg max L3 (I, c) (2.12a) 
C-E[O,1/2] 

L3(1, e) = I{i E lie, > 1 - e}l + r; 1 + p(e) (2.12b) 

where p(c) = max (0, r L Ci - I{i E Ilci E ｛ ｾ Ｌ , c 1 }I- r Ｇ ｾ Ｇ ｬ ｬ Ｉ ) (2.12c) 
CiE[C-,l-c-] 

In 120J Bourjolly and Rebetez proved the complexity of this bound to be 
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O(nlogn) when items unsorted and O(n) when sorted non-increasingly; and worst-

case performance is 3/4. 

Another interesting fast bound introduced by Fekete and Schepers in 1701 which 

made use of the idea of Dual Feasibility Function (DFF) by Johnson in his PhD 

thesis 11151. DFF is a type of mathematical transformation function which maps an 

original hard problem into an easier intermediate problem. The function applied 

in 1701 is defined as a function u : [0, 11 ｾ ~ [0, 1] if for a finite set of F the following 

two inequalities hold: 

(2.13a) 

LU(X) ｾ ~ 1 (2.13b) 
xEF 

The bound can be computed in O(pn) time.The DFF approach for deriving 

bounds has also been taken for higher dimensional problems, and further developed 

by earlier et al. 1331. 

Other methods of computing bounds can be found in two recent surveys 1461 

and 1451. 

Other Exact Methods for One-dimensional Problems 

There are some other approaches, mainly hybrid methods, that are worthy of 

mention. In 1141 Belov and Scheithauer show a way to combine the branch and 

cut and price approaches which leads to an enhanced search process. Dynamic 

Programming (DP) is generally an enumerative procedure and therefore not nor-

mally used for problem sizes larger than 20. However, in 1144, 1581 Pisinger et 

al. demonstrated one way of using DP to start the search from a core area. The 

search first starts from a so called Dantzig integer solution given by formula 2.7 

and 2.8, and at the beginning point the incumbent solution only includes one item 

s. The DP is constructed by trying to add s - 1 and s + 1, then s - 2 and s + 2 
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and so on. The complexity is O(cn) (where c is a constant and n is the size of a 

problem) which enables the method to provide reasonable solutions for instances 

of 10,000 items within a few minutes. 

2.4.2 Approaches to Multi-dimensional Problems 

As with 1D problems, exact algorithms for 2D problems mainly involve branch 

and bound and other enumerative techniques, e.g. dynamic programming. 

In [146] a search tree is formed by placing or removing an item 011 the so-

called corner points on an 'envelope'. Some procedures are taken to prevent from 

producing duplicate patterns. 

Similar approaches have been taken in [143, 152] where items are sorted first 

according to their height or area. Searching is carried out in a two-stage fashion: 

with a first level branch to decide if an item is in a certain bin or not; followed by 

a second level branch to decide the exact position of the item within the bin. The 

second level can be replaced by heuristic methods to accelerate the procedure by 

sacrificing a certain degree of accuracy. 

To follow the interval graph representation, Fekete and Schepers in [69, 74] 

built a binary tree by including and excluding edges from each node. The search 

outperforms previous methods by quite a large margin. 

As with 1D problem, deriving proper bounds is crucial to many algorithms, 

especially when involving branch and bound techniques. Many of the bounds re-

garding higher dimensions are extensions of the principles of 1D problems. Further 

readings can be found in [70, 140, 143]. 
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2.5 Heuristics 

2.5.1 Application on One-dimensional Problems 

Rounding LP Relaxation The idea for this is straightforward. It takes two 

phases, and in the first it finds optimal value of a Linear Programming 

relaxation which is easier to solve than the Integer Programming fOfIIlU-

lation. In the second phase it searches the neighbourhood of the relaxed 

optimal solution. In 1169, 1701 Scheithauer and Terno presented a theoreti-

cal investigation on the Modified Integer Round-up Property (MIRUP) for 

one-dimensional stock cutting problems. In 1131 Belov modified the rounding 

heuristic and combined it with Chvatal-Gomory cutting planes and column 

generation to tackle multiple stock lengths in the one-dimensional cutting 

stock problem. 

Next Fit (NF) This heuristic was first described in 11151, and is a so-called 

online bounded space algorithm. Each piece arrives one after another (i.e. 

the algorithm is not aware of the preceding pieces). When one piece arrives 

it has to be placed into the current open bin. At any given time only one bin 

is available for packing. If the current piece does not exceed the capacity of 

the current bin, the piece is placed in it and the algorithm proceeds to next 

incoming item; otherwise the current bin is closed and a new bin is opened. 

According to Johnson 11151, the worst case ratio is RNF = 2. (The notion 

means when item number tends to infinity, the NF algorithm has its worst 

to optimal ratio approaches to a limit of 2. The similar notion applies to the 

other algorithms listed below.) 

First Fit (FF) FF is also an online algorithm, but unlike NF, it is an unbounded 

space algorithm, i.e. all partially filled bins are available for packing. Ac-

tually it indexes all bins according to the sequence they employed and puts 
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the current piece into the lowest indexed bin which is large enough. FF runs 

in O( n log n) time, and the worst case ration is R[!F = ｴ ｾ ~ [781 . 

Best Fit (BF) This packing heuristic checks all partially filled bins which are 

large enough for the current piece. The piece is assigned to the bin having 

the smallest residual space. It can be implemented in O(n log n) time. For a 

specific instance it may behave differently from FF [117], but the FF worst 

case is also hold for BF, i.e. RrlF = R[!F = ｴ ｾ Ｎ .

Other Simple Online Algorithms Several other online algorithms have also 

been studied, mainly for theoretical analysis of complexity and performance 

ratio. So we simply list their definitions here, Worst Fit (WF) fits next item 

into the partially filled bin with the lowest level. Almost Worst Fit (AWF) 

fits the next item into the partially filled bin with second lowest level. Any 

Fit (AF) is a generalized algorithm, which does not start a new bin unless 

no current partially filled bins can be used. Almost Any Fit (AAF) never 

packs items into the lowest partially filled bin unless there is more than one 

such bin. Performance ratios can be found in [116, 1171. 

Bounded Space Algorithms Bounded space means only some of the partially 

filled bins, instead of all of them, are available for packing. These are vari-

ant versions of NF, FF and BF, respectively. A constant K represents the 

number of bins can be kept open at a time. The following relationships hold 

[48, 50, 142], 

ROO _17+ 3 
NFK - 10 IO(K-l) 

Roo _17+ 3 
FFK - 10 10K 

ROO _ 17 
BFK - 10 

Harmonic Algorithms These are also a set of bounded space algorithms first 

introduced by Lee and Lee [1311. The principle is to divide items and bins 
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into K types according to their sizes, say h = (k!l ' iJ. Bins with type k only 

receive items of the same type. Woeginger et al [1] uses another improved 

version called Simplified Harmonic K (SHk), which uses a more complicated 

type of structure. As with Lee and Lee, van Vliet at el. presented the lower 

bounds for different K in [1, 36, 131, 177]. 

According to a theorem in [131]' online bounded-space algorithms have RA' ｾ ~

1.69103. In fact the ratio can be approximated at the limit. Until in 177] 

when a repack is allowed, and in an unpublished script by Grove where 

look-ahead is allowed, the ratio can be guaranteed. 

Other Arbitrary Online Algorithms There are some other online algorithms 

which can improve those relatively simple ones introduced above: Group-X 

Fit (GXF) [116], Refined First Fit (RFF) [182]' Refined Harmonic (RHk) 

[131]' Modified Harmonic (MHk) [163]. A good summary of them can be 

found in [40]. 

Omine Algorithms These algorithms are allowed to chose any item freely and 

pack it to any available bins that are large enough. Among those the mostly 

notable ones are First Fit Decreasing (FFD) and Best Fit Decreasing (BFD). 

They both sort items by a non-increasing order and pack them according 

to rule of FF and BF correspondingly. It has been approved in [9, 116] 

Roo - ROO _ 11 
BFD - FFD - g. 

Sum-or-Squares (SS) The algorithm is firstly presented by Csirik et al. in 1999 

[52]. It performs remarkably well in terms of performance ratio and com-

plexity though the idea is quite simple to explain. SS works as an online 

algorithm and displays some good self organizing properties. The fitness 

function it uses to decide where to put an item is based on Ef:/ Np (h)2, 

where B is the bin number, and Np(h) is the number of bins with height h 

for the current partial packing p. According to [48, 51]' it runs in time of 
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O(nB). For any discrete distribution in which the optimal expected waste 

is sub-linear, SS also has sub-linear expected waste. 

2.5.2 Application on Multi-dimensional Problems 

Some heuristics for one-dimensional cases can be modified for the strip packing 

problem. Baker et al. [11] presented a bottom-up left-justified (BL) heuristic, 

which finds the lowest feasible space, similar to one dimensional First Fit (FF), 

and packs left justified. Two other heuristics have been described by Liu and 

Teng [134]. Rectangles are dropped from the top right corner of the container, 

as in a Tetris game, and moved downwards then leftwards until it settles at a 

stable position. Contrary to BL, these two heuristics are both top-down left-

justified, which overlook any holes formed by preceding rectangles in the partial 

packing. Therefore we regard them as analogues to Next Fit (NF) which never 

utilise empty spaces produced at an earlier stage. No heuristics have strictly 

adopted the Best Fit (BF) policy, which fits a piece into the smallest feasible 

space. Hayek et al. [63] proposed a heuristic related to BF, which matches pieces 

to available space based on an assessment of the fitness of both width and height. 

A few offline heuristics have also heen extended for higher dimensions, notahly 

Gu et al.[93] proposed a Next Fit Decreasing Height (NFDH), Burke et al. [28] 

designed a Best Fit Decreasing Width (BFDW) heuristic. Some heuristics have 

been specially designed for certain cases, such as packing pieces onto shelves [7, 

8, 32, 531. Other classes of one-dimensional heuristics are yet to be developed 

for higher dimensional problems, such as Harmonized Fit [1791 which classifies 

pieces and available spaces into several types, (e.g. big, middle and small) and 

packs pieces into spaces of the same type. It is worth noting that a lot of analysis 

in relation to worst-case and average-case performances has been carried out on 

one-dimensional cases. One important conclusion is that no heuristic consistently 

outperforms any other for all classes of problems. Examples are given in [40], 
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for both online and offline heuristics, worst-case and average-case restricted to 

uniform distribution of items' size. For higher dimensional problems, although 

they are less thoroughly understood and fewer results have been reported so far 

lID, 32, 53, 93, 121, 173], similar observations have been noted, e.g. for some 

ordered lists Best Fit generates better packings than First Fit, while for some 

other lists the opposite is true. 

Compared with 1D problem, some new concepts appear in higher dimensions. 

They are mainly for the purpose of pattern generation which is not an issue in 10. 

Bottom Left (BL) Many of the 20 heuristics assume items are bottom-left (BL) 

justified when finding a placement point, i.e. items are put into a bin one by 

one, at the lowest and left-most position according to the states of partial 

packing when each piece arrives (see 111]). It is easy to see the BL is an 

online algorithm. The worst case performance is 3 for the BL algorithm. In 

Chazelle's 135J implementation the algorithm runs in O(n2
). 

Bottom Left Fill (BLF) By looking at the patterns generated by the BL al-

gorithm, one may have an instant impression that this algorithm creates a 

lot of empty space, which can be better utilized by placing small items into 

these holes. The idea results in an improved heuristic 14J which may have a 

better performance ratio. We have not found any report on proving worst 

or average case ratio for BLF. But our empirical study shows BLF performs 

better than BL, which also agrees with our intuition explained above. 

Best Fit (BF) The algorithm [28J follows the above thinking, i.e. minimize 

wasted space at each step of packing (creating as few holes as possible). It 

does this by looking for information on current partial packing and all items 

left unpacked, and finds for each piece the best matching space. To reduce 

running time, items are sorted by non-increasing height. By an empirical 

study we found BF is usually better than BL and BLF, though run times 
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inevitably increase (as it is an off-line algorithm requires more information 

to process from each step of packing). 

Lowest Fit Left Right Balanced (LFB) In [183] a heuristic is proposed that 

finds the lowest feasible position for a shape and align it to left or right so 

that the distance to the edge is minimised. 

Other Heuristics There are some other ways to simplify the pattern generation. 

One of them is to use the so-called level packing, which packs items in a line 

at the same level. When an item cannot fit, it creates a new level on top of 

the current highest item, and puts the rest of the items on this new level; 

and so on. For such a variant, many heuristics of ID problems can be easily 

extended and applied. Surveys by Csirik et al. [49] and Coffman et al. [41] 

cover many such heuristics: worst case ratios for Next Fit (NF) and Next 

Fit Decreasing Height (NFDH) are 2, and for First Fit (FF) and First Fit 

Decreasing Height (FFDH) are 17/10. 

2.6 Meta-heuristics 

Meta-heuristics is a generic name for the class of optimization algorithms that 

iteratively search for better solutions. The basic idea that underpins most meta-

heuristics is based on the fact that, although solutions of a problem might be 

multi-modal and/or discrete, they normally exhibit some degree of 'similarity' 

between each other. The relationship enables us to arrange the solutions into a 

structure called a neighbourhood. An existing solution can be altered within the 

structure by a step or a move to another point in its neighbourhood. Normally, 

the bigger a step the less similarity there is between the old and new solutions. 

This provides a foundation of many search algorithms. Different strategies control 

the move in the solution space, deciding whether to accept the new solution or 

not, to maximum the chance we find the optima. 
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A simple search strategy is local search, which includes First Descent (FD) and 

Best Descent (BD, also known as steepest descent). In first-descent, an existing 

solution will be replaced by the first, if any, better solution; while in the latter, 

all neighbouring solutions will be enumerated and the best will be chosen as new 

candidate, ifit is better. Compared to FD, BD usually has a better solution quality 

at the cost of more evaluations. An issue with simple local search algorithms is, 

when the search space is discrete and multi-modal, they tend to become trapped 

at a local optima, i.e. no neighbouring solutions are better than the current one, 

even though a non-neighbouring solution might be. In addition, the move of local 

search is not adaptable, the algorithm has no ability to learn from the search 

experience; it's also a single-thread search which may not be efficient enough for 

large search spaces. 

To avoid being trapped at a local optima, more sophisticated approaches have 

been introduced such as Variable Neighbourhood Search (VNS) [99, 100], Simu-

lated Annealing (SA) [1241 and Tabu Search (TS) [851. VNS is a more systematic 

local search which constructs a hierarchical neighbourhood around an existing so-

lution and searches iteratively from the nearest to farther neighbourhoods until 

a better solution is found and substitutes the current one. Simulated Anneal-

ing (SA), Tabu Search (TS) accept worse solutions strategically with the hope 

of escaping from the local optima. SA simulates the physical annealing process 

in metallurgy, in which atoms actively change initial positions when the temper-

ature is high and gradually settles down as the temperature is decreased. SA 

uses the temperature as a controlling parameter, initially being set very high to 

encourage diversification in the search space by allowing many worse solutions to 

be accepted. As the search progresses the temperature is lowered to allow more 

focused exploration. TS applies a more explicit strategy that maintains a list of 

moves which will be forbade for a certain number of iterations. 

Evolutionary Algorithms (EA), include Genetic Algorithm (GA), Genetic Pro-
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gramming (GP), Evolution Strategies (ES) etc., are more sophisticated search 

paradigms, which were first formalized in early 1960s but have flourished only since 

the 1970's due to the advance of more powerful computer technology which made 

their application practical. The most notable characteristic of EA approaches is 

that they search in parallel with the notion of population for a set of candidate 

solutions. With a selection mechanism based on the fitness of each solution. The 

fitter candidates in the population have higher chances of being selected for repro-

duction, which mimics the idea behind Darwinian natural selection. The evolution 

of one population after another also provides a basis for learning the structure of 

the search space. Many recent developments are using the algorithms to build 

models of a problem and use the models to direct the search into promising ar-

eas. In the next two sub-sections we briefly review the basic notions of Genetic 

Algorithms, Evolution Strategies and their applications on cutting and packing 

problems, which provides the foundation for our research. 

GAs, GPs and ESs maintains a population of candidate solutions, reproduce 

new solutions through variation processes and exert selection pressure to guide 

the search. There are significant differences between these two algorithms. GAs 

search in the space of symbolic encoding (genotype), while ESs normally pro-

cess phenotypes directly. In the reproduction and variation processes, GAs rely 

more on recombination of multiple existing solutions (parents) while ESs tend 

to use mutation. The theory behind GAs are largely based on schema theorem 

and building block hypothesis, while ESs find its root in asymptote properties 

of gradient landscape and Markov Probability. GPs differ from GAs in that the 

population consists of specialised individuals of computer programs (or functions) 

traditionally implemented with a tree structure. 
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2.6.1 Genetic Algorithms (GA) 

The representation of GAs are typically encoded as strings of alphabets with finite 

length, called chromosomes. The alphabets can be binary or ordinal numbers. 

More complicated chromosomes can also be constructed by elementary strings, 

such as those in messy-GA or Grouping GA (see chapter 4), where the primary 

strings represent shapes to pack and additional ancillary strings can be used to 

indicate bins that each shape belongs to. 

Algorithm 1 illustrates the framework of the canonical GA. The core steps 

of the algorithm are. the inner loop from line 4 to line 6. With the selection 

mechanism (line 4), candidates with higher fitness value are more likely to be 

chosen for reproduction. In conjunction with the recombination step (line 5), good 

genetic encoding will be inherited and passed to the next generation. This is the 

idea of 'survival of the fittest' that hopefully converges the search process to good 

regions of the search space. There are many options for the selection and crossover 

operators. Selection methods that are most commonly found in the literatures 

include roulette wheel selection, tournament selection, and truncate selection, etc. 

[1681. De Jong [541 compares various selection methods by an empirical study, 

which reveals the relationship between convergence speed and selection pressure. 

For the crossover of binary strings, there are one-point, multi-point and uniform 

crossover are used, while for ordinal number strings, order-based crossover, partial 

matching crossover have been specially designed to guarantee feasibility on certain 

problem types. Researchers also recognise the importance of mutation (line 6) 

as an operator that provides random small variation to existing solutions. The 

benefit of such variation is to prevent premature convergence, i.e. the population 

becomes stuck at a local optima with homogeneous genetic encodings. In the 

merge step (line 9), there are also two main types of strategies depending on if the 

best candidates from parent generation are kept. If they are, the GA are normally 

referred as the steady state GA. 
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Algorithm 1 Pseudo-code for the canonical genetic algorithm 
1: initialize population 
2: while not meet stop criteria do 
3: while children less than new pop_size do 
4: select two parents from population; 
5: crossover to generate two children; 
6: mutate the two children; 
7: decode and evaluate children; 
8: end while 
9: merge populations; 

10: end while 

Theoretical research on GAs has largely focused on the schemata theory 1106J 

and the building block hypothesis 187J, which attempt to understand the dynam-

ics of GAs evolution process. A schema is a template of partial genetic encoding, 

which can be matched to a sub-set of candidate solutions' encodings. The average 

fitness of these candidates provides a measurement of the fitness of the schema. 

The schemata theorem also gives rise to the Building Block (BB) Hypothesis. 

Bridges and Goldberg 1861 show that short, low-order schemas, the BBs, with 

above average fitness will dominate the population, as they will increase expo-

nentially in subsequent generations. Some variants of GAs are trying to identify 

and exchange BBs in more effective ways. In real applications many problems are 

BB-hard problems, i.e. BBs are hard to find, highly interactive or easily disrupted 

1671. The extreme is the phenomenon of deceptive functions 1881. That is, BBs 

which are not 'fit' in themselves, are in fact necessary in generating fitter solutions. 

Another problem we will demonstrate in chapter 4 is that, while explicit search 

for BBs can aggressively direct the search to promising paths, the number of BBs 

might increase exponentially for instances of larger sizes. This side effect could 

eventually tip the performance scale if not controlled properly. 
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2.6.2 Evolution Strategies (ES) 

The general procedure of ESs resemble that of GAs in many steps (see Algorithm 

2). In most implementations, both algorithms randomly generate the initial solu-

tions as the starting point of the search (line 1), utilise the populations to search in 

parallel (lines 3 to 6) and select good candidates based on their fitness (lines 4 and 

8). However, GAs use crossover/recombination operator as the main reproduction 

method and mutation as an assisting variation operator, while ESs places greater 

emphasis on mutation. As such both have very different underlying theories 116]. 

Algorithm 2 Pseudo-code for the canonical evolution strategies 
1: initialize population 
2: while not meet stop criteria do 
3: while number of new children less than pop size do 
4: select a parent from population based on fitness; 
5: clone and mutate to generate children; 
6: adjust mutation strength; 
7: end while 
8: merge populations based on fitness; 
9: end while 

2.6.3 Application on One Dimensional Problems 

Meta-heuristics have been applied to cutting and packing problems as they pro-

duce good quality solutions thanks to the increasing power of modern computers. 

For one dimensional problems, as the representation of a problem is much simpler 

than higher dimensional problem, standard meta-heuristics can often be applied, 

while in the high dimension scenario, many of these approaches use a hybrid strat-

egy combining a meta-heuristic together with a placement heuristic. For example, 

in a typical GA method, the GA searches for the best permutation of shapes that 

enables a decoder to return a good packing solution. In addition, many hybrid 

meta-heuristics are also devised in the literature to form stronger strategy for cer-

tain problems, such as Memetic Algorithms combining Evolutionary Algorithms 
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with Local Search can often improve the results of many problems. In this sec-

tion, we review application of these algorithms on one dimensional problems, more 

complex and hybrid applications on higher dimensional cases will be introduced 

in the next section. 

Local Search (LS) In [ISS] the neighbourhood is simply defined as exchanging 

up to p items in one bin and q items in another. In addition to two typ-

ical search methods, Best Improvement (BI) and First Improvement (FI), 

another search method, Priority Improvement (PI), is presented as follows: 

Step 1 sorts bins according to a specified priority so that bin i has the ith 

highest priority. Step 2 for m = 3 to 2N - 1 (N is the number of bins), 

searches the neighbourhoods between all pairs of bins i and j (i < j ) such 

that i + j = m. 

Shouraki and Haffari [171] investigated the fitness landscape of one dimen-

sional Bin Packing Problems, they applied the STAGE search [113], a variant 

of Local Search, to the problems and compared it with steepest descent, first 

descent and stochastic hill climbing. The STAGE algorithm uses a learning 

strategy to construct predictive evaluation functions rather than the static 

objective function to guide search. 

Simulated Annealing (SA) Foerster and vVascher [75] tackled a variant of one 

dimensional stock cutting problem which has items in batches of orders 

and the objective function is to minimise the maximum span of any batch. 

The SA they designed features a standard Boltzmann function e( 1) for 

acceptance probability, a decreasing temperature with coefficient of 0.75 and 

an increasing number of search loops with coefficient of 1.15 after each move. 

The solution quality is equivalent to 3-opt but using much less computation 

time. 

Genetic Algorithms (GA) Early implementations of Genetic Algorithms usu-
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ally use binary string encodings. However, this approach encounters some 

intrinsic difficulties for cutting and packing problems 1164J. In 1164J Reeves 

pointed out that another encoding method called q-ARY has some defects, 

though the method improves binary encoding to some extent. According to 

his studies hybrid GAs with some simple on-line heuristics, notably FF, BF 

and NF, are promising approaches. Some combination of reduction proce-

dures and linear programming are also compared in this paper. 

The current state of art shows that two other approaches arc promising. 

The first, Grouping GA (GGA), was introduced by Falkenauer 166, 67J. The 

other, combining GA with an online decoding heuristic, will be discussed 

in a later section as it is mainly used for 2D packing problems. GGA is 

designed to handle the so-called problems of redundancy and disruption of 

schema in GAs. Instead of single string chromosome, each has an additional 

labelling string. Genes are said to be in the same group if they have the same 

label indicators. Genetic operators such as crossover and mutation work on 

a group basis. A novel fitness function is also proposed in 166J. Bhatia 

and Basu 117J modified GGA slightly and proposed a multi-chromosomal 

encoding for bin packing problems. 

Ant Colony (AC) In recent years, ant systems have drawn a lot of interest from 

researchers. In 1132], Levine and Ducatelle hybridised Ant System with the 

FFD pack heuristic and a local search improvement by Martello and Toth 

1150J. Their approach encodes the pheromone T( i, j) as the favourability of 

having item of size i and j in the same bin. The pheromone will be reinforced 

if two items appear in the same bin produces a good solution. In 121], the 

pheromone matrix is defined as one row for each item size and one column 

for each remaining space. A new pheromone updating function and fitness 

function can be found in the paper. 
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2.6.4 Application on Multi-dimensional Problems 

A comparison of various meta-heuristic approaches SA, GA, TS can be found 

in [108, 109]. All these approaches utilised the search space of permutations of 

shapes. Burke and Kendall [26] also compared the three meta-heuristics but on 

a simplified testing problem which has identical shapes and aims to minimise the 

bounding box. 

Local Search (LS) Faroe et al.[68] used similar representation and neighbour-

hood structure as the simulated annealing in 155] (see below)' but adopted 

a different Fast Local Search strategy to avoid the slow convergence issue in 

[55]. 

In [111, 112], Imahori et al. formulated a two dimensional rectangle packing 

as a permutation of sequence pair (8+,8_) for each shape. Three neighbour-

hood moves were defined in the paper which swap two shapes' sequence pair 

or shift a shape's sequence pair in either or both dimensions. 

Simulated Annealing (SA) SA has been studied by many researchers. In 155], 

a neighbourhood structure is defined, by a relax-and-penalise strategy, as 

shifting items in both x and y dimensions, and the objective function is to 

minimize the overlapping area. Searching proceeds by allowing temporary 

infeasible overlapping, with the overlap being punished through the objective 

function. Lai and Chan [130] represented a SA that searches in the symbolic 

representation space, which permutes the orders of shapes to be cut. Fainal 

[65] extended SA to work with both guillotine and non-guillotine cutting 

patterns. Burke et al. [29] created a hybrid two-stage strategy which packs 

a sub-set of shapes initially with the Best-Fit 128] deterministic heuristic 

followed by a SA search stage permuting orders of the rest of unpacked 

shapes (rotation of shapes is allowed in the work). Sokea and Bingul [172] 

proposed the combination of SA and an improved bottom left fill heuristic. 
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They also examined the effects of the cool schedule and other parameter 

settings of SA. 

Tabu Search (TS) Alvarez-Valdes et a1. [21 applied tabu search to non-guillotine 

cutting problems where new solutions were derived by altering shapes adja-

cent to waste areas and inserting new shapes. The tabu list was used to keep 

from a non-improving move that had similar wasted area (the similarity is 

defined by the minimal virtual rectangle covering all wasted area). 

Lodi et a1. [137, 1411 presented a tabu search using the neighbourhood search 

that tries to rearrange a subset of items into a target bin. The algorithm 

always accepts improved solutions; it also accepts solutions not in the tabu 

list but having equal fitness value to incumbent solutions; for deteriorated 

solutions a penalty function was used to determine if a move is accepted. 

The tabu list was designed to prevent repeating the last certain number of 

moves performed. 

In an unpublished report [471 Crainic et a1. proposed a tabu search algorithm 

based on the interval graph representation [741. 

Genetic Algorithms (GA) Jakobs [1141 used a GA for more general packing 

patterns, including irregular shapes, with generic chromosomes correspond-

ing to orders in which shapes were placed into the bins. A Bottom Left 

(BL) packing heuristic is applied to map a genetic encoding to a packing. 

The order-based encoding was also applied to three dimensional problems 

in [1201. Gomez and Fuente [90, 911 adopted exactly the same encoding as 

Jakobs'. They also compared different crossover schemes Partial Matching 

Crossover (PMX), Order Crossover (OX) and Cycle Crossover (CX) for such 

an order-based encoding. An enhancement of the ordered list encoding was 

proposed by Dowsland et a1. [58[, which showed the benefit of incorporating 

bounding information of wasted areas when each shape was added. Liu and 
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Teng [134] also improved the standard approach by utilising an improved 

BL decoder assigning downward movement with priority and a more so-

phisticated fitness function favouring less fragmented unpacked area. Babu 

and Babu [5] extended Jakobs' algorithm to multiple-sheets stock cutting 

problem by prefix the chromosome with an index list of sheets used. 

Many other special encodings can also be found in the literature. Kroger 

[126] applied a GA to guillotinable packing problems. He proposed the 

concept of a hierarchical structure of meta-rectangles (a tree structure rep-

resenting the relationship of guillotine cuts) to construct a packing, which 

ensures the guillotine pattern at each step and reduces the complexity of 

problems. The slicing trees were encoded as a string of alphabet 1, 2, ... , n 

for n shapes and v, h for cutting orientation. Kroger [127, 128] also tried 

modifying directed graph representation of a packing, where two arcs t-edge 

and r-edge indicate "on-top" and "to-right" relationship, by deleting either 

one of the t-edge and r-edge for each shape and resulting in a single-edge 

directed binary tree encoding. Special operators of mutation and recombi-

nation were introduced to generate new solutions. 

Bortfeldt [18] designed for 2D container loading a complex layer structure as 

in [19]. The expression of solutions describes layouts explicitly thus does not 

need decoding heuristics. Khoo et al. 1122] presented a tree-like encoding 

system, which simulates the packing from a bottom left corner towards the 

top right hand side. In 1153] Mukhacheva and Mukhacheva showed how to 

use a GA for semi-infinite strip packing which utilises a unique represen-

tation of block structure. Instead of ordinal numbers in [114], Goncalves 

[92] composed a chromosome with n random keys uniformly distributed be-

tween 0 and 1 and used an extra step to translate each chromosome into a 

Rectangle Packing Sequence before calling a decoding heuristic. 
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Some real world applications can be found in the following publications. 

[1331 and [1101 dealt with three dimensional and non-convex problems. Her-

bert and Dowsland [1041 tackled pallet loading problems where all shapes 

are identical and rotation is allowed. They experimented both one-dimension 

binary string and two-dimension binary matrix as representation which pre-

serves the notion of closeness of positions on the pallet. Bortfeldt and 

Gehring [191 tackled container loading problem with a GA that represent 

the problem with complex layer data structure. 

Hybrid Algorithms A tabu search algorithm, hybridised with a parametric 

neighbourhood search strategy, is presented in [136-138, 1411. The neigh-

bourhood search acts in a way which rearranges items in k different bins 

in an incumbent solution by some heuristics. The parameter k controls the 

neighbourhood size, and increases by one if no improving solution is found 

or a solution is prohibited by the tabu list. The parametric neighbourhood 

search strategy balances the search diversification and intensification by ad-

justing the value of k. 

Another hybrid local search algorithms can be found [111, 1121. The authors 

examined different relationship types between pair wise items. Based on the 

relationship a local neighbourhood is constructed and searched. 

Genetic Programming (GP) An innovative Genetic Programming approach 

is proposed by Burke et al. in [251. GPs are usually regarded as a meta-

heuristic, in particular, a variant of GA. However, the approach of Burke et 

al. searches for better evaluation functions instead of evolving physical pack-

ings, therefore it can be classified as a hyper-heuristic and will be discussed 

in the next section 2.7. 
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2.7 Hyper-heuristics 

As previous sections have explained, exact algorithms and heuristics are often 

tailor-made algorithms and often limited to specific classes of problems. Meta-

heuristics although more versatile still require in depth knowledge on both problem 

domains and low level heuristics' properties [44]. This is one of the motivations 

behind hyper-heuristics which aim to deliver highly adaptable 'off-the-shelf' opti-

misation tools for wider range of problem domains [27, 165]. 

Early development of hyper-heuristics were focused on the idiom of 'heuris-

tics to choose heuristics', which includes using greedy strategies [42, 43, 156], or 

other meta-heuristics, such as Simulated Annealing, Tabu Search. Some advanced 

learning strategies from other areas cross fertilise the research in hyper-heuristic. 

In [167] a learning classify system incorporated reinforcement learning into hyper-

heuristic framework. These hyper-heuristics are utilising low-level heuristics that 

are pre-determined (only high-level strategies are adaptable). The motivation be-

hind these hyper-heuristics are, given that the different decoders and parameter 

sets perform differently, it normally relies on a user's experience (or even intuition) 

to make appropriate choices. Being aware of the difficulties faced by heuristic and 

meta-heuristics, a natural question to ask is if we can develop an automated sys-

tem which requires less human interaction and can still deal with a wide range of 

problems, i.e. can we raise the generality of 'black-box' type of algorithms? 

One possible way is presented for one-dimensional bin packing problems by 

Ross et al. [166, 167]. In their approaches they associate a set of packing heuris-

tics with different packing states. A learning classifier system[167] and a genetic 

algorithm[166], act as higher level managers, looking for an appropriate packing 

heuristic to be employed at each step of the packing. In these approaches, a set 

of predefined problem states is used to describe the states of partially filled bins 

and the remaining pieces. In [167], a classifier system determines the problem 
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states, therefore, the low level heuristic to call. This approach requires a good 

understanding between problems and low level heuristics. For many situations, 

such as in high dimensional cases, the task of gaining such understanding and 

enumerating all possible situations can be non-trivial, thus we have to resort to 

different techniques. In [166], a GA is employed to detect problem states and 

suitable heuristics to call. As we demonstrate in the next section, some heuristics 

such as left-justify or right-justify, may not be relevant to problem states, but are 

still crucial in some cases to produce good solutions. 

More recently, a new approach emerged which uses the idea of 'heuristics to 

generate heuristics'. In [22, 25J Burke et al. applied Genetic Programming (GP) 

to evolve a population of functions as packing heuristics. Each individual func-

tion is represented in a tree structure comprising of arithmetic operators and size 

measures as terminal nodes. Unlike other hyper-heuristics introduced above, the 

GP is generating packing heuristics rather than searching for an existing heuristic 

to match a packing state. The ability of the GP to generate new heuristics from 

elementary building material (i.e. terminal nodes) is important for the hyper-

heurisitc to ahcieve the goal of self-adaptiveness and generalisation. The Local 

Search approach by Shouraki and Haffari [171J (introduced in 2.6.3) also adopts a 

learning strategy to construct predictive evaluation functions. 

A good introductory paper of hyper-heuristics can be found in [23J. More 

recent developments can be found in ｛ Ｓ ｾ ｝ ] and [34J. Hyper-heuristics have also 

been applied to other areas such as time-tabling [24, 162]' and SAT [6, 22J. 

2.8 Summary 

This chapter has reviewed models and solution approaches of cutting and packing 

problems in basic one dimensional and higher dimensional context. There are 

various mathematical programming models which can solve instances of small 
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sizes to optimality. Many techniques have been reported in the literature for 

solving Linear Programming and Integer Programming models, including column 

generation, branch and bound and etc. Heuristic is another type of model, which 

can usually find good solutions with less computational cost even for large size 

problems. Researches on heuristics are interested in the best, worst and average 

performance analysis. More sophisticated approaches like meta-heuristics have 

been created to iteratively apply simple heuristics and search for improvements 

on solutions. One of the recent developments on meta-heuristics is the approach 

of hyper-heuristics, which does not directly search in solution space: but via an 

indirect search in the space of combination of multiple heuristic decoders. Hyper-

heuristics have been shown to be effective on many practical problems, however 

the theory of hyper-heuristics is still an area needs more investigation. In the 

next chapter, we investigate a hyper-heuristic for multi-dimensional orthogonal 

packing and show the approach can search wider solution space than traditional 

meta-heuristic approaches. 
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Chapter 3 

Multiple Low Level Heuristics 

Hyper-heuristic Approach 

3.1 Introduction 

In Chapter 2 we reviewed the standard heuristics and meta-heuristics which are 

commonly found in the scientific literature to tackle NP-hard problems, includ-

ing orthogonal packing problems. There are some concerns regarding these ap-

proaches. Firstly, Coffman et a1.[40] pointed out that the performance of one 

heuristic, in terms of both worst-case and average-case, may vary depending on 

given instances. Their proofs presume a uniform distribution of item sizes and 

are applicable to one dimensional problems. Performance for other distributions 

and higher dimensional instances are much less understood. The lack of insight 

into instance properties and heuristic behaviour causes difficulty in practical sit-

uations when we need to select an appropriate heuristic for the problem at hand. 

Secondly, a lot of heuristics are designed to guarantee feasible packings, especially 

in high dimensional cases. These heuristics may be so biased that they might not 

be able to construct certain patterns, effectively stopping us being able to find the 

optimal solutionIIl]. The limitation is also inherited by any meta-heuristic which 
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employs only one of these heuristics. 

Hyper-heuristics are an emerging search methodology that are motivated by 

the goal of raising the level of generality of search methods to overcome the dif-

ficulties encountered by standard (meta-)heuristics. The approach has been suc-

cessfully applied to many problems [23, 27, 38, 165]. In this chapter, we propose a 

genetic algorithm based hyper-heuristic approach, which is able to overcome the 

bias of just using one heuristic and is able to search a larger solution space with-

out loss of efficiency. The hyper-heuristic intelligently chooses a suitable heuristic 

each time we need to place an item, which enables it to achieve a higher level 

of generality by operating well across a wide range of problem instances. There 

are two main differences from previous, standard genetic algorithm approaches. 

Firstly, a set of heuristics will be utilised, so as to avoid any shortcomings in 

only using one. Secondly, the chromosome in our hyper-heuristic framework en-

compasses both heuristic information as well as which item to pack. Therefore, 

in our approach we enhance the standard GA encoding, where a chromosome is 

a permutation of items, by adding a set of heuristics together with probabilistic 

information. Such information will facilitate choice decisions in selecting heuris-

tics rather than relying on a user's arbitrary judgement. A learning mechanism is 

responsible for updating the probabilities according to the historical performance 

of the heuristics we employ, thereby influencing future behaviour. The aim is to 

build a black-box system that can raise the level of generalisation at which the 

algorithm can perform on this class of problems. 

While there is no formal definition of hyper-heuristics, they can generally be de-

scribed as heuristics (or meta-heuristics) to choose heuristics (or meta-heuristics) 

[27]. Burke et al. [23, 271 and Ross [165] introduced a conceptual framework 

which suggests a segregation of the roles between the high level search and low 

level heuristics. The higher level acts as an overarching search strategy but instead 

of searching through a problem space the search operates on a set of heuristics, 
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where each heuristic transforms the underlying problem in some way. That is, 

the hyper-heuristic searches through heuristic space, rather than, more tradition-

ally, searching through the problem space. Nevertheless, the precise dynamics of 

high level and low level (meta-) heuristics is still not fully understood. Therefore 

we propose a refined framework for our particular approach, which helps explain 

the behaviour of our method. We draw on further evidence to support our con-

clusions by testing our methodology on two-dimensional orthogonal strip packing 

problems, and comparing our results against standard GA approaches. 

The rest of the chapter is structured as follows. Section 3.2 presents our hyper-

heuristic approach. Section 3.4 reports our results on benchmark instances. Sec-

tion 3.5 present our conclusions and suggestions for future work. 

3.2 The GA-based hyper-heuristic approach 

3.2.1 Overview 

Our hyper-heuristic approach is based on a genetic algorithm (Algorithm 3). How-

ever, it differs from standard GAs by utilising a set of decoding heuristics at the 

lower level instead of only one. To facilitate the choice of heuristics, the standard 

chromosomes are enhanced by combining the order of rectangles with heuristic-

probability pairs. Section 3.2.2 gives more details on the chromosomes. Compared 

to the hyper-heuristic approach using static learning classifier system[166, 167], our 

approach adopts a more dynamic roulette-wheel selection mechanism to choose an 

incumbent heuristic from the candidate set (line 11 in Algorithm 3), along with an 

adaptive learning mechanism to intelligently recognise the more suitable heuristics 

within a set (lines 15 to 19 in Algorithm 3). 

9max is the maximum generation in search usually determined by the com-

putational time allowed. In each generation, the algorithm generates a set of S 

solutions. For individual packs the set R of items with probabilistic choice of 
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Algorithm 3 Pseudo-code of the GA-based hyper-heuristic framework 
1: set generation counter 9 = 0; 
2: for x = 1 to population size do 
3: permute shapes by random shuffle R = {rl' r2, ... , rn}; 
4: for rectangle ri E R initialize a set of heuristic-probability pairs (hi, pf); 
5: evaluate Sx and insert into population S; 
6: end for 
7: while 9 + + ::;: 9max do 
8: select parents sx, Sy E S; 
9: generate new child Se by crossover and mutation of sx, Sy; 

10: for i = 1 to n do 
11: choose a heuristic hi according to probability pf; 
12: pack ri with hi; 
13: end for 
14: se to child set Se; 
15: set Do = (Heightsx - HeightsJ/Heightsx; 
16: PI = pf + Do; 
17: for i E J \ j do 
18: update pf'; 
19: end for 
20: merge Se, S into S; 
21: end while 
22: return best solution Sbest E S. 

heuristics from the heuristic set of J. ri, hi and pf denote the ith rectangle and 

the associated jth heuristic with the probability pf of being used. 

Given the many heuristic decoders reviewed in chapter 2, an immediate ques-

tion we need to answer is how many, and what type of heuristics, are to be included 

for selection. We will use empirical experiments to investigate the proper size and 

type of the heuristic set. In addition, we compare two alternative versions of the 

hyper-heuristic to decide the types of heuristic decoders: 

1. Non-competing heuristic sets (NC-HH): The types of heuristics are 

fixed. They are all available to pack each shape no matter how low the 

probability of one being called might turn out to be (see lines 7 to 9 in Al-

gorithm 4). In this version, although the heuristics hi are arbitrarily chosen 

and remain static, the probabilities pf are updated adaptively and the search 

procedure is still a dynamic probability selection mechanism. Algorithm 4 
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shows details of the refined procedures for this version of the hyper-heuristic. 

Algorithm 4 Refined pseudo-code for ｾ ｃ Ｍ ｈ ｈ H
1: / /refined initialising (replaces line 4 in Algorithm 3) 
2: for i E {1,2, ... ,n} do 
3: initialize a set of IJI heuristics, and set each p{ = Iii; 
4: end for 
5: 
6: / /refined updating (replaces lines 17 to 19 in Algorithm 3) 
7: for j' E J \ j do 

. . ｾ ~

8: pf' = pf' - IJI-l; 
9: end for 

2. Competing heuristic sets (C-HH): This hyper-heuristic chooses initial 

heuristic sets, and it allows badly performing heuristics to be replaced (Algo-

rithm 5). When initializing, the hyper-heuristic randomly selects a sub-set 

of heuristics from all those available. During the updating process, if the 

probability of a heuristic drops below a threshold level, it will be replaced 

by another randomly chosen heuristic. Whenever replacement happens, the 

probabilities of the heuristics will be reset to allow the newly introduced 

heuristic a fair chance of competing with the surviving members that are 

already in the set. All heuristics will be assign a probability of l/PI. In 

effect, all heuristics are competing against each other in order to stay in the 

candidate set. 

3.2.2 Chromosomes 

We enhance the standard genetic algorithms' chromosome structure by including 

with each item (allele) some probabilistic information for heuristic selection. Each 

allele is denoted as a set J of heuristics and probabilities hf and probability p{, 

i = 1,2, ... , n. n represents the number of items to be packed and j is a parameter 

defining the number of candidate decoding heuristics available to each rectangle. 

Figure 3.1 shows a chromosome for the proposed hyper-heuristic methodology. 

rl, r2, ... ,r n is a permutation of n items, which defines a packing order. Attached 
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Algorithm 5 Refined pseudo-code for C-HH 
1: / /refined initialising (replaces line 4 in Algorithm 3) 
2: for i E {1,2, ... ,n} do 
3: random select a set of IJ'I < IJI heuristics, and set each pf = d'l; 
4: end for 
5: 
6: / /refined updating (replaces lines 17 to 19 in Algorithm 3) 
7: if the incumbent heuristic h{ has pf < Probth then 

replace h{ with a new heuristic, set pf = 11'1; 8: 

9: reset other non-incumbent heuristics' probabilities J \ j; 
10: else 
11: for j' E J \ j do 
12: 

,.,)' ,.,)' ｾ ~
Pi = Pi - IJI-l; 

13: end for 
14: end if 

to each ri there is a set of heuristics and probability pairs. pf determines the 

probability that heuristic h{ associated with piece i will be applied, and Lj pf = 1 

for each i. 

rl r2 ... rn 
(hLpD Ｈ ｨ ｾ Ｌ ｰ ｄ D ... Ｈ ｨ ｾ Ｌ ｰ ｾ Ｉ )
(hi, pi) Ｈ ｨ ｾ Ｌ ｰ ｄ D '" (h;, p;) 

... ... . .. ... 

Figure 3.1: A hyper-heuristic GA chromosome 

The probabilities (initially set equal) will be updated through a learning mech-

anism. The choosing of a heuristic for each piece is considered as an action that 

will be rewarded or punished according to the results of the final packing height, 

i.e. the probabilities of incumbent heuristics will be increased if we obtain a better 

packing, and decreased otherwise. These changes are made in proportion to the 

changes of the height of children compared to their parents. Therefore, the whole 

system learns from its interaction with the search problem. For example, a system 

may find it tends to apply rules finding lower position for large pieces, while for 

small pieces there is less difference in heuristic probabilities. This is a critical dif-

ference between hyper-heuristics and other meta-heuristics, as the hyper-heuristic 

utilises this adaptive policy to learn how to choose lower level heuristics. 
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3.2.3 Decoding heuristics 

Decoding heuristics for higher dimensional problems are concerned with two de-

cision problems: which space to select for the placement and where in the chosen 

space to place the item. For the first question, we will use three categories of 

heuristics: First Fit, Next Fit and Best Fit. These heuristics were initially de-

fined in the literature for one-dimensional problems 140]. For higher dimensional 

problems there are several difficulties. The partial packing usually contains non-

convex spaces. Some modelling methods 135, 63] divide such a space into several 

overlapping sub-spaces. A consequence is that packing a piece will sometimes af-

fect several available sub-spaces, which is different to one-dimensional bin packing 

where available spaces are independent of one another. We will next describe a 

general data structure which can be used to extend them to higher dimensional 

problems. For the second question our hyper-heuristic will consider all four cor-

ners of a chosen space. Therefore, in our experiments, we have twelve different 

placement options (and thus heuristics) for each item. As we will present in the 

results section, the type and quantity of heuristics will affect the performance of 

the hyper-heuristic (possibly because the larger the size of the pool, the poten-

tially higher computational overhead and the larger search space). Therefore, we 

limit the candidate sets to a more manageable size rather than using all twelve 

heuristics. The data structure is a list of all available spaces La, which is similar to 

the implementation of Hayek et a1. 163]. It divides a non-convex empty space into 

a finite set of enclosed rectangle sub-spaces. We introduce how to update the list 

La, which initially contains only the empty container, when adding shapes. More 

details can be found in Section 5.3.1, where both insertion and remove operators 

on packings are explained. For example, in Figure 3.2 the original empty space 

can be split into 4 rectangle sub-spaces. Note that some of the sub-spaces may 

overlap. 

When inserting another shape, the placement may affect several overlapping 
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I I -. ------- ------

Before After 

Figure 3.2: Changes on availabl spaces (in gr y) before and after plac m nt of Ti 

(in bla k) 

ub-spac s. For each of the affected sub-spaces, th placement will further split it 

into at mo t four smaller sub-spaces. Note, if packing an item in a corner, it will 

only create at most two new sub-spaces. Therefore the complexity of the plitting 

is at worst O(2n). In practical situations it is normally much less complex because 

not all ub-spaces will be affected by one placem nt step, and moreover, the plit-

ting proce s usually g nerates many redundant sub-spaces, which are completely 

enclo ed in another larger sub-space and therefore can be removed from thE' li st 

at the end of the procedure. As long as we have a complete li st of all avail able 

sub-spa es, we can then defin : 

1. First Fit (FF): select the feasible sub-space at the low st level, br ak ti s 

by choosing the left mo t sub-space (equivalent to bottom-up heuristi by 

Baker et a1. [11]) ; 

2. Best Fit (BF): select th feasible space with the small est area; 

3. Next Fit (NF): sub-spaces not exposed from the top of the partial packing 

will be removed from th list (result in a shorter list than FF and BF), then 

elect the lowe t fea ible sub-space ( quivalent to bottom-left move with 

downward priority by Liu and Teng [134]). 

For the second decision our hyp r-heuri tic will consider all four corners of a 

cho n pace. Ther for in our experiments, we have twelve different pIa em nt 
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options for each item (i.e. FF, BF, NF with four corners each). As we find by 

experiments in section 3.4.4, the type and quantity of heuristics will affect the 

performance of the hyper-heuristic (possibly because the larger the size of the 

pool, the potentially higher computational overhead and the larger search space). 

Therefore, we limit the candidate sets to a more manageable size of four rather 

than using all twelve heuristics. 

3.2.4 Selection and replacement strategy 

Parent selection is carried out by an elitist strategy and roulette-wheel selection. 

By experiments we found that it is more effective to select parents from the top 

third, rather than the entire population, according to fitness values, when selecting 

those for reproduction. These parents will generate the same number of children 

as the population size. A child chromosome will replace the worst one in the pop-

ulation if it has better fitness value and is not a replica of an existing chromosome 

in population. The purpose here is to ensure convergence, while also maintaining 

a certain degree of diversity in population. 

3.2.5 Recombination 

The GA operators are standard, involving a random two-point order-based crossover 

(20X) [1681 and mutation for reproduction of populations. Figure 3.3 and Figure 

3.4 show how 20X and mutation operate. The detailed settings of parameters will 

be introduced in the following sections. In particular, when exchanging orders of 

items in a sequence the associated set of heuristics of each item will be inherited. 

We have implemented two other operators, partial matching crossover (PMX) and 

single point crossover (IX), which also guarantee feasibility. Compared with 20X, 

PMX makes little difference and IX performs slightly worse. 
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1 3 4 6 5 2 4 6 1 5 2 3 

Heu. Heu. Heu. Heu. Heu. Heu. He-v. He-u. Heu. Heu. Heu. Heu. 

Set I Set 3 Set 4 Set 6 Set S Set 2 Set 4 Set 6 Srt 1 Set 5 Set 2 Set 3 

t 
3 6 1 5 2 4 1 2 4 6 5 3 

Heu Heu. Heu. Heu. Heu. Heu. Heu. Hf'u. Heu. Heu. Heu. Heu. 
Set 3 Set 6 Set 1 Set S SeU Sot 4 Set I SOU S.,4 Set 6 Set S S .. 3 

Figure 3.3: GA 2-point crossover 

1 3 4 6 5 2 1 5 4 6 3 2 

Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu. 

Set 1 Set 3 Set 4 Set 6 Set 5 Set 2 Set 1 Set 5 Set 4 Set 6 Set 3 Set 2 

t t 

Figure 3.4: GA Mutation 

3.3 The hyper-heuristic framework 

In a standard GA, an individual in the search space X is evaluated by a single 

mapping function h' to the solution space Y (Figure 3.5). h' is a deterministic 

mapping process and it creates a many-to-one relationship from the search domain 

to solution space. In our proposed hyper-heuristic approach, we have the same 

space of chromosomes which still has n! permutations. However, in the hyper-

heuristic scheme each permutation is mapped through a set of heuristic functions 

which forms an intermediate heuristic space (Figure 3.6). If we have j different 

heuristics and n shapes, since each shape will probabilistically choose one out of 

j heuristics to pack, there will be r different permutations of packing heuris-

tic sequences. For example, for any specific shape permutation, we can apply 

(hL ｨ ｾ Ｌ , ｨ ｾ Ｌ ﾷ ﾷ ﾷ Ｉ ) or (hr, ｨ ｾ Ｌ , hj,···). It is obvious that standard GAs are simply 

special cases of the hyper-heuristic approach where we apply a single heuristic 

Ｈ ｨ ｾ Ｌ , ｨ ｾ Ｌ , ｨ ｾ Ｌ , ... ) for all shapes. It is easy to see the solution space of standard GAs 

are only subsets of the hyper-heuristic solution space. Therefore, a direct conse-
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quence of this approach is that the solution space is enlarged as the new strategy 

overcomes the weakness of a single heuristic mapping. The new solution space 

includes the original solution space, since solution space Y can still be achieved by 

applying the same heuristic at each step of the packing. Thus the hyper-heuristic 

has the ability to find more solutions without losing the original solution space. 

Another observation is that the set of evaluation functions are not equally treated. 

By the learning procedure each function derives a different probability OiEn Pi of 

being called, which leads to the selection of "fitll functions. Finally a possible ef-

fect is that as each function has a chance of being applied, the result will be robust 

in terms of a lower standard deviation. These two hypotheses are still subject to 

further investigation, but we will use empirical evidence to support these claims. 

3.4 Experimental results 

The purpose of this empirical study is to examine the effectiveness of the pro-

posed hyper-heuristic, i.e. exploration of a wider solution space, average results, 

consistency in terms of standard deviation and speed of convergence. It is also 

interesting to investigate the impact of the size of the heuristic sets, which is an 

important parameter affecting the size of search space. 

The benchmark instances are taken from Burke et aLl28] and the OR-library 

(http://people.brunel.ac.ukrmastjjb/jeb/orlib/files/). C1 to C7 are 

seven categories with three instances in each and N1a to N7e are 35 non-guillotine 

instances. N1 to N12 have the number of items ranging from 10 to 500, and the 

other two sets of instances have 16 to 197 items. We have also created a set of 

instances to show that hyper-heuristics can explore a wider solution space. 

The algorithm was implemented in C++ and ran on a grid computer with 

2.2GHz CPUs, 2GB memory and GCC compiler. To obtain statistics on aver-

age and standard deviation, every experiment has been run 100 times. Note the 
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Search domain: Decodingfunction: Solution space: 
All possible chromosomes Best Fit + Bottom Left Result packings 

Figure 3.5: standard GA framework 

Search domain: 
All possible chromosomes 

(, 

Decoding functions: Solution space: 
Resutt packings 

original 
GAs 

solution 
space 

Figure 3.6: Hyper-heuristic framework 

computational costs for all algorithms compared in this section are based on the 

total number of evaluations rather than time, as counting evaluations provides a 

more objective measure for theoretical purpose which exclude factors such as the 

programming skills and quality of testing machines. For practical use, running 

time is however an important matter, therefore we also provide more information 

from our experiment where appropriate. 
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3.4.1 Feasibil ity and optimali ty 

The fir t set of xperimenLs is design d to evaluate th effect of multiple decoders. 

We cr ated som instan es where gaps exi t in th middl of pattern in the optimal 

solutions (as per Baker et al. [11]) . Using only one heuristic will fail to achieve the 

optimal patt rn. An exampl of such an in tan e i as follows. ine It m : 60x60, 

60x60, 50x50, 50x50, 40x40, 40x40, 10xlO, 10x10, 31x30 to be pack d into a trip 

of width of 151. (Note if the last item has size of 30x30 and the strip ha a wi lth 

of 150, the shapes would fit perfectly in the strip.) The best results achiev d by 

meta-heuristic with a single placement heuri tic (in our experiments GA+ NFBL 

(GA with ext Fit and Bottom Left Fill) G +FFBL (GA with Fir t Fit and 

Bottom Left Fill), GA+ BFBL (GA with Best Fit and Bottom Left Fill)) and 

hyper-heuri tics (both C-HH and -HH ver ion) are 120 and 110 re pectiv ly 

Figur 3.7). It is simple to v rify that 110 is the optimal. Assuming the optimal is 

les than 110, say 109, the whole area of strip ne ded (including any utilised and 

wa ted areas) is 16,459 (151x109), which is Ie than the total area of all it ms 

16 530 therefor it is impossible. 

l-

I-

Figure 3.7: Best result achi v d by meta-heuristic is 120 and optimal achieved by 
hyper-heuristic is 110 

Th exp riments provide evidence that hyp r-heuristics can av id the draw-

back of applying only a single heuristic, and find more feasible solution and, 
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possibly, optimal solutions. 

Other instances in our new data et are created by choosing a number of pieces 

and cutting at random points (see Appendix A for the dataset and Table 3.1 for the 

experimental results). By cutting the original pieces in this way, we consequently 

create some smaller pieces that may be used to fill the gap in the middle of the 

pattern. For example, although there are still small gaps, they can effectively 

be shifted to the boundaries of the pattern, i.e. in some cases optimal solutions 

can then be achieved by applying a single heuristic, such as the pattern in Figure 

3.8, which can be creat d by the bottom-left, or equivalent, heuristics. However, 

even if a single heuristic can, in theory, find the optimal olution for the class 

of problems created in this chapter, the hyper-heuristics in our experiment still 

demonstrate stronger performance, as shown in the next section. 

w 

Figure 3.8: For some new instances meta-heuristics can achi ve the same best-
result of 110 as the hyper-heuristics, but average-results of meta-heuristi are 
still worse (see Tabl 3.1) 

3.4.2 Performance and consistency 

The proposed hyper-heuristic is searching for a solution indirectly through calls 

to heuristics (section 3.3). In experiments presented in this ection we compare 

61 



Xext Fit I 
HH GA 

instance 1 nun 110 120 
average 112.3 120 
st dev. 4.23 0 

instance2 min 110 120 
average 119.3 120 
st dev. 2.56 0 

illstallce3 min 110 110 
average 113.04 113.7 
st dev. 0.93 1.42 

instance4 mm 110 120 
average 120.B 120.7 
st dev. 3.39 2.56 

instance5 min 111 111 
average 115.26 115.45 
st dev. 1.55 1.73 

instance6 lIun 120 120 
average 121 120.5 
st dev. 3.02 2.19 

instanee7 min 112 112 
average 114.3 115.06 
st dev. 1.16 1.46 

instanceB min 116 117 
average 119.67 120.37 
st dev. 1.44 1.B9 

First Fit I 
HH GA 

110 120 
110.1 120 

1 0 

110 120 
llB.l 120 
3.94 0 

110 110 
l11.B.') 112,43 

1.52 1.56 

110 120 
120 120.1 

2.46 1 

111 111 
113.1 114.31 
2.04 2.16 

120 120 
120 120.2 

0 1.41 

110 111 
113.26 114.2 

1.22 1.49 

116 116 
117.62 11B.4 

1.11 l.29 

Best Fit 
HH GA 

110 120 
110 120 

0 0 

110 120 
116.3 120 
4.B5 0 

110 110 
111.77 111.91 

1.51 1.65 

110 110 
119.5 119.6 
2.19 1.97 

111 111 
112.43 113.75 

I.Bl 2.35 

120 110 
120.2 120.1 
1.41 1.74 

110 111 
112.61 113.42 

1.21 1.3B 

116 114 
11B.5 118.82 

1.3 1.4 

Table 3.1: Results for new instances. For both GA and HH total evaluations are 
5,000 (at population size of 50 and 100 generations) 

our hyper-heuristic to standard GA approaches 11081 for each category of decoders 

(FF, NF and BF). 

In Table 3.2 and Table 3.3, hyper-heuristics (NC-HH) utilise four corners while 

the GA only uses bottom left positioning. By looking at the average and the devi-

ation we find that the hyper-heuristic performs equally well as standard methods 

(producing superior solutions in more cases on the First Fit and Best Fit but 

slightly worse solutions on Next Fit). Particularly, for the new class of instances 

we created according to Baker et al. 1111, hyper-heuristics are superior. 
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datas('t no. of instances First Fit :'>Il'xt Fit I Bt'st Fit 
HHwin GAwin ('qnal HH win GA win ('qnal . HH winGA\\'in -(.(Iimi 

nl-nl2 12 5 5 2 2 !) !) 2 
c1-c7 21 12 7 2 8 12 11 10 () 

nla-n7t' 35 16 19 0 21 14 0 18 17 0 
new 8 8 0 0 6 2 0 7 I 0 

total 76 41 31 4 I 37 37 2 I 45 30 

Table 3.2: Average over 100 runs 

dataset no. of instances First Fit :'>Iext. Fit Bpst Fit 
HHwin GAwin (·qual HH win GA win ('qual HH win GA win ('qual 

nl-nl2 12 5 6 5 6 8 2 2 
e1-1'7 21 13 7 7 13 !) 11 

Illa-n7e 35 17 18 0 16 19 () 17 16 2 
new 8 5 3 0 3 5 0 5 2 

total 76 40 34 2 I 31 43 2 I 39 31 6 

Table 3.3: Standard deviation over 100 runs 

3.4.3 Convergence 

We also carried out a further test to explore the convergence properties of the 

proposed algorithm. For each problem, we plot the average results obtained from 

10 to 300 generations with a step size of 10 (with a fixed population of 50). The 

actual run time for both NC-HH and C-HH are around 2% higher than GA, which 

reflects the slight overhead of computation of choosing heuristics. Figure 3.9 gives 

examples of the non-competing hyper-heuristic (NC-HH) on two instances (same 

results observed on all other instances), from which we can see clearly that the 

hyper-heuristic converges as quickly as a standard GA. This result suggests that 

the increase in search space can be compensated by the effectiveness of the hyper-

heuristic. 

3.4.4 Effects of the number of heuristics in a set 

The above experiments show the effectiveness of hyper-heuristics. However, as we 

explained in section 3.3, the greater the number of heuristics we make available 

to the hyper-heuristic, the larger the search space of the algorithm. In the next 

set of experiments we attempt to find a suitable trade-off between the size of 
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42.9 I Instance: c2-1 
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Figure 3.9: Average converging over 10 to 300 generations 

the set (and thus computational time) and solution quality. In Table 3.4, we 

present a comparison between four runs of a hyper-heuristic (C-HH version) where 

heuristics are all randomly chosen and the set size varies between 4 and 8. It 

can be seen that many of the best results (highlighted) are produced with just 

four heuristics, while hyper-heuristics with five or more decoding heuristics are 

superior on less instances. The experiment supports our hypothesis that increasing 

the number of low-level heuristics makes the search algorithm more effective by 
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combining the strength of multiple heuristics. The experiments also show there 

is a trade-off between the effectiveness of multiple heuristics and the increased 

search complexity. Interestingly, for larger instances such as nll and n12 (300 

and 500 shapes respectively), where the search spaces are already much larger, the 

negative effects of increasing search complexity seem not as significant as in smaller 

instances, where the hyper-heuristics with six and seven decorlers outperformed 

the ones with less decoders. Therefore, we recommend employing four heuristics 

for small and mid-sized problems, while for larger problems more heuristics can 

be beneficial. 

3.4.5 Comparison with other methods 

In this chapter we want to evaluate the effectiveness of a GA-based hyper-heuristic 

with the primary goal to show the advantages of multiple decoders over a single 

decoder. In the literature there are other specially designed hybrid methods that 

perform particularly well on cutting and packing problems. Table 3.5 shows two 

other approaches, GRASP [31 and a hybrid method of Best-fit with Decreasing 

Width (BFDW) [28]. However, many of these methods may have difficulty in solv-

ing certain dasses of problems when only a single heuristic is userl. On the other 

hand, the hyper-heuristic's framework is flexible, and we could adopt GRASP as 

high-level search strategy and/or BFDW as one of the lower-level decoders. We 

believe by combining other meta-heuristics search operators and heuristics de-

coders, the results could be further improved. It is worth noting that the results 

from the hyper-heuristic approach are robust as indicated by the smaller standard 

deviation values in Table 3.5, when compared to the other approaches. Burke et 

al. [27] pointed out hyper-heuristic approaches have the potential to be utilised for 

a much wider set of domains which is not the case with bespoke systems developed 

for a given domain. 
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Instance set size 4 set size 5 set size 6 set size 7 

n1 40 40 40 40 
n2 51.51 51.32 51.08 51.22 
n3 52.59 52.61 52.65 52.66 
n4 84.08 84.29 84.39 84.4 
n5 106.19 106.42 106.5 106.42 
n6 104.78 104.63 104.7 104.55 
n7 110.04 110.37 110.2 110.26 
n8 85.79 86.26 86.02 86.35 
n9 156.48 156.61 156.7 156.63 

nlO 154.36 154.66 154.8 154.64 
nll 155.88 155.97 155.8 155.75 
n12 317.26 317.28 317.2 317.13 

C1-1 20.02 20 20.01 20 
Cl-2 21.19 21.24 21.21 21.2 
Cl-3 20.09 20.04 20.05 20.08 
C2-1 41.64 41.74 41.81 41.67 
C2-2 41.35 41.44 41.33 41.4 
C2-3 40.97 40.94 40.96 40.95 
C3-1 63.23 63.22 63.27 63.22 
C3-2 63.14 63.3 63.3 63.3 
C3-3 63.34 63.38 63.41 63.4 
C4-1 64.72 64.95 64.88 64.98 
C4-2 64.59 64.77 64.83 64.88 
C4-3 64.13 64.34 64.37 64.41 
C5-1 64.41 64.68 64.71 64.72 
C5-2 65.12 65.55 65.49 65.51 
C5-3 64.58 64.72 64.71 64.79 
C6-1 86.05 86.42 86.48 86.48 
C6-2 87.11 87.41 87.5 87.33 
C6-3 86.21 86.52 86.55 86.53 
C7-1 173.41 173.99 174.1 174.13 
C7-2 172.29 173.1 173.2 173.05 
C7-3 173.65 173.7 174.8 174.54 

Table 3.4: Heuristic set size affects results 

3.5 Summary 

In this chapter we have demonstrated an improvement over standard genetic al-

gorithms by adopting a hyper-heuristic framework to tackle NP-hard problems, 

in particular packing problems. The idea is to combine a set of heuristic decoders 
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Instance Opt Burke GA Alvarez- NC-HH C-HH 
+ BF Valdes 

GRASP 
nl 40 40 40 40 40 
n2 50 50 50 50 50 
n3 50 52 51 51 51 
n4 80 83 81 83 83 
n5 100 104 102 104 104 
n6 100 102 101 103 103 
n7 100 104 101 104 104 
n8 80 82 81 83 84 
ng 150 152 151 154 154 
nlO 150 152 151 152 152 
nll 150 153 151 154 154 
n12 300 306 303 315 314 

Table 3.5: Compare with other algorithms 

with a high level search operator. The hyper-heuristic is able to raise the generality 

of an algorithm by overcoming the drawbacks of just employing a single heuristic. 

Both analysis of the algorithm's framework and empirical studies demonstrated 

that the hyper-heuristic approach works well and is certainly worthy of further 

investigation. The potential benefits can be summarised as follows: 

• Compared to standard approaches the hyper-heuristic is able to explore a 

larger solution space. Therefore, it has the potential to find the global optima 

or better results than some other standard meta-heuristics. 

• Its built-in learning mechanism is highly automated requiring less user judge-

ment, as all suitable lower-level heuristics can be put in a set, and the hyper-

heuristic itself will choose from that set. It is also flexible for further expan-

sion by having the option to add new heuristics into the candidate set. 

• Our empirical study shows that, by selecting appropriate parameters (in our 

case the size of heuristic set), the hyper-heuristic is able to converge at the 

same rate as more traditional meta-heuristics, and also to perform more 

consistently. 
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In this chapter we have only investigated standard GA as a search operator and a 

relatively small number of heuristics as decoders. There is space for improvement 

by integrating other (meta-) heuristics into the hyper-heuristic framework, such as 

GRASPI3j. However, there is further work required to understand the dynamics 

among different level of operators. It is especially interesting to observe the inter-

action and trade-off between the intelligent evolutionary sampling and the more 

complex search space. 

The hyper-heuristics proposed in this chapter belongs to the family of Evolu-

tionary Algorithm (EA). While for the hyper-heuristics we are interested in the 

learning mechanism for the selection of decoding heuristics, other aspects of EAs, 

including representation and neighborhood search strategies, have significant ef-

fects on performance. In the next chapters we will investigate these important 

aspects of EAs and further improve their performance on the packing problems. 

In Chapter 4 we will continue to investigate a GA-based algorithm, which has 

an even more sophisticated chromosome representation and explicitly enhance the 

building block hypothesis of GAs. In Chapter 5 we will explore a hybrid genotypic 

and phenotypic representation. 
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Chapter 4 

Dynamic Grouping Genetic 

Algorithm 

4.1 Introduction 

In the previous chapter we improved a standard GA by utilising a set of decoding 

heuristics rather than just relying on one. In this chapter, we focus our attention 

on a number of fundamental issues surrounding GAs, especially the representation, 

the recombination mechanism and the theoretical basis of the Schema Theorems 

and the Building Block Hypothesis (BBH). In particular, this chapter further 

investigates an important extension of genetic algorithms, the Grouping Genetic 

Algorithm (GGA), for solving cutting and packing problems. The algorithm was 

first proposed by Falkenauer [66J for one-dimensional bin packing. GGAs use 

more complex genotype representations than simple GAs and search for good 

partial solutions which are then recombined to build new solutions. The idea is 

to explicitly enhance the building blocks (BBs) implied in simple GAs. 

This chapter makes contributions on both EA theory and the application of 

EAs on Orthognal Packing Problems. Firstly, from an algorithmic perspective, we 

proposed a building-block network model to study the evolution of the algorithm 
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which can help to explain the strength and weakness of the algorithm. Based 

on Holland's Schema Theorems, the BBH was first proposed by Goldberg et al. 

[871 but it received heavy criticism from other researchers [1811. By analysing 

the network model, as well as showing evidence from the experimental results, we 

show the 'double-sided' effects of BBs. On one side the BBs helps recombination 

to be an effective operator, and accelerate the search process, but on the negative 

side the number of BBs will increase quickly as the instance size gets larger. 

From an application perspective, we further extend the GGA to more general 

orthogonal packing problems, including higher dimensional problems and single 

container problems (strip packing), for which grouping is more complex. The 

algorithm developed in this chapter has been able to solve benchmark instances 

to optimality for instance size up to 40 items, while previous best results found in 

literature are only up to 20 items. 

Section 4.2 introduces a model for multi-dimensional packing problems. The 

model decomposes solutions into a hierarchical network of partial solutions. It is 

used to describe the relationship among groups of shapes as partial solutions, and 

one way to utilise generation-wise information of evolutionary computation to help 

selection be more effective. It provides a foundation for the GGA implemented in 

Section 4.3. The details of the implementation include how the GGA detects good 

partial solutions which are dense areas meeting some prescribed criteria, and how 

to select compatible partial solutions to reproduce for the next generation. Results 

for this approach are reported in section 4.4. While the simple form of a GGA 

shows its strength in some of the instances, the limitation of this approach is that 

the number of good partial solutions increases exponentially, and the scalability 

deteriorates quickly. Potential improvement approaches are discussed in section 

4.3. One of the approaches using a static grouping technique will be presented in 

Chapter 5. 
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4.2 Group Network Model 

The GGA developed in this chapter uses a different definition for groups compared 

to both the one used in the Grouping Evolutionary Strategy (GES) in Chapter 

5 and the one by Falkenauer 166]. The GGA introduced by Falkenauer was for 

one dimensional bin packing problems and items are naturally grouped by bins. 

In higher dimensional packing, a shape's location affects its neighbors' location in 

all dimensions simultaneously, while in one dimensional problems a group size is 

a simple summation of all member shapes. For strip packing problems, there is 

only one container so it is not possible to group shapes by containers. Therefore, 

the definition of a group has to be generalized for higher dimensional packing or 

strip packing problems. 

In this chapter, a group for a multi-dimensional packing is defined as a subset 

of shapes 8 ｾ ~ R enclosed by minimal orthotope Q, where shape r E 8 if and 

only if r is enclosed by Q. Let 181 be the size (or order) of a group, which is the 

number of its shape elements. Let V : r -+ ｾ ~ denote a volume function, i.e. Vi IS 

the volume of i. The density of a group is then 

and () E [0, 1] is a pre-defined threshold for a 'good' group. 

The relationship among groups can be illustrated by a hierarchical network as 

shown in Figure 4.1. A node in the network represents a group. A directed edge 

(Si' Sj) means Si appears in Sj as a subgroup (therefore the order of Sj is less than 

Sj, i.e. lSi I < ISj I). Nodes are arranged in layers from left to right with increasing 

size. For example, nodes in the first layer (leftmost) are all individual shapes of 

an instance; the next layer on the right contains groups of two shapes that can 

be built from layer one; and the rightmost layer are complete solutions containing 
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all shapes. Notice that some directed edges may not go from one layer to the 

next but "jump" to a few layers to the right, meaning one group may appear as a 

subgroup in another group of several orders larger, ISd - ISjl > 1. Group Si and 

Sj are compatible groups when they share no common shapes, i.e. Sj n Si = 0. 

First layer: 
IndiVidual 
shapes 

Middle layer: 
Groups of 2 
shapes 

Middle layer: 
Groups of 3 
shapes 

Other middle 
lavers 

Last layer: 
Final solutions 
of all shapes 
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Figure 4.1: Hierarchical network of groups of a packing problem (some arcs and 
packings omitted for clarity) 

The network describes the relationship among partial solutions. Although 

having an incremental nature, it is, however, not a model for an online packing 

process as many heuristics are. As explained before, a node may jump, meaning 

the it does not necessarily align with another shape to make a larger group but 

it may align with other groups containing a few shapes to transform to a new 

group of several orders larger. Moreover, even if a node increases its order by 

one i.e. aligned with only one other shape, this newly added shape does not 

necessarily come immediately behind, but maybe after many other shapes in the 

packing sequence. In essence, the model captures the information of the final 

location of each shape rather than consider permutations of packing sequences. It 

is a desirable feature since redundancy is avoided and network size is drastically 

72 



reduced. The threshold () can also help us control the number of nodes in the 

network model. For example, when () = 1, we only look at perfectly packed 

partial solutions which have no wasted area. 

Another feature of the network model is its ability to incorporate statistical 

information when nodes transform from low order to high order. Given a group Si, 

if we uniformly randomly select a fixed number of groups from compatible groups, 

a transition matrix can be calculated to describe the probability for a node to 

transform to a larger node. If we maintain a record of nodes identified, not only 

within a generation, but for several generations, this probability matrix will be 

able to reflect the generation-wise evolution information on how larger groups are 

gradually formed during a search process. 

There are some limitations of this network model. First, although the number 

of nodes is less than the number of permutations of each subset of the shapes, it 

can still increase exponentially as instance size increases. In such a scenario, it 

is not possible to derive a complete transition matrix as the table would be too 

large to compute. Some techniques will be needed to limit the nodes to a more 

tractable size, such as those used in Bayesian Optimization Algorithms (BOA) 

[157]. Another limitation is for a non-guillotine packing instance where no subset 

of shapes can form a group with density above a () value. For example, in Figure 

4.2, no subset of shapes can form a no-waste partial packing, i.e. any subset of 

shapes is a concave having a very low value of (). In such a case, the network 

will not provide much useful information to guide the search. How to model the 

packing process for these instances is an interesting open question. For the OPP 

investigated in this thesis we do not enforce special patterns (such as guillotine 

pattern) and the network model is applicable. 

The network model is consistent with the building block hypothesis, since the 

nodes can be regarded as explicit building blocks. The model provides the founda-

tion for the GGA introduced in the next section. At the beginning of the search we 
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Figure 4.2: 2D non-guillotine packing 

initialize the population, some groups of low orders are likely to be detected and 

inserted as new nodes into the left side of the network. During subsequent search, 

nodes of higher order are gradually found, mainly by recombining smaller building 

blocks, towards left side of the network. The mutation operator may introduce 

some new building blocks that have been undetected before. The replacement 

strategy used in the GGA approach is not to replace an entire generation, but 

only to replace the worst members. This means, in the network, we retain some 

building blocks found in previous generations, which are usually smaller on av-

erage. These small blocks are necessary to complement large blocks in building 

up further blocks. The threshold () is a control parameter and would be tuned 

for different instances. For guillotine instances, there are paths made up with 

perfect nodes, zero waste partial solutions, from left to right in the network. We 

would like the search to be biased towards such paths, so we can set () to 1. For 

instances of free form packing, () tends to be less than 1 to allow more exploration 

of not so perfect partial solutions. One difficulty for the GGA is the possibility 

of exponentially increasing the number of building blocks. Some remedies can be 

conjectured from analysis of the search process within the network model, which 

will be explained towards the end of this chapter. 

74 



4.3 Implementation 

4.3.1 Overview 

This section presents the implementation details of the GGA. The overall frame-

work of this approach is shown in the pseudo-code (Algorithm 6) and flow chart 

(Figure 4.3). There are two important differences between this approach and SiIIl-

pIe GAs. First, chromosomes in the GGA have varied length with each allele 

being a single shape or a group of shapes. While in standard GAs, each allele is 

an individual shape, thus the chromosomes are made up of these alleles and have 

equal length. Secondly, besides the common steps as in standard GAs (lines 3, 4, 

5 and 9 for selection, recombination, decoding, replacement), there are a few extra 

steps (lines 6, 7 and 8) in the GGA search loop. In line 6, after all shapes being 

packed, solutions will be examined to see if any new groups have been created. 

Once identified, the new groups will be used to transform the encoding before its 

being merged back into population (line 7). The algorithm also moves groups to 

a tabu list, if any of the groups has been re-used many times but are not able to 

improve the results(line 8). 

Algorithm 6 Pseudo-code for grouping genetic algorithm 
1: initialize population 
2: while not meet stop criteria do 
3: select two parents from population; 
4: generate two children; 
5: decode children; 
6: identify groups; 
7: transform encoding with identified groups; 
8: move unfit groups to tabu list; 
9: merge populations; 

10: end while 
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solutions 
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groups 

Figure 4.3: Flow chart of the search loop in Grouping Genetic Algorithm 

4.3.2 Chromosome 

In standard GAs for packing problems, chromosomes are most commonly encoded 

as linear structures 1109], e.g. vector, list, and the alleles are individual shapes 

to be packed. The structure can be modified to suit GGAs by allowing alleles to 

be groups of shapes as in Figure 4.4(a). This domain-independent structure has 

a strength that it can be used for many other problem domains such as the Trav-

eling Salesman Problem (TSP), and scheduling, etc. Many operators, including 

crossover and mutation, are easily applied in order to generate new populations. 

For cutting and packing problems, due to the Euclidean geometric property, an-

other potential choice is to use tree structures as shown in Figure 4.4(b), which 

is a more natural hierarchical representation of the grouping relationship. Leaf 

nodes correspond to individual shapes. Some leaf nodes can make up groups rep-

resented by non-leaf nodes, which may recursively construct further larger groups 

up to the root node, representing the final packing layout. If this tree structure is 

adopted, tree operators such as those in Genetic Programming (GP) can be used 

11251. In this chapter, we implement the linear structure (Figure 4.4(a)) as it is 
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mor ver atil , so that the algorithm develop d h r an be furth r derived into 

other algorithms or transferred to other problem domains. 

[] 

1 2 3 

(a) List Chromo orne (b) Tree hromosome 

Figur 4.4: Two forms of GGA hromosomes 

When initializing the population, a chromosome is simply a random p rmuta-

tion of all shapes. After packing, and in the genetic encoding transform step, if 

some shapes can be grouped together, they will b removed from the sequence and 

the group will be inserted as a single allele at th location where the first member 

of the group appeared in the original sequence. Some complexities in compo ing 

and transforming the genetic encoding are explain d below (see Figur 4.5). 

ｉ ｾ ｉ I D 10 1 0 
decode 

original encoding ｾ ~

ｾ ~groupl 

IQdI D 1 
transform 

new encoding «----

Figure 4.5: Grouping Geneti Algorithm transform original encoding to new n-
coding 

The first issue, when grouping shapes into a block, is if the den ity () is less 

than 1 it will allow gap or "dents" in th block. The block is th n no longer 

an orthotope as the original hapes were, but a p cial type of irregular con ave 

wher each edge is parall I to one of th axes. One way to handle thi problem i 

to use the phenotype operators d veloped in Chapter 5 to pa k su h non-ped ct 
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orthotopes. Another way is to set () equal to 1 to force each group to be a no-

waste orthotope. The latter approach will be adopted for the experiments in this 

chapter, while the first approach will be explained in more detail in Chapter 5. 

In many real situations multiple groups often exist in one packing solution. The 

relationship between any two groups can be categorized into three types: disjoint, 

one enclosed within another or sharing some shapes. Some subtleties have to be 

considered due to these relationships. 

In the first two cases, two important questions to ans\ver are: when transform-

ing the original encoding, how many groups should be used (single or multiple 

groups); and if a group contains some subgroups, which of them should be used 

(large or small groups)? It is natural to conjecture that different approaches to 

these two questions will cause some trade-off between search speed and quality. In 

one aspect, the more (or larger) groups being identified, the shorter the encodings 

and the smaller search space, which will usually leads to a faster search. Whereas, 

more individual shapes (or smaller groups) can help the search be more exploita-

tive around local areas, since smaller pieces give us more leeway and can be used 

to fill gaps that would otherwise be wasted. In our experiments, three strategies 

will be compared: 

1. single group, only the biggest group is used; 

2. a greedy strategy using multiple groups with as many shapes as possible; 

3. a balanced multi-group strategy depending on the stage of search. Initially 

it uses a greedy strategy combining as many shapes as possible, and the 

maximum number of groups will be used, while towards the end of the 

search some smaller pieces will not be grouped to allow more local search. 

When groups share some subsets of shapes, one reasonable approach is to keep 

only one of the groups and break up the others into smaller groups until there 

are no conflicts. The question IS, when conflict occurs, how to evaluate these 
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groups and decide which ones should be kept and which ones should be broken 

into smaller groups. Below are a number of heuristics that could be utilised: 

1. favor groups with more shapes. The more pieces grouped together, the 

smaller the transformed instance size, and thus the smaller the search space. 

However, it is more likely to become trapped in a local optima; 

2. favor the groups with largest total volume. Larger groups usually imply a 

better lower bound for the rest of shapes; 

3. favor the groups with least sum of square of sizes on each dimension. This 

heuristic differentiates odd groups which are larger on some dimensions but 

smaller on others; 

4. for some instances, favor groups with small sizes on particular dimensions. 

e.g. in strip packing where we are particularly interested in minimizing the 

height, we favor groups with less height; 

5. use weighted average on the above measurements to make a more balanced 

decision. In our experiments the evaluation is based on a function weighted 

on two ratios: the ratio of group volume to total volume of all shapes and 

the ratio of group member size to instance size: 

V· IS·I 
'WI x L J + W2 X IRJI; 

iER Vi 

where WI, 'W2 are some arbitrary weights depending on preference of size or 

volume metrics. In our experiments, as we have no preference, both 'WI, W2 

are set to 0.5; 

6. probabilistic choice among groups according to some of the measurements 

above. In our experiments, we used roulette wheel selection based on the 

number of elements in a group. 
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4.3.3 Group identification 

The subroutine for identifying the groups within a packing solution needs to be 

efficient to avoid expensive computation. As the chromosomes are in a linear 

structure to mimic an online packing process, we could check for groups when 

each shape is added into the solution (see the pseudo-code shown in Algorithm 

7). This subroutine maintains a temporary list of potential blocks, initially set to 

empty (line 2). When a shape is added to a solution, a new block starting with 

the shape will be inserted first to the temporary list (line 3). It checks the relation 

of the newly added shape with the rest of the blocks already in the final list (lines 

4 to 14). There are three possible relations: disjoint, overlap and adjacent. When 

disjoint (Figure 4.6(a)), there is no effect on the final list and the temporary list. 

(As the GGA utilises a standard bottom left heuristic decoder, a disjoint relation 

implies that some shapes in between separate the block and the shape. Therefore, 

the new group enclosing the block and the shape is either non-perfect orthotope 

or a duplicate of the group containing the separating shapes.) If they overlap 

(Figure 4.6(b)), i.e. some part of the block is already occupied, and the occupied 

space exceeds the maximal allowed ratio 1 - (), the block will be removed from the 

list (lines 5 to 9). Otherwise, if they are adjacent (Figure 4.6(c)), a new block, 

enclosing both the shape and the block and having minimal size on each dimension, 

will be added to the temporary list (lines 10 to 14). After all the shapes have been 

packed, we remove any blocks in the temporary list with density ratio less than () 

and merge to the final list. 

4.3.4 Crossover and mutation 

Crossover on variable length chromosomes is more complicated than for fixed 

length chromosomes. When groups from two parents are exchanged, conflicts may 

happen if any two groups share common shapes. We will examine two approaches 
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Figur 4.6: Relationships between the newly added hap r3 and an existing po-
tential block (the dash-lined area) 

Algorithm 7 Pseudo-code for identifying groups 
1: for i = 1 to n adding shape Si do 
2: init ialize T empList +-- 0 
3: T empList +-- TempList U Si 
4: for X +-- List.Fir t to Li t.Last do 
5: if X , Si overlap then 
6: Vcumulatewaste +-- Vcumulatewaste + Voverlap 

7: if Vcumulatewaste/vX > 1 - e then 
8: List +-- List\X 
9: end if 

10: else if X , Si adjac nt then 
11: N ewBlock +-- minimal orthotope covering X , Si 
12: TempList +-- TempList U N ewBlock 
13: end if 
14: end for 
15: List +-- List U TempLi t 
16: end for 

to handl the issue. The fir t i to avoid conflict by only using groups from one 

parent while carrying out rossover on the rest of the shapes. For group inherited 

from a single parent, we pass the largest possible group to the children if there 

xist multiple ways of grouping. This strategy is named Single Large L Group 

(SLG). The other approach, Multip le Largest Group (MLG), exchanges group 
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but with an additional conflict resolving design. The algorithm will iteratively 

check each pair of groups and keep only compatible groups in the chromosome. 

Another variation of MLG, Balance Multiple Groups (BMG), avoids using groups 

which are too large at the latter stages of the search by intentionally selecting 

smaller groups. 

Crossover for the remaining non-grouped shapes can be of any form of order-

based crossover methods such as partially match crossover (PMX) 1168], or even 

standard one-point, two-point and uniform crossover as in standard GAs. How-

ever, in the GGA a crossover operation often leads to conflicts among groups, since 

two different groups may share some subset of shapes. When this happens, two 

strategies can be used to resolve conflicts. The first strategy is to remove the con-

flicting pieces from one group, which results in an orthotope with holes, and then 

the phenotype operators developed in Chapter 5 can be used. The second strategy 

is similar to the conflict resolving method used in transforming the encoding, i.e. 

gradually breaking up one of the conflicting groups into smaller groups until any 

conflicting shapes can be separated and removed from the order. In this chapter, 

the second strategy will be used so that we always deal with orthotope packing, 

and the fitness functions used to decide which group should be kept are the same 

as those in Section 4.3.2. 

There are two different types of mutations in the GGA. One takes the form of 

standard GAs where two alleles swap their positions in the packing sequence. In 

this form of mutation each group is still treated as a whole and appear in the new 

solution unchanged. The other form is called re-assemble, in which a group may be 

selected and broken up into smaller groups, in the same way as resolving conflicts 

among groups during crossover. These smaller groups and shapes will then be 

added to the packing sequence to be re-assembled. In this form of mutation a 

group may only keep its partial subgroups in the new packing solution. 
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4.3.5 Selection and Replacement 

We use the standard truncate selection with selection pressure set to 3 1541, i.e. 

the top third will be randomly selected to reproduce a new population whose size 

is equal to the size of the parent population. Different selection methods have also 

been tested, including tournament selection and roulette wheel selection. Their 

performances are similar to truncate selection. The replacement strategy adopted 

in the experiments is also the standard replacing-worst strategy. 

In GGAs the genotype encoding is represented by groups. One motivation of 

this representation is to make the encoding more correlated with the evaluation of 

the objective function. However, good partial packings (groups) may not always 

generate good overall solutions. There are a few possible explanations: the in-

teraction between groups is not linear and there may be some "bad" groups that 

outweigh the "good" groups; or groups slightly out of place may lead to poor pack-

ings especially when the groups get bigger at the latter stages. In our experiments, 

we use a combined fitness evaluation to facilitate selection: 

where WI, W2 are some arbitrary weights, ｦ ｾ ~ is the fitness of the best group in 

an encoding based on chromosome fitness functions in section 4.3.2, E fg is the 

sum of fitness of the best group of each individual in the population, fo is the 

value of the objective function and lb is the instance lower bound which is used 

to normalize the value. In our experiments we will also compare two other fitness 

functions: one based purely on group fitness, the other based only on objective 

function. 
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4.3.6 Hybrid strategies 

Hybridization is an effective strategy in meta-heuristic search [94J. In the experi-

ments in the next section, the GGA utilise two strategies. 

Tabu list The idea of using a tabu list to exclude some local search moves is to 

avoid the search being trapped in a local optima. In the GG A a local optima 

may be caused by some groups dominating the population but those groups 

may not be found in the global optima. To implement the tabu list, the 

GGA maintains a count of how many times a group is chosen and evaluated. 

Once the count for a group is above a threshold, the group will be added to 

the tabu list and be excluded from being chosen for a number of iterations. 

Restart Random restart is another technique to avoid the search being trapped 

in a local optima [89J. The reason for using restart can be justified with the 

building block network model. Suppose the initial supply of BBs are inad-

equate and not all initial BBs are in the global optima, the search will end 

up in local optima. Even if mutation breaks up existing BBs, the chances of 

a new BB forming, which is in the global optima, could be small. In such a 

scenario, restart will have more chance of forming new BBs and give them 

an equal opportunity in competition with other BBs. Therefore, unlike the 

tabu list, this approach regularly re-initializes the whole population from 

scratch and intends to find completely different paths to the optimal solu-

tion. The GGA uses the convergence information to decide when to restart, 

i.e. if there is no improvement after a certain number of generations, the 

population will be re-initialized. Later, we carry out an experiment that will 

test the frequency and draw some empirical evidence on good values for this 

parameter. 

Initial Building Blocks (BBs) As groups are explicit BBs and are gradually 

built up from smaller BBs, the initial BBs are critical as they are the starting 
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points which greatly affect the search direction. If too few BBs are supplied 

there is a risk of not starting from the right point and subsequently prop-

agating them to future generations. However when too many individuals 

are randomly generated, there could be too much noise as the number of 

ineffective BBs also increases and more evolution time could be required to 

converge the population. So we speculate that there is a trade-off between 

too few and too many initial BBs. To test the the effects of initial BBs in the 

GGA, we generate more random chromosomes in the first few populations 

to produce more initial BBs. As the search progresses random chromosomes 

are generated less frequently. This process is controlled by producing more 

random packings in the initial few generations with a probability function 

1 - .,L where i is a counter of finished evaluations, and im is the maximum 
1m 

number of evaluations allowed by the GGA. The number of random pack-

ings in percentage of the total number of evaluations is used to indicate the 

relative quantity of initial BBs. 

4.4 Experimental Results 

Our empirical study will investigate the effectiveness of the proposed GGA. It 

will also explore the settings for the important parameters discussed in the pre-

vious sections. The benchmark instances are taken from Burke et aLl28J and the 

OR-library (http://people.brunel.ac.ukrmastjjb/jeb/orlib/files/). C1 

to C7 are seven categories with three instances in each, ranging from 16 to 197 

shapes. n1 to nlO have between 10 and 200 items (running time for nll and n12, 

containing 300 and 500 shapes, are too long, therefore these instances are not 

tested). The algorithm was implemented in C++ and tested on a grid computer 

with 2.2GHz CPUs, 2GB memory and GCC compiler. To obtain statistics on 

average and standard deviation, every experiment has been run 100 times. The 

85 



parameters that are common in the GG and G s are set to values that are 

mostly found in literature [54]: population size - 100, numb r of generations -

100, crossover rate = 0.99, mutation rate = 0.01, truncate sele tion with pressure 

of 3 and replacing only the wor t. 

4.4.1 Effects of e 

The first parameter of inter st is the threshold value () shown in Table 4.1. For 

higher () values, the search is more biased towards non-waste orthotope. While 

some instances such as guillotine cases could benefit from a highly biased s arch, 

other instances may prefer lower value. of () so as to explore more of the search 

space. The best results are obtained when setting () to 1 or 0.97, i.e. using 

groups close to zero waste. This suggests search based on les -waste groups (i.e. 

good partial solutions) are more likely to achiev better re ults, which is strong 

supporting evidence for the Building Block Hypothesis. 

1 0.97 0.95 0.9 0.8 0.7 0.6 0.5 

nl 40 40 40 40 40 40 40 40 

n2 50.00 50.00 50.05 50.12 50.01 50.23 50.17 50.24 

n3 53.36 53.31 53.50 53.43 53.59 53.61 53.47 53.59 

n4 84.31 84.24 84.36 84.37 84.58 84.42 84.49 84.48 

n5 104.86 104.80 104.89 104.89 105.11 105.24 105.11 105.07 

n6 103.77 103.72 103.88 103.77 103.90 103.92 103.93 103.94 

n7 109.01 109.10 109.07 109.04 109.20 109.25 109.11 109.29 

n8 85.94 86.02 85.98 86.09 86.17 86.18 86.11 85.12 

n9 155.46 155.47 155.48 155.53 155.81 155.60 155.64 155.84 

nl0 153.65 153.61 153.70 153.68 153.78 153.86 153.78 153.83 

Table 4.1: Effects of () settings (best results of each row ar highlighted in grey) 

4.4.2 Effects of Recombination Strategies 

Table 4.2 presents some evidence on the effects of different group recombination 

heuristics. The Single Largest Group (SLG) utilises th largest group identified 

from a single parent, whil the Multiple Largest Group (MLG) strategy iteratively 
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finds, from both parents, the next largest group which i ompatible to previously 

found groups. In Balance Multiple Groups (BMG) we monitor the sear h proc ss 

and intentionally diminish the chances of large groups dominating the solutions. 

MLG and BMG performed equally well , while both produced better results than 

SLG. The result indicates the recombination of BBs is more effective than simple 

non-recombination approach. 

Largest Multiple Balanced 

Group Groups Groups 

nl 40 40 40 
n2 50.10 50.00 50.00 
n3 53.48 53.36 53.42 
n4 84.41 84.31 84.25 
n5 104.98 104.86 104.86 
n6 103.84 103.77 103.73 
n7 109.07 109.01 109.01 
n8 86.06 85.94 85.94 
n9 155.56 155.46 155.47 
n10 153.78 153.65 153.58 

Table 4.2: Effects of recombination strategies 

4.4.3 Effects of Fitness Functions 

Apart from the grouping heuristics, we also investigated some different fitness 

functions of groups (Table 4.3), as introduced in the previous section. However, 

the experiment does not provide supportive evidence for us to favour any heuri tics 

over the others. 

4.4.4 Hybridised Strategies 

The following tables (4.4 and 4.5) show the effectiveness of various hybrid strate-

gies. As we can see the tabu list and restart strategies h Ip to improve the GGA 

to some extent. A group will be moved to the tabu list (forbidding it to be u ed 

again for some time) if it has been chosen for 100 trials. The criteria for re tart 
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num. of sum of sqare weighted vol & 
elements vol. of group on dimension nurn probabilistic 

n1 40 40 40 40 40 

n2 50.00 50.00 50.00 50.00 50.00 
n3 53.39 53.36 53.36 53.35 53.33 
n4 84.29 84.31 84.31 84.36 84.33 
n5 104.83 104.86 104.87 104.86 104.89 

n6 103.77 103.77 103.80 103.78 103.80 
n7 109.03 109.01 109.07 109.05 109.01 

n8 85.95 85.94 85.94 85.98 85.99 
n9 155.49 155.46 155.45 155.49 155.45 
nl0 153.68 153.65 153.66 153.68 153.67 

Table 4.3: Effects of fitness functions (best r suIt of ach row are highlighted in 
grey) 

is no improvement in 10 generations. Both tabu and restart mechanisms slightly 

improve the performance of the standard GGA. 

with Tabu without 
List Tabu list 

n1 40 40 
n2 50 50 

n3 52.49 53.36 
n4 83.96 84.31 

n5 104.88 104.86 
n6 103.72 103.77 

n7 108.89 109.01 
n8 85.98 85.94 

n9 155.49 155.46 
nl0 153.60 153.65 

Table 4.4: Effect of tabu list 

The third hybrid strategy u cs a d cr a ing temperature to control th gen-

eration of the initial BBs (Table 4.6). W test d a set of values, the percentage 

represents the ratio of randomly generated chromosomes to total valuated chro-

mosome . As the result shows, the initial number of BBs can make a difference to 

the results. In our test 10% and 15% give u the best results. 
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restart no restart 

n1 40 40 
n2 SO SO 
n3 53.36 53.36 
n4 84.11 84.31 
n5 104.87 104.86 
n6 103.72 103.77 
n7 109.00 109.01 
n8 85.93 85.94 
n9 155.47 155.46 
nl0 153.63 153.65 

Table 4.5: Effect of restart 

5% 100..6 15% 20% 25% 

n1 40 40 40 40 40 

n2 50.00 50.00 50.00 50.04 50.05 

n3 53.37 53.36 53.37 53.43 53.38 

n4 84.35 84.31 84.30 84.35 84.35 
n5 104.84 104.86 104.85 104.95 104.92 

n6 103.78 103.77 103.73 103.84 103.82 
n7 109.05 109.01 109.01 109.07 109.08 

n8 85.94 85.94 85.92 86.00 86.02 

n9 155.49 155.46 155.46 155.51 155.51 

nl0 153.67 153.65 153.64 153.70 153.69 

Table 4.6: Effect of initial BBs 

4.4.5 Compare with Ot her Al gorithms 

The main purpose of this chapter is to ll se grouping techniqnrs to (lnhanc(l standard 

meta-heuristics such as GAs to solve the type of NP-hard problems wh re elements 

are to be clustered into groups. shown in Table 4.7 and 4.8, the GGA can find 

the optimal solut ion for in tances up to 40 shape, whil standard GA and other 

methods in the lit erature can only find the optimal for much small er instances. 

Even if standard GAs can also find optimal solu tions for 20-shape instance, it only 

achieves this with 20% success rate, while the GGA finds th optimal in every run. 
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20 items 30 items 40 items 
(opt. 50) (opt. 50) (opt. 80) 

min % opt. min % opt. min % opt. 

GA 50 20% 51 0% 83 0% 
GRASP 50 N/A 51 N/A 81 N/A 
GGA 50 100% 50 18% 80 3% 

Table 4.7: Compare GGA with simple GA and GRASP 

However, as shown in Table 4.8, when the instance size increases the perfor-

mance of the GGA deteriorates to the same level as a standard GA. The possible 

reason is that, as we have explained in Section 4.2, the number of groups is in-

creasing at an exponential rate. 

4.5 Summary 

In this chapter, we have investigated the Grouping Genetic Algorithm, using a 

more complex genetic encoding and grouping techniques as an enhancement to 

standard GAs. The OPP is a good test example for the Building Block Hypothesis, 

by using GG A to explicitly trace the use of BBs. While the result shows the 

strength of this approach on small and middle sized instances, the algorithm is 

difficult to scale up to larger sized instances. The reason is that the GGA proposed 

in this chapter discovers groups 'on-the-fly', and the number of groups increases 

exponentially. There are two possible approaches to overcome the drawbacks of 

GGAs. One approach is to consider only the most promising groups rather than 

tracking all groups discovered during the evolution. However, how to evaluate 

and identify good groups remains an open problem. It might be helpful to apply 

statistical learning techniques to find good paths in the network model in section 

4.2. Another way to tackle the limitation of the GGA is to use more static grouping 

techniques and avoid the dynamic grouping strategy. For example, we can divide 

shapes into only two groups, critical group for big shapes and non-critical group 
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I 
GA + First Fit I GA + Best Fit I Grouping GA I GRASP 

No. Shapes Instance Avg Min Avg Min Avg Min Avg Min 

10 n1 40 40 40 40 40 40 40 
20 n2 51.58 50 51.26 50 50 50 50 
30 n3 52.71 51 52.69 51 52.39 50 51 
40 n4 84.57 83 84.24 83 83.79 80 81 
50 n5 105.76 104 105.78 104 104.79 103 102 
60 n6 103.63 102 103.83 103 103.55 102 101 
70 n7 109.62 106 108.35 105 108.72 102 101 
80 n8 85.61 84 84.99 84 85.82 84 81 
100 n9 155.86 154 155.38 153 155.39 154 151 
200 nlO 153.74 153 153.43 152 153.42 153 151 

16 or 17 C1 20.01 20 20 20 20 20 20 
21.18 20 21.18 21 21.2 21 20 
20.14 20 20.03 20 20 20 20 

25 C2 16 16 16 16 15.89 15 15 
16 16 16 16 15.95 15 15 

15.96 15 15.93 15 15.17 15 15 
28 or 29 C3 31.93 31 31.87 31 30.8 30 30 

32.22 31 32.1 32 31.94 31 31 
32.12 31 32 31 30.13 30 30 

49 C4 64.27 63 64.26 64 63.85 62 61 
64.31 63 64.23 64 64.37 63 61 
63.8 62 63.72 63 63.69 61 61 

73 C5 95.67 94 95.58 94 95.58 93 91 
96.78 95 96.79 94 96.85 94 91 
95.9 94 95.89 94 96.05 93 91 

97 C6 127.58 126 127.88 126 127.45 125 121.9 
127.79 125 127.57 125 127.3 126 121.9 
127.97 126 128.23 126 128.97 126 121.9 

196 or 197 C7 256.26 254 257.09 254 257.29 253 244 
253.95 251 255.08 250 254.64 254 242.9 
254.91 252 255.44 252 254.84 253 243 

Table 4.8: Compare the GGA with simple GAs (implemented according to 11081) 
and GRASP 131 (GA and GGA are allowed to run 10,000 evaluations, GRASP is 
allowed to run 60 seconds as reported by the authors) 
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for smaller ones. To apply such a static grouping strategy would require a different 

representation and neighbourhood search strategy. It naturally leads us into the 

domain of Evolution Strategy (ES) which will be investigated in Chapter 5. 
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Chapter 5 

Phenotype Representation and 

Evolution Strategy 

5 .1 Introduction 

In this chapter we investigate various Evolution Strategies (ES) for Orthogonal 

Packing Problems. ESs often utilise phenotype representation as the search space 

and rely on mutation to perform neighborhood search, unlike genetic algorithms 

which use genetic encoding as a surrogate search space and crossover recombina-

tion as the main source of variation. Underlying the different implementation of 

ES approaches, there are significant implications on the fitness landscape when 

using phenotype representation and mutation search operators. Based on some 

properties of the ESs' fitness landscape (see section 5.7.1), we propose some basic 

and hybrid approaches to tackle packing problems. The ESs approaches obtain 

better quality results compared to most of other approaches in the literature. 

This chapter is arranged as follows. In section 5.2 we present a formal def-

inition of the phenotype representation for orthogonal packing problems. While 

the representation provides a direct description of solutions, an abstraction of the 

representation using interval graphs 1721 is a useful tool to compare the similar-
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ity among solutions. Associated with the phenotype representation we develop in 

section 5.3 specific operators for orthogonal space manipulation. The principle of 

the mutation operator, the most important strategy in ESs, will be introduced in 

section 5.4. 

Section 5.5 presents the implementation details of various ESs, especially the 

methods for adjusting strategy parameters. We pay attention to a special ca.<;p of 

ES, Grouping ES (GES) which, in effect, decomposes a problem and can be par-

ticularly effective for heterogeneous instances. Further to the simple approaches, 

we develop more advanced algorithms by hybridising the ESs with a Variable 

Neighborhood Search (VNS) strategy (see section 5.6.3) which takes advantage 

of the neighborhood structure and population-wise information during evolution. 

Empirical results for the algorithms will be analysed in section 5.7. 

5.2 Phenotype Representation 

5.2.1 Definition 

In the previous two chapters, we introduced genetic algorithms which evolve per-

mutations of shapes as a surrogate search space for packing problems. The se-

quence of shapes is also called a genetic encoding or genotype representation of 

the search problem. This metaphor to molecular's DNA is somewhat misleading 

and problematic. As we have shown in the last two chapters, there are some 

weaknesses of such genetic encoding of combinatorial problems: 

Loss of information GA's reproduction operators treat all elements indiffer-

ently with its symbolic encoding (binary vector, and ordinal numbers, etc.). 

Critical domain specific knowledge is ignored during crossover and mutation, 

such as sizes of individual shapes, interaction between items, dynamics of ex-

ternal constraints. Although by undiiferentiating items, GA's operators can 
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be problem domain independent, the genotype representation often causes 

other difficulties in search. For example, building block disruption is often 

observed, when the same schema may result in different fitness evaluations 

depending on the context. 

Ineffective neighborhood structure The neighborhood structure can easily 

be defined for genotype representations, e.g. mutation by swapping two 

items, crossover by exchanging segments of encodings. However, such a 

neighborhood move may not correlate with objective function values, as 

witnessed by extreme cases of the so called deceptive objective functions, in 

which cases the genetic encoding provide false feedback on the correct search 

direction. 

Dependency on mapping function GAs rely on a mapping function to trans-

late the genetic encoding to a final objective value. As we have shown in 

chapter 3, a single decoding function may be insufficient to search the entire 

co-domain of solutions, or the quality of the decoder may affect solution 

quality, e.g. Next Fit heuristic for bin packing problems generates inferior 

results compared to Best Fit or First Fit for the majority of the benchmark 

instances. 

Computational cost Since genetic encoding requires a decoding step before 

evaluation, there is extra computational cost involved in such a mapping. 

Phenotype encoding is another type of representation for combinatorial opti-

mization problems that avoids some of the problems mentioned above. A phe-

notype reflects the solution directly and contains all domain related information. 

For the packing problems, we define the phenotype representation as a set of 

coordinate d-tuples Lp = {('h,('h,'" ,(')n}, with each d-tuple (·)iE{l,2, ... ,n} rep-

resenting the position of the ith shape in d dimensional space. Without loss of 
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generality, a d-tuple corresponds to the position of a shape's bottom left cor-

ner. The d-tuples cannot take arbitrary values, but have to satisfy the feasibility 

constraints of orthogonal packing. Therefore it implicitly incorporates the size 

information of shapes. Moreover, given the available space (i.e. the containers' 

space), set Lp's complement set La denote all available spaces deterministically. 

Therefore, the phenotype representation encompasses all information regarding a 

specific problem: all shapes' sizes and their positions and spaces still available, 

and directly represent a solution. One clear benefit of such an explicit phenotype 

representation is that the representation is highly correlated to the objective func-

tion, i.e. the feedback information from evaluation of phenotypes will not mislead 

the search process. 

A potential disadvantage of a phenotype representation is that the neighbor-

hood structure may be complicated and designing search operators could be diffi-

cult, since the operators need to be versatile and able to avoid infeasible solutions, 

such as the collision of shapes. We introduce some space manipulation operators 

in section 5.3 and a generic drop-and-add mutation operator in section 5.4. 

5.2.2 Interval Graph Abstraction 

As discussed above, a phenotype representation encompasses comprehensive in-

formation regarding a solution. However, it is often necessary, but not trivial, 

to analyze phenotypic traits, such as comparing similarity between two pheno-

types. The real-valued location information of each shape, though intuitive, is 

complicated to express and compute. We propose a weighted interval graph as an 

abstraction of the phenotypes, which keeps essential information while also greatly 

reducing the computational burden. 

The weighted interval graphs are based on the packing classes model proposed 

by Fekete and Sheperd [731 (see chapter 2). In their model shapes are treated 

as homogeneous nodes with no difference. This model will cause problems as 
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illustrated by Figure 5.1. Both figure 5.1(a) and 5.1(b) have a valid pair of 

interval graphs, however if taking item sizes into consideration, in 5.1 (b) the edge 

between nodes 1 and 4 shouldn't exist. 

Nevertheless, the interval graphs are still a useful tool to measure similarity 

between different packings. We extend the model by assigning weights to each node 

according to each shape' size. on-weighted interval graphs can be implemented 

with a binary string data structure, which can be easil y compared u ing a hamming 

distance. The difference when measuring weighted int rval graphs is that, each bit 

is only a flag indicating if the corresponding weight is to be counted or not, while 

in Hamming Distance each different bit accounts for one in the distanc (i.e. all 

weights are equal to one). This model can easily be implemented by a n x n (lower) 

triangular matrix (n is the number of shapes). Each column (or row) of the matrix 

is labell ed by a shape's index, so the coordinates of each element in the matrix 

corresponds to the two labellin g shapes on the row and column respectivply. The 

weight for each element is calculated by summing up the quare of the sizes of 

the two labellin g shapes. If two shapes overlap on a direction the element will be 

equal to one, or be zero if otherwise. 

ｾ ~
1 

1 3 G. 4 3 G, 
2 2 

'\ .1 

Gy 1 3 Gy 4 3 

2 2 

(a) feasible (b) infeasible 

Figure 5.l: Interval graphs ignoring shape sizes can be infeasible 
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5.3 Phenotype Operators 

A search algorithm using phenotype representation, in theory, does not require 

any decoding heuristics to evaluate a solution, as long as the mutation operators 

can manipulate phenotypes directly to perform a neighbourhood search. For or-

thogonal packing problems, one intuitive operator could be defined as shifting a 

shape to specific coordinates or over a certain distance. Such an operator would, 

however, be computationally expensive, as it needs to determine if the destination 

location is feasible and would require complex collision detection. Instead, we use 

a more generic operator, drop-and-add (DAA, section 5.4) as the search strategy 

which takes certain shapes out of a phenotype representation (erased from Lp and 

update La) and re-packs them in different places. The DAA mutation strategy 

suits many different problem domains and is less computationally expensive. How-

ever, it requires some space manipulation operators to calculate feasible positions 

for each shape. 

The purpose of the space operators for phenotype representation is to main-

tain the sets of Lp (for shapes' position) and La (for available spaces for future 

packing). Every time a shape is added or removed from a packing, both Lp and 

La need to be updated. For example, at the beginning of a packing process, Lp 

is empty and La contains all available bins; then shapes are inserted one by one 

by certain heuristics, Lp and La will be modified accordingly. To facilitate the 

advanced operators, in section 5.3.1, we present two fundamental operators, split 

and merge, which can be applied to any dimensional orthogonal Euclidean space. 

The phenotype representation and two operators include comprehensive informa-

tion about a packing status, therefore they are more general than other methods 

in the literature, such as those calculating skyline 1281 or docking points 11461 

The basic operators can also be combined to create more sophisticated opera-

tors. 'rVe develop three such operators: shift, jostle and relocate (details are shown 
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in sections 5.3.2 and 5.3.3). These operators are applied on a complete packing, in 

order to make further improvements without massive structural changes. The shift 

operator finds gaps and eliminates them by slightly moving neighboring pieces to-

wards a certain direction, while relocate fills gaps with pieces that may be some 

distance away. The shift and relocate operators may need to be applied recursively 

to many shapes, since once a shape has been shifted or relocated a new gap may 

be generated due to the movement. The jostle operator is a variation of the shift 

operator. The difference is that the jostle operator applies the shift iteratively 

with changing directions. It starts with shifting pieces in one direction as far as 

possible. Once no more movements in this direction can be done, it changes the 

direction to a new direction and checks if any shapes can be shifted in this direc-

tion. It mimics the shaking of a container that violently changes directions of all 

the shapes. 

5.3.1 Split and Merge 

Split 

Space split is a subroutine that is used when adding a shape. It takes three input 

parameters, a list of prior available spaces ｌ ｾ Ｌ , a shape ri and certain position Pi 

the shape is to be placed, and it returns a list of posterior available spaces ｌ ｾ Ｎ . We 

will first introduce the basic space split function, followed by explaining how to 

apply the basic function to a real situation. For multiple shapes, the split routine 

will be applied to each shape, i.e. pack shapes one by one as if in an online packing 

scenarIo. 

Figure 5.2 shows the general cases for one and two dimensional space split. It 

is easy to see that generally the original interval, on each dimension, will be cut 

in the middle to create two smaller sub-intervals. Therefore the number of newly 

created subspaces is 2 x d (d is the dimension of the space), e.g. the subspace 
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generated for one dim n ional case two, and for tw dim nsional cas . it i. 

four. 

Before 

After 

(a) One-dimensional 

I I -. ------- ------

Before 

[EJ 
ｦ ｩ ｩ ｉ Ｍ ］ ｬ ｾ ~
ｾ ｾ ~

After 

(b) Two-dimen ional 

Figure 5.2: Changes on availabl spa s (in gr y) b fore and after placement of ri 
(in black) 

Th sp cial ca es of th general placement ar to align shapes to spe ial po-

sit ions within a space, e.g. bottom-left corner, as many h uris tic u ually do. 

In uch cases some of the subspaces have zero valu on at lea t on dimen ion. 

Therefore these subspaces can be ignored and omitted from the list of posterior 

available spaces. 

With the basic space split function introduc d above, we can ta kle th mor 

complicated real situation in th packing proc s. For in tan s with tw r more 

dimen ions, some available pac in the list La may be overlapping (as in Figure 

5.2(b)). Therefore wh n a hape affects any overlapping areas, it split ev ral 

available spaces simultaneou ly. For each space in La , affected by the placem nt 

of a hap, we calculate and store the ub pa s in a temporary list. In the 

temporary list som ub pa are enclo ed in oth r pace , either existing spaces 

in La or other newly created larger ubspac in the temporary list. n xample 

is hown in Figure 5.3. Initially La had four availabl spaces {A,B, C,D} (Figure 

5.3(a)). After placing ri, A,B are affected and split into ubspaces {1 ,2} and 

{3,4,5} respectively, which are add d to the temporary Ii t. Space C i di joint 

and D is adjacent to r i, 0 they are not affect d (Figure 5.3(b)). In the t mporary 
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list, su b paces 2,3 ar n losed in 4 and 1 r pe ti vi, so they ar eliminat d. 

further ch k consolidat s sub pac 1 and D, as 1 is en I cd in D. her £ r the 

final list of available pa aft r placement of Ti is {4 ,5, ,D} (Figur 5.3(c)). 

(a) B fore plac m nt 

I 

(b) Aft r placement 

(c) After consolidating enclosed space 

Figure 5.3: The list of available pace i hang d from {A ,B,C,D} to 
{1, 2,3,4, 5, C,D} after placem nt of Ti, then to {4 ,5, C,D} after con olidating 
mall r enclosed space . 

Merge 

Th merge subroutine an wer the que tion that given a Ii t of availabl spacf'S 

what are the maximum size of a hape that can be a comm dated? It is us ful 
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when taking shapes out of a packing. The subroutine takes some lists of spaces 

as input, and detects if any spaces can be merged to form larger spaces. It is a 

necessary procedure as in an evolution strategy we need operators that can move 

shapes in different locations, therefore subspaces can not only be occupied but 

also created. 

Two spaces can be merged, if and only if, they are not disjoint, i.e. overlaping, 

adjacent or enclosed. Generally, for d dimensional cases, when two spaces A, B 

overlap, they can merge and create a total of d new spaces. For each dimension 

d' E d, there is a new space with size sized' = Ad' U Bd, and sizexEd\d' = Ax n Bx. 

Figure 5.4{a) shows the general case of how two two-dimensional spaces can be 

partially merged to form two more spaces. 

Adjacent and enclosures are special cases of overlap. When A, B are adjacent, 

sizex = Ax n Bx = 0 for all xEd \ d' where d' is the dimension that A, B's 

projection intersect, therefore only one new space will be created (see Figure 5.4(b) 

for an example in 2D). When A, B enclose (without loss of generality we assume 

A c B), Ad' c (Ad' U Bd,) C Bd, for all d' E d, i.e. all merged spaces are equal to 

B, so no space will be added (Figure 5.4(c) shows such an example in 2D). 

In ESs the merge subroutine will be called by other phenotype operators (shift, 

jostle and relocate introduced later), and only the adjacent case will be encoun-

tered. This is because when a phenotype operator moves a shape around, and 

the space previously occupied by the shape will be merged, if and only if, there 

is any adjacent available spaces. However, a complication in the merge process is 

that newly merged spaces may be further merged with other spaces. A recursive 

routine (Algorithm 8) is needed to check if any newly merged space can be further 

merged with available spaces. 

Having introduced the two geometric operators, split and merge for DAA mu-

tation, the next few sections will introduce the three phenotype operators, shift, 

relocate and jostle, based on the two basic operators, which are optimization op-
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A A A 

.... :.' 'it I;. 
B B 

(a) Overlap, two new spaces (in gr y) created 

A A A 

B B 

(b) Adjacent, one new space (in grey) created 

(c) Enclose, no new space created (even areas in grey enclosed in A), one 
existing space B eliminated 

Figure 5.4: Merge two spa s A and B 

Algorithm 8 Consolidate(Spac new, Spaceold) 
for all i E Spacenew do 

for all j E Spaceold do 
if i, j overlap or adj acent then 

Space merge f- SpacemergeU n w spaces merged by i, j 
else if i, j nclose or equal then 

delete the small er space 
end if 

end for 
end for 
S paceold f- S pacenew U S paceold 
if Spacemerge =1= 0 then 

Consolidate(Spac merge, Spac old) 
end if 
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era tor in the final packing. 

5.3.2 Shift and Jostle 

When we mutate a ph notype, shapes are not pIa d by a gr dy heuristi· but 

at points designated by th mutation strat gy. The han e are that gap may 

exi t between shap s, which can be eliminat d by hifting shapes to mak marC:' 

compact packings. Th shift operator is in fact a det rmini tic local improvem nt. 

For xample, in the orthogonal packing problem , w will check the final packing 

to see if any shapes can be moved towards the bottom-left corner, which an often 

improv initial packing results. 

ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

I 
I 

I I l. ___________ J 

Figure 5.5: Eft ct of hifting a hape from initial position ( olid lin ) to a n w 
position (dotted lin ) 

The shift operator can be ea ily implemented with split and merge operat rs. 

Figure 5.5 shows how hifting a shape affect the available pace li st La. When 

a shap shift s from its original position (solid lin ) to n w p sition (dott d lin e), 

th eft cts are spliting La by a dummy hape 2 (in bla k) and m rg a dummy 

shape 1 (in grey, of the am siz as shape 2) with La. 

Shift op rations usually have to be appli d recursiv ly. Wh n a hap i hifted, 

it will return its originally 0 upi d space ba k to the availabl spac list La, which 

will usually cause a chain reaction a other shap rna be able to shift in th same 

dire tion. The shift operation stop wh n no shap s an b moved in a ho en 

dire tion, normally the bottom-l ft corn r. 

Jostle wa fir t introduced by Dowsland et al. 157] for irregular shape packing. 
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We implement a similar idea of jostling that is a variant of shift and mimics the 

action of shaking a container to reduce the unevenness of the surface. It initially 

tries to shift all items in one direction, and when no shapes can be shifted further 

it suddenly changes to a different direction. The motivation behind the operator 

is illustrated by Figure 5.6. Assuming we initially shift all shapes to a bottom-

left position, a better result can be achieved by shifting shape A to bottom-right 

direction. 

-
A 

-1 

-
Figure 5.6: Jostling shapes to different directions to achieve better results 

5.3.3 Relocate 

Unlike shift and jostle operators that move shapes to an adjacent available space, 

the relocate operator can find a better position which is out of immediate reach 

of a shape. In Figure 5.7 the operator checks shapes from the top of the packing 

and gaps from the bottom, to see if a shape can be relocated to a lower position. 

As with shift operator, the effects of relocating are splitting La by the new space 

(in black) and merge old space (in grey) with La. Again, possible chain reactions 

have to be considered if any shapes can be further shifted or relocated. 

5.4 Synopsis of Mutation 

Most ESs rely on mutation as the main source of variation to search through phe-

notype space. Mutation as a neighbourhood search operator defines the ordering 

of representations on the fitness landscape, and has a great influence on the search 
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Figure 5.7: Effects of r locating hape A to dotted lin po ition 

strategy. By adapting the mutation strength, the step ize from an xisting 0-

lution, mutation operators playa critical rol in E to balance th exploration 

and exploitation proce s. To mutate an existing packing, on may be t mpted to 

directly alter the value of each shape' coordinates in Lp. However, this approa h 

can cause shapes to ov rlap, thu cr ating inf a ible lution. Repairing uch 

infeasible solutions is often omputationally expen iv . 

In what follows, we briefly xplain th prin iples of a gen ri two- tag Drop-

and-Add (DAA) mutation operator, whi h repacks rtain shap ,similar to the 

in ertion operator in Gen tic 19orithms which remove and add an all I in a new 

po ition. There are a f w variation for both drop and add tag s. W will discu 

detail of the differ nt strat gie in section 5.5, but d tail of th impl m ntation 

are al 0 lab orated upon in this section as we provid an overview of the 

mutation operator and, mor importantly, the rational behind the d ign. 

Th DAA mutation is compris d of two elementary stages. The drop stage is 

oncerned with how many, and which shap s, ar to be r moved while th add 

tage d cides how to match the r moved shapes with th available pace . Durillg 

the drop stage, after each hape has been remov d from Lp , the pace merge 

routine will be call ed to recalculat the availaol ｾ ｰ ｡ a La, silllilarly at til a Id 

tage Lp and La will be r calculated it rativ ly after ea h shape has b n added 

ba k. By counting th numb r and size of hap s being altered, we an quantify 

the magnitude of th alt ration, notated by mutation trength. The drop tag 

is of the greatest importanc with regard to the mutation str ngth for phenotype 
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representations, while the add stage affects the fitness landscape by deciding fitness 

values with specific packing heuristics. 

5.4.1 Drop 

In chapter 2 we reviewed three general principles (reachability, unbiased ness and 

scalability) for ESs' mutation strategies in uni-modal and continuous real-value 

search domain [161. The DAA mutation operator satisfies the reach ability and 

unbiasedness rules. But the scalability is harder to achieve because of the discrete 

properties of the packing problems. Considering both quantity and size of shapes 

provides a way to mitigate the non-differentiable issue. However, with the ES 

defined by DAA mutation, there is a minimal mutation strength which is alteration 

of the position of the smallest shape. For adaptation purpose, the number of shapes 

can be controlled by an integer number from 1 to n exactly, or by a percentage ratio 

within the range from 0 to 100%. A parametrised probability function calculates 

which shapes are to be chosen. By tuning the parameter, the probability for each 

shape can be changed, from preferring small shapes, to a random selection and to 

preferring large shapes. 

5.4.2 Add 

Like many other packing heuristics, the insertion of shapes back into a partial 

packing can be further decomposed into two steps: pre-treatment and matching. 

Pre-treatment sorts shapes according to non-increasing width or height before 

packing, which is a deterministic procedure. Unless combined with a stochastic 

matching strategy, the insertion will be biased and limited to part of the solution 

space (Chapter 3). On the other hand, placing large shapes earlier often generates 

good packings, so we use the pre-treatment only to get one of the starting solutions 

in the initial population, and in subsequent generations we resort to random orders 
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without sorting. 

Matching shapes to available spaces can be done by some standard heuristics 

such as Best Fit (BF), First Fit(FF). together with Bottom Left or other filling 

strategies. In theory, a random placement of a shape can be done as long as fea-

sibility is satisfied. We assume the effect of this random matching is equivalent to 

packing randomly ordered shapes with deterministic heuristics. Empirical results 

are shown in section 5.7. 

5.5 Implementation of Simple ESs 

In this section we introduce the implementation of our proposed ES. In partic-

ular we focus attention on several variations of the DAA mutation operator and 

corresponding strategies for adapting the search parameters. The purpose of this 

section is to examine the dynamics between the phenotype landscape and the mu-

tation strength. It is also necessary to investigate the effects of adapting strategy 

parameters on such a fitness landscape. Lastly, these basic approaches set the 

stage for more advanced features and hybrid strategies and provide benchmarks 

for comparison in later sections. 

Algorithm 9 presents a template of a standard ES procedure. From lines 1 to 4, 

the first generation is initialized randomly. Following the initialization, an itPrative 

loop evolves further generations. Parents are selected from the population in line 

8 and produce offspring by mutation in line 10. Before mutation a critical step of 

ES, shown in line 9, is to adjust the endogenous parameters according to the new 

results. If we generate multiple children in line 10, a selection among the children 

will be performed. Such a selection of children is different from the selection of 

parents in line 8. Although both apply elective pressure for evolution, there is a 

subtle difference. At line 8, the selection pressure is to filter out unpromising areas 

of the fitness landscape, while in line 10 the pressure is to specify the intensity of 

108 



search around a certain solution. At line 16, the new generation is chosen from 

the parent and/or offspring population depending on a merge strategy (pIlls or 

comma, see section 5.5.3). The evolution process from line 7 to line 16 will be 

repeated until the stop criteria is met. 

Algorithm 9 ES::solve(instance) 
1: for i = 1 to POP _SIZE do 
2: Si ｾ ~ RANDOM_PACKO; 
3: pO ｾ ~ INSERT(si); 
4: end for 
5: generation count 9 ｾ ~ 0, initial parameter aD ｾ ~ IN IT I ALI Z EO 
6: while 9 + + ｾ ~ gmax do 
7: for if = 1 to NEW _POP SIZE do 
8: sp ｾ ~ SELECT(P9); 
9: a9+I ｾ ~ ADJUST(a9) 

10: se ｾ ~ SEARCH(sp,a9+1
); 

11: pg+1 ｾ ~ INSERT(se); 
12: if Se ｾ ~ Sbest then 
13: sbest ｾ ~ se; 

14: end if 
15: end for 
16: MERGE(P9+1, P9); 
17: end while 
18: return sbest· 

5.5.1 Endogenous Parameters 

Mutation operators introduced in the previous section are the primary source of 

variation in standard ESs. In this section we present several versions of DAA 

which implement different strategies with regard to the following questions. How 

many and which shapes are to be relocated? Which heuristic should be used to re-

place the piece? These different DAA variants determine how to make a step away 

from an existing solution. There are two obvious endogenous factors affecting step 

sizes: the number and size of removed shapes. Correspondingly, we use al and a2 

to control the two factors and study their effects separately and jointly. 

Another critical factor in tuning mutation strength is the success threshold. 

109 



The success rate is defined as the percentage of the descendants better than the 

parents. In the real-valued continuous domain, the famous 1/5-rule 116J can be 

easily justified by the discovery of evolution window 116J. However, in the combi-

natorial search domain, it is uncertain if the rate is still a good choice or even if 

a constant success rate is reasonable, because the fitness landscape is much more 

complex and there is a minimum step sir,e requirement. For example, in the bin 

packing problem, as shapes are not differentiable, the minimum step is equal to 

the removal of the smallest shape. Therefore we define a third parameter a3 to 

adaptively control the required success threshold. When the mutation reaches the 

minimum step size and still cannot satisfy a success rate, we will adjust a3 to a 

low level according to certain rules. 

For the drop strategy, the following endogenous parameters are investigated: 

1. (71 for the number of shapes 

The first endogenous parameter al E (0,100%] controls the percentage of 

shapes to be repacked, and is the most commonly used parameter for mu-

tation strength in the literature. Though al is in a real interval, the actual 

number of shapes is calculated by l al x n J. To explore the effects of aI, we 

also adjust it in discrete steps uniformly distributed across the interval rather 

than continuously. In the experiments in section 5.7, each gap 8 between 

the tested al is set equal to 10%. 

For adaptive ES introduced in section 5.5.2 the same steps are also used for 

adjusting aI, according to the following rules: 

if G!/Go > 0, al < 100% - 8 

if G!/Go < 0, al > 8 

GO denotes parental generation, G! is the success of offspring in the following 

generation (s), 0 is a required success rate (discussed later in this section). 
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Note 0"1 is bounded by 0 < (11 S 100%. 

Like most conventional approaches, using 0"1 alone to mntrol the mutation 

strength provides only a coarse grained neighbourhood structure. Using only 

this parameter, there are ambiguities when measuring mutation strength. 

For example, it may be hard to compare the mutation strength of repack two 

large shapes against three smaller ones. Therefore, an additional parameter 

to distinguish shape size is needed. 

2. (T2 for sizes of shapes 

The second endogenous parameter controls the sizes of shapes to be repacked 

with parameter 0"2 E lR in addition to 0"1. The parameter 0"2 is not a direct 

representation of the shape sizes, instead it is used in the parametrised func-

tion calculating a value P for each shape 

where Vi is the size of shape i and Vm is the median size of all shapes. For 

large shapes (Vi> Vm ), increasing 0"2 will increase P(i), and the larger a 

shape, the faster the P value grows. For small shapes (Vi < vm ) the opposite 

is true, i.e. P increases as 0"2 decreases. So the overall effect is, if tuning 0"2 

from high to low the system is more inclined to select small shapes, and vice 

versa. 

With P{ i, 0"2) for each shape i E {I, 2, ... ,n}, we use roulette wheel selection 

to chose a shape from those shapes still in the packing. Therefore for a 

specific shape, j' its probability of being selected is 

PU', 0"2) 

Lj PU, 0"2) 

where j', j E J are the remaining shapes in a packing. 
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There are two important properties of the P function. It is monotonic in 

terms of shape size given a a2, that is VVi ｾ ~ Vj 

P(i, a2) ｾ ~ P(j, a2) 

P(i, a2) = P(j, a2) = 1 

P(i, a2) 2: P(j, a2) 

It is also monotonic in terms of a2 itself for any two shapes Vi < Vj, that is 

Therefore by adjusting a2, we can change the ratio of ［ ｩ ［ ｾ ~ and affect the 

probabilities of certain shapes being selected. It is easy to induce the fol-

lowing special cases, for any two shapes i and j remaining in a packing with 

corresponding sizes of Vi < Vj, 

P(i, a2) 
largest first (5.la) ( . ) ｾ ~ -00, when a2 ｾ ~ 00, 

P ),a2 

P(i,a2) _ Vi h = 1 
( . ) - ,wen a2 , 

P ), a2 Vj 
roulette wheel (5.lb) 

P(i, a2) 
( . ) = 1, when a2 = 0, 

P ),a2 
random (5.le) 

P(i,a2) _ Vj h --1 reciprocal (5.ld) ( . ) - ,wen a2 - , 
P),a2 Vi 

P(i,a2) 
( . ) ｾ ~ 00, when a2 ｾ ~ -00, 

P ),a2 
smallest first (5.le) 

The first relationship (5.la) means that larger shapes have an infinite large 

probability compared to the smaller ones (equivalent to the largest-first 

heuristic), while in the last case (5.le) the smaller ones have infinite prob-
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ability (equivalent to the smallest-first heuristic); the second relationship 

(5.1 b) means two shapes are chosen proportional to their sizes (equivalent 

to roulette wheel selection based on sizes), while the forth proportional to the 

reciprocal of the sizes; the third relationship (5.1c) means all probabilities 

are equal (equivalent to a random selection heuristic). 

As long as a2 is large or small enough (set to between the interval of [-20,20] 

for the benchmark instances) the probability function will achieve the desired 

behaviour of largest (or smallest) first. In the experiment in section 5.7 we 

also test some settings in between the five special cases in 5.1, i.e. set a2 

additionally equal to ｛ Ｒ Ｌ ｾ Ｌ , Ｍ ｾ Ｌ , -2] to make ｦ ｩ ｬ ｬ ｦ ｾ ｲ r grained adjustment of a2. 

Comparing with only aI, using both al and a2 to control the mutation 

strength is in essence refining the mutation strength. With only al it takes 

only n steps to reach the maximum mutation strength, i.e. the system sam-

ples randomly in the whole search space rather than generating an offspring 

by inherit traits from a parent solution. With the additional parameter a2, 

if it can take m values, there is a total of m x n combinations of parameter 

settings, which offers a finer grained search space. The two parameters can 

be tuned simultaneously or independently. If tuning them independently, 

the algorithm will either randomly pick one or arbitrarily assign priority to 

al or a2. Note the combination of two parameters is still bounded in prac-

tice, even though a2 is in lR, the lower bound is to remove the smallest shape 

and the upper bound is to remove all shapes. 

3. 0'3 for success rate 

a3 E (0, 1) prescribes a required success rate for adaptive ESs. The param-

eter is utilised in the adaptive ES because of two conjectures we have: a 

constant success rate like the 1/5-success-rule may be too rigid, as it often 

witnessed in practice, it is harder to generate better offspring as the search 
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progresses; the combinatorial search domain does not have the asymptotic 

property that (1 ｾ ~ 0, p ｾ ~ 1/2 as in the real domain. In the real domain, 

asymptotic success rate does not depend on parental status. However, under 

the phenotype representation and DAA mutation of combinatorial problems, 

the success rate is clearly parent-dependent. An example is, if the parent 

solution is a mere stack of all shapes, no offspring solutions will be worse 

and the success rate trivially equals to one. 

The parameter (13 is adjusted by a positive constant coefficient a to guarantee 

its positiveness. We set the coefficient a = 0.5, that is 

0 (13 . a . c1 0 
If (% < (13 

I 
(13 = 

aO . c1 0 
ｾ ~ If (% > (13 a 

5.5.2 Adaptive ESs 

We suspect that the adaptive strategy for the combinatorial domain should be 

very different from a real-valued domain. In a real-valued domain, due to the 

existence of asymptotic success rate, i.e. (1 ｾ ~ 0, p ｾ ~ 1/2 when current solution 

is not local (or global) optima, the adaptive strategy can always tune the mutation 

strength down to maintain a desired success rate and maintain the evolvability. 

In the real-valued domain, given long enough time, smaller mutation strength can 

always achieve better (or equal optima) results than larger mutation strengths. In 

the combinatorial domain, there is obviously a lower bound of mutation strength 

which is equivalent to repacking the smallest shape, therefore asymptotic mutation 

strength does not exist. Moreover, it is unlikely for the ESs to keep on improving 

the solution with the smallest mutation strength, by only repacking the smallest 

shape. The reason is, when mutation strength is too small, the chances are that 

other shapes are in a stable position (being highly constrained by each other) 
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no matter where the smallest shapes are repacked. Therefore a smaller mutation 

strength does not necessarily outperform a larger mutation strength. For these 

reasons, we have to adjust the endogenous parameters based on experience and 

presumptions. 

This section extends the simple ES approaches to adaptivp strategy by evolving 

a population consisting of both the strategy parameters and the objective variables 

(Le. the shapes and locations). The rationale behind the adaptation is that 

if a parameter configuration suits a local fitness landscape, it is morp likely to 

produce successful new solutions on average and should be given a better chance 

of surviving in competition with worse settings. 

Algorithm 10 shows an implementation of this idea, which couples each individ-

ual with its own parameter configuration. The representation is now a compound 

of objective variables (the phenotype x) and strategy parameters (0"1,0"2). Sup-

pose an individual (x*o, 0";0,0";0) is selected to reproduce a child (X*I, 0";1,0";1), the 

phenotype part of the offspring X*1 is mutated from x*o and controlled by the 

mutation strength (0";0,0";0). The strategy parameters themselves Ｈ ｏ Ｂ ｾ ｯ Ｌ , 0";0) will 

also be inherited and updated to Ｈ Ｐ Ｂ ｾ Ｑ Ｌ , 0";1), depending on whether the offspring 

X*1 is fitter than the parent. Note, in this strategy, the parameter 0"3 is omitted 

as the success rate is no longer a ratio based on the outcome of evolution of each 

generation, but a binary indicator of each individual's success. The survival of X*1 

and Ｈ Ｐ Ｂ ｾ Ｑ Ｌ , 0";1) are tied together and based on the fitness of X*I. 

5.5.3 Exogenous Parameters 

Exogenous parameters for ES are mostly parameters controlling the selection pres-

sure, and normally denoted by J1 for parental population size, ,\ for offspring pop-

ulation size, and a selection strategy of either '+' for merge both parent and 

offspring populations or ',' for selection among only the offspring population. 

Selection plays an important role in directing the search to promising areas 
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Algorithm 10 Self-adaptation on compound individual 
1: Parents ｾ ~ SELECT(Population) 
2: for all individual iO = (XO, at ag) E Parents do 
3: Xl ｾ ~ MUTATE(xO, a?, ｡ ｾ Ｉ )
4: if Xl < XO then 
5: (at, ｡ ｾ Ｉ ) ｾ ~ INCREASE(a?, ag) 
6: else 
7: (ai, aD ｾ ~ DECREASE(a?, ag) 
8: end if 
9: new individual i l ｾ ~ (xl, at, ｡ ｾ Ｉ )

10: end for 

which are estimated on the basis of the fitness of individuals. Setting a proper 

selection pressure is a key issue in many evolutionary algorithms, including GAs, 

GPs and ESs. A detailed study on general topics of selection pressure can be 

found in [54]. We propose to consider the selection pressure from three aspects, 

which will be examined by empirical study in section 5.7. 

1. Point Selection Pressure This specifies how many children a parent gen-

erates on average, which can be expressed by the ratio of offspring to parents 

)..1 J1. The measure is to quantify the intensity of the search around the local 

areas of specific points (Le. the existing solutions). The higher this ratio the 

more extensively the neighbourhood of existing solutions will be searched. 

This ratio should be understandably larger than 1 for comma selection, oth-

erwise if the ratio is less than 1 the population size will diminish and there is 

a risk of population extinction, or if equal to 1 the evolution is mere random 

walk. Other special cases include, if J1 = 1,).. > 1 and using plus selection 

the strategy is equivalent to steepest descent; if both J1 = ).. = 1, the plus 

selection becomes a simple hill climber. 

2. Population-wise selection pressure For multi-modal problems, it is im-

portant for an algorithm to be able to explore a wide enough search space. 

One strategy to achieve this goal is to have a sufficient number of parallel 

agents (other strategies include being able to escape local optimum). For 
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evolutionary algorithms candidate solutions for reproduction can be deem cd 

as such agents. On the other hand, a good search algorithm has to be ablc 

to identify bad solutions to maintain efficiency. In our ESs, this principle 

is achieved by balancing the ratio m : Jl : A which stands for choosing 7n 

candidates from Jl parents and A children. Usually m is chosen to be equal 

to Jl to keep the population size stable. 

3. Generation-wise selection pressure The ratio m : Jl : A is commonly 

concerned with only two generations. It is however worth considering choos-

ing candidates from more generations, particularly for the situation where 

a direct descendant may not show immediate improvement but may be able 

to do so after a few generations, i.e. some less fit descendants having the 

potential of getting better results will be discard if only two generations par-

ticipate in a truncate selection. Therefore we propose a selection strategy of 

moving multiple-generation window m : L.Jl : L.A. Algorithm 11 illustrates 

this strategy with a generation window of size 3. When merging popula-

tions, we use three consecutive generations Ao, Al and A2, rather than just 

two generations. 

Algorithm 11 Multi-generation window 
1: randomly initialise m candidate solutions 
2: repeat 
3: AO t-- REPRODUCE(m) 
4: Jlo t-- POINTSELECT(Ao) 
5: Al t-- REPRODUCE(Jlo) 
6: Jll t-- POINTSELECT(Ao, Ad 
7: A2 t-- REPRODUCE(Jld 
8: m t-- POPULATIONSELECT(Ao, AI, A2) 
9: until max generation 
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5.6 Grouping Evolution Strategy (GES) 

Unlike a real-valued search domain, for combinatorial optimisation problems, there 

is not enough theory and empirical evidence to support self-adaptive strategies like 

those in [161. Section 5.7.1 will provide some initial insights of the ES hehaviour 

on OPP, which is still far from being comprehensive. For this reason, we resort 

to experiences in other algorithms to design the adaptive strategy. The G ES can 

be viewed as such an arbitrary adaptive strategy of ES, as opposed to a sclf-

adaptive strategy. In GES, we arbitrarily define two groups for large and small 

shapes. In its simplest form, GES is indeed a special schema to adapt the mutation 

strength (section 5.7.2); while in more advanced forms, we hybrid GESs with other 

algorithms by applying different neighbourhood search methods to the two groups 

(section 5.7.2). 

5.6.1 Definition of Groups 

The GES defines groups in a different way from the Grouping Genetic Algorithm 

(GGA) in chapter 4. It divides the shapes of a heterogeneous instance into only two 

groups: a critical group for large shapes and a non-critical group for smaller ones. 

A critical group in the GES is a phenotype representation of a partial solution, 

i.e. a list of relative coordinates of a proper subset of all shapes § c JR, where 

Si E §, ¢=:} VSi > Vs·. Vs· is a threshold size that specifies the boundary of the 

two groups. In the real implementation we define the threshold as a percentage. 

For example, if we define 30% as the threshold for a 20-shape instance, we rauk ri 

on volume (or height, length or any other measures) such that 1'1 < r2 < .,. < rn , 

and the largest 6 (30% x 20) pieces are members of the critical group. 

The threshold can be a fixed ratio or can be adjusted during the search process. 

Compared to the GGA detecting groups 'on the fly', where there could be an 

exponentially increasing number of ways to group shapes, the GES has only two 

118 



static groups (when the threshold is fixed) or a number of combinations linear to 

the instance size (when the threshold is dynamic). Due to the different definition, 

the GES has the following advantages compared to the GGA. 

Scalability During a search process, the GGA detects groups 'on-the-fty' and 

typically has to track an exponentially increasing number of groups. In the 

GES, however, it tracks only a limited number of critical groups at a time. 

When instance size increases, the number of combinations of critical groups 

will only increase linearly. Therefore, the GES avoids the scalability problem 

of the GGA. 

Correlation As explained before, the GES is utilising phenotypes, and has its 

representations highly correlated to the objective value. The genotype rep-

resentation on the contrary is indirectly related to the objective value and 

depends on a heuristic decoder to evaluate its fitness. 

Redundancy In simple GAs, redundancy describes the phenomenon that mul-

tiple genetic encodings are evaluated to a same solution, which is usually 

perceived to be undesirable as it makes the search inefficient. The GGA in 

the previous chapter tries to mitigate the problem to some extent by mak-

ing the internal structure of a group 'invisible' to its outside neighbouring 

shapes (treat all groups with same constituent and overall size equal, disre-

gard the internal arrangement). However, redundancy may still arise from 

the translation from genetic encoding to actual layout, e.g. swapping two 

shapes (groups) may still generate the same packing. In the GES, redun-

dancy can be easily controlled and effectively eliminated by interval graphs 

represented packing classesl72] (details are introduced in Section 5.2.2). 
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5.6.2 Overview of GES 

The GES can be regarded as a mixture of some special configurations of the 

previous standard ESs. In the GES mutation procedure, initially it repacks all 

shapes in both critical and non-critical groups, which is equivalent to setting (}1 = 

100%. The algorithm then proceeds by repacking less shapes in the critical group 

and all shapes in the non-critical group, as if the (}1 is gradually reduced from 

100% to smaller percentage. Regarding the settings of (}2, the algorithm repacks 

all small shapes in the non-critical group which is equivalent to setting (}2 to a 

negative value and favour dropping small shapes. It further chooses some bigger 

shapes in the critical group with a probability selection strategy, which is to change 

the (}2 to a mid-high positive value that favours choosing larger shapes. 

The GES can even be further developed beyond adapting mutation strength. 

The key idea of GES is that it can apply different parameter settings or even 

different search strategies to the critical and non-critical groups. For example, the 

critical group can adopt Evolution Strategy for neighborhood search while the non-

critical group may use hill climbing. The benefit of hybrid GES can be illustrated 

by the fitness landscape. If we arrange the neighborhood of a solution in such a 

hierarchical structure that its close neighbors correspond to the mutation of the 

non-critical group only (which we call an inner circle), and the further neighbours 

(the outer circle) represent the larger mutation strength that also includes some 

shapes in the critical group. For example, the nearest neighbor is to mutate 

only the smallest shape, the next nearest neighbor is to mutate the smallest two 

shapes, and so on. The critical threshold specifies a boundary, within which is the 

inner circle and outside which is the outer circle. Intuitively the neighbors within 

the inner circle repacks small non-critical groups while keeping larger shapes in a 

similar position, which are likely to be in the same of basins of attraction as the 

original solution; while the outer circle (mutation to the critical group) are likely 

to be in different basins of attraction. Therefore, it is natural to adopt different 
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strategies for the two groups which are in different parts of the landscape. For the 

critical group, a desirable strategy should be able to explore the landscape and 

find promising basins of attraction. On the other hand, when searching in the 

inner circle more exploitive strategies may be more appropriate. 

Algorithm 12 illustrates the general framework for the GES which is an iterative 

search procedure, where Si is the ith solution, Pc and Pnc are critical group and 

non-critical group of a solution respectively, and Pt) represents the gth generation 

where (.) is the place holder of either non-critical group or critical group. The 

unique steps of the GES are: during initialisation, the critical group and non-

critical group are identified (line 3) and inserted (line 5) into separate populations 

during evolution. The two groups are also separately selected (line 9), mutated 

(line 10) and merged into each population (line 17). 

Algorithm 12 GES::solve(instance) 
1: for i = 1 to POP _SIZE do 
2: Si f- RANADOM_PACKO; 
3: Pc f- IDENTIFY _CRITICAL(si); 
4: Pnc f- IDENTIFY _NONCRITICAL(Si); 
5: Pg f- ｉ ｎ ｓ ｅ ｒ ｔ Ｈ ｰ ｣ Ｉ Ｌ ｐ ｾ ｣ c f- INSERT(Pnc); 
6: end for 
7: while stop criteria not met do 
8: for if = 1 to NEW _POP _SIZE do 
9: Pc f- SELECT(Pc),Pnc f- SELECT(Pnc); 

10: Pc' f- SEARCH(Pc),Pnc' f- SEARCH (Pnc' ); 
11: Si' f- EVALUATE(Pc',Pnc'); 
12: Pg+l f- I ｎ ｓ ｅ ｒ ｔ Ｈ ｰ ｾ Ｉ Ｌ , ｰ ｾ Ｚ ｬ l f- I NSERT(Pnc'); 
13: if result::; BEST _RESULT then 
14: BEST RESULT f- result; 
15: end if 
16: end for 
17: PLUS_MERGE(Pg+1, Pg) and ｾ ｅ ｒ ｇ ｅ Ｈ ｐ ｾ Ｚ ｬ Ｌ , P%J; 
18: end while 
19: return BEST RESULT. 
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5.6.3 Implementation of GES 

For each of the two groups there are a few search strategies will be tested by 

empirical study. For the critical groups, the idea is that in the parlier stag<' of the 

search the critical group is more likely to mutate and explore wider search spaces, 

while in the latter stages less pieces will be mutated and the search is controlled to 

do more exploitive probe around certain promising structures. Beside the general 

mutation strategies introduced in section 5.5.1, the following special parameter 

settings of (0"1,0"2,0"3) can be implemented. 

1. 0"1 is decreasing from 100% to (3 E [0%, 100%J (the critical ratio, the percent-

age of critical shapes) according to the search progress ratio of the current 

iteration count to the maximum iterations allowed, and 0"2 = 0, i.e. as the 

search progresses, less number of shapes will be mutated and the self'ction 

of shapes is random disregard of their size. 

2. similar to the strategy above, but utilizing a roulette wheel selection of 

shapes based on the size of a shape i* to the total size of critical shapes 

;"'i* ,which assigns smaller mutation probabilities to larger pieces. 
ｾ ｖ ｩ i

For non-critical group, which will always be dropped, we choose from some 

exploitative mutation strategies: 

1. Random Shuffle This strategy simply shuffles all shapes before insertion. 

It is a baseline case to illustrate the properties of close neighbors, and is used 

for comparison with other strategies. 

2. Genetic Algorithm (GA) As the non-critical shapes are always removed 

during the mutation process of GES, the sequence of these shapes being 

inserted back is used as genetic encoding in a standard GA. A population of 

the non-critical group is kept independent of and co-evolved with the critical 

group population. 
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3. Hill Climbing (HC) Unlike the above co-evolution of GA and GES, in 

the He strategy each sequence of non-critical shapes is not independent but 

associated with the phenotype of the critical group. The order is perturbed 

by swapping the positions of a number of shape-pairs. The new sequence 

is accepted to replace the old sequence only if the result is better than the 

original solution. Another greedy strategy, steepest descent, is not tested 

as the neighborhood size of swapping shapes increases exponentially with 

the instance size, therefore it is computationally prohibitive to enumerate 

through all neighbors. 

4. Variable Neighborhood Search (VNS) When the solution neighborhood 

can be expressed in a hierarchical structure, such as the fitness landscape 

defined by DAA mutation, VNS can normally help to explore the neighbor-

hood in a more systematic way. A natural hierarchy for the VNS to da'isify 

a set of neighborhood Nk is according to the first parameter 111 of the DAA 

mutation, where k E {I, 2 ... ,n - n*) (n* is the number of shapes in the 

critical groups). The VNS searches iteratively within each layer of the Nk 

neighbor sets in order. 

5.6.4 Fitness Function 

Like the Grouping GA (GGA), we consider two types of fitness functions in the 

GES. The first type evaluates static attributes of groups or final solutions, while 

the other type takes a more dynamic learning approach by measuring historic 

performance of candidate groups. 

The first type includes fitness functions such as group sizes or final heights of 

solutions; each of them has its own strengths and weaknesses. Generally, it is de-

sirable to have a fitness function to return evaluations which are highly correlated 

to values of objective functions. Therefore the final packing result seems to be 
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a natural choice for the fitness function. However, in many empirical studies it 

has been found that many alternative fitness functions outperforms the intuitive 

choice especially when the objective function is deceptive. Therefore, in our ex-

periments we will compare both basic fitness functions1 based on group size and 

final packing height, and investigate various combinations of them by assigning 

different weights. The critical decision when choosing a static fitness function is 

to balance deceptiveness and correlation with the objective function. 

The second type emphasizes finding promising candidates through an iterative 

learning process. In the GES, the non-critical shapes can often be packed with 

the critical shapes in many different ways (thereby generate different packings). 

If we regard all packings sharing the same critical group as a subset of solution 

space, a conditional probability can be defined, such as P(J(h) ::; XISd where 

f(h) is the final height and X is an objective height, i.e. given the group Si is 

used to build final packing what is the probability of getting a packing with height 

less or equal to X. f(h) can be other arbitrary fitness functions, such as average 

height on historic performance. Indeed, proper choice of the statistic measure-

ment f(h) is critical to differentiate candidate groups, and to guide the search to 

promising areas. From a statistical aspect, the standard deviation is probably an 

equally important measure as it reflects the volatility of results when a group is 

used. There are no clear rules on what fitness function is the best for all cases. 

Two statistical measures, each having its own merit, will be explored in our ex-

periments: minimum(h), average(h). There can be some other fitness functions 

made up by various combinations of the elementary functions. In our experi-

ments we will also test the linear combination of average and standard deviation 

average(h) - standard_deviation(h). 
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5.7 Experimental Results 

To understand the behavior of the ESs, we carried out extensive empirical studies 

on the various algorithms designed above. In section 5.7.1, we study the effects 

of both endogenous and exogenous parameters on the fitness landscape of the 

standard ESs. In section 5.7.2 we present the results on the Grouping ESs. Table 

5.1 below shows all experiments carried out in this chapter. 

Section Description 
5.7.1 effects of al mutation strength 

effects of a2 repack heuristic 
effects of a3 convergence and success rate 
adjusting aI, a2 and a3 

5.7.2 effects of critical ratio 
effects of fitness function 
hybridised strategies 

Table 5.1: List of Experiments 

The algorithms were implemented in C++ and sun on a grid computer with 

2.2GHz CPUs, 2GB memory and GCC compiler. Every experiment has been run 

50 times to obtain the average on each metric. Benchmark instances are taken 

from Burke et al. [28]. In the following sections, we present results on one example 

instance, complete results on all other instances are very similar and can be found 

in Appendix B. 

5.7.1 Simple ESs 

Effects of al and a2 

This sub-section presents experimental results that are designed to explore the 

fitness landscape in relation to the mutation strength, al, a2. As explained in 

section 5.5.1, al and a2 control the number and size of shapes to be dropped in 

DAA mutation. With regard to the strategy to add shapes back, we use heuristics 

commonly found in the scientific literature. The first heuristic is to add these 
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dropped hapes back in a random order. Exogenous parameters are set as (50 + 

50), i.e. population size of 50, one parent generate on child with plus merge, 

and the number of generation exercised is 300. 

We first examine separately the effects of (71 ( ach row of the table 5.1(a), in 

Figur 5.8) and (72 (each column of the table 5.1(a), in Figure 5.9). The joint 

effects of (71 and (72 are explained later (see Table 5.1(a) and 5.1(b)). 

It i easy to note from Figure 5.8, that when (71 increases to 100rc, all line 

converge to the same result highlighted by the dott d rectangle. Thi mans that 

when (71 = 100o/c (and with random add-back heuristic), the ES i quivalent to 

random packing regardless of other parameter s tting . This effect is al. 0 shown 

in Figure 5.9, the dotted line representing (71 = 100o/c is almo t a horizontal line 

and not sensitive to change of other parameter . 

Perhaps what can be observed with a little mor surprise is that many ESs may 

have wor e results than the random packing, a illustrated in both Figure 5.8 and 

5.9. This indicates the importance of carefully choosing the mutation tr ngth. 

16300 

16200 

16100 

16000 

ｾ ~ 15900 
.r; 
Ｎ ｾ ~ 15800 

.r; 15700 

15600 

155.00 

15400 

15300 

10% 20% 30% 

__ ·20 -·1-0 

40% 50% 60% 70% 80% 90·0 100·" 

percentage of shapes repacked 

Figure 5.8: Effects of mutation strength (72, each lin represents a diffE'rent (72 

changing with (71 E (Oo/c - 100o/c) 

Especially in Figure 5.8, when (72 = 20 (largest shap s are dropped first) , 

the results are always worse and gradually conv rge to a random packing when 

(71 ｾ ~ 100o/c. A similar observation applies, when (72 = 1 i.e. shape ar lectcd 

to drop in proportion to their sizes (therefore larger shapes have more chance). 
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On the contrary when (l2 = -1 (the probability for a shap being dropped is 

proportional to the r ciprocal of its size), a wid hoic of (l1 from 20o/c to 90% 

all achieve better results than random packing. This observation confirm om 

hypo the is that, when we are dealing with heterogeneous instances lik(' those of 

our benchmark instances, it is better to keep large shapes and mutate smaller ones, 

which indeed in pired us to treat large and small shapes differently and develop 

the Grouping ES. Another interesting line in the figure is for (/2 = 0 ( hap('s are 

chosen randomly to drop with no reference to their sizes), the results initially 

improve (from (/1 = 10% to 30%), but get worse when (/] increases further. 

163.00 

162.00 

16100 

160.00 

.. 159.00 
ｾ ~

.'1!1 15800 

1! 157.00 

156.00 

155.00 

154.00 

153.00 

·20 ·2 

50% -90% - - 100'" 

·1 ·0.5 o 0.5 20 

preference of shape size 

Figure 5.9: Effects of mutation str ngth (/1, each lin represent a dift rent (/] 
changing with (/2 E (-20,20) 

Figure 5.9 reveals some properties of (/1' For ea h different amonnt (or per-

centage) of shapes being dropped, there is an interval of (l2 that an achiev(' 

better-than-random performance; the interval will shift to the left id (prefer 

more smaller shapes) when (/1 increases. For example, when (ll = lOo/c, the inter-

val is [-1,1]; when (/1 = 50%, the interval is [-2,0]; when (/1 = 90%, th interval 

is [-0.5, - 20]. For other in tance , the exact values of the intervals may vary, bu t 

the trend is similar, that is higher (/1 requires lower (l2. 

The interactive relationship between (l1 and (/2 can also be clearly een from 

Table 5.2. In 5.2(a) we highlight the 10 be t combination of (/1 and (/2 out of a 

total of 90 different settings, which align roughly on the diagonal from top right 
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to middle-left in the tabl . If we plot all th valu s to a 3 chart ( s in 5.2(b)), 

it i even clearer that ther exi t a vall ey of mutation strength that can achievr 

good result. 

(a) 

n9 01 

02 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

-20 sma ｾ ｓ ｴ t f rst 162.82 162.08 160.96 161.60 159.32 159.20 157.64 156.80 155.36 156.40 

-2 158.48 157.44 155.94 155.90 154.40 154.72 154.10 153.98 155.00 156.92 

-1 ｲ ｾ ｣ c proca 0' 5 Z I! 157.36 154.28 155.52 154.52 153.80 153.72 154.12 154.36 155.08 15670 

-0.5 155.48 154.94 154.56 154.08 154.24 154.58 155.28 155.62 156.18 156.72 

0 random 155.32 154.10 154.38 154.82 156.14 156.92 158.48 159.18 158.62 157.02 

0.5 155.26 155.70 159.02 160.42 161.78 162.22 161.40 159.72 158.96 156.88 

1 pro pot on to 5 ZI! 156.88 158.68 161.40 161.10 161.76 161.04 159.92 159.28 158.62 156.76 

2 158.40 161.04 161.84 161.56 161.34 160.54 160.06 159.64 158.28 15664 

20 b U051' r5t 161.82 160.72 161.46 160.94 161.08 160.30 159.20 15812 157.40 157.04 

(b) 

16400 1 
162.00 

160.00 

... 158.00 .s= 
til) 

'Qj 
.s= 

15600 

154.00 

20 

o 
-0.5 

-1 
-2 

Tabl 5.2: Effects of mutation str ngth jointly controlled by al (1 arameter for 
percentage of shape repacked) and a2 (param ter for preferen e of hap iz) 
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Effects of Repacking Heuristic 

The experiments above are using a heuristic that re-packs the shapes in a random 

order. Another intuitive alternative is to pack them back in the same order that 

they were dropped. The change will cause an interesting consequence as shown 

in Table 5.3. We still highlight the 10 best settings of (11 and (12 in the table 

5.3(a). Apart from the good area in the previous experiment, another area around 

the bottom right corner of the table also has many good results. On the 30-

chart 5.3(b), we can easily see these two disjoint good valleys. This phenomenon 

resonates with observation of other researchers in the cutting and packing domain. 

That is, normally good results can be achieved if shapes are packed with First 

Fit Decrease Size (FFDS) or Best Fit Decrease Size (BFDS) heuristic. In fact, 

if (11 = 100% and (12 is large enough, the DAA mutation will always remove 

all shapes with the largest being removed first. It then re-packs everything in 

the same order which is indeed the FFDS (or BFDS). Adjacent cells around the 

bottom right corner can be regarded as a small perturbation of FFDS and BFDS. 

The instance shown above has 100 shapes. If the instance size increase to 200 

shapes (nlO in 128]), the valley at the bottom right corner (corresponding to high 

(11 and (12) will out-perform the valley with smaller (11 and (12 (shown in Table 

5.4). 

To conclude our observations for this set of experiments, when we utilise the 

repack-in-the-same-order heuristic, it may be worthwhile searching in the two 

separate good valleys for small to mid-sized problems, or in the bottom right valley 

for large-sized problems. The finding in this section provides us with insight on 

how to design the self-adaptive ES in section 5.7.1. 

Convergence and Success Rate (13 

In this section we investigate the effects of mutation strength 011 the success rate 

and convergence speed. In a real-valued domain, the relationship between muta-
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n9 
02 100. ｾ Ｐ Ｂ Ｖ 6

·20 Ｄ Ｎ . ｡ ｣ Ｎ Ｚ Ｚ ｾ ｭ m 16L64 16412 

·2 15956 1S6 20 

·1 1'KIf"OOI" n. 156.00 15604 

ｾ Ｕ 5 1S6.28 15548 

0 ,..".,.,.. 1S4.92 1S408 

05 155.72 155.60 

1 propoIl4n to::ia 155.114 157 36 

2 157.80 1S688 

20 b ｰ Ｂ ｾ ｭ m 62.04 16238 

16600 

164.00 

16200 

16000 

158.00 

15600 

15400 

152.00 

(a) 

30'!6 400. 

162 24 16 36 
15800 15592 
154 76 15482 
l.5416 1S4.04 
l.54 114 155.24 

15820 160.64 
16068 159.78 
158 40 15812 
6048 158.44 

(b) 

01 
sao. 

16080 
1S458 
1S410 
154 36 
15632 
160.70 
15956 
15704 
15702 

-·2 
·1 

ｾ ~

15924 
1S44O 
15426 
1S4.66 
158.08 
160.70 
159.32 
155.94 
155.72 

ｾ Ｎ Ｕ 5

7r:A. 8(N !lO96 100'1> 

15904 157.60 157 56 162.52 
154 26 154 80 156 38 161114 
1S428 154 88 15600 161.70 
15532 56.08 157.68 16136 
158n 15964 15882 1S6.36 
15986 157.68 15616 155.00 
15770 56.34 15506 153114 
15544 1S468 15392 153.'" 
1S416 153.62 15322 154 2'1 

20 

0.5 
o 

Table 5.3: Effects of mutation str ngth shap s are re-pack d in the am ord r 
being dropped 

tion tr ngth and ucc s rate is the core th ory foundation for the If-adaptiv 

strategy [16] . How ver orne of th se theori s do not hold £ r th ombinatorial 

problems lik e th OPP. As a cons quence, we need to onsider the elf-adaptation 

strategy differentl. In this ction w u e mpiri al tudi to investigate h 

dynamic between ndogenou param t rs and the converg nce speed. Based on 

discu sion in thi se tion w d sign the If-adaptation strat gi in the n xt 
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n10 a1 
a2 10l' 20'!0 30'10. 4(N 50'!0 60'10 7O'l6 8O'h. 90!0 100'10 

-20 ｾ Ｚ ｉ ｯ Ｎ ｟ _.. t'im 158.00 158.46 158.n 15816 15940 ｉ ｓ S Ｎ ｾ ~ 15760 156.34 15568 157n 

-2 157.88 15704 15718 15650 15536 154 36 Ｑ ｾ Ｐ Ｔ 4 15350 15418 15810 
-1 reop-val 0' ,,;. 156.90 15598 15532 154.90 ｾ Ｚ ｵ u 153.86 15370 15352 ｾ Ｐ Ｖ 6 15826 

ｾ Ｎ Ｕ 5 156.36 155.52 15528 15456 ｾ Ｒ Ｔ 4 15400 ｾ Ｐ Ｔ 4 Ｑ ｾ ~ 12 15498 157.98 

0 """""" 155.16 15514 15536 156 36 Ｑ Ｕ Ｖ ｾ ~ 157.50 15708 15718 156 78 154 40 

0.5 156.18 156.92 15786 158 24 15770 157.74 15650 155.08 15416 152.62 
prvpotOt'l to $ttf: 156.02 15738 157 32 15724 15632 155.28 Ｑ Ｕ ｾ ~ 34 15370 15286 152.00 

2 156.04 156.26 15592 154.92 ｾ Ｒ Ｐ 0 15330 Ｑ Ｕ Ｒ Ｎ ｾ Ｒ 2 152.50 152_22 152.00 

20 bUUlfim 15842 15774 15648 15508 15380 15360 15302 152.84 152.22 152.00 

Table 5.4: A large instance of 200 shapes, re-pa ked in the am order &'3 being 
dropped 

section 5.7.1. Complete experimental results ar in pp ndix C.1, while in the 

following we explain our findings with some extracted examples. 

In the first experiment, we run each instance over 300 gen rations with a2 = 0 

and set al from 10% to 100% incremental at 10o/c each step. The exp riment out-

puts the best child's fitness in each new gen ration. ( ote this is not the cumu-

lative (or steady-state) best result as in pr vious sections, since ware interested 

in how the algorithm maintains the evolvability rather than the final resul ts.) 

We first observe the speed of onvergenc as shown in Figure 5.10. All line 

in the chart are long-tailed, i.e. they becom stagnant after a quick improvement 

after a few initial generations. This property is typically found on combinatorial 

problems [891· 

It is clear that when al is high the variation of th best child is high. As shown 

in Figure 5.10 the lines for 10% and 30% are smooth while oth r lines representing 

higher al are much more volatile. Consequently, for larg a] om tim s the best 

child may be worse than the best one of previous gen ration, whil small enough 

al can normally improve (or not worsen) the current be t results. 

Lower settings of aI, are not only more stable, but can also achieve lower 

(better) results. As we can see the lines for 10%, 30o/c and 50% are better than 

70%, 90% and 100%. However, among the lower ettings, it is not nece arily 

the case that the lowe t setting performs better within th number of generations 

tested. In fact, for most instances, the best settings is not the lowest one (10o/c), 
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but around 30%. 
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Generations 
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,. • • • • • • • • • ,. . . . . . 
200 250 300 

Figure 5.10: Convergence ov r 300 generations 

In an attempt to see, when given long enough time, if the 10% line can even-

tually take over and clo e the gap between itself and the 30% lin , we run all 

instances for 30,000 generations. The gap between the two lines are till open 

(result are in AppendLx C.2). 

Thi result suggests an important difference between OPP and real-valued op-

timization problems. In real-valued search domains, a we discus d in the section 

on ES theory in Chapter 2 (section 2.6), ESs normally exhibits an asymptote be-

haviour, i.e. 0'1,0'2 -t 0 success rate P -t 1/2. Therefore, with small mutation 

strength approximate to 0, the results will definitely be b tter or equal though 

it may take a longer time to achieve. Corresponding to this property, in a rea)-

valued domain, when the search is close to optimal, it will have to tune down 

mutation strength to maintain the evolvability, i.e. the uccess rate. The differ-

ence between discrete and continuous s ar h domain may give us som hint. as 

to the explanation of the observed behavior. Firstly, for combinatorial probl m 

the fitness landscape, mutation of a variable annot move by an infinitely small 

step, but th re exists a minimal step which is equival nt to replace th mall t 

shape. Th refore the scalability of a real-valued domain doesn't hold anymore. 
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Furthermore, in OPP interactions between shapes are more complex and highly 

constrained. It is easy to think of a situation that, when only the smallest shape 

is relocated, other larger shapes may be stacked in a way they interlocks with 

each other (Le. no single shape can shift because it is blocked by others). In such 

situations, no matter where we put the smallest piece, we won't change the main 

structure of the packing. There would be a threshold of mutation strength, below 

which the ESs actually would loss evolvability. 

The study in this section poses some interesting open questions. Does such 

threshold exist for combinatorial problems? If yes, what is the level? When above 

the level, shall the ES do self adaptation in the same way as in the real-valued 

domain? And lastly, what is the expected results in relation to the mutation 

strength? These are difficult open theoretical questions, but we hope the empirical 

studies in this chapter can shed some light to assist and motivate other researchers. 

Adaptive ES 

In light of what we have observed in the previous section, we explore the properties 

of more dynamic self-adapting ESs in this section. We propose the following 

strategies based on the previous discussions. 

1. Search in the two valleys. When initializing the population, the endogenous 

parameter will be randomly generated but within the two good valleys iden-

tified in section 5.7.1 (orders of shapes are still uniformly random). ai, a2 

are adjusted at the same time but in opposite directions, so as to keep the 

parameters within the valley. 

2. When al is small and the success rate is too low, in the contrast to a real-

valued problem, we increase al to regain evolvability. 

3. Use an adaptive success rate instead of requiring a static success rate of 1/5 

as in the real-valued domain. When the ESs fail to meet the target success 
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rate th Y have a choice of either adjusting 0"1 , 0"2 or 0"3. Each time when 0"3 

is elected, the algorithms will half the r -quired su e s rate (typically result 

in a rate much lower than 1/ 5). 

4. Restart when the population become stagnate. The restart trategy is similar 

to the one in Chapter 4. The difference is as the ESs op rate on phenot pes, 

they utilise a pair of interval graphs for each packing as an abstraction, 

and detect if the population is dominat d by similar packings from a same 

packing clas . 

We compare the results of the dynamic self-adaptive ESs against the Ss with 

static mutation strength in Table 5.5. Except for the ndogenou parameter, 

other exogenous parameters are set to the same values as th tatic ESs in Se tion 

5.7.1. The self-adaptive ES is superior on 6 out of 10 instan es, and 7 in tanc s 

when combined with re tart mechanism. 

Agont m Static Static ｃ ［ ｾ ｬ ｦ ｟ ｡ ､ ｡ ｰ ｴ t ｶ ｴ Ｇ '
Self_adaptivt' 

(01 02 ) 

nl 40.00 

n2 S472 51.38 50.00 

n3 55,00 5456 52,68 51.64 51.72 52.82 53.44 5276 51 88 5300 51 59 

n4 91,20 9044 83,96 82,86 82.68 83,92 84 44 83.70 83.00 8792 82 68 

n5 108.48 10796 104,92 105.40 104.94 106,28 107,96 105,88 104 80 10700 104 63 

n6 106.96 10780 10408 102,76 102,80 103,12 10428 103.52 102.92 10308 10264 

n7 118,52 11672 116,56 108,04 104,62 107,88 109 14 10614 10376 11462 103 66 

n8 89,60 9038 84,48 83,60 84,26 8728 8744 8566 83,80 8464 83 61 

n9 162,62 16300 154,96 154,S4 154,48 157,12 159,88 156,32 15398 1S4.36 15385 

n10 158,56 15878 157,40 155,00 154,26 157,30 156,20 153,70 15212 152,12 152 15 

Table 5.5: Compare static and self-adaptive ESs (bas d on maximum computa-
tional cost: 30,000 evaluations of fitness function) 

5.7.2 Grouping ESs 

In this section we examine the results of experiments on the Grouping ES, which 

either re-pack shapes in a random order or in th sequence that they were removed. 

These simple GESs can be thought of arbitrary schema that adapts mutation 

strength from high to low (as if the algorithm is tray rsing table 5.1(a) from right 

towards left to pick a combination of 0"1 , 0"2). Initially, all shape in the ritical 
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and non-critical groups are to be mutated, which is equivalent of 0"1 = 100%. Tlw 

re-pack heuristic is slightly different, however, both simply randomly shufHp the 

orders (0"2 = 0) and with non-increasing size (0"2 = 20). The re-pack heuristic packs 

the critical group first, in the order being dropped, prior to packing the non-critical 

group in a random order. This is equivalent to set 0"2 somewhere in between [0,20J. 

As the evolution progresses, less critical shapes will be dropped (therefore the total 

amount of mutated shapes is less), which is in effect decreasing 0"1. Towards the 

end of the evolution, only non-critical shapes are mutated (no shapes in the critical 

group will be dropped), 0"1 is now equal to the percentage of non-critical shapes. 

That is, the GESs will never go beyond this percentage and use 0"1 which is too 

small. As we can see the simple GES, although an arbitrary adaptation schema, 

coincidentally fits the findings discussed in the previous section, which suggests 

that the bottom right settings in Table 5.1(a) is one of the good valleys; and a 

minimum mutation strength is required to maintain evolvability. 

Effects of Critical Ratio 

This experiment finds out what is the best critical ratio (percentage of shapes 

in the critical group). The ratios are defined from 5% to 100% with step size of 

5%, other parameters are set as before. We want to see which ratio gives us the 

best result for each instance. Table 5.6 shows an interesting trend that, when an 

instance size becomes larger (toward the bottom lines of the table) smaller ratios 

tend to generate best results. For instance N7 class (around 100 shapes) the best 

critical ratio is 25% to 30%, while for N6 class (around 75 shapes) the best is 30% 

to 40% and so on. Complete results for other benchmark datasets are included in 

Appendix D. 
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As we explained before the critical ratio defines th lower bound that aJ will 

traverse, smaller critical ratio actually means higher al. Therefore, it is probably 

not very surprising to see the results coincide with what we had observed in section 

5.7.1, that large- ized problems are more likely to have better results in the bottom 

right valley in Table 5.2{a). 

Effects of Fitness Function 

In this section, we evaluate each critical group with different fitness functions. 

Instead of using only the current packing result to assess the fiLness of a criLical 

group, we are interested to see if it is better to evaluate based on its overall 

historical performance. In this experiment, the algorithm maintains a record for 

each critical group of all results it participated in a packing. The records are 

used to calculate certain statistics, in particular, th minimum, the average and 

the average minus standard deviation. In essence, the experiment is try to find if 

the algorithm has any learning ability to distinguish good groups from bad ones, 

therefore guide the search more efficiently. 

Avg Min Avg . SId 

,nst siz e Ive ""n "of I'T'In ave "" n 'f.o f min ave min %olmln 

n1 10 40.00 40 100.0% 40.00 40 100.0% 40.00 40 100.0% 

n2 20 51.02 SO 49.0% 50.00 SO 100.0% 50.59 SO 70.0% 

n3 30 52.65 52 34.7% 52.99 52 1 .0% 52.90 52 Ｑ Ｐ Ｎ ｾ ~

n4 40 83.94 83 6.1% 83.76 83 24.0% 83.80 83 19.6% 

nS 50 106.05 106 95.0% 106.00 106 100.0% 106.39 105 25.3% 

n6 60 103.17 103 83.0% 103.25 103 74.7% 103.35 102 14.0% 

n7 70 107.77 106 4.0% 107.36 106 32.0% 106.61 105 40.0% 

n8 80 86.06 84 2.0% 86.41 85 1 .0% 85.79 85 24.0% 

n9 100 157.49 157 SO.5% 156.59 ISS 2.0% 157.68 156 15.2% 

n10 200 155.85 154 3.0% 155.49 155 64.6% 156.42 155 1.0% 

Table 5.7: CES: Effects of Fitness Function (based on maximum computational 
cost: 30,000 evaluations of fitness function) 

Among the three choice of fitness functions, there is no significant dift rence 

among them (see Table 5.7). So we choose the historical minimum as a surrogate 

fitness (since it is the easiest to calculate compared with the average and the 

standard deviation), and run another experiment to compare with the simple 
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GES. Th re ult i hown in Table 5.8. 

Sl.rrogate Simple GES 
Inn size aVII mIn '.of mIn aile mIn ｾ Ｎ ｯ ｦ ｭ ｩ ｮ n

n1 10 40.00 40 100.0'16 40.00 40 Ｑ ｯ ｯ Ｎ Ｈ Ｉ ) ｾ ~

n2 20 50.00 SO Ｑ ｯ ｯ Ｎ Ｈ Ｉ ｏ ｾ ~ SO.OO SO 100. 

n3 30 50.58 SO 43.0'16 SO.85 SO 19.()o-' 

n4 40 81.88 81 13.()o-' 82.06 81 2.0'16 

n5 50 103.88 103 19.0'16 103.74 103 Ｒ 2 Ｎ Ｈ Ｉ ) ｾ ~

n6 60 102.04 101 3.0'16 102.02 101 3.0'16 

n7 70 103.69 102 Ｔ Ｎ Ｈ Ｉ ｯ ｾ ~ 103.68 102 5 .00.\ 
n8 80 83.U 82 7.0'16 83.52 82 2.0'16 

n9 100 153.72 152 1.0'16 154.05 153 13.()O-' 

nl0 200 154.00 152 Ｑ Ｎ Ｈ Ｉ ｯ ｾ ~ 153.91 153 25.0'16 

Table 5. : Compare Surrogate Fitness Function with Simpl GES (ba ed on max-
imum computational ost: 30,000 evaluations of fitn ss function) 

In Table 5.8, the urrogate fitness function does not outperform simple G S 

signifi cantly, alt hough it wins two more instances. Like the Grouping G netic 

Algorithm, it i still an interesting open que tion whether th re is any effi ient 

methods that can identify promising group . 

Different Strategies on Non-critical Group 

In the previous experiments, non-critical groups are repacked either randomly or 

according to the order of them being dropped. The experiment in thi section 

apply more sophisticated search trategies to this group. While the criti cal groups 

are evolved by ES, we would like to co-evolve the non-criti al group with its own 

strategy. 

Tabl 5.9 compare the re ults from previous algorithms (i.e. repack shap 

randomly and with non-increasing size) with Genetic 19orithm (G ), Hill Climb-

ing (HC) and Variable Neighbourhood Search (VNS). In th mor sop hi ticatcd 

approaches, each individual inherits not only the critical group but also the ord r 

of the non-critical group. The GA uses a truncate sel ction of th top 20 p rent 

to choose another parent and perform cros over on the non-criti cal group. H 

randomly swaps two members of the non-critical group and applies fir st des ent. 

VNS huffie more members in the non-criti cal group with a hierarchical structure 
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that define the ex hang of one pair as the 10 t neighbour and all memb rs as 

the furth t. 

GES+ r.ndom GES. BfDS GES. GA GES· He GES .. VNS 

''''L ... ow .. ,n ｾ ｯ Ｈ Ｌ Ｎ Ｎ Ｌ Ｎ . 0"" moo .... offTI n ova mo ｾ ｯ ｴ ｭ Ｂ " OVI OM 'of",lf'! ova In'" 

nl 10 40.00 40 100.0% 4000 40 100.0% 40.00 40 100.0% 40.00 40 1000'0 4000 

.2 20 50.00 50 100.0% 50.00 50 100.0% 50.00 SO 100.0% 50.00 so 100.0'0 SO.OO 

.3 30 50.56 50 440% so 84 so 16.0% 51.01 SO 40% SO.7S so 2SO% so 93 ... .. 81.72 II 280% 8188 81 12.0% 81.60 81 40.0% 81.83 81 17.0% 81.40 

.5 so 103.05 102 20% 103.05 103 95.0% 103.02 103 98,"" 103.02 103 980'0 103.07 

.6 60 102.06 102 940% 102.00 102 100.0% 102.1S 101 85.0% 102.00 101 110'0 102.00 

.7 10 102.31 101 140% 102.31 102 70.0% 102.93 101 23.0'0 102.18 101 11 0'0 102.90 ,. 80 81.87 82 19.D'fo 82.82 82 18.0% 82.68 82 32.D'fo 82.70 82 30.0% 82.46 

" 100 152.88 152 16.0% 15301 152 5.0% 15286 152 IS.O% 152.97 152 30% 152.86 

olD 200 151.08 151 91.0% 152.00 152 100.0% 15200 152 loo.D'fo 152.07 151 10% 152.00 

Table 5.9: GES: Diffi rent Strat gies on on-critical Group (ba ed on maximum 
computational co t: 30000 evaluations of fitn function) 

Re ult in Tabl 5.9 are hard to differ ntiate, though VNS and H do have more 

on both average and minimum, and wh n the re ult ar qual, H 

and VNS have sli ghtly higher percentage on hitting th minimum. Th reason for 

these algorithms' p rformance being equal i po sibly due to the r as n that on th 

phenotype fitness landscape of combinatorial problems, the micro-n ighbourhood 

(the clo e n ighbour that can be reached with small mutation str ngth) around 

a solu t ion is more random. If the hypothesi is true it will be hard to optimi e 

on such a micro-neighbourhood with the traditional search algorithm which rely 

on certain properti s of a probl m to make it a bit more tractable. 

5.8 Summary 

Application of Evolution Strategi sand phenotyp repre ntation on 0 is a 

less studied ar a in lit erature, in pite of great suc es of thes approache in 

real-valued (typicall y continuou , multi-modal) s arch domains. Some recent the-

oretical developm nts have shed li ght on th appli at ion of ES on ombinatorial 

domain uch as SAT, ONE-MAX problem [101- 103]. The. e probl mare cx-

pressed in binary tring and statistical techniques (e.g. finit Markov chain) can 

be appli d to stud the algorithms behaviour. Many oth r combinatorial optimi-

sation problems, including OPP, are more complicated in phenotype expre ion, 
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and direct application of ES is not straightforward. In this chapter, we extend the 

ES application on OPP and provide empirical evidence to reveal the algorithms' 

behaviour on oPP. 

The first step is to define a phenotype representation for the problem and design 

operators that can alter the representation to effectively search the neighbourhood. 

The phenotype is defined by a list, Lpl storing the coordinates of each shape 

(w.l.o.g. the bottom left corner of each shape). Given an initial empty space 

of the containers, Lp implies another list of available spaces La. Two geometric 

operators, split and merge, are discussed, which change Lp and La whenever we 

add or remove a shape from a packing. Comparing to other methods in literature, 

such as calculating the sky-line, and docking points, etc., the representation and 

the two operators have a great advantage of being general for geometric calculation 

in orthogonal euclidean space, as the two lists provide full disclosure of information 

of the status of a packing. They can be used by any orthogonal packing heuristics 

for any dimension, such as First Fit, and Best Fit. 

Based on split and merge operators, we further designed a generic Drop-and-

Add (DAA) operator to mutate the phenotype representation. The operator is 

designed to meet as far as possible the three principles of mutation (reachability, 

unbiasedness and scalability) and avoid huge computational complexity. Due to 

the combinatorial nature of OPP, it is difficult to achieve full scalability, however, 

the DAA provides better control over mutation strength with the help of two 

parameters, al for quantity and a2 for sizes of shapes. 

We discussed the implication of representation and the DAA operator on the 

fitness landscape and implementation of a basic form of ES. The experiments 

on the basic ES provides deep understanding on the dynamics between mutation 

strength and evolution progress. We discovered two good valleys of mutation 

strength for the OPP problem. We also discussed the impact on the two valleys 

when the instance size increase and different repacking heuristics are used. 
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In an attempt to find a good adaptive strategy for the ESs, a set of experiments 

explored the convergence speed and success rate in relation to mutation strength. 

The study shows great difference between real-valued and combinatorial domain. 

On the basis of the findings, we proposed some adaptive strategies which are 

different from ESs on real-valued problems. The adaptive ESs outperforms ESs 

with static mutation strength. We also propose GES as another extension of the 

simple ESs. GESs are more arbitrary adaptive strategies, which also intend to 

overcome the scalability issue with the GGA in Chapter 4. The GES outperform 

many other algorithms found in the literature. 

There are some interesting open questions. It is still a challenging topic to 

understand the behaviour of basic ESs on combinatorial search domains, from 

both a theoretical and an empirical perspective. On the practical side, better 

design of adaptive strategies is needed, either self-adaptive or arbitrary heuristics. 

How to overcome the scalability issue and maintain the evolvability? What is 

asymptotic success rate and the expected hitting time? When search converged 

around some local optima is there any better strategies to exploit the areas? 
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Chapter 6 

Conclusions 

6.1 Summary of Key Contributions 

This thesis contributes to the understanding and application of Evolutionary Algo-

rithms on orthogonal packing problems. We first introduce the definition and dif-

ferent models of the problem, followed by overview of the typology of other closely 

connected problems. The orthogonal packing problems are NP-hard problems and 

highly constrained by container sizes, other shapes and have different dimensions 

(for two and more dimensional packing). A survey of the state-of-the-art algo-

rithms, including exact algorithm, heuristics, meta-heuristics and hyper-heuristics 

is also included, so as to highlight strength and weakness of various approaches. 

Chapter 3 contributes to the literature by pointing out the issue that many 

meta-heuristics' search spaces are restricted to partial solution spaces due to the 

bias of the low level heuristics they employ, and proposing a hyper-heuristic ap-

proach that can mitigate the problem by utilizing multiple heuristic decoders. As 

an emerging search methodology, theoretical models for understanding the behav-

ior of hyper-heuristics are still needed. We use a framework to explain why the 

algorithm has the capability to search larger solution space, therefore, raising the 

level of generality of the search method. The proposed hyper-heuristic utilizes a 

142 



heuristic space that can map the same genetic encoding to different phenotypes in 

the solution space. To test the effectiveness of the algorithm a set of new instances 

were constructed. Experimental results on the new instances have shown that the 

hyper-heuristic can find optimal solutions while conventional mate-heuristics fail 

to do so. When instance size increases, both algorithms cannot solve a problem 

to optimality, the hyper-heuristic still outperforms meta-heuristics. We also show 

that the hyper-heuristic has a learning strategy that can evolve the heuristics it 

chooses. This learning ability enables the algorithm to maintain the same effi-

ciency as conventional meta-heuristics and result in the same convergence speed 

and comparable results on benchmark instances in the literature. 

opp is an ideal test example for the the Building Block Hypothesis (BBH), 

one of the fundamental and continuously debated theory of Genetic Algorithms. 

In Chapter 4 we extend the Grouping Genetic Algorithm (GGA) to higher dimen-

sional OPPs that includes a strip packing (single bin) scenario to examine how 

BBs (low order schemata) are built up to guide the evolutionary search. We have 

designed different chromosomes from the original GGA for one-dimensional bin 

packing. Initially chromosomes are individual shapes as in standard GAs. After 

packing the initial chromosomes, an additional step is taken to identify blocks 

(subsets of shapes that can form no-waste meta-rectangles) in each solution. In 

the following generations, compatible blocks and individual shapes will be mixed 

together to form variable length chromosomes. We also propose a hierarchical 

network to describe the block formation process, i.e. to model the build up of BBs 

from lower order to high order and help us to understand the behavior of GGA. 

Three special issues are considered in the implementation of the GGA. Firstly, 

since the recombination of chromosomes are more complicated, blocks from differ-

ent parents may be in conflict with others as they may share the same individual 

shapes. Secondly, evaluation of the blocks to identify promising ones are prob-

lematic, because blocks are only partial solutions and evaluation of their fitness 
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using arbitrary fitness function may be deceptive, i.e. the evaluation of blockfi doefi 

not reflect the correct paths leading to a successful search of complete solution. 

Finally, the initial supply of BBs may affect the search results. If the initial pop-

ulation dose not include the correct BBs, receding populations may be ､ ｩ ｦ ｦ ｾ ｣ ｴ ･ ､ d to 

wrong areas of the search space. We carried out a set of experiments to test the 

best settings of these strategies. In particular, we implemented two mechanismfi 

to adaptively rectify the 'wrong' decisions made by preceding populations. The 

first mechanism is to hybridise the GGA with a tabu list and forbid using a certain 

number of blocks for some generations if they fail to generate desired results after 

a certain number of trials. The second mechanism is to restart the whole search 

process if the search has not made any progress for certain number of evaluations, 

in case all initial blocks are not good BBs or the search has been stuck at local 

optima. 

As the literature review has pointed out, symbolic encodings like GAs may 

face the problem of deceptiveness, which means the fitness evaluation on geno-

types may miss-align with the phenotypes and guide the search into bad areas. 

However, direct mutation and recombination of phenotypes of OPP is rarely in-

vestigated in the literature due to the computational complexity involved. In 

Chapter 5, we propose a phenotype representation as well as two operators that 

unify the calculation of orthogonal packing for any dimensions. The representation 

is based on the simple data structure of a list of all shapes' bottom left coordi-

nates. Given initial empty space(s), the split operator can calculate incrementally 

available spaces when each shape is added. Another operator, merge, allows us to 

calculate the enlarged available spaces when shapes are removed from a packing. 

The representation and the two operators give us the freedom to easily mutate 

a packing by a drop-and-add strategy to repack certain shapes, which forms the 

foundation of developing Evolution Strategies for OPP in the rest of Chapter 5. 

Another obstacle for applying ESs to orthogonal packing problems is that 
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most ESs' adaptive strategies are on the theory basis of real-valued domain. Most 

importantly the asymptotic success rate P --t 1/2 when mutation strength a --t 0 

and current solution is not local (or global) optima. This behaviour in a real-

valued and continuous domain enables the algorithm to always tune down a to 

maintain the success rate above a certain required threshold. However, in discrete 

and combinatorial search domains, such as OPP, the theory is not just.ifiable. 

Some recent researches study the ESs behaviour on the combinatorial optimisation 

problems with simple representation, such as the first hitting time of One-Max 

problem 1103] represented by binary strings. However, the theory is still insufficient 

to provide comprehensive understanding on the algorithms. 

In this thesis the empirical studies of ESs on orthogonal packing problems 

provide further insights on understanding the ESs behaviour on such a domain, 

especially, on what are the best settings for mutation strength, what is the rela-

tionship between mutation strength and the success rate (convergence speed). The 

mutation of the simple ES is controlled by two parameters al for quantity and a2 

for size of shapes to be repacked. Compared to the conventional mutation strength 

measurement that counts the number of shapes swapped in genetic encoding, the 

mutation we designed is a much finer tuning strategy. To find the best static muta-

tion strength, we tested two repack heuristics, one using random orderings and the 

other using a first-drop-first-add order. We find that for both repack heuristics, 

there is a same valley of good mutation strength which runs along the diagonal 

line of the landscape (suggesting combination of large al with small a2 or small 

al with large a2). The finding suggests a medium-weak mutation strength gives 

the best results, which coincident with the ES's evolution window found in real-

valued domain. When the first-drop-first-add heuristic is applied, another good 

valley of mutation strength appears towards the corner repacking all shapes with 

non-increasing sizes. It is also noted, this new valley of good mutation strength 

outperforms the first valley when instance size increases, which explains why for 
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many large instances simple greedy heuristics can beat more sophisticated search 

algorithms, and the best results are achieved by slightly perturbing the greedy 

heuristic in the second valley. 

Another important finding with the simple ESs on OPP suggests the success 

rate does not necessarily increase when mutation strength decreases, which is quite 

different from the real-valued domains. The possible explanation is down to the 

fact that OPP is highly constrained, therefore, the major structure of a packing 

will not change when too few, and too small shapes, are repacked. This finding also 

poses a difficulty in the design of the adaptive strategy of ESs, as the conventional 

'tuning down' strategy loses its theoretical basis in the combinatorial domain (and 

is indeed proved inefficient by our empirical study). 

To address the adaptation issue of mutation strength for OPP, we proposed 

two arbitrary adaptive ESs. The first adaptive ES is based on the findings in 

preceding experiments. It searches in the two good valleys and adjusts a1 and a2 

in opposite directions (one increases the other decreases) at the same time. We 

also hybridise the strategy with a restart mechanism to prevent the search being 

stuck at some local optima. 

The second adaptive strategy, Grouping Evolution Strategies (GES), decom-

poses a problem into two groups; critical group for large shapes and non-critical 

group for small shapes. When mutating a packing, the critical group will stay 

in place while the non-critical group will be repacked. With further empirical 

experiments, we found the critical group ratio (percentage of shapes in the crit-

ical group) ranges from 20% to 50%. We also found an interesting relationship 

that larger sized instances require smaller critical ratio. Compared to the GGA 

in Chapter 4, the GES utilises a less dynamic grouping strategy (only two groups 

in the GES compared to an increasing number of groups in the GGA). Another 

potential advantage of GES is that we can apply different search strategies for the 

two different groups. The empirical results on benchmark instances demonstrate 
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that the GES is a powerful solver for OPP problems and generates comparable 

results for some of the best algorithms in the literature. 

6.2 Limitations and Suggestions for Future Research 

Hyper-heuristics are still a relatively new search paradigm which require more 

theoretical development. The ultimate objective of hyper-heuristics is to raise the 

level of generality of search methods. The approach of hyper-heuristics is to use 

"heuristics to choose heuristics" or "heuristics to generate heuristics 11 , therefore 

requiring less injection of domain knowledge and human interference. Current 

mainstream of meta-heuristics need human decisions to choose representations, 

neighborhood move methods, decoding heuristics (when use symbolic encoding) 

and evaluation functions. While the proposed hyper-heuristic in Chapter 3 is only 

one example of how to make intelligent choice among various decoding heuristics, 

all other aspects of meta-heuristics are subject to incorporation into the general 

hyper-heuristic paradigm. Correspondingly, other frameworks may be used for 

modelling and explaining hyper-heuristics search process. 

Our hyper-heuristic framework demonstrates one advantage of mapping genetic 

encodings via the heuristic search space to the solution space, which usually being 

searched partially with only a single heuristic. Other benefits can be derived by 

adopting hyper-heuristics' search methodology, such as increasing search efficiency 

or generating better results. The learning mechanism used in the hyper-heuristics 

is based on a simple reinforcement learning strategy, which may be further im-

proved by more sophisticated learning strategies such as neural networks, and 

Bayesian networks, etc. However, the overhead of other learning methods need to 

be considered, as the current reinforcement learning methodology is very efficient 

and adds only a slight computational overhead to a standard meta-heuristic. The 

proposed hyper-heuristic is using 'default' parameters that are commonly found 
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in the literature. To achieve a fully automated system, adaptive strategies for 

parameter setting need to be investigated. 

In Chapter 4 the hierarchical network model for groups only takes into con-

sideration condensely packed blocks (in the implementation of GGA, we even set 

the threshold () = 1 to exclude imperfect groups). In Holland's schemata theorem 

and the Building Blocks Hypothesis (BBH), low order schemas are not necessarily 

adjacent. More general models are needed to incorporate these general situations. 

The network is only an intuitive descriptive model and applicable to only small 

instances when fully enumerating all potential blocks. For larger instances, it is 

impractical to enumerate all blocks and the complete Markov Transition Matrix 

is not available. Therefore, theoretical deriving the probability of hitting certain 

packing results remains a challenging question, and there is perhaps still a long 

way to go to ultimately prove (or disprove) the BBR. 

Another interesting topic for future work is to see whether there are some ways 

to distinguish good and bad BBs in the early stages of search. If there are, it would 

have significant impact on the search strategy. Various learning strategies, such 

as Bayesian Network, and Neural Network etc., can possibly be hybridised with 

the GGA in predicting the goodness of BBs. 

From an application perspective, the GGA, although a powerful solver for small 

instances, cannot handle non-guillotine patterns very well. Since for non-guillotine 

packing, no blocks in an optimal packing have utilisation ratio () equal to 1 (i.e. 

groups are always imperfect), the evaluation of blocks are not providing effective 

guidance for the search process. Lastly, in the GGA identifying blocks is an extra 

process, which would be computational expensive if not implemented efficiently. 

In our implementation, we remove bad blocks by setting the threshold () equal to 

1 and remove as early as possible these blocks, so that the algorithm is tracing 

less potential blocks. It is also interesting to see if any algorithms can be applied 

to optimise the sub-routine. 
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Many interesting questions are left for future research in Chapter 5. Firstly, 

although the two basic orthogonal space operators, split and merge, perform well 

in practice, understanding their complexity of average and worst cases are still 

needed. The two operators allow us to mutate a packing with DAA mutation 

operator, however, recombination of multiple packings is hard to do with the 

phenotype representation and could be a computationally expensive operation. A 

possible approach may be like the GGA where compatible blocks are recombined. 

Again, expensive computation on block identification may be involved. 

For the general ES theory on combinatorial search domains like OPP, while 

our initial investigation shed lights on some phenomena, there are still a lot of fun-

damental questions to ask, beside the general questions like expected first hitting 

time for such a complicated representation. Although we discovered the two val-

leys of good mutation strength setting, we still need to find the reason that cause 

the two valleys. In particular, it is hard to explain, although maybe intuitive, why 

the valley representing greedy repacking heuristic will outperform the other valley 

when instance size increases. 

Since there is no asymptotic success rate as in real-valued domain, the conver-

gence properties of ES on OPP is an even more baffling question. Although the 

arbitrary adaptive strategies generated high quality results for the benchmark in-

stances, without a good understanding on this topic it would be difficult to design 

better adaptive strategies. Similarly for the GES, what are good evaluation func-

tions of the partial solutions of the critical group? What are good strategies for 

the different groups, or is the micro-neighbourhood on this phenotype landscape 

tractable? It is necessary for us to pursue further to understand the problem and 

the algorithms to fully answer these questions. 
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Appendix A 

New 2D Strip Packing Instances 

Item Instance 1 Instance2 Instance3 Instance4 InstanceS Instance6 Instance7 Instance8 

1 60:60 13:60 60:13 29:60 60:29 60:24 24:60 27:4 
2 60:60 60:60 60:60 23:60 60:23 60:29 29:60 21:7 
3 50:50 50:50 50:50 7:50 50:7 50:26 26:50 6:8 
4 50:50 50:50 50:50 50:50 50:50 50:4 4:50 26:3 
5 40:40 5:40 40:5 9:40 40:9 40:15 15:40 19:13 

6 40:40 40:40 40:40 40:40 40:40 40:11 11:40 16:22 
7 10:10 7:10 10:7 7:10 10:7 10:7 7:10 7:3 

8 10:10 10:10 10:10 10:10 10:10 10:3 3:10 7:7 
9 31:30 31:30 31:30 11:30 11:30 12:30 12:30 6:7 
10 47:60 60:47 31:60 60:31 60:36 36:60 33:56 

11 35:40 40:35 37:60 60:37 60:31 31:60 39:53 
12 3:10 10:3 43:50 50:43 50:24 24:50 44:42 
13 31:40 40:31 50:46 46:50 24:47 

14 3:10 10:3 40:25 25:40 21:27 

15 20:30 20:30 40:29 29:40 24:18 
16 10:3 3:10 3:7 
17 10:7 7:10 3:3 

18 19:30 19:30 25:23 

19 27:56 

20 21:53 
21 6:42 

22 26:47 

23 19:27 

24 16:18 
25 7:7 

26 7:3 

27 6:23 

28 33:4 
29 39:7 

30 44:8 

31 24:3 

32 21:13 

33 24:22 
34 3:3 

35 3:7 

36 25:7 
Strip width: 151 
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Appendix B 

Effects of Mutation Strength of ES 
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Average of Minimum 

(first drop first add, different location not required) 

01: percentage of shapes being dropped; 

02: parameter of size pereference, used in formula (Vi / Vm) ｾ ~ 02 where Vi is the volume of a shape, Vm Is the median volume; 
Each value is an average over 50 runs; 

Highlighted values are the 10 best results for each instance, i.e. the best settings of 01 and 02 for each Instance. 
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156.28 
154.92 

155.72 
155.84 

157.80 
162.04 

10% 

158.00 
157.88 
156.90 
156.36 
155.16 
156.18 
156.02 
156.04 
158.42 

Average of M inimum 

(first drop fi rst add, different location not required) 

20% 

106.76 
104.48 

103.16 
103.24 
102.72 

102.56 
103.24 
104.08 
106.76 

20% 

117.84 

114.96 
111.96 
108.50 

107.08 
105.96 

109.20 
109.40 
115.04 

20% 

90.12 

87.00 
84.20 
84.20 
84.36 
85.08 
86.78 
86.78 
90.44 

20% 

164.12 
156.20 
156.04 
155.48 
154.08 
155.60 
157.36 

156.88 
162.38 

20% 

158.46 
157.04 
155.98 
155.52 
155.14 
156.92 
157.38 

156.26 
157.74 

30% 

106.88 

103.28 
102.84 
102.44 
102.88 

102.56 
103.56 
104.04 
107.44 

30% 

117.00 
114.84 
108.48 
106.00 
105.20 
108.80 
111.00 

108.98 

114.40 

30% 

89.76 
84.16 
83.76 
83.96 
84.64 
87.50 

88.86 
87.88 
88.76 

30% 

162.24 

158.00 
154.76 
154.16 
154.84 
158.20 
160.68 
158.40 
160.48 

30% 

158.72 
157.18 
155.32 
155.28 

155.36 
157.86 
157.32 

155.92 
156.48 

40% 

106.64 
103.56 

103.16 
103.06 

102.52 
103.36 
104.20 
104.04 

106.56 

40% 

118.60 
113.82 
107.32 

103.92 
104.76 
112.48 
110.48 
107.76 

111.60 

40% 

89.20 

84.00 
83.64 
84.12 

85.50 
88.64 
88.34 

87.74 
87.76 

40% 

162.36 

155.92 
154.82 
154.04 
155.24 

160.64 
159.78 
158.12 
158.44 

40% 

158.16 
156.50 
154.90 
154.56 
156.36 
158.24 
157.24 

154.92 
155.08 

a1 
50% 

106.56 
102.68 

102.52 
102.58 
102.96 

104.16 
104.88 
104.24 
105.80 

a1 
50% 

116.88 
109.42 
105.52 
105.04 
105.32 
110.68 

108.98 
105.64 
110.64 

a1 
50% 

87.64 

83.76 

83.60 
84.28 

86.72 
89.04 
88.28 
87.46 
86.66 

a1 
50% 

160.80 
154.58 

154.10 
154.36 
156.32 
160.70 
159.56 
157.04 
157.02 

a1 
50% 

159.40 

155.36 
154.22 
154.24 
156.54 
157.70 
156.32 
154.20 
153.80 

60% 

105.68 
103.24 
102.82 
102.80 
103.00 

104.24 
104.64 
103.96 
104.44 

60% 

114.88 
109.28 
103.64 
104.26 
107.64 
109.96 
107.30 
105.24 
109.16 

60% 

86.00 

83.76 
84.14 
84.56 
87.12 
88.66 

87.56 
86.24 
85.54 

60% 

159.24 
154.40 

154.26 
154.66 
158.08 

160.70 
159.32 
155.94 

155.72 

60% 

157.96 

154.36 
153.86 
154.00 
157.50 
157.74 
155.28 
153.30 
153.60 

70% 

104.52 
102.88 

102.88 
102.92 
103.28 
104.48 
103.76 
103.40 
104.46 

70% 

113.72 
105.00 
105.12 
104.08 
109.16 

109.08 
107.00 
105.24 
108.52 

70% 

85.28 
84.20 
84.44 
85.12 
87.56 

87.24 
86.24 
85.60 
84.58 

70% 

159.04 

154.26 
154.28 
155.32 
158.72 
159.86 
157.70 
155.44 
154.16 

70% 

157.60 
154.04 
153.70 
154.04 
157.08 
156.50 
154.34 
152.42 
153.02 

80% 

103.88 
103.16 

102.88 
103.04 
103.72 
104.08 

103.64 
103.00 
103.48 

80% 

113.32 

104.12 
104.54 
104.66 
110.38 
108.44 
106.76 
104.56 
107.80 

80% 

85.12 
84.94 
84.72 
85.20 
87.04 

86.66 
85.80 
84.76 
84.54 

80% 

157.60 

154.80 

154.88 
156.08 
159.64 

157.68 
156.34 
154.68 
153.62 

80% 

156.34 
153.50 
153.52 
154.12 
157.18 
155.08 
153.70 
152.50 
152.84 

90% 

104.88 
103.48 

103.60 
103.60 
104.00 
103.64 

103.00 
102.76 
103.12 

90% 

112.94 
106.80 
107.16 
107.56 
109.82 
107.28 
105.52 
103.48 
107.64 

90% 

86.64 
86.14 
85.90 
86.48 
86.80 
84.96 

84.72 
83.84 
83.94 

90% 

157.56 
156.38 
156.00 
157.68 
158.82 

156.16 
155.06 
153.92 
153.22 

90% 

155.68 
154.18 
154.06 
154.98 
156.78 
154.16 
152.86 

152.22 
152.22 

100% 

106.84 
106.32 
106.04 

104.88 
103.72 
103.00 

102.72 
102.00 
103.12 

100% 

117.24 
115.16 
114.08 
111.24 
109.22 
105.56 

103.88 
102.04 
115.40 

100% 

91.44 
90.48 
89.46 
88.40 
85.48 

84.20 
83.78 
83.76 
84.80 

100% 

162.52 
161.84 
161.70 
161.36 
156.36 
155.00 
153.84 
153.46 
154.24 

100% 

157.72 
158.10 
158.26 
157.98 
154.40 

152.62 
152.00 
152.00 
152.00 



Average of Minimum 

(first drop first add, different location) 

01: percentage of shapes being dropped; 

02 : parameter of size pereference, used In formula (Vi / Vm) ｾ ~ 02 where Vi Is the volume of a shape, Vm Is the median volume, 
Each value is an average over 50 runs; 
Highlighted values are the 10 best results for each instance, I.e. the best sett ings of 01 and 02 for ach Instance. 
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10% 

54.72 
53.72 
53.20 
54.00 
53.44 
52.72 
54.12 
53.74 

54.68 

10% 

55.00 

53.18 

53.40 
53.04 
53.32 
53.08 

54.02 
54.14 
54.92 

10% 

91.20 
86.56 
85.20 
84.48 
84.16 
84.66 
84.44 

85.80 
91.40 

10% 

108.48 
107.00 
106.48 
106.20 
106.56 
105.84 
106.28 
107.00 
108.92 

20% 

54.32 
51.26 
51.96 
51.20 
51.12 
52.12 
52.44 
53.64 
55.36 

20% 

54.56 

52.66 
52.40 
51.64 
52.20 

51.96 

52.96 
53.12 

55.40 

20% 

90.44 
86.44 

83.66 
83.52 
83.14 
83.40 
83.88 
83.92 
89.24 

20% 

107.96 
105.60 
105.64 
104.92 
105.64 
105.40 
105.26 
105.90 
108.64 

30% 

54.16 

50.96 
50.48 
50.08 
51.04 
51.44 
51.04 
52.24 
54.88 

30% 

53.96 

52.68 
51.88 
51.64 
51.64 
52.00 

52.80 

52.80 
54.88 

30% 

88.36 
83.96 
82.80 
82.44 
83.20 
83.52 
83.88 
84.12 
88.92 

30% 

107.84 
104.92 
105.16 
105.00 
105.40 
105.76 
106.46 
106.12 
108.24 

40% 

53.44 
50.24 
50.56 
50.00 
50.72 
50.96 
51.76 
51.76 
55.16 

40% 

54.16 

51.70 
51.64 
51.68 
51.74 
52.04 

53.36 
53.16 
54.52 

40% 

87.84 
83.40 
82.86 
82.64 
83.24 
83.64 
84.00 

83.80 
88.00 

40% 

107.12 
104.92 
105.40 
105.40 
105.52 
106.40 
107.46 
107.52 
107.64 

a1 
50% 

53.88 
50.24 
50.00 
50.00 
50.24 
50.80 
50.64 
51.44 
54.48 

a1 
50% 

54.24 

51.88 
51.54 
51.72 
51.98 
52.88 
53.32 

52.88 
54.60 

a1 
50% 

86.16 
83.00 
82.96 
82.68 
83.52 

84.10 
84.48 

83.88 
86.58 

a1 
50% 

106.88 
105.48 
104.80 
104.94 
105.88 
107.24 
107.94 
106.60 
107.20 

60% 

53.96 
50.00 
50.00 
50.12 
50.48 
50.24 
51.12 
50.48 
53.76 

60% 

53.52 

51.88 
51.82 
52.00 
52.82 
53.20 
53.44 
53.36 

53.76 

85.68 
83.16 

82.80 
83.30 
83.92 
84.12 
84.00 

83.76 
86.34 

60% 

107.00 
105.24 
105.28 
105.92 
106.28 
107.32 
107.28 
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106.64 

70% 

53.96 
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5000 
50.00 
51.04 
51.38 
50.84 
50.36 
53.68 

70% 

53.24 
52.12 
51.88 
52.44 
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53.44 
53.16 
52.48 
53.28 

70% 

86.88 

82.76 
82.88 
83.36 
83.88 
84.44 
84.00 
83.56 
84.62 

70% 

106.60 
105.64 
105.76 
106.06 
107.00 
107.96 
106.50 
105.82 
105.88 

80% 

53.48 
5000 
50.72 
51.04 
50.88 
51.84 
50.40 
50.32 
53.12 

80% 

53.56 
52.56 
52.50 
52.60 
5346 

53.28 
52.76 
52.08 
52.52 

80% 

85.96 
83.44 
83.64 
83.72 
84.00 
84.00 
83.70 

83.04 
84.68 

80% 

106.36 
105.76 
106.40 
106.68 
106.40 
106.80 
105.88 
105.16 
106.16 

90% 

53.92 
52.76 
5152 
52.36 

5172 
51.64 
51.04 
5092 
53.00 

54.62 
53.40 
53.52 
5324 

5302 
5288 
52.12 
51.88 
52.20 

85.40 
84.24 
84.00 
84.00 
84.26 

84.00 
83.84 

83.00 
83.74 

90% 

108.08 
107.76 
106.96 
106.64 

106.64 
105.88 
105.60 

104.80 
105.48 

100% 

5420 
5412 
5320 
5248 

5188 
5108 
50.00 
50.60 
5400 

100% 

54.84 

55.16 
54.44 
53.68 
52.76 

52.18 
52.00 
51.88 
53.00 

100% 

90.32 
88.32 
87.36 
87.40 
84.56 
83.40 
82.92 

82.00 
87.92 

100% 

108.52 
108.96 
108.88 
107.68 
106.12 
105.24 

104.86 
104.64 
107.00 
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o random 
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n10 
02 
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-2 

-I reciprocal of size 
-0.5 

o random 
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1 propotlon to size 
2 

20 biggest first 

10% 

106.96 

105.80 
103.40 
104.24 

104.08 

103.60 
104.10 

104.88 

107.64 

10% 

118.52 
116.28 
114.46 
109.10 
107.02 
107.56 

108.16 
109.20 
115.80 

10% 

89.60 
86.34 

86.06 
85.20 
84.60 
84.92 
85.44 
86.16 
91.12 

10% 

162.62 
158.56 
157.40 
155.72 
155.52 
155.46 
156.72 
157.76 
161.60 

10% 

158.56 
157.52 
157.00 
156.74 
155.08 
155.82 
155.94 
156.16 
158.66 

Average of Minimum 

(first drop first add, different location 

20% 

107.80 
105.04 
103.92 
102.88 
102.84 

102.60 

103.12 

104.00 

107.20 

20% 

116.72 
116.48 
109.64 
107.70 
105.76 
105.92 

108.56 
108.48 
116.64 

20% 

90.38 
84.80 

84.76 

84.40 
84.56 

85.80 
86.52 
86.52 
90.00 

30% 

107.08 
104.08 
103.64 
102.84 
102.64 

102.62 
103.24 

103.72 

106.92 

30% 

117.52 
116.56 
108.16 
106.44 
104.56 
109.00 
111.98 
109.44 
115.80 

30% 

89.32 
84.48 

84.12 
83.54 
85.00 

87.04 
88.86 
88.24 
88.62 

20% 30% 

163.00 161.44 

156.82 154.96 
155.!6 153.88 
154.96 153.96 
154.56 154.54 
155.06 157.80 
157.70 160.16 

157.50 157.68 
161.12 160.10 

20% 

158.78 
158.00 
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155.06 
157.40 
157.78 
156.30 
157.72 
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158.66 
157.40 
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157.58 
155.94 

156.06 

40% 

106.60 
102.88 
102.76 
102.64 
102.88 

103.36 
104.56 

104.20 
106.12 

40% 

117.28 
115.24 
108.04 

104.94 
105.58 
111.38 
110.20 
108.44 
112.44 

40% 

88.04 
83.68 
83.60 

83.96 
85.56 

88.68 
88.98 
87.56 
87.40 

40% 

160.98 
155.96 
154.54 
154.36 
155.48 
160.22 
161.10 
157.56 
158.40 

40% 

158.36 
155.88 
155.00 
154.56 
156.26 
157.92 
157.32 
154.82 
155.08 

01 
50% 

105.20 
103.72 
102.80 
102.80 

102.88 
104.08 
104.72 

104.00 

105.60 

01 
50% 

117.88 
109.76 
107.64 

104.62 
105.48 
111.50 
108.84 
105.76 
110.56 

01 
50% 

87.56 
83.44 

83.68 
84.26 
86.30 

89.18 
88.44 

86.92 
86.32 

01 
50% 

160.08 

155.50 
153.92 
154.48 
156.06 
160.80 
160.48 
156.88 
156.76 

01 
50% 

157.78 

156.76 
153.76 
154.26 
156.62 
158.22 
156.38 
154.16 
154.08 

60% 

105.28 
103.36 

102.56 
102.80 
103.12 
104.70 
104.36 
103.80 

104.92 

60% 

114.76 
105.80 
103.88 
103.46 
107.88 
109.80 
107.28 

105.08 
110.32 

60% 

85.88 
83.82 

83.68 
84.60 
87.28 

88.68 
87.50 

86.12 
85.76 

60% 

159.50 
154.66 
154.24 
154.76 

157.12 
159.88 
158.80 
156.10 
155.64 

60% 

158.22 
154.78 
154.10 
153.92 
157.30 
157.82 
155.28 
153.28 
153.54 

70% 

103.44 
103.08 
102.84 
103.00 

103.18 
104.28 
104.00 
103.28 
103.96 

70% 

111.52 
105.04 
104.16 
103.86 
109.78 
109.14 
106.28 
105.26 
108.80 

70% 

85.84 
84.44 

84.36 
84.90 
87.24 
87.44 
86.54 
85.44 
85.12 

70% 

157.82 
154.38 
154.50 

155.10 

159.20 
159.88 
158.20 
155.24 
154.42 

70% 

156.36 
153.54 

153.56 
154.02 
157.50 
156.20 
154.28 
152.68 
153.14 

80% 

104.36 
10336 
103.00 
103.00 
103.82 
104.36 
103.52 
102.96 
103.36 

80% 

113.48 
105.08 
104.16 
104.84 
110.12 
108.08 
106.24 

105.12 
107.74 

80% 

85.38 
84.92 
84.92 

85.52 
87.30 

86.36 
85.66 
84.78 
84.56 

80% 

157.20 
154.82 

154.90 
156.24 

159.64 
157.98 
156.32 

154.66 
153.68 

80% 

156.26 
153.50 

153.88 
154.24 
157.74 
155.16 
153.70 
152.48 

152.88 

90% 

104.72 
103.58 

103.60 
104.00 
104.02 

103.76 
103.08 
102.92 
103.00 

90% 

113.56 
107.44 
107.28 

108.12 
110.16 
108.08 
104.92 

103.76 
110.00 

90% 

87.40 

86.34 
85.92 
86.18 
86.68 

85.30 
84.70 
83.80 
83.88 

90% 

157.36 
156.00 
156.54 
157.04 

158.40 
156.20 
154.90 

153.98 
153.18 

90% 

156.14 
154.00 

154.04 
154.74 
157.30 

154.08 
152.96 
152.12 
152.34 

100% 

107.28 
106.36 
105.82 
105.08 

103.82 

103.00 
102.52 
10200 
103.08 

100% 

116.08 
115.34 
112.70 
111.56 
109.04 
105.56 

103.94 
102.48 
114.62 

100% 

90.42 
90.12 
89.96 
87.90 
85.72 
84.10 
83.66 
83.64 

84.64 

100% 

161.68 
161.70 

162.06 

161.04 
156.46 
154.46 
153.68 
153.26 
154.36 

100% 

158.10 
159.08 

158.72 
159.00 
154.04 

152.60 
152.08 
152.00 
152.12 



01: percentage of shapes being dropped; 

Averag of Minimum 

(random add, dlff rent loe tlon) 

02: parameter of size pereference, used In formula (VI / Vm) A 02 where VIis the volum of shape, Vm Is th m dl n volum ; 

Each value is an average over SO runs; 

Highlighted values are the 10 best results for each Instance, I.e. the best s ttlngs of 01 and 02 for 1!00ch In5t nCI! 
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54,34 
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53.62 
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55.32 
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55.56 
53.28 

53.52 
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53.32 
52.76 
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55.56 

10% 

90.64 
87.42 

85.44 
84.80 
84.26 

83.80 
84.68 
8566 
91.08 

10% 
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106.40 
106.06 

105.60 
105.40 
107.04 

107.70 

108.90 

20% 
54.68 

52.04 
51.00 
51.52 

51.50 
51.80 

52.72 

53.52 
54.72 

20% 

54.52 

52.92 
52.40 
51.88 

52.66 

52.46 

52.36 
53.66 

54.80 

20% 
91.04 
84.88 
83.64 
8344 

83.48 

83.20 
83.96 

8436 
86.34 

20% 

108.16 
105.84 
105,96 
104,96 

105.40 
105.24 
10612 

10716 
10780 

30% 

5356 
5144 
5084 
5048 

51.64 
51.76 
52.24 

52.40 
54.12 

30% 

53.84 
52.64 

5172 
51.76 
51.70 
52.00 

52.84 
53.30 
54.28 

30% 

90.60 
84.06 
83.20 

8320 
83.52 

83.32 
84.24 
85.58 
86.80 

30% 

107.08 
104,98 
10500 
10520 
105.24 

10596 
10706 

10778 
108.76 

40% 

52.32 
5048 
5024 
50.32 
50.68 

5080 
51.52 

52.40 

54.28 

40% 

54.08 
5200 
5174 

51.76 
51.76 

52.60 

53.06 
53.84 
54.48 

40% 

8676 
83.34 

82.92 
83.04 
83.38 

83.88 
85.60 
86.14 
85.94 

40% 

106.56 
105.12 

104.96 
105.30 
105.48 

107.12 
10838 

10856 
10896 

01 
Ｕ ｾ ~

52.88 
50.48 
5024 
5048 
5048 
5124 
52.00 

5272 
5360 

01 
50% 

52.64 

5176 
51.44 

51.72 
52.12 

53.12 

5436 
54.04 

53.68 

01 

50% 

87.52 

82.90 

82.52 
82.72 
83.60 
8400 

8572 
8606 
85.14 

01 
SO% 

106.96 
104 70 

10480 
105.38 
10608 
10812 
10816 
10816 
10828 

51.96 
000 

5000 
so 00 
SO 40 

5084 
5248 
52.88 
53.92 

5228 
51.48 

5184 
5176 
52.40 

5364 

5396 
5434 

5400 

8684 
8276 

82.80 
8310 
8400 

8472 
85.92 
8570 

8500 

105.80 

104 34 
104 60 
10528 
106.64 
10816 
108 68 
10844 
10800 

70% 

5016 
5000 
so 00 
so 12 
5108 
5174 
5288 
5276 
53,36 

5200 
51.3& 

5184 
5200 
5310 
S412 

5400 
5410 

5400 

70% 

8556 
82.74 

83.00 

8336 

8400 
8524 
8464 
8532 
8446 

70% 

10596 
104 74 
105.36 
10588 
10702 

10832 
108.12 
10812 
10728 

5048 

so 00 
5000 
50.&8 
5112 
5222 
5272 

52 &0 

5264 

52.12 
5200 

5188 
52. 

53.18 
5374 
5342 
5376 
5352 

8312 

83 02 

8320 
8338 
8388 

8 32 
8504 
8448 
84.88 

10540 
104.88 
10524 
105.88 
10664 
10752 

10728 

10736 
10700 

5188 
52.48 

52.18 
52 &0 

204 

52.36 
SB2 
5230 
5288 
5324 
34& 

53 
5304 
5306 

8352 

83 8 
8376 

8386 

84 &2 

845 

84 2 
8408 
84.50 

106.44 

10628 

10728 

10660 
106 76 

J06 36 

5164 
51 
!>l.J2 

51 4 

5212 
1&0 

5208 

100'K 

2.88 

5288 

288 
308 

5288 
5276 

288 
288 

52.12 

100 

84 20 

8 60 
8422 
8400 

48 

84.28 

12 

84,58 

10588 

10612 
106 J6 
10612 

10612 

106 24 

10628 

106 12 



n6 

02 
-20 smallest first 

-2 

-1 reciprocal of size 

-0.5 

o random 

0.5 
1 propotlon to size 

2 

20 biggest first 

n7 

02 
-20 smallest first 

-2 

-1 reciprocal of size 

-0.5 
o random 

0.5 
1 

2 
20 

-20 
-2 

-1 

-0.5 
o 

0.5 
1 

2 
20 

propot/on to size 

biggest first 

n8 

02 
smatlestfirst 

reciprocal of slz. 

random 

pro potion to size 

biggest first 

n9 

02 
-20 smallest first 

-2 
- I reciprocal of slz. 

-0.5 
o random 

0.5 
1 propotlon to size 

2 
20 biggest first 

n10 
02 

-20 smallest first 

-2 
- I redprocal of slz. 

-D.5 

o random 

0.5 

1 propotion to size 

2 
20 biggest first 

10% 

107.96 
105.96 
104.36 
104.36 

103.44 
103.64 
103.84 
105.08 
107.16 

10% 

116.68 
115.78 
114.68 
109.56 
107.96 
105.44 
108.04 

110.96 
114.48 

10% 

90.48 
87.16 
85.24 
85.12 

84.96 
85.02 
85.16 
87.04 
90.08 

10% 

162.82 
158.48 
157.36 
155.48 
155.32 
155.26 
156.88 
158.40 
161.82 

10% 

158.64 
158.12 
156.48 
156.04 
154.68 
155.60 
156.90 
157.56 
157.38 

20% 

107.48 
104.32 
102.88 
103.00 

102.66 
102.96 
103.24 
104.04 
105.20 

20% 

119.06 
116.88 
111.80 
109.20 
106.12 
106.30 
110.62 
113.38 
113.52 

20% 

90.00 
85.08 
85.56 
84.00 
84.46 
85.40 
87.36 
88.44 
89.42 

20% 

162.08 
157.44 
154.28 
154.94 
154.10 
155.70 
158.68 
161.04 
160.72 

20% 

158.80 
156.48 
156.22 
155.02 
155.10 
157.36 
157.86 
157.58 
158.38 

Average of Minimum 

(random add, different location) 

30% 

106.04 
103.68 
103.24 
102.84 

102.80 
102.88 
103.36 
104.44 

105.52 

30% 

117.36 
115.56 
108.68 
106.60 
104.62 
109.24 
112.46 
113.84 
112.04 

30% 

89.64 
84.52 
83.60 
83.40 
84.80 
87.70 
89.76 

89.84 
88.86 

30% 

160.96 
155.94 
155.52 
154.56 
154.38 
159.02 
161.40 
161.84 
161.46 

30% 

159.06 
156.86 
155.48 
154.90 
155.56 
158.26 

158.52 
158.10 
157.56 

40% 

106.52 
103.72 

102.60 
102.68 

102.66 
103.20 
104.88 
105.42 
105.68 

40% 

119.26 
112.92 
107.78 
103.68 
105.32 
112.32 
112.76 
111.52 
111.44 

40% 

87.28 
84.08 
83.56 
83.96 
85.68 
88.66 
89.52 
90.14 
89.74 

40% 

161.60 
155.90 
154.52 
154.08 
154.82 
160.42 
161.10 
161.56 
160.94 

40% 

158.36 
156.12 
154.38 
154.60 
156.28 
158.52 
158.20 
158.14 
157.94 

0 1 
50% 

105.08 
103.24 
102.84 
102.36 
102.86 

104.48 
105.08 
105.34 
105.32 

01 
50% 

115.64 
107.96 
106.66 
103.72 
105.74 
112.56 
111.04 
111.76 
110.68 

01 
50% 

86.64 
83.48 
83.36 
83.98 
86.68 
89.76 
89.28 

89.20 
89.02 

0 1 
50% 

159.32 
154.40 
153.80 
154.24 
156.14 
161.78 
161.76 
161.34 
161.08 

01 
50% 

158.94 
155.80 
154.08 
154.12 
156.78 
158.36 
157.88 
157.44 
157.24 

60% 

104.84 
102.86 
102.64 
102.76 

103.00 

104.48 
105.28 
104.88 
105.88 

60% 

115.48 
109.96 
103.44 
104.00 
107.98 
112.10 
110.72 
110.84 
110.28 

60% 

85.60 
83.10 
83.64 
84.58 
87.20 
89.20 
88.60 
88.76 
88.04 

60% 

159.20 
154.72 
153.72 
154.58 
156.92 
162.22 
161.04 
160.54 
160.30 

60% 

158.18 
154.72 
153.68 
153.96 
156.98 
158.42 
157.96 
157.54 
157.02 

70% 

103.52 
102.72 
102.50 
102.76 

103.12 

104.52 
105.04 
104.88 
104.88 

70% 

11284 

105.16 
103.20 
103.36 
108.86 
110.94 
110.84 

110.12 
109.72 

70% 

84.72 

83.54 
84.02 
84.56 

87.04 
88.46 
88.30 
87.92 
87.72 

70% 

157.64 
154.10 
154.12 

155.28 
158.48 
161.40 
159.92 
160.06 
159.20 

70% 

158.18 
153.60 
153.36 
153.40 
157.28 
157.74 
157.48 
156.72 
156.52 

80% 

10320 

102.88 
102.86 
10300 
103.78 

104.88 
104.56 
104.60 
104.60 

80% 

11008 
10324 
10342 
10426 
11000 
111.66 
110.76 
109.16 
109.96 

80% 

84.12 
84.08 
84.28 
84.84 
87.06 
8724 
87.60 

86.88 
8680 

80% 

156.80 
15398 
154.36 
155.62 
159.18 
159.72 
159.28 
159.64 
158.12 

80% 

156.24 
152.96 
153.10 
153.56 
157.18 
157.00 
156.86 

156.64 
155.76 

10324 
10300 
10300 
10332 
103.52 

104 60 
10388 
104 24 
103.64 

90% 

106 64 

104.16 
104.88 
10624 

109 64 
109 70 
10982 
109.88 
110.24 

90% 

8436 

84.22 
8470 
8524 

8700 
87.40 
87.12 

8664 
8648 

155.36 
15500 
155.08 
156.18 
158.62 
158.96 
158.62 
158.28 
157.40 

154.00 

152.92 
153.20 
153.76 
156.98 
155.94 
156.32 
156.12 
155.42 

100% 

10364 
103.96 

10382 
103.76 
103.84 

103. 
10368 
10376 

10372 

100% 

109.32 

10978 
109.02 
10888 
109.16 
109.60 
108.96 

10864 
108.72 

100% 

85.76 
8578 
85.52 
86.04 

8600 
8572 
8588 

8600 
8568 

100% 

156.40 
156.92 
156.70 
1672 
15702 
15688 
15676 
15664 
15704 

100% 

15440 
15442 
15442 
154.56 
154.42 
15446 
15436 
15436 
154.04 
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C.l 300 Generations 

nZ 
57.5 0.1 0.3 0.5 - 0.7 0.9 

56.5 

55.5 

ｾ ~

s; .. 
ｾ ~ 54.5 

53.5 \ - \ ｲ Ｍ ｾ ~
,. • • .. .. 

I \ I I 
4, 

\ \ 
\ \ , 

52.5 , 
\1 \ , 

- L 
51.5 

0 50 100 150 200 250 300 
Generations 

n3 
0.1-+-0.3 0.5 - 0.7 0.9 1 

57.26 

56.26 

55.26 

:c .. 
·iii 
"'54.26 "" ...... 

' - / ./ -" 
\ 

/ 
53.26 

.- .. • 
52.26 

51.26 

0 50 100 150 200 250 300 
Generations 

92.58 n4 
0.1-+-0.3 0.5 - 0.7 0.9 1 

90.58 

88.58 
ｾ ~

s; .. 
·iii 

'" 
86.58 

84.58 -... 

82.58 

0 50 100 150 200 250 300 
Generations 
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nS 
110.74 0 .1 ....... 0 .3 O.S - 0 .7 0 .9 1 

109.74 

ｾ Ｎ .
'-. 

ｾ ｜ \
108.74 ....... ｾ ~ .... .. ...... ｾ ~\ / ...-

"-
/ 

\ ｾ ~:;: .. ./ 
ｾ Ｐ 0 Ｎ Ｗ Ｔ 4

............ ---. .. -. 
106.74 • ｾ Ｎ .

,. ... .,. .... Ｍ ｾ ~
• 

105.74 

104.74 

0 SO 100 150 200 250 300 
Generations 

n6 
0 .1 ....... 0 .3 O.S - 0 .7 0 .9 1 

109.18 

108.18 

107.18 

ｾ Ｐ 0 Ｎ Ｑ Ｘ 8 \ 

-----'0; 

ｾ ｜ \:J: -'\ 

I / 105.18 / 
J 

104.18 "- / \ 

. 
103.18 ., ..-.. 
102.18 

0 SO 100 150 200 250 300 
Generations 

123.22 n7 
0.1 ...... 0 .3 O.S - 0 .7 0 .9 1 

118.22 

'. 
,.' ',. 

Ｎ ｾ Ｎ . ... .. , ....... . 

108.22 
...... ...... ..... ./ "-. ... ' - . - . - ...... .... ..... 

103.22 

0 SO 100 150 
Generations 

200 250 300 
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n8 
92.06 

•• 0.1 0.3 ,. O.S- 0.7 0.9 .. 1 

91.06 

90.06 

89.06 

§88.06 '-
41 

" / / \ :J: \ "- A 

87.06 / '-
/ I 

\ 
86.06 .. "" 

4" .. 
• 

85.06 .. 
84.06 

83.06 

0 50 100 150 200 250 300 
Generations 

n9 
164.18 - +- 0.1 0.3 O.S - 0.7 0.9 .. 1 

162.18 

oS 

.J.60.18 
oJ: .. 
·iii 
:r 

...... ...... 
158.18 - ... - ," - _ .. _ 'IIi. 

" .-'+< • "- "-.. .. .. .. " .. .. .. .. .. .. 
156.18 .. • .. .. • .. 
154.18 

0 50 100 150 200 250 )00 
Generations 

n10 
.. 0.1--0.3 0.5 - 0.7 0.9 

159.82 

158.82 

157.82 .. 
.c .. 
£56.82 

• 
155.82 

...... 
154.82 ...... "-"t' 

153.82 

0 50 100 150 200 250 300 
Generations 
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C.2 30,000 Generations 

C. 2.1 Largest first 

n2 
sigma2 = -20 (largest first) - 0 .1 0 .2 0.3 - 0.4 

54.98 

54.48 

53.98 ----------------- •• --- Ｍ Ｍ Ｍ Ｍ ｾ ｾ ｾ Ｎ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ft_ 

.l: 
u ... 
:I: 

53.48 

52.98 

52.48 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n3 
sigma2 = -20 (largest first) - 0 .1 0 .2 0.3 - 0 .4 

55.64 

55.14 

.l: 54.64 .. 
Ii 
:I: 

54.14 

53.64 

53.14 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n4 
sigma2 = -20 (largest first) - - 0 .1 0 .2 0.3 - 0 .4 

91.56 

91.06 

90.56 ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

.l: .. 90.06 'w 
:I: 

89.56 

89.06 

88.56 

88.06 > 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 
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109.34 

108.84 

108.34 , 

-t 107.84 
;; 
:z: 

107.34 

106.84 

106.34 

105.84 

108.96 

108.46 

107.96 

.l: 107.46 .. 
;; 
:z: 

106.96 

106.46 

105.96 

105.46 

119.5 

119 

118.5 
.l: .. 
;; 
:z: 

118 

0 

._---------------------

3000 6000 9000 

3000 6000 9000 

nS 
sigma2 = -20 (largest first) 0.1 0 .2 O.! - 0.4 

------------------------------------------------------ .. 

12000 15000 18000 21000 24000 27000 30000 

Generations 

n6 

sigma2 = -20 (largest first) - 0 .1 0 .2 0 .3 - 0.4 

12000 15000 18000 21000 24000 27000 30000 

Generations 

n7 
sigma2 = -20 (largest first) - - 0 .1 0 .2 0 .3 0.4 

ｾ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ .......... -- ..... - .............. -.. - ........ - ...... -- .. -- ........ ---........... -- ...... --........ --- ...... -...................... . 
117.5 

117 

0 3000 6000 9000 12000 
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15000 

Generations 

18000 21000 24000 27000 30000 



ｾ ~

.c .. 
;; 

91.26 

90.76 

90.26 

l: 89.76 

89.26 

88.76 

88.26 

164.08 

163.08 

162.08 
1: .. 
;; 
l: 

161.08 

160.08 

159.08 

159.6 

159.1 

1: .. ;; 
:J: 158.6 

158.1 

157.6 

n8 
sigma2 = -20 (largest first) 0.1 0 .2 0 .3 0.4 

-----------.- ... ｾ Ｎ Ｍ ｾ Ｎ ｾ Ｎ Ｍ Ｎ ｾ Ｎ Ｌ , ---------------------------------------------------

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n9 
sigma2 = -20 (largest first) 0.1 0 .2 0 .3 0.4 

Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ..................... 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generltlons 

n10 
sigma2 = -20 (largest first) 

0 .1 0.2 0 .3 0.4 

I Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｎ ｾ ｾ ｾ ｾ ｟ ｾ ･ Ｎ ｾ ~ .. _ 

t 

> 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 
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C.2.2 Prefer large 

n2 
sigma2 =·2 (prefer large) 0.1 0 .2 0.3 0.4 

54.5 

53.5 

-, , 

1: 
'-, 

52.5 .. .OJ 
:r Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

-,,----_ ... ---- ... -------
51.5 

50.5 

49.5 

o 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n3 
sigma2 =·2 (prefer large) 01 0 .2 0.3 0 .4 

53.58 

53.08 

52.58 ..... _- , . , 

1: .. 52.08 .OJ 
------------ ----'-----------,-------

:J: 

51.58 

51.08 

50.58 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Genef.tlons 

n4 
sigma2 = -2 (prefer large) 

0 .1 0 .2 0.3 0 .4 

84.92 

84.42 
" ", ..... 

83.92 '--- .. _-------
83.42 

ｾ ~ \--""------ ... .c .. 
Ii 82.92 
:r 

82.42 

81.92 

81.42 

80.92 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Gene,"tlons 
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nS 

105.62 
sigma2 =·2 (prefer large) 0.1 0 .2 0 .3 0 .4 

105.12 

104.62 \.l..- .... T_ .. 

'. 
ｾ ~ .---------. '- -

Ｍ ﾷ ﾷ ﾷ ｾ ｾ ｾ ｗ ｊ ｴ t
'i' 104.12 
:z: --- . -

103.62 

103.12 

102.62 

0 3000 6000 9000 12000 15000 l8000 21000 24000 27000 30000 

Generlt lo ns 

n6 
sigma2 = -2 (prefer large) 0.1 0 .2 0 .3 0 .4 

104.48 

103.98 

103.48 

ｾ ~ 102.98 ... -.- ... ----s; -,-----,---.. 
Ii 
:z: ------ ......... 

102.48 

ｾ ~101.98 

101.48 

100.98 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n7 
sigma2 =·2 (prefer large) 

0 .1 0.2 0 .3 - 0 .4 

112.88 , , . 
111.88 

. , , 
110.88 

"-""'-

109.88 
ｾ ~ \ ....... .. 

-' .... -- . .. _---------Ii 108.88 -- -- ..... _----- ...... ---:z: 

107.88 

106.88 

105.88 

104.88 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 
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n8 
s/gma2 = -2 (prefer large) O.J 0.2 0.3 0.4 

85.34 

84.84 

\ 

84.34 --, 
---- ... -

ｾ ~ 83.84 \- ... -- --------- ... .. --- .. _- .... _--- ..... 
Ii ---_ .. - ... - ... _- .. 
:z: ------ .. -

83.34 

82.84 
/\..AA,.. 
Ｍ ｾ ~

82.34 

81.84 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n9 
sigma2 = -2 (prefer large) 0 .1 0.2 0.3 0.4 

156.04 
, , 

\ 

155.54 " -
155.04 ", 

\ -
ｾ ~

--- ..... 
ｾ ~ 154.54 • :z: 

154.04 

153.54 

153.04 

152.54 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n10 
sigma2 = -2 (prefer large) 0.1 0.2 0.3 0.4 

158.38 

157.38 , 
\ . , 

-'-
156.38 --- ... 

------- ..... _--

ｾ ~
- .. -- ......... 

ｾ ~ 155.38 • :z: 

154.38 

153.38 

152.38 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generltlons 
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C.2.3 Random 

n2 
sigma2 = 0 (random) - - 0.1 0 .2 0.3 - 0 .4 

54 

53.5 
\ . 

53 ｾ ~

52.5 1 ______ _ . 
ｾ ~ 52 .. 
'ii :r: 

51.5 

51 

50.5 

50 

49.5 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generotlons 

n3 

sigma2 = 0 (random) - - 0.1 0 .2 0.3 - 0 .4 

52.98 

. 
'- -. 

- . 
52.48 "T - , 

'-------------. 
--------- -----------'-----------------------

51.98 
ｾ ~

ｾ ~.. 
'ii :r: 

51.48 

50.98 

50.48 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generation. 

n4 
sigma2= 0 (random) - - 0.1 0.2 0.3 - 0 .4 

84.4 

83.9 

83.4 

j; 82.9 .. 
'ii :r: 

82.4 

81.9 Ｍ Ｍ ｾ ~

81.4 

80.9 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 
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108.38 

107.38 
I 

ｾ ~

'\ 106.38 • , .. 
'0; 
:!: 105.38 

ｾ ~

.c .. 
OJ 
X 

104.38 

103.38 

102.38 

105.82 

104.82 

103.82 

102.82 

101.82 

100.82 

107.18 

106.68 

106.18 

105.68 

ｾ ~ 105.18 
OJ 
X 

104.68 

104.18 

103.68 

103.18 

102.68 

o 

o 

o 

3000 

ｾ Ｍ - '--

3000 

3000 

--- ... _-

6000 

6000 

6000 

9000 

--
9000 

9000 

nS 
sigma2 = 0 (random) 0.1 0 .2 0 .3 0.4 

Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｌ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

12000 15000 18000 21000 24000 27000 30000 

Generations 

n6 

sigma2 = 0 (random) 0.1 0.2 0.3 0 .4 

--------------- ---------------------------- ..... _- ... - ... _--

12000 15000 18000 21000 24000 27000 30000 

Generations 

n7 
sigma2 = 0 (random) 

0.1 0.2 0.3 0 .4 

12000 15000 18000 21000 24000 27000 30000 

Gener.tlons 
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90.22 

89.22 

88.22 

87.22 

1': .. 
'Ii 86.22 
:I: 

85.22 

84.22 

83.22 

82.22 

158.92 

157.92 

156.92 

1': 155.92 .. 
Ii 
:I: 

154.92 

153.92 

152.92 

151.92 

157.68 

156.68 

1': 
!!! 155.68 .. 
:I: 

Ｍ ｾ ~

0 

, 
\ 

... , . , , 

0 

, 
\ 

154.68 Ｌ ｾ ~

153.68 

152.68 

o 

3000 

3000 

3000 

n8 

sigma2 = 0 (random) 

- ..... - .:.:...::...:.. .... -------- ... - - - .. -------------

6000 9000 12000 15000 18000 

Generations 

n9 

5igma2 = 0 (random) 

--- .. -

0.1 0.2 0.3 0 .4 

--------,--------------------

21000 24000 27000 30000 

0.1 0.2 0.3 0.4 

... _---- ... _---------- ---------- ..... _--- -----._--------

6000 

, --

6000 

9000 12000 15000 18000 

Generations 

n10 
sigma2 = 0 (random) 

... _----- ...... ------------ ---------

9000 12000 15000 18000 

Gener.tlons 
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21000 24000 27000 30000 

- - 0.1 0.2 0.3 - 0 .4 

-----------------------------

21000 24000 27000 30000 



C.2.4 

54.36 

53.86 

53.36 

52.86 

ｾ ~ 52.36 .. 
J: 

ｾ ~.. 
'e; 
J: 

51.86 

51.36 

50.86 

50.36 

49.86 

54.78 

54.28 

53.78 

53.28 

52.78 

52.28 

51.78 

51.28 

50.78 

89.04 

88.04 

87.04 

-t 86.04 
'ii 
J: 

85.04 

84.04 

83.04 

82.04 

o 

T 

0 

0 

Prefer small 

" ,_ 

... __ .... _--

n2 
sigma2 = 2 (prefer small) 

------- .... _-,-----,------- ... 

3000 6000 9000 12000 15000 18000 

Generations 

n3 
sigma2 = 2 (prefer small) 

I 

I 

I-

-- .... - ... _-- .. _------

3000 6000 9000 12000 15000 18000 

Generations 

n4 

sigma2 = 2 (prefer small) 

.. 

0.1 0.2 

21000 24000 

0.1 0.2 

21000 24000 

0.1 0.2 

ａ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ _____ ... i _______ .. ___________ • ______ ｾ ~ ___ _ 

3000 6000 9000 12000 15000 18000 21000 24000 

Generations 

187 

0.3 0 .4 

27000 30000 

0 .3 0.4 

27000 30000 

0.3 0 .4 

27000 30000 



110.46 

109.46 

108.46 

ｾ ~ 107.46 .r: . 
'ii x 

106.46 

105.46 

104.46 

103.46 

0 

111.34 

109.34 

ｾ ~
107.34 . .. 

x 
105.34 

103.34 

101.34 

0 

118.44 

116.44 

ｾ ~ 112.44 .. 
'ii 
x 

110.44 

, 
108.44 ... 

106.44 

104.44 

o 

-, 

n5 
sigma2 = 2 (prefer small) 0.1 

-- .. ------- - ... _-- ... _--

3000 6000 9000 

--------- -- ....... _--

3000 

I 
ｾ Ｚ ｾ ｔ T

6000 

1 ｾ ~ I 

Ji 1. "--;;, 

9000 

-- ... -------------

3000 6000 9000 

............. 
Ｍ ｾ Ｍ Ｍ ... Ｍ Ｎ ｾ ｾ Ｍ ｾ Ｍ Ｍ Ｎ ｾ Ｍ Ｍ

12000 15000 18000 21000 

Generations 

n6 
sigma2 = 2 (prefer small) 0.1 

Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ .

12000 15000 18000 21000 

Generations 

n7 
sigma2 = 2 (prefer small) 0.1 

... , I 
, i 

---- ... _--------------------

12000 15000 18000 21000 

Generations 
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0.2 0.3 0.4 

24000 27000 30000 

0.2 0.3 0.4 

24000 27000 30000 

0.2 0.3 0 .• 

24000 27000 30000 



91.16 

90.16 

89.16 

ｾ ~
88.16 I 

.c .. 
ｾ ~

87.16 ::z: 

86.16 

85.16 

84.16 

83.16 

0 

164.86 

162.86 

160.86 , '!" 

.e -r 158.86 
::z: 

156.86 

154.86 

152.86 

o 

'='"+-

... _---- "'- .. -

3000 

n8 
sigma2 = 2 (prefer small) 

• t, 
ｾ Ｎ Ｇ ' J 

Ｍ Ｂ Ｇ ｾ ~ •. """''''t''''' 
I " 

--------- .. 
ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

6000 9000 12000 15000 

Generlllons 

n9 

ｾ Ｎ .

, '\' J 

• 

--------- .. 

18000 

5igma2 = 2 (prefer small) 

Ｚ Ｎ Ｎ Ｎ ｾ Ｔ ｟ ［ ｟ ［ ｾ ｾ ｴ t
.c,P ;l . I .. Ｇ ｾ ~

, , 

- .. _-._---

0.1 0.2 0 .3 0 .4 

... _ ... _--- ..... ------ - .. _------

21000 24000 27000 30000 

0.1 0.2 0.3 0.4 

----------____ Ｍ ｊ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ｾ ~

---- .. _-------- ---------------- .... _----------

3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n10 
sigma2 = 2 (prefer small) 0.1 0.2 0.3 0.4 

161.14 

160.14 

159.14 ｾ ~
Ｍ Ｍ Ｍ ｾ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ｾ ｾ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

ｾ ~.. 
ｾ ~ 158.14 

157.14 

156.14 

155.14 

o 3000 6000 9000 12000 
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15000 

Generltlons 

18000 21000 24000 27000 30000 



C.2.5 Smallest First 

n2 
sigmaZ = 20 (smallest first) 0.1 0.2 0.3 0 .4 

56.68 

56.18 

55.68 

ｾ ~.. 55.18 "ii z 

54.68 

54.18 

53.68 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n3 
sigmaZ = 20 (smallest first) - 0.1 0.2 0.3 0.4 

56.12 \ 

55.62 
Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

55.12 

54.62 

54.12 

o 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n4 
sigma2 = 20 (smallest first) - 0.1 0.2 0.3 0.4 

92.14 

91.14 

___ Ｇ ｾ ~ Ｂ ｾ ｜ ｟ Ｇ ｜ \ ...... ,' .. '_ .... ','" .. _'\ f4 .. 1'_ '_" .. _,\}_ .. _ ,"" ｾ ｜ ｟ _ 4'_ .. I, - ............ - '" -' .. ,-" \ .. t\}. _ ........ _ .. __ .... .. . ' ........ -- -"',--' 
90.14 

ｾ ~.. 
"ii 
z 89.14 

88.14 

87.14 

86.14 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 
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n5 
sigma2 = 20 (smallest fir st) - 0.1 0.2 0.1 0.4 

110.56 

110.06 

109.56 
{. .. 
:z: 

109.06 

108.56 

108.06 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 10000 

Generltlons 

n6 
sigma2 = 20 (smallest f irst) 0.1 0.2 0.1 0.4 

110.76 

109.76 + 

:;: 
ｾ ~ 108.76 .. 
:z: 

105.76 

o 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generltlons 

n7 
sigma2 = 20 (smallest first) - 0.1 0.2 0.3 0.4 

118.84 

117.84 

116.84 

115.14 

:;: 114.84 . .. 
:z: lU .14 

112.84 

111.14 

110.84 

109.84 

a 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generlt lons 
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n8 
sigma2 = 20 (smallest first) 0.1 0 .2 0 .3 0 .4 

90.94 

90.44 

ｾ ~.. 89.94 Ii 
:z: 

89.44 

88.94 

88.44 

o 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n9 

sigma2 = 20 (smallest first) 0.1 0 .2 0 .3 0 .4 

164.16 

163.66 

163.16 

162.66 

1 .. 
162.16 .. 

:z: 

I ; 
• I I , I 
• ) I I I' \ ,I, , 

f I, ,I I J ｉ Ｇ ｾ ~ I I I, " I • \ \ \ I' ., ..,'\ I' ,I 

ｲ Ｌ ｾ ~ ｾ Ｔ Ｎ ｬ ｩ i fit, f ｾ ~ ｉ ｊ ｴ ｾ Ｚ ｊ J Ｇ ｾ ［ ｻ Ａ Ｇ Ｎ ｉ Ｇ ' ､ ｾ Ｂ ｉ Ｋ Ｌ Ｌ Ｇ ' .. J,llJ,W •• ,1 ｴ Ｍ ｉ Ｌ ｾ ｴ Ｌ Ｎ ［ Ｎ Ｌ ,
, , I ,I I ｾ Ｇ Ｌ Ｂ Ｌ , 'I ,I,' , '" ｾ Ｂ " I 1',\1 I " 't! ", ,'j ,I t II \'" "ll, ", " t. 'It '1-" ,\ II I 

I " '" I 1,1/', ,"".'" ,,'I' !""')' Ｇ Ｇ Ｇ ｾ Ｇ Ｌ Ｎ ｉ ｜ Ｇ ' -1',,"""',",_,',111' ｾ Ｑ Ｇ Ｑ ﾷ ｜ Ｂ Ｎ ｴ t .',', :",',4: ','1" :,'", 
"

,,, ',. ,'/ I ',,111" "','ll • , r p I I ｾ ~ 1 I , i \ 114 '\" I, " 'I 1 I' '" " I' I } ,. 

. , :.l- • '! ! \ T/ l I I • 11 I ','" I • '... ｾ Ｎ . f" t' .... l 1 ' ! 

161.66 

161.16 

160.66 

160.16 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generations 

n10 
sigma2 = 20 (smallest first) 

0.1 0 .2 0 .3 0 .4 

160.22 

159.72 

159.22 

1 158.72 .. 
Ii 
:z: 

158.22 

157.72 

157.22 

156.72 

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 

Generltlons 
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GES Critical Ratio (percentage of shapes in the Critical Group) 

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

nl 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 
n2 so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo so so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo 
n3 51.67 51.90 51.32 51.46 51.04 50.96 SO.69 50.76 50.75 SO.75 SO.96 51.15 51.30 51.42 51.38 51.43 51.42 51.78 51.16 51.30 
n4 83.00 82.86 82.95 82.63 82.18 81.98 81.84 81.91 81.95 82.04 82.01 82.17 82.23 82.32 82.34 82.42 82.53 83.01 82.22 82.48 
n5 104.43 104.25 104.09 104.26 103.82 104.03 103.77 103.70 103.68 103.72 103.84 103.92 104.01 104.21 104.24 104.23 104.38 105.20 104.15 104.25 
n6 102.95 102.84 102.75 102.50 102.19 102.00 102.01 101.99 102.00 102.14 102.16 102.24 102.40 102.36 102.47 102.44 102.40 102.84 102.28 102.42 
n7 105.20 103.45 102.38 102.53 102.82 103.28 103.55 103.79 103.88 103.89 104.17 104.18 104.24 104.29 104.41 104.55 104.31 104.72 103.76 103.84 
n8 84.63 84.15 83.82 83.58 83.28 83.16 83.17 83.45 83.60 83.71 83.82 84.14 84.21 84.30 84.38 84.48 84.17 84.74 84.02 84.12 
n9 154.29 153.66 153.63 153.69 153.55 153.80 153.82 153.84 154.05 154.21 154.45 154.60 154.64 154.60 154.52 154.63 154.81 154.97 154.57 154.58 
n10 152.97 152.90 152.86 152.99 153.15 153.66 153.88 154.43 154.55 154.56 154.77 154.71 154.86 154.78 154.83 155.04 155.13 155.88 154.90 154.71 



GES Critical Ratio (percentage of shapes in the Critical Group) 

5% 10% 15% 20% 25% 30% 35% 40% 45% SO% 55% 60% 65% 70% 75% 80% 85% 90% 95" -- ------:- :---
100% 

Cl 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

20.57 20.52 20.97 20.98 20.92 20.86 20.86 20.91 20.83 20.94 20.98 20.97 20.97 20.95 20.99 20.97 20.95 21.00 20.90 20.93 

20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

C2 40.93 40.69 40.86 40.86 40.96 40.40 40.56 40.23 40.00 40.00 40 40.02 40.01 40.00 40.03 40.04 40.03 40.42 40.02 40.01 

40.97 40.96 40.98 40.90 40.97 40.95 40.69 40.66 40.69 40.56 40.72 40.75 40.81 40.80 40.79 40.73 40.77 40.98 40.65 40.76 

40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 

C2t 15.68 15.86 15.08 15.07 15.11 15.38 15.34 15.39 15.34 15.45 15.4 15.72 15.87 15.79 15.88 15.88 15.92 15.82 15.78 15.90 

15.98 16.00 15.98 15.99 15.88 15.86 15.86 15.90 15.89 15.98 15.99 15.98 16.00 16.00 16.00 15.99 15.98 15.99 16.00 15.99 

15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15 15.00 15.00 15.00 15.07 15.05 15.11 15.07 15.01 15.08 

C3 62.63 62.44 62.24 62.54 62.37 62.16 61.47 61.24 61.33 61.37 60.92 61.17 61.25 61.20 61.43 61.37 61.32 62.28 61.19 61.24 

62.46 62.36 61.95 61.99 61.97 61.94 61.84 61.69 61.43 61.49 61.58 61.68 61.67 61.85 61.78 61.77 61.74 62.12 61.73 61.77 

61.63 61.57 61.48 60.70 60.68 60.92 61.04 60.52 60.59 60.72 60.64 60.59 60.90 61.05 61.17 61.20 61.03 61.81 60.97 61.09 

elt 31.00 30.99 30.97 30.98 30.93 30.95 30.93 30.96 30.89 30.94 30.99 30.96 30.96 30.97 31.00 31.00 31.00 30.99 31.00 30.98 

31.27 31.35 31.00 31.01 31.39 31.06 31.00 31.00 31.02 31.01 31.03 31.05 31.18 31.29 31.28 31.28 31.24 31.24 31.16 31.27 

31.05 31.06 31.00 31.00 31.01 30.85 30.89 30.76 30.82 30.87 30.93 30.91 30.96 30.98 31.00 30.98 31.00 30.97 30.97 30.99 

C4 63.14 63.06 62.95 62.94 62.86 62.97 62.80 62.63 62.38 62.33 62.59 62.73 62.81 62.83 62.94 62.97 62.89 63.30 62.85 62.90 

62.92 62.89 62.83 62.55 62.35 62.51 62.05 62.07 62.27 62.39 62.52 62.73 62.83 62.83 62.91 62.98 62.98 63.21 62.89 62.79 

62.55 62.20 62.36 62.45 61.91 61.83 61.92 61.93 61.98 62.03 62.1 62.13 62.30 62.32 62.39 62.49 62.48 62.91 62.27 62.29 

C5 63.01 62.96 62.97 62.94 62.92 62.85 62.27 62.34 62.55 62.74 62.99 62.97 63.04 62.98 63.06 63.08 63.15 63.63 63.09 63.07 

63.41 63.17 63.06 62.99 62.58 62.57 62.62 62.90 63.02 63.22 63.32 63.31 63.42 63.79 63.70 63.69 63.78 63.97 63.36 63.43 

63.00 63.06 62.97 63.00 62.84 62.83 62.67 62.57 62.57 62.78 62.95 62.93 63.08 63.12 63.16 63.28 63.36 63.72 63.16 63.28 

CSt 94.28 94.14 94.06 93.93 93.64 93.68 93.23 93.18 93.18 93.31 93.54 93.59 93.68 93.82 93.91 94.06 94.16 94.08 93.98 93.99 

95.13 94.68 94.41 94.44 93.54 93.34 93.35 93.78 93.97 94.09 94.45 94.42 94.60 94.92 94.85 94.97 94.97 94.94 94.57 94.74 

94.45 94.49 94.46 94.27 94.08 93.93 93.65 93.30 93.26 93.72 93.72 93.88 94.08 94.31 94.32 94.51 94.57 94.51 94.15 94.30 

C6 84.40 84.22 84.13 84.20 84.26 83.53 83.46 83.64 83.75 83.82 84.36 84.61 84.54 84.68 84.75 84.83 84.85 85.28 84.48 84.66 

85.04 84.83 84.13 83.53 83.20 83.82 84.13 84.34 84.47 84.84 84.94 84.95 85.03 85.17 85.21 85.34 85.20 85.85 85.09 85.11 

84.59 84.16 84.01 83.97 83.97 83.62 83.67 83.79 83.90 84.24 84.48 84.55 84.65 84.91 84.83 84.95 85.00 85.53 84.84 84.87 

C6t 126.57 126.29 126.09 125.84 125.80 125.05 124.68 124.94 124.85 125.17 125.76 125.75 126.26 126.48 126.59 126.49 126.57 126.45 126.18 126.46 

126.09 125.71 125.41 124.86 124.04 124.49 124.94 125.16 125.39 125.71 126.08 126.16 126.58 126.62 126.75 126.74 126.80 126.95 126.36 126.46 

126.51 126.38 126.26 125.97 125.79 125.36 125.03 125.09 125.23 125.49 125.87 126.14 126.33 126.41 126.49 126.53 126.77 126.55 126.45 126.52 
C7 170.95 170.82 170.57 170.38 169.85 169.10 168.82 169.02 169.20 169.68 170.45 170.84 170.99 171.76 171.58 171.84 171.87 173.40 171.36 171.64 

169.36 168.41 167.75 167.23 167.52 168.07 169.00 169.48 170.31 170.26 170.73 171.05 171.32 171.37 171.67 171.41 171.13 172.88 170.82 170.85 
171.52 170.80 170.38 169.06 168.58 168.24 168.61 169.54 169.57 170.69 171.22 171.62 171.99 172.15 172.44 172.37 172.56 173.94 171.85 172.14 

C7t 254.63 254.22 253.96 253.57 252.97 252.97 252.74 252.10 252.02 252.63 253.52 254.48 254.56 255.37 255.51 255.66 255.64 255.88 255.08 255.46 
253.32 251.68 251.47 250.32 250.17 250.05 250.93 251.92 253.37 253.89 253.9 254.87 255.27 254.59 254.96 255.51 255.43 255.44 254.81 254.65 
254.17 252.99 252.34 251.49 251.21 251.17 251.18 251.90 252.47 253.97 254.06 254.41 254.62 255.17 255.07 255.30 255.56 255.31 254.88 254.97 



GES Critical Ratio (percentage of shapes in the Critical Group) 

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

Nl 21088 21098 212.04 212.78 208.57 207.86 208.31 207.93 20787 20811 20852 208 20 20807 207.50 20890 20782 20872 20862 207 63 208 41 

210.99 212.46 212.13 20809 205.50 205.59 205.98 206 22 20685 205.66 20685 206n 20701 206.85 207.59 207.45 207.38 207.35 206 73 20767 

210.79 210.65 210.76 210.36 20541 204 24 20346 206.93 205.27 205.86 208.33 206.94 208.54 20842 20846 209.27 20829 208.37 208.51 209.12 

210.96 209.79 210.34 205.77 20738 20614 205.69 206.18 205.50 207.62 207.26 20794 20812 208.19 20826 20744 20668 207.13 206.16 20727 

208.61 210.36 209.96 209.59 209.31 20940 210.21 208.86 208.33 20857 208.28 20908 20863 208.68 208.79 20912 20886 209.16 208.51 20865 

N2 21241 212.46 212.81 21147 211.77 211.92 210.84 210.71 210.76 210.90 21088 210.87 211.12 211.05 21123 21094 211.05 210.83 210.60 210.70 

212.87 212.58 210.63 210.97 210.78 211.42 209.35 209.38 208.58 208.59 208.89 20886 20894 208.77 209.12 209.17 20914 20920 20863 208.83 

213 80 212.69 212.62 212.80 213.14 212.73 213.31 212.16 211.42 211.33 211.25 211.68 211.77 211.28 211 76 211.80 212.05 212.01 211.48 21177 

213.67 213.74 213.37 212.23 213.58 213.36 212.38 210.96 210.48 210.80 210.75 210.87 211.33 211.17 211.35 211.16 211.47 21160 211.10 211.48 

21414 214.30 212.37 212.06 211.77 212.43 212.54 21222 209.85 210.07 210.2 210.33 210.41 210.59 210.64 210.59 210.65 210.47 210.26 210.51 

N3 21356 213.22 212.69 212.90 212.35 211.92 211.52 211.41 211.20 211.15 211.68 211.70 211.91 211.82 211.87 211.73 211.93 212.18 211.95 211.83 

213.98 21442 213.45 213.10 211.30 211.50 210.84 210.45 210.98 211.17 211.17 211.57 211.76 212.08 21240 212.12 211.98 212.12 211.65 212.08 

21122 211.94 211.58 211.24 211.05 211.22 210.10 209.81 209.66 209.76 210.36 210.40 210.55 210.83 210.70 210.49 210.21 21022 210.06 210.06 

216.07 214.04 213.24 212.76 213.75 212.80 211.85 211.57 211.36 211.44 211.3 211.80 211.66 211.82 211.88 211.65 211.72 211.36 211.03 211.64 

213.09 212.21 211.65 211.10 211.48 211.45 210.95 210.54 210.58 210.48 210.29 210.53 210.72 210.59 210.66 210.61 210.97 211.05 210.62 211.03 

N4 214.37 213.61 213.52 212.51 212.54 212.60 211.96 211.48 211.00 211.07 211.51 211.76 212.06 211.76 212.29 212.90 212.55 212.39 212.42 212.67 

215.04 214.68 214.49 214.91 211.61 211.12 210.46 210.66 211.07 211.77 212.31 212.33 212.43 212.67 212.98 213.03 213.03 213.16 212.81 212.61 

212.33 212.35 211.37 211.45 211.53 211.69 211.31 210.83 210.57 210.09 210.17 210.97 211.10 211.29 211.31 211.46 211.45 211.66 211.23 211.49 

212.93 212.54 211.41 210.69 211.10 210.90 210.76 210.46 210.00 210.01 210.87 210.62 210.68 211.78 211.44 211.74 211.78 212.02 211.14 211.38 

213.64 213.21 212.01 212.09 212.23 211.47 209.78 210.16 210.20 210.60 210.8 211.49 211.55 212.33 212.27 212.63 212.22 212.05 212.04 211.86 

N5 213.78 213.25 213.22 213.17 213.04 212.78 211.00 210.99 211.92 211.77 212.33 212.76 213.22 213.53 213.65 213.30 213.71 213.52 212.93 213.24 

213.53 212.66 211.98 212.11 211.81 211.68 211.25 210.55 210.68 210.81 211.85 212.04 212.01 212.30 212.56 212.88 212.82 212.44 212.33 212.36 

214.16 213.01 212.64 212.24 211.60 210.67 211.20 211.50 211.93 212.87 212.91 213.19 213.65 213.97 213.99 214.19 214.09 214.78 213.91 213.92 

216.27 216.00 215.70 215.40 215.11 215.41 213.91 213.26 212.80 213.19 213.43 213.38 213.76 213.95 214.59 214.79 215.02 215.58 214.66 214.24 

213.61 213.01 212.47 211.86 212.12 211.98 211.12 211.45 211.78 212.36 212.46 213.05 213.22 213.88 213.37 213.40 213.20 214.67 213.17 213.21 

N6 213.29 212.88 212.24 212.13 211.27 210.93 210.23 210.83 211.28 211.68 212.38 212.69 213.55 213.08 213.57 213.59 213.20 214.81 212.80 212.88 

213.13 211.40 211.14 210.44 209.94 209.80 209.94 210.44 211.09 211.81 212.5 213.08 213.22 212.95 213.34 213.37 213.19 215.06 212.90 213.12 

213.05 212.10 211.45 211.28 210.08 209.97 209.47 210.00 210.18 211.45 212.17 212.84 212.95 213.00 213.65 213.57 213.75 214.59 212.72 213.00 

214.60 214.02 213.75 213.68 213.66 212.57 211.66 211.61 212.12 212.46 213.18 213.44 213.59 213.98 214.29 214.42 214.37 215.73 213.99 214.11 

212.11 211.42 210.95 211.38 209.96 209.82 210.37 210.68 211.45 211.76 212.44 212.69 212.96 213.02 213.20 213.27 213.27 214.47 212.90 213.02 

N7 212.11 211.31 210.90 209.33 208.46 208.71 209.43 210.57 211.41 211.54 212.47 212.99 213.39 213.55 213.63 213.75 213.47 215.87 213.27 213.Ql 

211.38 210.59 209.96 209.11 208.70 209.19 210.18 211.04 211.45 212.12 212.6 212.53 213.10 213.61 213.04 213.62 213.82 215.62 213.01 213.17 

211.74 211.30 210.13 209.94 209.07 209.05 209.86 211.16 211.36 212.24 212.79 213.11 213.80 213.52 213.69 213.87 213.97 215.15 212.89 213.14 
213.95 212.88 212.25 210.98 209.91 210.12 210.34 210.98 212.39 212.91 213.41 214.08 214.57 214.77 214.67 214.93 214.92 216.50 214.09 214.31 
211.21 210.41 210.17 210.16 209.60 209.16 209.61 210.01 210.75 211.66 212.32 212.76 213.12 212.88 212.93 213.32 213.35 214.53 212.50 212.87 



GES Crit ical Ratio (percentace of shapes In the Critk al Group) 

ｾ Ｂ " 10!0 15" 20% 25" )010, )5'" 40!- 4S' wo. S5 ... 6(JI. W ... 70!' 75" IO!O as" 'IIl'I' 95" 100% 

T\ :1092S 20100 200.1\ 20613 201.!>4 20202 20146 2Ol11 Ｒ Ｐ 0 Ｎ ｾ ~ 2Ol.lS 20314 204.16 20429 204 Ol 206.30 20600 2O'S.SO lOS 48 204 91 lOS 46 

210.58 20'9 70 21049 206.46 20612 20S 61 204!JZ 2OS.lIO 20!> ,. 207.61 20101 2OU1 20796 20107 201.56 20777 20700 20688 206 liS 20727 

201.13 200.14 20012 20000 200a3 20101 2OO.SO 200.52 ZOO 03 200 OS ZOO 04 20011 2004? ZOO.!>4 ZOO.94 20086 20009 20041 ZOO.OO ZOO 41 

20S 76 2Cl,OClIJ . .2\10 00 20000 20000 20000 200.00 20000 ZOO 00 moo 200 16 201.11 20113 20110 20149 202 .11 202.11 20219 Ｒ Ｐ 0 Ｎ ｾ ｓ S 202.l0 

21042 2\256 211 27 211 02 204 17 20225 201.17 20066 20278 20252 Z04.19 204 'l8 2OS77 20410 204 74 204 49 20S 47 20S 51 204 !>4 20612 

12 :10974 2O'9lS 20'904 201 94 2OIa2 2012a 20101 20791 20105 201.82 201 53 20133 20'923 20901 209 17 20199 20176 20893 20161 20897 

212 48 21227 21111 211 63 211 55 21078 211.10 21017 210s] 210.75 211 os 21156 211 71 21117 21169 211.11 21111 21117 211.14 211.36 

213.58 2139S 214.11 213 51 21284 211.58 21063 2106() 21085 21095 21088 21097 211 20 21200 21110 211 76 21162 211.31 21093 211.14 

21392 214)4 212.58 21227 21216 21247 212.S3 212.18 21027 21022 21065 21042 l1010 21047 21022 21058 21041 210.SO 210.39 210 SO 

21301 21226 210.52 21098 21097 211 15 20961 20943 20192 208 73 l0878 20866 20165 20867 209 15 20905 20932 20918 208 74 209 16 

n 21564 214)4 21324 21288 213 72 21321 21197 211.51 21119 21111 21142 21164 21189 21160 21189 21174 21143 21143 211.10 21149 

21413 213 63 21299 21289 212.45 211.51 211.37 21124 211 27 21125 211.39 212.02 211.98 212 10 212.25 212.14 21255 21240 211 86 21203 

212.98 21226 212.15 21194 21323 212.15 212.24 21214 210.02 210.16 210.29 210.32 210.43 210.72 210.87 210.39 21090 21079 21049 210.65 

21249 21177 21042 210 os 210.79 20864 20846 207.95 20769 20756 20783 20794 208 28 20848 20907 20913 208.93 208.94 208.53 208.82 

21401 21414 21386 21320 211.35 21127 21078 21073 21080 211 05 211.15 211.81 211.91 211.93 21197 211.96 212.13 212.03 21149 212.03 

T4 21249 211.90 211 75 211.68 211 77 21229 212.74 210.54 210.31 210.71 21121 21145 211 22 211 74 211.86 21222 212.33 211.86 211.54 21185 

212.30 212.34 211.56 211.46 21146 211.57 21166 210.81 210.59 21037 210.42 210.91 21106 211.35 211.41 211.47 211.36 211.55 211.30 211.SO 

213.02 212.55 21121 210.86 210.78 211.03 210.66 210.53 20964 209.97 210.55 210.76 210.70 211.33 211.34 211.66 21185 211.87 211.24 211.47 

21423 213.57 213.41 21244 212.53 212.47 21204 211.54 210.98 210.91 211.29 211.67 21209 212.05 212.39 212.76 212.97 212.62 212.53 212.75 

21518 214.69 214.33 214.79 211.92 211.17 21069 210.71 211.07 211.59 212.03 212 SO 212.51 212.71 212.84 212.84 21312 21310 212.82 212.74 

T5 214.30 212.92 212.62 212.27 211.60 210.85 211.12 211.51 212.07 21242 213.1 213.63 213.66 213.79 214.45 214.17 214.23 214.24 213.91 213.60 

212.95 212.07 211.84 211.64 210.84 211.08 209.90 210.11 211.08 211.58 212.23 212.49 212.53 212.78 212.71 213.32 213.58 212.93 212.82 212.83 

214.04 213.24 213.16 213.04 213.33 212.90 210.95 211.34 211.SO 211.60 212.36 212.75 213.15 213.30 213.68 213.55 213.53 213.49 212.77 213.16 

216.24 215.86 215.73 215.33 215.14 215.45 21380 213.58 212.78 213.24 213.26 213.63 213.63 214.17 214.37 214.93 214.72 214.74 214.34 214.44 

213.45 212.57 211.97 212.06 211.78 211.84 211.05 210.33 210.49 210.96 211.79 212.27 212.13 212.17 212.51 212.56 212.52 212.69 212.40 212.63 

T6 215.59 214.82 214.24 213.17 212.46 210.80 209.95 211.05 211.87 211.93 212.5 213.07 213.23 213.55 214.06 213.94 214.18 214.75 213.60 213.89 

212.95 212.02 211.38 211.33 209.98 210.12 20975 209.87 210.31 211.59 212.11 212.68 213.24 213.36 213.64 213.74 213.SO 213.65 212.68 212.84 

212.20 211.45 211.01 211.40 210.04 209.92 210.22 210.64 211.05 211.68 212.48 212.56 212.98 213.19 213.61 213.20 213.40 213.49 212.79 213.11 

213.20 211.47 210.89 210.31 209.96 210.00 209.84 210.41 211.03 212.04 212.56 212.84 213.12 213.18 213.13 213.69 213.28 212.92 212.81 213.23 

211.84 211.09 210.81 210.58 210.61 209.47 210.12 210.40 211.40 211.44 211.99 212.47 212.92 213.00 213.12 213.21 212.90 213.11 212.52 212.78 

T7 212.19 211.39 211.38 210.96 210.85 209.86 209.46 210.17 211.03 211.83 212.75 213.09 213.49 213.93 213.63 213.63 214.19 213.98 213.21 213.70 

213.07 212.41 211.93 211.65 211.03 210.03 210.01 210.39 211.15 212.15 213.17 213.09 213.95 214.18 213.99 214.29 214.40 213. 77 213.52 213.84 

213.69 212.92 212.74 212.87 212.71 211.17 210.88 211.16 211.97 212.43 213.24 213.70 213.97 214.85 215.01 214.7S 214.80 214.93 214.05 214.56 

211.62 211.03 210.73 210.66 209.93 209.53 209.40 209.18 209.86 210.34 211.31 212.18 212.21 212.71 212.84 212.95 213.33 212.99 212.27 212.67 

21322, ___ 213,17 212.90 212.65 212.64 211.43 210.SO 211.17 211.75 212.36 212.96 213.44 213.75 214.00 214.65 214.36 Ｒ Ｑ Ｕ 5 ｾ ~ ｾ Ｒ 2 Ｔ Ｎ Ｘ Ｖ 6 214.13 214.48 
- -


