
Guo, Qiang (2011) Evolutionary algorithms and hyper-
heuristics for orthogonal packing problems. PhD thesis,
University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/29311/1/555394.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Evolutionary Algorithms and
Hyper-heuristics for Orthogonal

Packing Problems

Qiang Guo

Thesis submitted to The University of Nottingham
for the degree of Doctor of Philosophy

March 2011

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

PAGINATED BLANK PAGE.

SCANNED AS FOUND

IN ORIGINAL THESIS

NO INFORMATION IS

MISSING

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, lS23 7BQ

www.bl,uk .

PAGE NUMBERING AS

ORIGINAL

2

Abstract

This thesis investigates two major classes of Evolutionary Algorithms, Genetic

Algorithms (GAs) and Evolution Strategies (ESs), and their application to the

Orthogonal Packing Problems (OPP). OPP are canonical models for NP-hard

problems, the class of problems widely conceived to be unsolvable on a polynomial

deterministic Turing machine, although they underlie many optimisation problems

in the real world. With the increasing power of modern computers, GAs and ESs

have been developed in the past decades to provide high quality solutions for a

wide range of optimisation and learning problems. These algorithms are inspired

by Darwinian nature selection mechanism that iteratively select better solutions

in populations derived from recombining and mutating existing solutions. The

algorithms have gained huge success in many areas, however, being stochastic

processes, the algorithms' behaviour on different problems is still far from being

fully understood. The work of this thesis provides insights to better understand

both the algorithms and the problems.

The thesis begins with an investigation of hyper-heuristics as a more gen-

eral search paradigm based on standard EAs. Hyper-heuristics are shown to be

able to overcome the difficulty of many standard approaches which only search

in partial solution space. The thesis also looks into the fundamental theory of

GAs, the schemata theorem and the building block hypothesis, by developing the

Grouping Genetic Algorithms (GGA) for high dimensional problems and provid-

ing supportive yet qualified empirical evidences for the hypothesis. Realising the

difficulties of genetic encoding over combinatorial search domains, the thesis pro-

poses a phenotype representation together with Evolution Strategies that operates

on such representation. ESs were previously applied mainly to continuous numer-

ical optimisation, therefore being less understood when searching in combinatorial

domains. The work in this thesis develops highly competent ES algorithms for

OPP and opens the door for future research in this area.

1

Acknowledgements

The study on the area of combinatorial optimisation and evolutionary algorithms

is a challenging but exciting journey. Without the help from many people it

would not be possible to finish the journey. Firstly I would like to thank my

PhD supervisors, Professor Edmund Burke and Professor Graham Kendall. They

provided me the wonderful opportunity to study in the area, and always have good

ideas whenever I encounter problems. They are also extremely patient with my

progress and let me explore interesting ideas freely. I also thank Professor Chris

Potts and Professor Miguel Anjos for their inspiring lectures during my Master's

study. I am indebted to Professor Jay Yellen at Rollins College. During his visit

to my school, we discussed some ideas on graph modelling for packing problems.

He gave me almost one-on-one tutorials on graph theory which is a very important

foundation in combinatorial optimisation and will greatly help my future research.

Lastly I thank my family for their constant support and unconditional love.

2

Contents

1 Introduction 1

1.1 Background and Motivation 1

1.2 Contributions 3

1.3 Overview ... 5

2 Literature Review 8

2.1 Introduction . 8

2.2 Typologies . . 10

2.3 Orthogonal Packing Formulation 14

2.3.1 One-dimensional Problems 14

2.3.2 Multi-dimensional Problems 17

2.4 Exact Algorithms 23

2.4.1 Approaches to One-dimensional Problems 23

2.4.2 Approaches to Multi-dimensional Problems. 27

2.5 Heuristics 28

2.5.1 Application on One-dimensional Problems 28

2.5.2 Application on Multi-dimensional Problems 31

2.6 Meta-heuristics 33

2.6.1 Genetic Algorithms (GA) 36

2.6.2 Evolution Strategies (ES) 38

2.6.3 Application on One Dimensional Problems 38

3

2.6.4 Application on Multi-dimensional Problems 41

2.7 Hyper-heuristics. 45

2.8 Summary 46

3 Multiple Low Level Heuristics Hyper-heuristic Approach 48

3.1 Introduction 48

3.2 The GA-based hyper-heuristic approach 50

3.2.1 Overview .. 50

3.2.2 Chromosomes 52

3.2.3 Decoding heuristics 54

3.2.4 Selection and replacement strategy 56

3.2.5 Recombination 56

3.3 The hyper-heuristic framework . 57

3.4 Experimental results 58

3.4.1 Feasibility and optimality 60

3.4.2 Performance and consistency . 61

3.4.3 Convergence 63

3.4.4 Effects of the number of heuristics in a set 63

3.4.5 Comparison with other methods . 65

3.5 Summary 66

4 Dynamic Grouping Genetic Algorithm 69

4.1 Introduction 69

4.2 Group Network Model 71

4.3 Implementation 75

4.3.1 Overview 75

4.3.2 Chromosome 76

4.3.3 Group identification 80

4.3.4 Crossover and mutation 80

4

4.3.5 Selection and Replacement .

4.3.6 Hybrid strategies

4.4 Experimental Results .

4.4.1 Effects of () ..

4.4.2 Effects of Recombination Strategies

4.4.3 Effects of Fitness Functions

4.4.4 Hybridised Strategies

4.4.5 Compare with Other Algorithms

4.5 Summary

5 Phenotype Representation and Evolution Strategy

5.1 Introduction

5.2 Phenotype Representation

5.2.1 Definition

5.2.2 Interval Graph Abstraction

5.3 Phenotype Operators ..

5.3.1 Split and Merge.

5.3.2 Shift and Jostle

5.3.3 Relocate...

5.4 Synopsis of Mutation

5.4.1 Drop

5.4.2 Add

5.5 Implementation of Simple ESs

5.5.1 Endogenous Parameters

5.5.2 Adaptive ESs

5.5.3 Exogenous Parameters

5.6 Grouping Evolution Strategy (GES) .

5.6.1 Definition of Groups

5

83

84

85

86

86

87

87

89

90

93

93

94

94

96

98

99

· 104

.105

· 105

.107

· 107

· 108

· 109

· 114

· 115

· 118

· 118

5.6.2 Overview of GES

5.6.3 Implementation of GES

5.6.4 Fitness Function

5.7 Experimental Results .

5.7.1 Simple ESs .

5.7.2 Grouping ESs

5.8 Summary

6 Conclusions

6.1 Summary of Key Contributions

6.2 Limitations and Suggestions for Future Research.

References

A New 2D Strip Packing Instances

B Effects of Mutation Strength of ES

C Convergence of ES

C.1 300 Generations .

C.2 30,000 Generations

C.2.1 Largest first

C.2.2 Prefer large

C.2.3 Random ..

C.2.4 Prefer small

C.2.5 Smallest First

D G ES Critical Ratio

6

· 120

· 122

· 123

· 125

· 125

· 134

· 139

142

· 142

· 147

149

166

167

174

· 175

· 178

· 178

· 181

· 184

· 187

· 190

193

Chapter 1

Introduction

1.1 Background and Motivation

Orthogonal Packing Problems (OPP) belong to the large family of cutting and

packing problems [60, 178], where the objective is to optimise the arrangement

of items into a number of containers. It fits into the paradigm of optimisation,

that minimise (or maximise) an objective function (such as the cost of material),

subject to a set of other constraints (such as limit of weights or sizes). The

problem arises in many industrial settings, from stock-cutting in paper, metal,

glass and many other raw material industries to container, pallet loading in logistic

industries, or even multi-processor scheduling, portfolio management and other

resource allocation problems. Though having a wide variety of applications, the

problem is very difficult to solve, except for small-sized instances which may be

solvable by exact methods. Underlying these applications is the fact that they are

NP-hard problems [79]. NP-hard problems are a class of problems that are widely

believed not to be solvable in polynomial time on a deterministic Turing machine

(not to mention limited memory size in reality). The problem has been receiving

attention from many disciplines for a long time. From an operational research

(or management science) perspective, it remains an extremely challenging topic in

1

optimization problems and complexity theory.

One of the traditional ways for tackling these problems is by exact meth-

ods such as Mathematical Programming 181, 82]' and Dynamic Programming

1118, 175]. These methods can guarantee optimality but only for small-sized in-

stances. Another approach is to use heuristics which usually gives fast, feasible

results even for large sized problems but without the guarantee of global optimality.

For some sub-classes of NP-hard problems, there are some heuristics (Polynomial

Time Approximation Scheme (PTAS)) that can produce approximate solutions

within a constant factor to the optima 164]. However, there are also limitations

that many sub-classes of problems have not had any suitable approximation algo-

rithms 1180]; or for those problems having such PTAS, there may exist an optimal

approximation ratio which imposes a gap to optima 1123] that cannot be overcome.

ｾ ｯ ｲ ･ e recently Evolutionary Algorithms (EAs), among other meta-heuristics, has

been a fruitful research area for Combinatorial Optimisation Problems thanks to

the increasing computational power of modern computers. Meta-heuristics are

often inspired by natural phenomena and work amazingly well across a broad

categories of problems. EAs adopt a more stochastic search paradigm and nor-

mally consists of the mechanisms of recombination, mutation and selection on a

population of candidate solutions. However, EAs are still far from being fully un-

derstood, despite the increased literature in theoretical and empirical studies. For

example, Evolution Strategies (ES) originated for numerical optimisation in real

valued domain, and it remains unknown if some of the search strategies developed

in that area apply to the discrete domain like COP 116]. The dynamics of many

search strategies and parameter settings are still topics that attract interest from

both researchers and industrial practitioners. Orthogonal Packing Problems are

one of the basic models for testing and understanding complex algorithms, sharing

the same combinatorial features as many other problems such as the Travelling

Salesman Problems (TSP), Scheduling, and Timetabling, etc., but has its own

2

distinctive properties.

In this thesis, we addresses the use of Evolutionary Algorithms to solve Or-

thogonal Packing Problems. Our first aim is to contribute to the literature by

using OPP as a test-bed to provide empirical studies that can help reveal impor-

tant properties of EAs on the combinatorial search domain. We also design more

efficient algorithms to provide high quality solutions that are suitahle for use in

the real world.

1.2 Contributions

The work of this thesis makes contribution to both the theory and its application,

and in both meta-heuristics and orthogonal packing problems in general. From

a theoretical perspective, several models and frameworks have been proposed to

better understand the problem and the properties of different algorithms, and

extensive empirical studies also provide relevant evidence:

1. We propose a framework to help understand the capability of multiple de-

coder hyper-heuristics in being able to search larger solution spaces than

single-decoder meta-heuristics. The analysis of the framework is supported

by strong evidence from empirical studies on a class of instances (see Chapter

3).

2. For the on-going debate on the Building Block Hypothesis of Genetic Al-

gorithms, example cases are surprisingly hard to find [161. We use OPP as

a model to explicitly trace the Building Blocks (BBs) and find supportive

evidence that BBs can effectively guide GAs into promising search areas.

However, we also show the risk that the number of BBs may increase ex-

ponentially and eventually hamper the performance of GAs (see Chapter

4).

3

3. For orthogonal packing problems, especially multi-dimensional cases, phe-

notype representation is uncommon. The reason is due to the expensive

computation involved in direct alteration of packings. We propose a pheno-

type representation that suits OPP of any dimension, as well as two generic

operators, split and merge, that can manipulate the phenotype in efficient

ways (see Chapter 5).

4. Evolution Strategies have been mainly applied to numerical optimisation in

real-valued domains, or combinatorial problems which have simple represen-

tations. With the help of the phenotype representation and operators, our

work is the first, as far as we are aware, that extends ES applications to the

more complex domain of OPP (see Chapter 5).

5. The behaviour of ESs for combinatorial domains are much less understood

than for real-valued domains. Discrete search space causes scalability issues

and asymptotic success rate may not exist. Compared to real-valued do-

mains, our study on ESs has revealed a different picture of the relationship

between mutation strength and success rate for OPPs (see Chapter 5).

From an application perspective, we have designed algorithms that can pro-

vide high quality solutions for general OPP cases or address specific difficulties

encountered for certain sub-classes of the problems.

1. The operators for adding and removing shapes from a packing, which we

use throughout the thesis, is a unified approach that cope well with one to

multi-dimension orthogonal packings.

2. The hyper-heuristic approach in chapter 3 can take advantage of multiple

heuristics and solve more classes of OPPs than conventional meta-heuristics.

The HH exhibits the same efficiency as standard approaches with the same

convergence speed.

4

3. In chapter 4, the Grouping GA performs particularly well when high quality

solutions are required and problem sizes are not too large. The best known

results in the literature is able to solve benchmark instances to optimality for

up to 20 shapes, while the GGA has pushed this boundary up to 40 shapes.

4. The self-adaptive ES and Grouping ES in chapter 5 are also efficient solvers

and can be applied to a more general range of instances (even very large sized

problems). They produce results comparable to some of the best results

reported in the scientific literature.

1.3 Overview

Chapter 2 provides a survey of both the Orthogonal Packing Problems and the

state-of-the-art algorithms for solving this problem. The chapter begins with a

brief review of the definition and Mathematic Programming models for OPP, along

with an introduction to the topology of the cutting and packing problems. The

overview on models and topology makes clear both the similarity and distinction

between OPP and other cutting and packing problems. In the following sec-

tions, we present the algorithms in four categories: exact algorithms, heuristics,

meta-heuristics and hyper-heuristics. In particular, we discuss the strength and

weakness of various current approaches, and also explain our motivation to set the

stage for the algorithms we present in the rest of the chapters.

Chapters 3 and 4 consider approaches based on Genetic Algorithms. In Chap-

ter 3 we develop a hyper-heuristic which utilises multiple low-level decoding heuris-

tics. The hyper-heuristic is based on, and compared with, more conventional GAs.

The difference is the hyper-heuristic approach utilizes multiple low-level heuristic

decoders, which is developed specially to address a problem of many standard

meta-heuristics that fail to search entire solution space due to the bias of using

only one low-level heuristic. A theory framework of our hyper-heuristic approach

5

is discussed which explains the capability of the algorithm to search through a

low-level heuristic search space. In the empirical study, we construct a set of new

instances that standard GAs have difficulty to find the optimal while the hyper-

heuristics achieves better results. The results for the new instances provide strong

evidence that the hyper-heuristic can more effectively search the solution space.

We also test benchmark instances from the scientific literature and show that the

hyper-heuristic maintains the same efficiency as more standard approaches. Al-

though the hyper-heuristic we developed is adopting GA as an example, the idea

can be extended to benefit other meta-heuristics.

Chapter 4 is more focused on the search strategy of GAs, in particular, re-

combination of genetic encoding based on the Building Block Hypothesis (BBH)

[871. We investigate the Grouping Genetic Algorithms(GGA) which improves the

performance of a standard GA by enhancing the genetic encoding with explicit

encoding for BBs. The algorithm was first designed only for one-dimensional bin

packing problems [661. To extend it to suit more general cutting and packing

situations, including higher dimensions and single bin (strip) packing, it requires

a versatile definition of groups, therefore a new type of chromosome is introduced.

The new genetic encoding varies in length and consists of individual shapes and

blocks (groups of shapes which have no waste area). The blocks are explicit encod-

ing for BBs, which the algorithm tries to discover during the evolutionary search

process. The blocks, as partial solutions, also incorporate phenotype information

into the genotype encoding. Compared to other algorithms, the GGA can success-

fully solve instances of much larger size. Our empirical study supports the claim

that building blocks play an important role in GA evolution for OPP. However,

we also show the number of BBs grows exponentially with increasing instance

size, which decreases the performance of GGA if we do not contain the problem

carefully. Potential improvements are suggested at the end of the chapter, one

of which, Grouping Evolution Strategies, using more static grouping technique is

6

developed in the next chapter.

Chapter 5 is devoted to Evolution Strategies (ESs) which use phenotype rep-

resentation as its search space, as opposed to genotype encoding in GAs. ESs

are rarely used for cutting and packing problems, because ESs mutate phenotypes

directly which is difficult for combinatorial optimization. In the literature, ESs

theories are mostly derived from problems in continuous domains. For example,

the asymptotic property of mutation strength underlying the standard search con-

trol strategy. To apply ESs to OPP, we first need to design novel, but still generic,

neighbourhood search operators that suit the phenotype presentation. The central

concern of this chapter is to find ES search strategies for combinatorial problems

like OPP, which have very different characteristics than problems in continuous

domains due to the highly interactive variables in solutions and in-differentiable

stepping size in neighbourhood structure. By empirical studies, we discovered,

surprisingly but not unreasonably, two clusters of promising settings for mutation

strength in such a highly constrained and discrete search domain. Through fur-

ther exploring the OPP fitness landscape, we derive a strategy called Grouping

Evolution Strategy (GES), which groups shapes into static groups and applies

different search strategy for different groups. Compared to other ESs, the GES

outperforms other algorithms on most of the benchmark instances.

Finally in Chapter 6 we summarize our key findings and propose some sugges-

tions for future research.

7

Chapter 2

Literature Review

2 .1 Introduction

This chapter is presented in two parts; an overview of the problem and a survey of

various algorithmic approaches. In the first part, section 2.2 describes the typology

of Cutting and Packing Problems (CPP), and section 2.3 presents the modelling

and formulation of these problems. The second part of the review consists a survey

of exact algorithms (section 2.4), heuristics (section 2.5), meta-heuristics (section

2.6) and hyper-heuristics (section 2.7).

A typology provides a classification of various related problems. It is espe-

cially helpful to have a good typology as a road map to the vast amount of the

papers in the literature on closely related topics. We review two typologies pro-

posed by Dyckhoff [60] and Wascher et al. [178], which provide the context of our

research and make clear the relationship between other classic problems and the

Orthogonal Packing Problems (OPP) that will be studied in this thesis. Some of

the OPP (especially one-dimensional problems) can be expressed in a mathemati-

cal programming (MP) formulation. The mathematical programming formulation

captures essential aspects of these problems and can be tackled by efficient al-

gorithms when instance size is limited. When dealing with higher dimensional

8

problems, it is much harder to formulate and solve the problems with mathemat-

ical programming, due to the increase in the number of variables and constraints.

Consequently, researchers often resort to alternative models to understand the

properties of the problems. A useful model is proposed by Fekete and Schep-

ers [74] which utilises interval graphs as an abstraction of a class of equivalent

packings.

Many of the exact algorithms are indeed based on the MP formulations pre-

sented in the previous section. The purpose of the review is to highlight the

advantages and disadvantages of the exact methods. Especially, unless a problem

has special structures that submit itself to linear (sub-linear) algorithms, most of

the OPPs belong to NP; and unless N = NP, most of the OPPs can only be solved

to optimality when the problem sizes are relatively small.

In section 2.5 we review heuristic approaches to OPPs. Heuristic approaches

are studied by researchers for two purposes. First, as an alternative to exact meth-

ods, they provide fast solutions to instances even with very large sizes. Examples

include greedy strategies such as First Fit(FF) and Best Fit(BF) [40]. Some

heuristics for certain classes of problems have been proved to be bounded with

approximate ratios, constant factors to optimal [40]. On the other hand heuristics

normally generate solutions with good quality, even if they cannot guarantee op-

timality or bounds. For this reason, heuristics are often utilised by meta-heuristic

approaches as a sub-routine which we will discuss in section 2.6.

Meta-heuristics iteratively search for, and hopefully improve, existing solutions

based on certain search strategies. \Ve concentrate on two types of strategies;

Genetic Algorithms (GA) and Evolution Strategies (ES), while also reviewing

many other different strategies. Most of these seemingly different strategies are

actually based on a similar idea that a successful search strategy needs to balance

the process of exploration and exploitation. Indeed, De Jong provides a unified

view of various approaches [54], and another type of more general approach, hyper-

9

heuristics, have emerged in recent years that attempts to hybridise and raise the

generality of search methodologies [23].

GA and ES belong to the relatively new paradigm of search strategy known as

Evolutionary Algorithms (EA). One of the distinctive feature of these algorithms is

that they maintain a population of candidate solutions and draw upon historical

and parallel information to carry out the search process. We will review the

theories of these algorithms, which also includes some studies not in OPP domain

but illustrates the behaviour of EAs more clearly. We also examine previous

applications of the EA strategies being applied to OPP.

2.2 Typologies

According to Haessler and Sweeney [98] the earliest formulation of stock cutting

problem can be traced back to 1939 by the Russian economist Kantorovich [119].

Since then the problem has evolved into a large family of problems with quite

diversified objective functions and constraints. On the application side they cover

many real-world problems and often appear under different names, such as the

knapsack problem [161]' stock cutting [80], trim loss [61, 105], bin packing [39],

container loading [160], and multi-processor scheduling [78], etc. (formal defini-

tions of many of these problems will be introduced in section 2.3). Most of these

problems remain open due to them being NP-hard [79] even for the one dimen-

sional problem.

A difficulty we face in structuring a literature review for the cutting and packing

problems is the various ways we could categories the problems. Almost all articles

can be looked at from different angles and can be categorized in at least one of

the following ways:

• according to problems tackled, e.g. is it about one-dimensional knapsack

problem, two-dimensional stock cutting, or any other variant problems;

10

• according to topics addressed, e.g. is it introducing new modelling methods,

algorithms, or analysis of performance of existing techniques; according to

techniques applied, e.g. is it proposing new exact or heuristic or iterative

searching methods.

In fact, classifying the problems is itself a complex task, and two papers [60,

178] are dedicated to this typology specifically. In 1990 Dyckhoff published the

first proposal [60]. He has observed many important characteristics of Cutting

and Packing Problems: dimensionality, quantity measurement, shape of objects,

assortment, availability, pattern restrictions, assignment restrictions, objectives,

states of information and variability. Despite the complexity, he tries to simplify

the categories by concentrating only on 96 types formed by combinations of four

main characteristics:

Dimensionality :

(1) One-dimensional.

(2) Two-dimensional.

(3) Three-dimensional.

(N) N-dimensional with N > 3.

Kind of assignment :

(B) All objects and a selection of items.

(V) A selection of objects and all items.

Assortment of large objects

(0) One object.

(I) Identical objects.

(D) Different objects.

Assortment of small items

(F) Few items (of different figures).

11

(M) Many items of many different figures.

(R) Many items of relatively few different (non-congruent) figures.

(C) Congruent figures.

The above system is easy to use. However, it also causes ambiguity as some

problems cannot be put into a unique category. More recently Wascher et aL!178!

took a more refined approach, which firstly excludes problems having other ad-

ditional aspects than pure cutting and packing problems. For pure cutting and

packing problems, the following characteristics are considered for classification:

• kind of assignment whether the objective function is a maximisation function

(when only a subset of small items can be accommodated, e.g. knapsack

problem), a minimisation one (when all small items need to be packed with

least cost) or multi-objective optimisation;

• assortment of small objects whether small items are identical in sizes, weakly

heterogeneous or strongly heterogeneous;

• assortment of large objects whether the container{s) is{are) rectangular, ho-

mogeneous or inhomogeneous. This characteristic separates problems into

different categories, e.g. pallet loading (one large object with fixed sizes),

strip packing (one large object with infinite sizes on some dimensions), bin

packing (multiple large objects with identical sizes);

• dimensionality whether the problem is of one, two or more dimensions;

• shape of small items whether the small items is orthogonal or non-orthogonal.

This characteristic distinguishes cases between regular and non-regular shapes.

For refined problems, if there are no additional constraints, is it then one of the

'standard' types; otherwise further steps are taken to put it in one of the special

12

problems. The scientific papers from 1995 to 2004 have been classified according

to this system. New papers, along with a categorized bibliography can be found

on the ESICUP website (http://paginas . fe. up. ptresicup/).

Another classification method has been presented by Sweeney and Paternoster 1 17 4].

They collected more than 400 papers, omitting those on complexity and worst-

case analysis, and assigned them into categories forming a 3x3 matrix. Rows of

the matrix are defined by dimensionality from 1 to 3, columns are formed by

solution approaches: sequential heuristics, single pattern oriented (e.g. dynamic

programming based) algorithms, and multi-pattern oriented (e.g. math program-

ming based) algorithms. Some of the mostly studied topics are listed separately,

such as assortment problems, and multi-stage problems. A follow-up work 162], in

1997, selected more than 150 annotated references on various topics grouped into

several topics, which are based on the dimensionality of the problems.

In 1979 Hinxman 1105] published a survey on trim-loss and assortment prob-

lems, considering problems of I-dimension, 1.5-dimensions and 2-dimensions. Haessler

and Sweeney published updated reviews 197, 98] in 1991 and 1992. They gave de-

tailed mathematical programming formulations of these problems and their vari-

ations. In particular, they explained the differences in staged, guillotine/non-

guillotine, non-orthogonal pattern generation.

Dowsland and Dowsland [56] reviewed various classes of 2-dimensional prob-

lems, including guillotine and non-guillotine patterns, bounded and unbounded

pieces of small items, pallet loading, bin packing and strip packing. They also

briefly discussed works up to 1990 on 3-dimensional and non-rectangular prob-

lems.

Other surveys and reviews on specific sub-area are: [40] on worst-case and

average-case analysis of packing heuristics for one dimension problems, 1145] on

empirical study of exact algorithms of 0-1 variant knapsack problems, 176] on

multidimensional 0-1 knapsack problems, [135, 136, 139, 145] on two dimensional

13

problems (including [107] on genetic algorithms), [154] on three dimensional prob-

lems and [15] on irregular shape nesting problems.

2.3 Orthogonal Packing Formulation

2.3.1 One-dimensional Problems

The mathematical formulation of the one-dimensional problems is usually given

as a linear program.

1. The classical 0-1 Knapsack Problem (KP) is defined in [147] as a set of items

i E (1,2" .. ,n) each of which has associated values of cost Ci and profit Pi,

the objective is to choose a subset of items to maximize the total profit while

keeping the cost under a capacity limit, C, of the knapsack, i.e.

max

s.t. "" c·x· < C ｾ ~ t t_

Xi E (0,1)

(2.1a)

(2.1 b)

(2.1c)

for i = 1,2, ... ,n. Xi is a binary variable indicating if item i is selected into

the knapsack. The inequality constraint 2.1 b specifies total cost of selected

items must be equal or less than C.

2. Bounded or constrained Knapsack Problems [159]: This is the first variant

of classical KP, by simply changing equation 2.1b to

Xi E {a, b} (2.2)

where a, b are non-negative integers and a S b;

3. Unbounded Knapsack Problems [149]: This is another variant of KP, by

14

changing equation 2.2 to a = 0, b = 00.

4. Multiple Knapsack Problems (MKP) 11491: This is also called the 0-1 multi-

knapsack problem (or multi-dimensional 0-1 KP in some of the literature,

we do not use multi-dimensional 0-1 KP to avoid confusion with geometrical

multi-dimensional problems). It is also one of the most extensively studied

problems. Instead of having a single capacity we have multiple bins, therefore

multiple capacities. Instead of one limit of C, we have a set of limits Cj

(j E {I, 2, ... ,m}) for each knapsack, accordingly equation 2.1b is then

changed to

(2.3)

and normally we assume Cli = C2i = ... = Cji (which means unit cost of an

item does not change whichever knapsack it is put in).

5. Stock Cutting Problems (SCP) 11761: This type of problem is slightly differ-

ent from the knapsack problem. The standard one-dimensional version can

be described as, a stock of rods with the same length C have to be cut into

m different smaller pieces of length Ci i E {I, 2, . . . ,m} , and least qi piece

of item i is required. The objective is to minimise the total number of stocks

used.

In the seminal paper of Gilmore and Gomory 181], they proposed a innovative

formulation and a column generation method to tackle the problem. They

used column vectors [alj, a2j' ... ,amj]T to represent j different patterns,

with aij, i E {I, 2, ... ,m} denotes the number of item type i in the jth

pattern. Integer variable Xj indicates the number of pattern j in the solution.

The formulation is written as

15

mm LXj (2.4a)
j

.'J.t. Lax >n IJ J _ I (2.4h)
j

X· > 0 J - (2.4c)

6. Trim Loss: This problem relates to the SCP by altering the objective func-

tion to minimizing the total wasted "trims".

7. Bin Packing Problems (BPP) [40]: BPP are also closely related to SCPo

The bins (analogues to stocks) often have the same capacity of C and the

objective is to minimize the total number of bins needed.

n

mm LYj (2.5a)
j=1
m

s.t. L CiXij ::; CYj (2.5b)
i=1
m n

LLXij = 1 (2.5c)
i=1 j=l

Xij E {O, 1} (2.50)

Yj E {O, 1} (2.5e)

for i E {1,2,··. ,n}, and j E {1,2,··· ,m}, n and TTl are the number of

items and bins respectively. The binary variables Xij, Yj are defined in the

way that if bin j is used in packing Yj = 1, otherwise Yj = 0; similarly if item

i is placed in bin j then Xij = 1, otherwise Xij = O. Therefore, the meaning

of 2.5c is that each item must be placed in exactly one of the bins, and in

2.5b all items in bin j must not exceed the total limit of that bin.

16

The above are all strict integer programming models commonly found in the

literature. Other innovative approaches of mathematical programming have also

been studied, such as in [591. However, the mathematical formulations are difficult

to solve in most cases due to the size of the search space. Nonetheless early

research still found ways of applying mathematical programming, such as column-

generation[81, 82, 84], to resolve small-sized problem instances as we will discuss in

the algorithm section (section 2.4). In [311 Caprara provides a detailed discussion

on the properties of integer programming (IP) and associated relaxations. It is also

popular to use relaxed integer programming formulations to obtain lower/upper

bounds.

Beside mathematical programming models, heuristics can generally be re-

garded as another way of modelling problems (as well as solution approaches)

with a view to obtain approximate results within reasonable computational times.

These will be introduced below in the heuristic algorithms section (section 2.5).

2.3.2 Multi-dimensional Problems

When extending cutting and packing problems to two or more dimensions, some

new difficult issues arise. The first issue is the exponentially increasing number of

variables and constraints associated with the higher dimension, which is basically

due to these being NP problems. It is also more difficult to generate feasible

patterns. This means the feasible search space is harder to define, because to

maintain a feasibility in one dimension, we are normally subject to restrictions in

other dimensions. And such restrictions change dynamically as packing procedure

progresses. There are also many interesting variations of the problem, particularly

those requiring certain patterns of layout to be generated.

In a basic two-dimensional problem both small shapes and large containers

have associated widths and heights. The following are some of the most popular

problem variants that have been studied:

17

Bin Packing, Strip Packing These categories are extensions to the one-dimensional

problems under the same names, and can be modelled by classical LP meth-

ods and by introducing variables on each dimension (see below). Thus a

two-dimensional bin packing problem refers to a minimization problem in

the context of two dimensions, while the multi-dimensional stock cutting is

to maximize profit value. Multi-dimensional strip packing can be viewed as

a special case of multi-dimensional bin packing, where only one large con-

tainer with infinite height is provided, and the objective is to minimize the

total height of the layout.

Orientation (Rotation) If the width and height of a small item can be ex-

changed, we say the problem allows rotation or that the items are non-

oriented. Otherwise we say the problem is of fixed orientation.

Guillotine and non-Guillotine Guillotine pattern can be found in many real-

world cutting applications, such as paper and glass industries. It requires a

cut goes from one edge to an opposite edge. Non-guillotine patterns are free

from such a restriction.

Tetris As suggested by its name (after the famous game), some applications

require items start from top and, before settling permanently, move in any

direction except trespass on space already occupied by other items. Such

cases can be easily found in many industrial applications, such as shipping

container loading.

Pallet Loading Sometimes items are of homogeneous nature and can be rotated.

The objective is to load as many of these small items as possible.

Due to the strong connections between one-dimensional and multi-dimensional

problems, classical linear programming and integer programming models can be

extended to higher dimensional problems. In fact, the first integer programming

18

model for one-dimensional problem (in 181]) was soon applied to two-dimensional

problems by the same authors in 1831. To limit the complexity of defining patterns,

the authors studied a special two stage guillotine cut.

Another approach taken by Beasley 1121 and Hadjiconstantinou et a1. 1951 can

be more generally applied to non-guillotine patterns. The model uses Euclidean

coordinates to explicitly define layout patterns. Let binary variable Xipq be equal

to 1 if item i is placed with its bottom-left corner at coordinate of (p, q), and 0 if

otherwise. The 0-1 integer programming can be written as follows, where Vi and

aipq are associated profit and cost of item i:

max L L L ViXipq

iEM pEL qEW

s. t. L L L aipqXipq ｾ ~ 1
iEM pEL qEW

ｾ ~ ｾ ~ LLXiPq ｾ ~ Qi

pEL qEW

Xipq E {O, I}

(2.6a)

(2.6b)

(2.6c)

(2.6d)

for i E {1,2,··· ,m} (or the set M), p E {1,2,··· ,I} (or the set L) and q E

{I, 2,··· , w} (or the set W). Pi and Qi are lower and upper bounds of the quantity

of item i.

The above LP models suffer from a large number of variables and the problem

of redundancy. To avoid these problems, another novel approach by Fekete and

Schepers 171-74], proposed in 1997, takes advantage of interval graph theory to

from a class of packing patterns. These patterns, though having different internal

layout, form enclosed rectangles with equal widths and heights. The idea is for

each pattern, we can always project it to a x and y axis, with item width and height

as intervals along the two axis respectively. The following example (see Figure 2.1)

from their papers illustrates 5 items VI, V2, V3, V4, V5 packed as the pattern shown,

and their projection on x and y axes can be presented in a pair of interval graphs,

19

one for ach dim n ion. Th nod in an int rval graph represent it m , and an

edg exi t b tween two node if their proje tion on the dimen ion v rlap .

. " ..
y , , , ,

Figure 2.1: A two-dimensional packing and the interval graphs GI , G2 induced by
the axis-parallel projection (from [72])

The formal expression of graph presentation is: Let Gi = (V, E i) be induced

graph from proje tion i (i = 1,2, ··· ,d) , (for two-dimensional problems d = 2),

the set of graphs for d dim nsion form a feasible packing class if and only if they

satisfy the following properti : PI: Each Gi = (V, E i) is an interval graph; P2:

Each tabl et S of Gi i x i-feasible, i.e. where p(b) is the starting point of item

band w(b) i the length of b; W is the total length of bin. P3: nt=l Ei = 0 An

advantage of this presentation is a pair of interval graphs can actually represent

more than one packing, but a who I class of packing, which are list d below (figure

2.2). Thi is a desirable thing a it can greatly reduce duplication of equivalent

patterns.

This model ha two major drawbacks. Fir t , it may be the ca e that search

over the graph rather than binary variables, can effectively redu redundan-

cie . However, unfortunately, the ba ic NP-hard problem still exists as it relies on

hecking if ach graph form an interval graph, and this decision problem is still

open in graph th ory. Secondly, treating the shapes indifferently a nodes (non-

weighted nod) is ignoring the size information of ach shape. While this may

20

Figure 2.2: All feasible packings of a packing class have the same interval graph
representation as in 2.1 (from [72])

simplify the model, it can cause infeasible solutions in degenerated cases details

will be discussed in chapter 5 (Figure 5.1). Therefore, we believe this is a flaw in

the original publication when applying this approach to construct a packing from

a pair of interval graphs. However, the interval graphs are still a good abstraction

of packing class, which can be useful to some extent. For example, we can use the

graphs as an abstraction to compare similarity between two packings (see chapter

5 for details.)

There are some other modelling methods exist in the literature which are less

studied, such as a block structure proposed by Mukhacheva and Mukhacheva [153].

21

The block structure uses virtual cuts to split packings vertically and horizontally

before assigning to each piece a notion of ordering defined by the vertical and

horizontal sequences. Imahori et a1. [111, 112J used a sequence pair representation

which is the orders of a shape on x and y dimension. There are also models for

specific variant problems, such as in [140J for level packing and in [37J for container

loading.

In the last part of this section, we define the Orthogonal Strip Packing Prob-

lems (OSPP) which will be studied in the remainder of the thesis. In the classical

Orthogonal Strip Packing Problems [l1J, we are given a large container C, with

width Wand infinite height. We are required to pack into C a set of small rect-

angles R = {Ti' T2, ... , Tn} with (Wi, hi) denoting the width and height for each

Ti E R. The objective is to minimise the total height of the packed rectangles.

Typical assumptions, as summarized by Fekete and Schepers [72], are:

1. Each edge of the rectangles has to be parallel to one edge of the container

(orthogonal) ;

2. We do not require guillotine cutting (free-from);

3. All rectangles must be within the container (closeness);

4. Rectangles must not overlap with each other (disjoint);

5. Rectangles cannot be rotated (fixed orientation).

The problem can be classified as two-dimensional regular open dimensional

packing (2D-R-ODP) according to the typology proposed by Wascher et a1.[178J.

As with its one dimensional counterpart, the two-dimensional orthogonal packing

is also strongly NP-hard [l1J.

22

2.4 Exact Algorithms

Many exact algorithms have been used to tackle one-dimensional problems. Most

of these algorithms are based on the integer programming models in the previous

section. There are two main issues for these models. The first is how to deal with

large instances. The second is how to search through the feasible solution space

effectively. Here we review the most important methods to tackle the difficulties

involved in integer programming: column generation and branch and bound. We

will also look at methods for computing bounds separately.

2.4.1 Approaches to One-dimensional Problems

Column generation To address the large-scale issue, in early 1960s Gilmore

and Gomory [81] first presented a column generation method to trim loss

problem. They used a column vector to represent a possible cutting pattern

from one stock rod, which has m elements each represents how many pieces

of the mth type is cut from the pattern. The problem is then decomposed

to two stages, the first is to decide if a pattern is feasible, the second is to

decide if a pattern should be added into the solution so as to minimise the

waste. To choose a pattern for a subsequent LP, they first solve an auxiliary

knapsack problem which can be solved more easily. Haessler in [961 improved

the methods by placing restrictions on the coefficients, which led to solutions

with fewer patterns and was easier to round to integer values.

Branch and bound Branch and bound algorithms are probably one of the most

widely used exact algorithm. The basic method can be illustrated as a tree

search. The tree is constructed from the root, which in an initial state

with some variables being arbitrarily fixed to certain values. Along branches

the search space is partitioned into disjoint parts, as each branch explicitly

includes or excludes certain conditions. The search starts from the root,

23

and prunes the tree, testing on upper or lower bounds (depending on the

objective function) to avoid enumerative evaluation on each leaf node. It

has been noticed by many the performance of this type of algorithm depends

heavily on how tight the bounds are. In addition, calculating the bounds is

often computationally expensive.

Bounds

To derive an effective bound, Martello and Toth [147, 148, 1511 used a type of

continuous upper bound for the knapsack problems. The bound is obtained by

sorting items then placing them successively into the knapsack according to the

ratio of profit p to cost C of all n items:

Pj > Pj+l

Cj CHI
(2.7)

(for each item j = 1,··· ,n - 1) and until no more items can be placed, a critical

point s is defined as:

s:= min{i: LCj > C}
j=1

where C the total capacity of the knapsack.

(2.8)

If there is any unutilized space, it can be filled by an item with the biggest

unit value of &., (since more valuable items before the critical point are all used
Cs

up). The bound can be written as:

(2.9)

Lower bounds for the bin packing problems (as we are dealing with minimiza-

tion problem) can be computed in a similar fashion, though other methods exist

in the literature, such as Lagrangian, and surrogate relaxation of equation 2.5 (in

section 2.3). The first trivial bound is the sum of total volume of small items,

24

according to 1150], which has computational complexity of O(n) and worst-case

performance of 1/2. And this bound Ll () dominates the Lagrangian relaxation.

(2.10)

Another tighter bound is obtained through a very similar idea for the knapsack

problem. It takes advantage of items larger than half of the bin size, such that no

two items can be placed together. The remaining space of used bins is filled by

smaller items. If any mid-sized items remain unpacked, they open up new bins

with lower bound given by (2.10). Mathematical expression of the idea is, for item

set 1 any arbitrary value c E [0,1/2]:

(2.11a)

(2.11b)

(where 1 is the set of all items and I{i E Ilci > 1 - dl means the number of

items whose volume exceed the threshold I-c). According to [150J the worst-case

performance is 2/3 and the complexity is O(n). L2()is improved by Labbe et al.

in 1129J by further exploiting the characteristics of items within the range of 1/3

to 1/2 of bin size, as two of such items can be put together into a bin. Define a

set 13 for these items, the expression of the bound is:

L3(I) = arg max L3 (I, c) (2.12a)
C-E[O,1/2]

L3(1, e) = I{i E lie, > 1 - e}l + r; 1 + p(e) (2.12b)

where p(c) = max (0, r L Ci - I{i E Ilci E ｛ ｾ Ｌ , c 1 }I- r Ｇ ｾ Ｇ ｬ ｬ Ｉ) (2.12c)
CiE[C-,l-c-]

In 120J Bourjolly and Rebetez proved the complexity of this bound to be

25

O(nlogn) when items unsorted and O(n) when sorted non-increasingly; and worst-

case performance is 3/4.

Another interesting fast bound introduced by Fekete and Schepers in 1701 which

made use of the idea of Dual Feasibility Function (DFF) by Johnson in his PhD

thesis 11151. DFF is a type of mathematical transformation function which maps an

original hard problem into an easier intermediate problem. The function applied

in 1701 is defined as a function u : [0, 11 ｾ ~ [0, 1] if for a finite set of F the following

two inequalities hold:

(2.13a)

LU(X) ｾ ~ 1 (2.13b)
xEF

The bound can be computed in O(pn) time.The DFF approach for deriving

bounds has also been taken for higher dimensional problems, and further developed

by earlier et al. 1331.

Other methods of computing bounds can be found in two recent surveys 1461

and 1451.

Other Exact Methods for One-dimensional Problems

There are some other approaches, mainly hybrid methods, that are worthy of

mention. In 1141 Belov and Scheithauer show a way to combine the branch and

cut and price approaches which leads to an enhanced search process. Dynamic

Programming (DP) is generally an enumerative procedure and therefore not nor-

mally used for problem sizes larger than 20. However, in 1144, 1581 Pisinger et

al. demonstrated one way of using DP to start the search from a core area. The

search first starts from a so called Dantzig integer solution given by formula 2.7

and 2.8, and at the beginning point the incumbent solution only includes one item

s. The DP is constructed by trying to add s - 1 and s + 1, then s - 2 and s + 2

26

and so on. The complexity is O(cn) (where c is a constant and n is the size of a

problem) which enables the method to provide reasonable solutions for instances

of 10,000 items within a few minutes.

2.4.2 Approaches to Multi-dimensional Problems

As with 1D problems, exact algorithms for 2D problems mainly involve branch

and bound and other enumerative techniques, e.g. dynamic programming.

In [146] a search tree is formed by placing or removing an item 011 the so-

called corner points on an 'envelope'. Some procedures are taken to prevent from

producing duplicate patterns.

Similar approaches have been taken in [143, 152] where items are sorted first

according to their height or area. Searching is carried out in a two-stage fashion:

with a first level branch to decide if an item is in a certain bin or not; followed by

a second level branch to decide the exact position of the item within the bin. The

second level can be replaced by heuristic methods to accelerate the procedure by

sacrificing a certain degree of accuracy.

To follow the interval graph representation, Fekete and Schepers in [69, 74]

built a binary tree by including and excluding edges from each node. The search

outperforms previous methods by quite a large margin.

As with 1D problem, deriving proper bounds is crucial to many algorithms,

especially when involving branch and bound techniques. Many of the bounds re-

garding higher dimensions are extensions of the principles of 1D problems. Further

readings can be found in [70, 140, 143].

27

2.5 Heuristics

2.5.1 Application on One-dimensional Problems

Rounding LP Relaxation The idea for this is straightforward. It takes two

phases, and in the first it finds optimal value of a Linear Programming

relaxation which is easier to solve than the Integer Programming fOfIIlU-

lation. In the second phase it searches the neighbourhood of the relaxed

optimal solution. In 1169, 1701 Scheithauer and Terno presented a theoreti-

cal investigation on the Modified Integer Round-up Property (MIRUP) for

one-dimensional stock cutting problems. In 1131 Belov modified the rounding

heuristic and combined it with Chvatal-Gomory cutting planes and column

generation to tackle multiple stock lengths in the one-dimensional cutting

stock problem.

Next Fit (NF) This heuristic was first described in 11151, and is a so-called

online bounded space algorithm. Each piece arrives one after another (i.e.

the algorithm is not aware of the preceding pieces). When one piece arrives

it has to be placed into the current open bin. At any given time only one bin

is available for packing. If the current piece does not exceed the capacity of

the current bin, the piece is placed in it and the algorithm proceeds to next

incoming item; otherwise the current bin is closed and a new bin is opened.

According to Johnson 11151, the worst case ratio is RNF = 2. (The notion

means when item number tends to infinity, the NF algorithm has its worst

to optimal ratio approaches to a limit of 2. The similar notion applies to the

other algorithms listed below.)

First Fit (FF) FF is also an online algorithm, but unlike NF, it is an unbounded

space algorithm, i.e. all partially filled bins are available for packing. Ac-

tually it indexes all bins according to the sequence they employed and puts

28

the current piece into the lowest indexed bin which is large enough. FF runs

in O(n log n) time, and the worst case ration is R[!F = ｴ ｾ ~ [781 .

Best Fit (BF) This packing heuristic checks all partially filled bins which are

large enough for the current piece. The piece is assigned to the bin having

the smallest residual space. It can be implemented in O(n log n) time. For a

specific instance it may behave differently from FF [117], but the FF worst

case is also hold for BF, i.e. RrlF = R[!F = ｴ ｾ Ｎ .

Other Simple Online Algorithms Several other online algorithms have also

been studied, mainly for theoretical analysis of complexity and performance

ratio. So we simply list their definitions here, Worst Fit (WF) fits next item

into the partially filled bin with the lowest level. Almost Worst Fit (AWF)

fits the next item into the partially filled bin with second lowest level. Any

Fit (AF) is a generalized algorithm, which does not start a new bin unless

no current partially filled bins can be used. Almost Any Fit (AAF) never

packs items into the lowest partially filled bin unless there is more than one

such bin. Performance ratios can be found in [116, 1171.

Bounded Space Algorithms Bounded space means only some of the partially

filled bins, instead of all of them, are available for packing. These are vari-

ant versions of NF, FF and BF, respectively. A constant K represents the

number of bins can be kept open at a time. The following relationships hold

[48, 50, 142],

ROO _17+ 3
NFK - 10 IO(K-l)

Roo _17+ 3
FFK - 10 10K

ROO _ 17
BFK - 10

Harmonic Algorithms These are also a set of bounded space algorithms first

introduced by Lee and Lee [1311. The principle is to divide items and bins

29

into K types according to their sizes, say h = (k!l ' iJ. Bins with type k only

receive items of the same type. Woeginger et al [1] uses another improved

version called Simplified Harmonic K (SHk), which uses a more complicated

type of structure. As with Lee and Lee, van Vliet at el. presented the lower

bounds for different K in [1, 36, 131, 177].

According to a theorem in [131]' online bounded-space algorithms have RA' ｾ ~

1.69103. In fact the ratio can be approximated at the limit. Until in 177]

when a repack is allowed, and in an unpublished script by Grove where

look-ahead is allowed, the ratio can be guaranteed.

Other Arbitrary Online Algorithms There are some other online algorithms

which can improve those relatively simple ones introduced above: Group-X

Fit (GXF) [116], Refined First Fit (RFF) [182]' Refined Harmonic (RHk)

[131]' Modified Harmonic (MHk) [163]. A good summary of them can be

found in [40].

Omine Algorithms These algorithms are allowed to chose any item freely and

pack it to any available bins that are large enough. Among those the mostly

notable ones are First Fit Decreasing (FFD) and Best Fit Decreasing (BFD).

They both sort items by a non-increasing order and pack them according

to rule of FF and BF correspondingly. It has been approved in [9, 116]

Roo - ROO _ 11
BFD - FFD - g.

Sum-or-Squares (SS) The algorithm is firstly presented by Csirik et al. in 1999

[52]. It performs remarkably well in terms of performance ratio and com-

plexity though the idea is quite simple to explain. SS works as an online

algorithm and displays some good self organizing properties. The fitness

function it uses to decide where to put an item is based on Ef:/ Np (h)2,

where B is the bin number, and Np(h) is the number of bins with height h

for the current partial packing p. According to [48, 51]' it runs in time of

30

O(nB). For any discrete distribution in which the optimal expected waste

is sub-linear, SS also has sub-linear expected waste.

2.5.2 Application on Multi-dimensional Problems

Some heuristics for one-dimensional cases can be modified for the strip packing

problem. Baker et al. [11] presented a bottom-up left-justified (BL) heuristic,

which finds the lowest feasible space, similar to one dimensional First Fit (FF),

and packs left justified. Two other heuristics have been described by Liu and

Teng [134]. Rectangles are dropped from the top right corner of the container,

as in a Tetris game, and moved downwards then leftwards until it settles at a

stable position. Contrary to BL, these two heuristics are both top-down left-

justified, which overlook any holes formed by preceding rectangles in the partial

packing. Therefore we regard them as analogues to Next Fit (NF) which never

utilise empty spaces produced at an earlier stage. No heuristics have strictly

adopted the Best Fit (BF) policy, which fits a piece into the smallest feasible

space. Hayek et al. [63] proposed a heuristic related to BF, which matches pieces

to available space based on an assessment of the fitness of both width and height.

A few offline heuristics have also heen extended for higher dimensions, notahly

Gu et al.[93] proposed a Next Fit Decreasing Height (NFDH), Burke et al. [28]

designed a Best Fit Decreasing Width (BFDW) heuristic. Some heuristics have

been specially designed for certain cases, such as packing pieces onto shelves [7,

8, 32, 531. Other classes of one-dimensional heuristics are yet to be developed

for higher dimensional problems, such as Harmonized Fit [1791 which classifies

pieces and available spaces into several types, (e.g. big, middle and small) and

packs pieces into spaces of the same type. It is worth noting that a lot of analysis

in relation to worst-case and average-case performances has been carried out on

one-dimensional cases. One important conclusion is that no heuristic consistently

outperforms any other for all classes of problems. Examples are given in [40],

31

for both online and offline heuristics, worst-case and average-case restricted to

uniform distribution of items' size. For higher dimensional problems, although

they are less thoroughly understood and fewer results have been reported so far

lID, 32, 53, 93, 121, 173], similar observations have been noted, e.g. for some

ordered lists Best Fit generates better packings than First Fit, while for some

other lists the opposite is true.

Compared with 1D problem, some new concepts appear in higher dimensions.

They are mainly for the purpose of pattern generation which is not an issue in 10.

Bottom Left (BL) Many of the 20 heuristics assume items are bottom-left (BL)

justified when finding a placement point, i.e. items are put into a bin one by

one, at the lowest and left-most position according to the states of partial

packing when each piece arrives (see 111]). It is easy to see the BL is an

online algorithm. The worst case performance is 3 for the BL algorithm. In

Chazelle's 135J implementation the algorithm runs in O(n2
).

Bottom Left Fill (BLF) By looking at the patterns generated by the BL al-

gorithm, one may have an instant impression that this algorithm creates a

lot of empty space, which can be better utilized by placing small items into

these holes. The idea results in an improved heuristic 14J which may have a

better performance ratio. We have not found any report on proving worst

or average case ratio for BLF. But our empirical study shows BLF performs

better than BL, which also agrees with our intuition explained above.

Best Fit (BF) The algorithm [28J follows the above thinking, i.e. minimize

wasted space at each step of packing (creating as few holes as possible). It

does this by looking for information on current partial packing and all items

left unpacked, and finds for each piece the best matching space. To reduce

running time, items are sorted by non-increasing height. By an empirical

study we found BF is usually better than BL and BLF, though run times

32

inevitably increase (as it is an off-line algorithm requires more information

to process from each step of packing).

Lowest Fit Left Right Balanced (LFB) In [183] a heuristic is proposed that

finds the lowest feasible position for a shape and align it to left or right so

that the distance to the edge is minimised.

Other Heuristics There are some other ways to simplify the pattern generation.

One of them is to use the so-called level packing, which packs items in a line

at the same level. When an item cannot fit, it creates a new level on top of

the current highest item, and puts the rest of the items on this new level;

and so on. For such a variant, many heuristics of ID problems can be easily

extended and applied. Surveys by Csirik et al. [49] and Coffman et al. [41]

cover many such heuristics: worst case ratios for Next Fit (NF) and Next

Fit Decreasing Height (NFDH) are 2, and for First Fit (FF) and First Fit

Decreasing Height (FFDH) are 17/10.

2.6 Meta-heuristics

Meta-heuristics is a generic name for the class of optimization algorithms that

iteratively search for better solutions. The basic idea that underpins most meta-

heuristics is based on the fact that, although solutions of a problem might be

multi-modal and/or discrete, they normally exhibit some degree of 'similarity'

between each other. The relationship enables us to arrange the solutions into a

structure called a neighbourhood. An existing solution can be altered within the

structure by a step or a move to another point in its neighbourhood. Normally,

the bigger a step the less similarity there is between the old and new solutions.

This provides a foundation of many search algorithms. Different strategies control

the move in the solution space, deciding whether to accept the new solution or

not, to maximum the chance we find the optima.

33

A simple search strategy is local search, which includes First Descent (FD) and

Best Descent (BD, also known as steepest descent). In first-descent, an existing

solution will be replaced by the first, if any, better solution; while in the latter,

all neighbouring solutions will be enumerated and the best will be chosen as new

candidate, ifit is better. Compared to FD, BD usually has a better solution quality

at the cost of more evaluations. An issue with simple local search algorithms is,

when the search space is discrete and multi-modal, they tend to become trapped

at a local optima, i.e. no neighbouring solutions are better than the current one,

even though a non-neighbouring solution might be. In addition, the move of local

search is not adaptable, the algorithm has no ability to learn from the search

experience; it's also a single-thread search which may not be efficient enough for

large search spaces.

To avoid being trapped at a local optima, more sophisticated approaches have

been introduced such as Variable Neighbourhood Search (VNS) [99, 100], Simu-

lated Annealing (SA) [1241 and Tabu Search (TS) [851. VNS is a more systematic

local search which constructs a hierarchical neighbourhood around an existing so-

lution and searches iteratively from the nearest to farther neighbourhoods until

a better solution is found and substitutes the current one. Simulated Anneal-

ing (SA), Tabu Search (TS) accept worse solutions strategically with the hope

of escaping from the local optima. SA simulates the physical annealing process

in metallurgy, in which atoms actively change initial positions when the temper-

ature is high and gradually settles down as the temperature is decreased. SA

uses the temperature as a controlling parameter, initially being set very high to

encourage diversification in the search space by allowing many worse solutions to

be accepted. As the search progresses the temperature is lowered to allow more

focused exploration. TS applies a more explicit strategy that maintains a list of

moves which will be forbade for a certain number of iterations.

Evolutionary Algorithms (EA), include Genetic Algorithm (GA), Genetic Pro-

34

gramming (GP), Evolution Strategies (ES) etc., are more sophisticated search

paradigms, which were first formalized in early 1960s but have flourished only since

the 1970's due to the advance of more powerful computer technology which made

their application practical. The most notable characteristic of EA approaches is

that they search in parallel with the notion of population for a set of candidate

solutions. With a selection mechanism based on the fitness of each solution. The

fitter candidates in the population have higher chances of being selected for repro-

duction, which mimics the idea behind Darwinian natural selection. The evolution

of one population after another also provides a basis for learning the structure of

the search space. Many recent developments are using the algorithms to build

models of a problem and use the models to direct the search into promising ar-

eas. In the next two sub-sections we briefly review the basic notions of Genetic

Algorithms, Evolution Strategies and their applications on cutting and packing

problems, which provides the foundation for our research.

GAs, GPs and ESs maintains a population of candidate solutions, reproduce

new solutions through variation processes and exert selection pressure to guide

the search. There are significant differences between these two algorithms. GAs

search in the space of symbolic encoding (genotype), while ESs normally pro-

cess phenotypes directly. In the reproduction and variation processes, GAs rely

more on recombination of multiple existing solutions (parents) while ESs tend

to use mutation. The theory behind GAs are largely based on schema theorem

and building block hypothesis, while ESs find its root in asymptote properties

of gradient landscape and Markov Probability. GPs differ from GAs in that the

population consists of specialised individuals of computer programs (or functions)

traditionally implemented with a tree structure.

35

2.6.1 Genetic Algorithms (GA)

The representation of GAs are typically encoded as strings of alphabets with finite

length, called chromosomes. The alphabets can be binary or ordinal numbers.

More complicated chromosomes can also be constructed by elementary strings,

such as those in messy-GA or Grouping GA (see chapter 4), where the primary

strings represent shapes to pack and additional ancillary strings can be used to

indicate bins that each shape belongs to.

Algorithm 1 illustrates the framework of the canonical GA. The core steps

of the algorithm are. the inner loop from line 4 to line 6. With the selection

mechanism (line 4), candidates with higher fitness value are more likely to be

chosen for reproduction. In conjunction with the recombination step (line 5), good

genetic encoding will be inherited and passed to the next generation. This is the

idea of 'survival of the fittest' that hopefully converges the search process to good

regions of the search space. There are many options for the selection and crossover

operators. Selection methods that are most commonly found in the literatures

include roulette wheel selection, tournament selection, and truncate selection, etc.

[1681. De Jong [541 compares various selection methods by an empirical study,

which reveals the relationship between convergence speed and selection pressure.

For the crossover of binary strings, there are one-point, multi-point and uniform

crossover are used, while for ordinal number strings, order-based crossover, partial

matching crossover have been specially designed to guarantee feasibility on certain

problem types. Researchers also recognise the importance of mutation (line 6)

as an operator that provides random small variation to existing solutions. The

benefit of such variation is to prevent premature convergence, i.e. the population

becomes stuck at a local optima with homogeneous genetic encodings. In the

merge step (line 9), there are also two main types of strategies depending on if the

best candidates from parent generation are kept. If they are, the GA are normally

referred as the steady state GA.

36

Algorithm 1 Pseudo-code for the canonical genetic algorithm
1: initialize population
2: while not meet stop criteria do
3: while children less than new pop_size do
4: select two parents from population;
5: crossover to generate two children;
6: mutate the two children;
7: decode and evaluate children;
8: end while
9: merge populations;

10: end while

Theoretical research on GAs has largely focused on the schemata theory 1106J

and the building block hypothesis 187J, which attempt to understand the dynam-

ics of GAs evolution process. A schema is a template of partial genetic encoding,

which can be matched to a sub-set of candidate solutions' encodings. The average

fitness of these candidates provides a measurement of the fitness of the schema.

The schemata theorem also gives rise to the Building Block (BB) Hypothesis.

Bridges and Goldberg 1861 show that short, low-order schemas, the BBs, with

above average fitness will dominate the population, as they will increase expo-

nentially in subsequent generations. Some variants of GAs are trying to identify

and exchange BBs in more effective ways. In real applications many problems are

BB-hard problems, i.e. BBs are hard to find, highly interactive or easily disrupted

1671. The extreme is the phenomenon of deceptive functions 1881. That is, BBs

which are not 'fit' in themselves, are in fact necessary in generating fitter solutions.

Another problem we will demonstrate in chapter 4 is that, while explicit search

for BBs can aggressively direct the search to promising paths, the number of BBs

might increase exponentially for instances of larger sizes. This side effect could

eventually tip the performance scale if not controlled properly.

37

2.6.2 Evolution Strategies (ES)

The general procedure of ESs resemble that of GAs in many steps (see Algorithm

2). In most implementations, both algorithms randomly generate the initial solu-

tions as the starting point of the search (line 1), utilise the populations to search in

parallel (lines 3 to 6) and select good candidates based on their fitness (lines 4 and

8). However, GAs use crossover/recombination operator as the main reproduction

method and mutation as an assisting variation operator, while ESs places greater

emphasis on mutation. As such both have very different underlying theories 116].

Algorithm 2 Pseudo-code for the canonical evolution strategies
1: initialize population
2: while not meet stop criteria do
3: while number of new children less than pop size do
4: select a parent from population based on fitness;
5: clone and mutate to generate children;
6: adjust mutation strength;
7: end while
8: merge populations based on fitness;
9: end while

2.6.3 Application on One Dimensional Problems

Meta-heuristics have been applied to cutting and packing problems as they pro-

duce good quality solutions thanks to the increasing power of modern computers.

For one dimensional problems, as the representation of a problem is much simpler

than higher dimensional problem, standard meta-heuristics can often be applied,

while in the high dimension scenario, many of these approaches use a hybrid strat-

egy combining a meta-heuristic together with a placement heuristic. For example,

in a typical GA method, the GA searches for the best permutation of shapes that

enables a decoder to return a good packing solution. In addition, many hybrid

meta-heuristics are also devised in the literature to form stronger strategy for cer-

tain problems, such as Memetic Algorithms combining Evolutionary Algorithms

38

with Local Search can often improve the results of many problems. In this sec-

tion, we review application of these algorithms on one dimensional problems, more

complex and hybrid applications on higher dimensional cases will be introduced

in the next section.

Local Search (LS) In [ISS] the neighbourhood is simply defined as exchanging

up to p items in one bin and q items in another. In addition to two typ-

ical search methods, Best Improvement (BI) and First Improvement (FI),

another search method, Priority Improvement (PI), is presented as follows:

Step 1 sorts bins according to a specified priority so that bin i has the ith

highest priority. Step 2 for m = 3 to 2N - 1 (N is the number of bins),

searches the neighbourhoods between all pairs of bins i and j (i < j) such

that i + j = m.

Shouraki and Haffari [171] investigated the fitness landscape of one dimen-

sional Bin Packing Problems, they applied the STAGE search [113], a variant

of Local Search, to the problems and compared it with steepest descent, first

descent and stochastic hill climbing. The STAGE algorithm uses a learning

strategy to construct predictive evaluation functions rather than the static

objective function to guide search.

Simulated Annealing (SA) Foerster and vVascher [75] tackled a variant of one

dimensional stock cutting problem which has items in batches of orders

and the objective function is to minimise the maximum span of any batch.

The SA they designed features a standard Boltzmann function e(1) for

acceptance probability, a decreasing temperature with coefficient of 0.75 and

an increasing number of search loops with coefficient of 1.15 after each move.

The solution quality is equivalent to 3-opt but using much less computation

time.

Genetic Algorithms (GA) Early implementations of Genetic Algorithms usu-

39

ally use binary string encodings. However, this approach encounters some

intrinsic difficulties for cutting and packing problems 1164J. In 1164J Reeves

pointed out that another encoding method called q-ARY has some defects,

though the method improves binary encoding to some extent. According to

his studies hybrid GAs with some simple on-line heuristics, notably FF, BF

and NF, are promising approaches. Some combination of reduction proce-

dures and linear programming are also compared in this paper.

The current state of art shows that two other approaches arc promising.

The first, Grouping GA (GGA), was introduced by Falkenauer 166, 67J. The

other, combining GA with an online decoding heuristic, will be discussed

in a later section as it is mainly used for 2D packing problems. GGA is

designed to handle the so-called problems of redundancy and disruption of

schema in GAs. Instead of single string chromosome, each has an additional

labelling string. Genes are said to be in the same group if they have the same

label indicators. Genetic operators such as crossover and mutation work on

a group basis. A novel fitness function is also proposed in 166J. Bhatia

and Basu 117J modified GGA slightly and proposed a multi-chromosomal

encoding for bin packing problems.

Ant Colony (AC) In recent years, ant systems have drawn a lot of interest from

researchers. In 1132], Levine and Ducatelle hybridised Ant System with the

FFD pack heuristic and a local search improvement by Martello and Toth

1150J. Their approach encodes the pheromone T(i, j) as the favourability of

having item of size i and j in the same bin. The pheromone will be reinforced

if two items appear in the same bin produces a good solution. In 121], the

pheromone matrix is defined as one row for each item size and one column

for each remaining space. A new pheromone updating function and fitness

function can be found in the paper.

40

2.6.4 Application on Multi-dimensional Problems

A comparison of various meta-heuristic approaches SA, GA, TS can be found

in [108, 109]. All these approaches utilised the search space of permutations of

shapes. Burke and Kendall [26] also compared the three meta-heuristics but on

a simplified testing problem which has identical shapes and aims to minimise the

bounding box.

Local Search (LS) Faroe et al.[68] used similar representation and neighbour-

hood structure as the simulated annealing in 155] (see below)' but adopted

a different Fast Local Search strategy to avoid the slow convergence issue in

[55].

In [111, 112], Imahori et al. formulated a two dimensional rectangle packing

as a permutation of sequence pair (8+,8_) for each shape. Three neighbour-

hood moves were defined in the paper which swap two shapes' sequence pair

or shift a shape's sequence pair in either or both dimensions.

Simulated Annealing (SA) SA has been studied by many researchers. In 155],

a neighbourhood structure is defined, by a relax-and-penalise strategy, as

shifting items in both x and y dimensions, and the objective function is to

minimize the overlapping area. Searching proceeds by allowing temporary

infeasible overlapping, with the overlap being punished through the objective

function. Lai and Chan [130] represented a SA that searches in the symbolic

representation space, which permutes the orders of shapes to be cut. Fainal

[65] extended SA to work with both guillotine and non-guillotine cutting

patterns. Burke et al. [29] created a hybrid two-stage strategy which packs

a sub-set of shapes initially with the Best-Fit 128] deterministic heuristic

followed by a SA search stage permuting orders of the rest of unpacked

shapes (rotation of shapes is allowed in the work). Sokea and Bingul [172]

proposed the combination of SA and an improved bottom left fill heuristic.

41

They also examined the effects of the cool schedule and other parameter

settings of SA.

Tabu Search (TS) Alvarez-Valdes et a1. [21 applied tabu search to non-guillotine

cutting problems where new solutions were derived by altering shapes adja-

cent to waste areas and inserting new shapes. The tabu list was used to keep

from a non-improving move that had similar wasted area (the similarity is

defined by the minimal virtual rectangle covering all wasted area).

Lodi et a1. [137, 1411 presented a tabu search using the neighbourhood search

that tries to rearrange a subset of items into a target bin. The algorithm

always accepts improved solutions; it also accepts solutions not in the tabu

list but having equal fitness value to incumbent solutions; for deteriorated

solutions a penalty function was used to determine if a move is accepted.

The tabu list was designed to prevent repeating the last certain number of

moves performed.

In an unpublished report [471 Crainic et a1. proposed a tabu search algorithm

based on the interval graph representation [741.

Genetic Algorithms (GA) Jakobs [1141 used a GA for more general packing

patterns, including irregular shapes, with generic chromosomes correspond-

ing to orders in which shapes were placed into the bins. A Bottom Left

(BL) packing heuristic is applied to map a genetic encoding to a packing.

The order-based encoding was also applied to three dimensional problems

in [1201. Gomez and Fuente [90, 911 adopted exactly the same encoding as

Jakobs'. They also compared different crossover schemes Partial Matching

Crossover (PMX), Order Crossover (OX) and Cycle Crossover (CX) for such

an order-based encoding. An enhancement of the ordered list encoding was

proposed by Dowsland et a1. [58[, which showed the benefit of incorporating

bounding information of wasted areas when each shape was added. Liu and

42

Teng [134] also improved the standard approach by utilising an improved

BL decoder assigning downward movement with priority and a more so-

phisticated fitness function favouring less fragmented unpacked area. Babu

and Babu [5] extended Jakobs' algorithm to multiple-sheets stock cutting

problem by prefix the chromosome with an index list of sheets used.

Many other special encodings can also be found in the literature. Kroger

[126] applied a GA to guillotinable packing problems. He proposed the

concept of a hierarchical structure of meta-rectangles (a tree structure rep-

resenting the relationship of guillotine cuts) to construct a packing, which

ensures the guillotine pattern at each step and reduces the complexity of

problems. The slicing trees were encoded as a string of alphabet 1, 2, ... , n

for n shapes and v, h for cutting orientation. Kroger [127, 128] also tried

modifying directed graph representation of a packing, where two arcs t-edge

and r-edge indicate "on-top" and "to-right" relationship, by deleting either

one of the t-edge and r-edge for each shape and resulting in a single-edge

directed binary tree encoding. Special operators of mutation and recombi-

nation were introduced to generate new solutions.

Bortfeldt [18] designed for 2D container loading a complex layer structure as

in [19]. The expression of solutions describes layouts explicitly thus does not

need decoding heuristics. Khoo et al. 1122] presented a tree-like encoding

system, which simulates the packing from a bottom left corner towards the

top right hand side. In 1153] Mukhacheva and Mukhacheva showed how to

use a GA for semi-infinite strip packing which utilises a unique represen-

tation of block structure. Instead of ordinal numbers in [114], Goncalves

[92] composed a chromosome with n random keys uniformly distributed be-

tween 0 and 1 and used an extra step to translate each chromosome into a

Rectangle Packing Sequence before calling a decoding heuristic.

43

Some real world applications can be found in the following publications.

[1331 and [1101 dealt with three dimensional and non-convex problems. Her-

bert and Dowsland [1041 tackled pallet loading problems where all shapes

are identical and rotation is allowed. They experimented both one-dimension

binary string and two-dimension binary matrix as representation which pre-

serves the notion of closeness of positions on the pallet. Bortfeldt and

Gehring [191 tackled container loading problem with a GA that represent

the problem with complex layer data structure.

Hybrid Algorithms A tabu search algorithm, hybridised with a parametric

neighbourhood search strategy, is presented in [136-138, 1411. The neigh-

bourhood search acts in a way which rearranges items in k different bins

in an incumbent solution by some heuristics. The parameter k controls the

neighbourhood size, and increases by one if no improving solution is found

or a solution is prohibited by the tabu list. The parametric neighbourhood

search strategy balances the search diversification and intensification by ad-

justing the value of k.

Another hybrid local search algorithms can be found [111, 1121. The authors

examined different relationship types between pair wise items. Based on the

relationship a local neighbourhood is constructed and searched.

Genetic Programming (GP) An innovative Genetic Programming approach

is proposed by Burke et al. in [251. GPs are usually regarded as a meta-

heuristic, in particular, a variant of GA. However, the approach of Burke et

al. searches for better evaluation functions instead of evolving physical pack-

ings, therefore it can be classified as a hyper-heuristic and will be discussed

in the next section 2.7.

44

2.7 Hyper-heuristics

As previous sections have explained, exact algorithms and heuristics are often

tailor-made algorithms and often limited to specific classes of problems. Meta-

heuristics although more versatile still require in depth knowledge on both problem

domains and low level heuristics' properties [44]. This is one of the motivations

behind hyper-heuristics which aim to deliver highly adaptable 'off-the-shelf' opti-

misation tools for wider range of problem domains [27, 165].

Early development of hyper-heuristics were focused on the idiom of 'heuris-

tics to choose heuristics', which includes using greedy strategies [42, 43, 156], or

other meta-heuristics, such as Simulated Annealing, Tabu Search. Some advanced

learning strategies from other areas cross fertilise the research in hyper-heuristic.

In [167] a learning classify system incorporated reinforcement learning into hyper-

heuristic framework. These hyper-heuristics are utilising low-level heuristics that

are pre-determined (only high-level strategies are adaptable). The motivation be-

hind these hyper-heuristics are, given that the different decoders and parameter

sets perform differently, it normally relies on a user's experience (or even intuition)

to make appropriate choices. Being aware of the difficulties faced by heuristic and

meta-heuristics, a natural question to ask is if we can develop an automated sys-

tem which requires less human interaction and can still deal with a wide range of

problems, i.e. can we raise the generality of 'black-box' type of algorithms?

One possible way is presented for one-dimensional bin packing problems by

Ross et al. [166, 167]. In their approaches they associate a set of packing heuris-

tics with different packing states. A learning classifier system[167] and a genetic

algorithm[166], act as higher level managers, looking for an appropriate packing

heuristic to be employed at each step of the packing. In these approaches, a set

of predefined problem states is used to describe the states of partially filled bins

and the remaining pieces. In [167], a classifier system determines the problem

45

states, therefore, the low level heuristic to call. This approach requires a good

understanding between problems and low level heuristics. For many situations,

such as in high dimensional cases, the task of gaining such understanding and

enumerating all possible situations can be non-trivial, thus we have to resort to

different techniques. In [166], a GA is employed to detect problem states and

suitable heuristics to call. As we demonstrate in the next section, some heuristics

such as left-justify or right-justify, may not be relevant to problem states, but are

still crucial in some cases to produce good solutions.

More recently, a new approach emerged which uses the idea of 'heuristics to

generate heuristics'. In [22, 25J Burke et al. applied Genetic Programming (GP)

to evolve a population of functions as packing heuristics. Each individual func-

tion is represented in a tree structure comprising of arithmetic operators and size

measures as terminal nodes. Unlike other hyper-heuristics introduced above, the

GP is generating packing heuristics rather than searching for an existing heuristic

to match a packing state. The ability of the GP to generate new heuristics from

elementary building material (i.e. terminal nodes) is important for the hyper-

heurisitc to ahcieve the goal of self-adaptiveness and generalisation. The Local

Search approach by Shouraki and Haffari [171J (introduced in 2.6.3) also adopts a

learning strategy to construct predictive evaluation functions.

A good introductory paper of hyper-heuristics can be found in [23J. More

recent developments can be found in ｛ Ｓ ｾ ｝] and [34J. Hyper-heuristics have also

been applied to other areas such as time-tabling [24, 162]' and SAT [6, 22J.

2.8 Summary

This chapter has reviewed models and solution approaches of cutting and packing

problems in basic one dimensional and higher dimensional context. There are

various mathematical programming models which can solve instances of small

46

sizes to optimality. Many techniques have been reported in the literature for

solving Linear Programming and Integer Programming models, including column

generation, branch and bound and etc. Heuristic is another type of model, which

can usually find good solutions with less computational cost even for large size

problems. Researches on heuristics are interested in the best, worst and average

performance analysis. More sophisticated approaches like meta-heuristics have

been created to iteratively apply simple heuristics and search for improvements

on solutions. One of the recent developments on meta-heuristics is the approach

of hyper-heuristics, which does not directly search in solution space: but via an

indirect search in the space of combination of multiple heuristic decoders. Hyper-

heuristics have been shown to be effective on many practical problems, however

the theory of hyper-heuristics is still an area needs more investigation. In the

next chapter, we investigate a hyper-heuristic for multi-dimensional orthogonal

packing and show the approach can search wider solution space than traditional

meta-heuristic approaches.

47

Chapter 3

Multiple Low Level Heuristics

Hyper-heuristic Approach

3.1 Introduction

In Chapter 2 we reviewed the standard heuristics and meta-heuristics which are

commonly found in the scientific literature to tackle NP-hard problems, includ-

ing orthogonal packing problems. There are some concerns regarding these ap-

proaches. Firstly, Coffman et a1.[40] pointed out that the performance of one

heuristic, in terms of both worst-case and average-case, may vary depending on

given instances. Their proofs presume a uniform distribution of item sizes and

are applicable to one dimensional problems. Performance for other distributions

and higher dimensional instances are much less understood. The lack of insight

into instance properties and heuristic behaviour causes difficulty in practical sit-

uations when we need to select an appropriate heuristic for the problem at hand.

Secondly, a lot of heuristics are designed to guarantee feasible packings, especially

in high dimensional cases. These heuristics may be so biased that they might not

be able to construct certain patterns, effectively stopping us being able to find the

optimal solutionIIl]. The limitation is also inherited by any meta-heuristic which

48

employs only one of these heuristics.

Hyper-heuristics are an emerging search methodology that are motivated by

the goal of raising the level of generality of search methods to overcome the dif-

ficulties encountered by standard (meta-)heuristics. The approach has been suc-

cessfully applied to many problems [23, 27, 38, 165]. In this chapter, we propose a

genetic algorithm based hyper-heuristic approach, which is able to overcome the

bias of just using one heuristic and is able to search a larger solution space with-

out loss of efficiency. The hyper-heuristic intelligently chooses a suitable heuristic

each time we need to place an item, which enables it to achieve a higher level

of generality by operating well across a wide range of problem instances. There

are two main differences from previous, standard genetic algorithm approaches.

Firstly, a set of heuristics will be utilised, so as to avoid any shortcomings in

only using one. Secondly, the chromosome in our hyper-heuristic framework en-

compasses both heuristic information as well as which item to pack. Therefore,

in our approach we enhance the standard GA encoding, where a chromosome is

a permutation of items, by adding a set of heuristics together with probabilistic

information. Such information will facilitate choice decisions in selecting heuris-

tics rather than relying on a user's arbitrary judgement. A learning mechanism is

responsible for updating the probabilities according to the historical performance

of the heuristics we employ, thereby influencing future behaviour. The aim is to

build a black-box system that can raise the level of generalisation at which the

algorithm can perform on this class of problems.

While there is no formal definition of hyper-heuristics, they can generally be de-

scribed as heuristics (or meta-heuristics) to choose heuristics (or meta-heuristics)

[27]. Burke et al. [23, 271 and Ross [165] introduced a conceptual framework

which suggests a segregation of the roles between the high level search and low

level heuristics. The higher level acts as an overarching search strategy but instead

of searching through a problem space the search operates on a set of heuristics,

49

where each heuristic transforms the underlying problem in some way. That is,

the hyper-heuristic searches through heuristic space, rather than, more tradition-

ally, searching through the problem space. Nevertheless, the precise dynamics of

high level and low level (meta-) heuristics is still not fully understood. Therefore

we propose a refined framework for our particular approach, which helps explain

the behaviour of our method. We draw on further evidence to support our con-

clusions by testing our methodology on two-dimensional orthogonal strip packing

problems, and comparing our results against standard GA approaches.

The rest of the chapter is structured as follows. Section 3.2 presents our hyper-

heuristic approach. Section 3.4 reports our results on benchmark instances. Sec-

tion 3.5 present our conclusions and suggestions for future work.

3.2 The GA-based hyper-heuristic approach

3.2.1 Overview

Our hyper-heuristic approach is based on a genetic algorithm (Algorithm 3). How-

ever, it differs from standard GAs by utilising a set of decoding heuristics at the

lower level instead of only one. To facilitate the choice of heuristics, the standard

chromosomes are enhanced by combining the order of rectangles with heuristic-

probability pairs. Section 3.2.2 gives more details on the chromosomes. Compared

to the hyper-heuristic approach using static learning classifier system[166, 167], our

approach adopts a more dynamic roulette-wheel selection mechanism to choose an

incumbent heuristic from the candidate set (line 11 in Algorithm 3), along with an

adaptive learning mechanism to intelligently recognise the more suitable heuristics

within a set (lines 15 to 19 in Algorithm 3).

9max is the maximum generation in search usually determined by the com-

putational time allowed. In each generation, the algorithm generates a set of S

solutions. For individual packs the set R of items with probabilistic choice of

50

Algorithm 3 Pseudo-code of the GA-based hyper-heuristic framework
1: set generation counter 9 = 0;
2: for x = 1 to population size do
3: permute shapes by random shuffle R = {rl' r2, ... , rn};
4: for rectangle ri E R initialize a set of heuristic-probability pairs (hi, pf);
5: evaluate Sx and insert into population S;
6: end for
7: while 9 + + ::;: 9max do
8: select parents sx, Sy E S;
9: generate new child Se by crossover and mutation of sx, Sy;

10: for i = 1 to n do
11: choose a heuristic hi according to probability pf;
12: pack ri with hi;
13: end for
14: se to child set Se;
15: set Do = (Heightsx - HeightsJ/Heightsx;
16: PI = pf + Do;
17: for i E J \ j do
18: update pf';
19: end for
20: merge Se, S into S;
21: end while
22: return best solution Sbest E S.

heuristics from the heuristic set of J. ri, hi and pf denote the ith rectangle and

the associated jth heuristic with the probability pf of being used.

Given the many heuristic decoders reviewed in chapter 2, an immediate ques-

tion we need to answer is how many, and what type of heuristics, are to be included

for selection. We will use empirical experiments to investigate the proper size and

type of the heuristic set. In addition, we compare two alternative versions of the

hyper-heuristic to decide the types of heuristic decoders:

1. Non-competing heuristic sets (NC-HH): The types of heuristics are

fixed. They are all available to pack each shape no matter how low the

probability of one being called might turn out to be (see lines 7 to 9 in Al-

gorithm 4). In this version, although the heuristics hi are arbitrarily chosen

and remain static, the probabilities pf are updated adaptively and the search

procedure is still a dynamic probability selection mechanism. Algorithm 4

51

shows details of the refined procedures for this version of the hyper-heuristic.

Algorithm 4 Refined pseudo-code for ｾ ｃ Ｍ ｈ ｈ H
1: / /refined initialising (replaces line 4 in Algorithm 3)
2: for i E {1,2, ... ,n} do
3: initialize a set of IJI heuristics, and set each p{ = Iii;
4: end for
5:
6: / /refined updating (replaces lines 17 to 19 in Algorithm 3)
7: for j' E J \ j do

. . ｾ ~

8: pf' = pf' - IJI-l;
9: end for

2. Competing heuristic sets (C-HH): This hyper-heuristic chooses initial

heuristic sets, and it allows badly performing heuristics to be replaced (Algo-

rithm 5). When initializing, the hyper-heuristic randomly selects a sub-set

of heuristics from all those available. During the updating process, if the

probability of a heuristic drops below a threshold level, it will be replaced

by another randomly chosen heuristic. Whenever replacement happens, the

probabilities of the heuristics will be reset to allow the newly introduced

heuristic a fair chance of competing with the surviving members that are

already in the set. All heuristics will be assign a probability of l/PI. In

effect, all heuristics are competing against each other in order to stay in the

candidate set.

3.2.2 Chromosomes

We enhance the standard genetic algorithms' chromosome structure by including

with each item (allele) some probabilistic information for heuristic selection. Each

allele is denoted as a set J of heuristics and probabilities hf and probability p{,

i = 1,2, ... , n. n represents the number of items to be packed and j is a parameter

defining the number of candidate decoding heuristics available to each rectangle.

Figure 3.1 shows a chromosome for the proposed hyper-heuristic methodology.

rl, r2, ... ,r n is a permutation of n items, which defines a packing order. Attached

52

Algorithm 5 Refined pseudo-code for C-HH
1: / /refined initialising (replaces line 4 in Algorithm 3)
2: for i E {1,2, ... ,n} do
3: random select a set of IJ'I < IJI heuristics, and set each pf = d'l;
4: end for
5:
6: / /refined updating (replaces lines 17 to 19 in Algorithm 3)
7: if the incumbent heuristic h{ has pf < Probth then

replace h{ with a new heuristic, set pf = 11'1; 8:

9: reset other non-incumbent heuristics' probabilities J \ j;
10: else
11: for j' E J \ j do
12:

,.,)' ,.,)' ｾ ~
Pi = Pi - IJI-l;

13: end for
14: end if

to each ri there is a set of heuristics and probability pairs. pf determines the

probability that heuristic h{ associated with piece i will be applied, and Lj pf = 1

for each i.

rl r2 ... rn
(hLpD Ｈ ｨ ｾ Ｌ ｰ ｄ D ... Ｈ ｨ ｾ Ｌ ｰ ｾ Ｉ)
(hi, pi) Ｈ ｨ ｾ Ｌ ｰ ｄ D '" (h;, p;)

...

Figure 3.1: A hyper-heuristic GA chromosome

The probabilities (initially set equal) will be updated through a learning mech-

anism. The choosing of a heuristic for each piece is considered as an action that

will be rewarded or punished according to the results of the final packing height,

i.e. the probabilities of incumbent heuristics will be increased if we obtain a better

packing, and decreased otherwise. These changes are made in proportion to the

changes of the height of children compared to their parents. Therefore, the whole

system learns from its interaction with the search problem. For example, a system

may find it tends to apply rules finding lower position for large pieces, while for

small pieces there is less difference in heuristic probabilities. This is a critical dif-

ference between hyper-heuristics and other meta-heuristics, as the hyper-heuristic

utilises this adaptive policy to learn how to choose lower level heuristics.

53

3.2.3 Decoding heuristics

Decoding heuristics for higher dimensional problems are concerned with two de-

cision problems: which space to select for the placement and where in the chosen

space to place the item. For the first question, we will use three categories of

heuristics: First Fit, Next Fit and Best Fit. These heuristics were initially de-

fined in the literature for one-dimensional problems 140]. For higher dimensional

problems there are several difficulties. The partial packing usually contains non-

convex spaces. Some modelling methods 135, 63] divide such a space into several

overlapping sub-spaces. A consequence is that packing a piece will sometimes af-

fect several available sub-spaces, which is different to one-dimensional bin packing

where available spaces are independent of one another. We will next describe a

general data structure which can be used to extend them to higher dimensional

problems. For the second question our hyper-heuristic will consider all four cor-

ners of a chosen space. Therefore, in our experiments, we have twelve different

placement options (and thus heuristics) for each item. As we will present in the

results section, the type and quantity of heuristics will affect the performance of

the hyper-heuristic (possibly because the larger the size of the pool, the poten-

tially higher computational overhead and the larger search space). Therefore, we

limit the candidate sets to a more manageable size rather than using all twelve

heuristics. The data structure is a list of all available spaces La, which is similar to

the implementation of Hayek et a1. 163]. It divides a non-convex empty space into

a finite set of enclosed rectangle sub-spaces. We introduce how to update the list

La, which initially contains only the empty container, when adding shapes. More

details can be found in Section 5.3.1, where both insertion and remove operators

on packings are explained. For example, in Figure 3.2 the original empty space

can be split into 4 rectangle sub-spaces. Note that some of the sub-spaces may

overlap.

When inserting another shape, the placement may affect several overlapping

54

I I -. ------- ------

Before After

Figure 3.2: Changes on availabl spaces (in gr y) before and after plac m nt of Ti

(in bla k)

ub-spac s. For each of the affected sub-spaces, th placement will further split it

into at mo t four smaller sub-spaces. Note, if packing an item in a corner, it will

only create at most two new sub-spaces. Therefore the complexity of the plitting

is at worst O(2n). In practical situations it is normally much less complex because

not all ub-spaces will be affected by one placem nt step, and moreover, the plit-

ting proce s usually g nerates many redundant sub-spaces, which are completely

enclo ed in another larger sub-space and therefore can be removed from thE' li st

at the end of the procedure. As long as we have a complete li st of all avail able

sub-spa es, we can then defin :

1. First Fit (FF): select the feasible sub-space at the low st level, br ak ti s

by choosing the left mo t sub-space (equivalent to bottom-up heuristi by

Baker et a1. [11]) ;

2. Best Fit (BF): select th feasible space with the small est area;

3. Next Fit (NF): sub-spaces not exposed from the top of the partial packing

will be removed from th list (result in a shorter list than FF and BF), then

elect the lowe t fea ible sub-space (quivalent to bottom-left move with

downward priority by Liu and Teng [134]).

For the second decision our hyp r-heuri tic will consider all four corners of a

cho n pace. Ther for in our experiments, we have twelve different pIa em nt

55

options for each item (i.e. FF, BF, NF with four corners each). As we find by

experiments in section 3.4.4, the type and quantity of heuristics will affect the

performance of the hyper-heuristic (possibly because the larger the size of the

pool, the potentially higher computational overhead and the larger search space).

Therefore, we limit the candidate sets to a more manageable size of four rather

than using all twelve heuristics.

3.2.4 Selection and replacement strategy

Parent selection is carried out by an elitist strategy and roulette-wheel selection.

By experiments we found that it is more effective to select parents from the top

third, rather than the entire population, according to fitness values, when selecting

those for reproduction. These parents will generate the same number of children

as the population size. A child chromosome will replace the worst one in the pop-

ulation if it has better fitness value and is not a replica of an existing chromosome

in population. The purpose here is to ensure convergence, while also maintaining

a certain degree of diversity in population.

3.2.5 Recombination

The GA operators are standard, involving a random two-point order-based crossover

(20X) [1681 and mutation for reproduction of populations. Figure 3.3 and Figure

3.4 show how 20X and mutation operate. The detailed settings of parameters will

be introduced in the following sections. In particular, when exchanging orders of

items in a sequence the associated set of heuristics of each item will be inherited.

We have implemented two other operators, partial matching crossover (PMX) and

single point crossover (IX), which also guarantee feasibility. Compared with 20X,

PMX makes little difference and IX performs slightly worse.

56

1 3 4 6 5 2 4 6 1 5 2 3

Heu. Heu. Heu. Heu. Heu. Heu. He-v. He-u. Heu. Heu. Heu. Heu.

Set I Set 3 Set 4 Set 6 Set S Set 2 Set 4 Set 6 Srt 1 Set 5 Set 2 Set 3

t
3 6 1 5 2 4 1 2 4 6 5 3

Heu Heu. Heu. Heu. Heu. Heu. Heu. Hf'u. Heu. Heu. Heu. Heu.
Set 3 Set 6 Set 1 Set S SeU Sot 4 Set I SOU S.,4 Set 6 Set S S .. 3

Figure 3.3: GA 2-point crossover

1 3 4 6 5 2 1 5 4 6 3 2

Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu. Heu.

Set 1 Set 3 Set 4 Set 6 Set 5 Set 2 Set 1 Set 5 Set 4 Set 6 Set 3 Set 2

t t

Figure 3.4: GA Mutation

3.3 The hyper-heuristic framework

In a standard GA, an individual in the search space X is evaluated by a single

mapping function h' to the solution space Y (Figure 3.5). h' is a deterministic

mapping process and it creates a many-to-one relationship from the search domain

to solution space. In our proposed hyper-heuristic approach, we have the same

space of chromosomes which still has n! permutations. However, in the hyper-

heuristic scheme each permutation is mapped through a set of heuristic functions

which forms an intermediate heuristic space (Figure 3.6). If we have j different

heuristics and n shapes, since each shape will probabilistically choose one out of

j heuristics to pack, there will be r different permutations of packing heuris-

tic sequences. For example, for any specific shape permutation, we can apply

(hL ｨ ｾ Ｌ , ｨ ｾ Ｌ ﾷ ﾷ ﾷ Ｉ) or (hr, ｨ ｾ Ｌ , hj,···). It is obvious that standard GAs are simply

special cases of the hyper-heuristic approach where we apply a single heuristic

Ｈ ｨ ｾ Ｌ , ｨ ｾ Ｌ , ｨ ｾ Ｌ , ...) for all shapes. It is easy to see the solution space of standard GAs

are only subsets of the hyper-heuristic solution space. Therefore, a direct conse-

57

quence of this approach is that the solution space is enlarged as the new strategy

overcomes the weakness of a single heuristic mapping. The new solution space

includes the original solution space, since solution space Y can still be achieved by

applying the same heuristic at each step of the packing. Thus the hyper-heuristic

has the ability to find more solutions without losing the original solution space.

Another observation is that the set of evaluation functions are not equally treated.

By the learning procedure each function derives a different probability OiEn Pi of

being called, which leads to the selection of "fitll functions. Finally a possible ef-

fect is that as each function has a chance of being applied, the result will be robust

in terms of a lower standard deviation. These two hypotheses are still subject to

further investigation, but we will use empirical evidence to support these claims.

3.4 Experimental results

The purpose of this empirical study is to examine the effectiveness of the pro-

posed hyper-heuristic, i.e. exploration of a wider solution space, average results,

consistency in terms of standard deviation and speed of convergence. It is also

interesting to investigate the impact of the size of the heuristic sets, which is an

important parameter affecting the size of search space.

The benchmark instances are taken from Burke et aLl28] and the OR-library

(http://people.brunel.ac.ukrmastjjb/jeb/orlib/files/). C1 to C7 are

seven categories with three instances in each and N1a to N7e are 35 non-guillotine

instances. N1 to N12 have the number of items ranging from 10 to 500, and the

other two sets of instances have 16 to 197 items. We have also created a set of

instances to show that hyper-heuristics can explore a wider solution space.

The algorithm was implemented in C++ and ran on a grid computer with

2.2GHz CPUs, 2GB memory and GCC compiler. To obtain statistics on aver-

age and standard deviation, every experiment has been run 100 times. Note the

58

Search domain: Decodingfunction: Solution space:
All possible chromosomes Best Fit + Bottom Left Result packings

Figure 3.5: standard GA framework

Search domain:
All possible chromosomes

(,

Decoding functions: Solution space:
Resutt packings

original
GAs

solution
space

Figure 3.6: Hyper-heuristic framework

computational costs for all algorithms compared in this section are based on the

total number of evaluations rather than time, as counting evaluations provides a

more objective measure for theoretical purpose which exclude factors such as the

programming skills and quality of testing machines. For practical use, running

time is however an important matter, therefore we also provide more information

from our experiment where appropriate.

59

3.4.1 Feasibil ity and optimali ty

The fir t set of xperimenLs is design d to evaluate th effect of multiple decoders.

We cr ated som instan es where gaps exi t in th middl of pattern in the optimal

solutions (as per Baker et al. [11]) . Using only one heuristic will fail to achieve the

optimal patt rn. An exampl of such an in tan e i as follows. ine It m : 60x60,

60x60, 50x50, 50x50, 40x40, 40x40, 10xlO, 10x10, 31x30 to be pack d into a trip

of width of 151. (Note if the last item has size of 30x30 and the strip ha a wi lth

of 150, the shapes would fit perfectly in the strip.) The best results achiev d by

meta-heuristic with a single placement heuri tic (in our experiments GA+ NFBL

(GA with ext Fit and Bottom Left Fill) G +FFBL (GA with Fir t Fit and

Bottom Left Fill), GA+ BFBL (GA with Best Fit and Bottom Left Fill)) and

hyper-heuri tics (both C-HH and -HH ver ion) are 120 and 110 re pectiv ly

Figur 3.7). It is simple to v rify that 110 is the optimal. Assuming the optimal is

les than 110, say 109, the whole area of strip ne ded (including any utilised and

wa ted areas) is 16,459 (151x109), which is Ie than the total area of all it ms

16 530 therefor it is impossible.

l-

I-

Figure 3.7: Best result achi v d by meta-heuristic is 120 and optimal achieved by
hyper-heuristic is 110

Th exp riments provide evidence that hyp r-heuristics can av id the draw-

back of applying only a single heuristic, and find more feasible solution and,

60

possibly, optimal solutions.

Other instances in our new data et are created by choosing a number of pieces

and cutting at random points (see Appendix A for the dataset and Table 3.1 for the

experimental results). By cutting the original pieces in this way, we consequently

create some smaller pieces that may be used to fill the gap in the middle of the

pattern. For example, although there are still small gaps, they can effectively

be shifted to the boundaries of the pattern, i.e. in some cases optimal solutions

can then be achieved by applying a single heuristic, such as the pattern in Figure

3.8, which can be creat d by the bottom-left, or equivalent, heuristics. However,

even if a single heuristic can, in theory, find the optimal olution for the class

of problems created in this chapter, the hyper-heuristics in our experiment still

demonstrate stronger performance, as shown in the next section.

w

Figure 3.8: For some new instances meta-heuristics can achi ve the same best-
result of 110 as the hyper-heuristics, but average-results of meta-heuristi are
still worse (see Tabl 3.1)

3.4.2 Performance and consistency

The proposed hyper-heuristic is searching for a solution indirectly through calls

to heuristics (section 3.3). In experiments presented in this ection we compare

61

Xext Fit I
HH GA

instance 1 nun 110 120
average 112.3 120
st dev. 4.23 0

instance2 min 110 120
average 119.3 120
st dev. 2.56 0

illstallce3 min 110 110
average 113.04 113.7
st dev. 0.93 1.42

instance4 mm 110 120
average 120.B 120.7
st dev. 3.39 2.56

instance5 min 111 111
average 115.26 115.45
st dev. 1.55 1.73

instance6 lIun 120 120
average 121 120.5
st dev. 3.02 2.19

instanee7 min 112 112
average 114.3 115.06
st dev. 1.16 1.46

instanceB min 116 117
average 119.67 120.37
st dev. 1.44 1.B9

First Fit I
HH GA

110 120
110.1 120

1 0

110 120
llB.l 120
3.94 0

110 110
l11.B.') 112,43

1.52 1.56

110 120
120 120.1

2.46 1

111 111
113.1 114.31
2.04 2.16

120 120
120 120.2

0 1.41

110 111
113.26 114.2

1.22 1.49

116 116
117.62 11B.4

1.11 l.29

Best Fit
HH GA

110 120
110 120

0 0

110 120
116.3 120
4.B5 0

110 110
111.77 111.91

1.51 1.65

110 110
119.5 119.6
2.19 1.97

111 111
112.43 113.75

I.Bl 2.35

120 110
120.2 120.1
1.41 1.74

110 111
112.61 113.42

1.21 1.3B

116 114
11B.5 118.82

1.3 1.4

Table 3.1: Results for new instances. For both GA and HH total evaluations are
5,000 (at population size of 50 and 100 generations)

our hyper-heuristic to standard GA approaches 11081 for each category of decoders

(FF, NF and BF).

In Table 3.2 and Table 3.3, hyper-heuristics (NC-HH) utilise four corners while

the GA only uses bottom left positioning. By looking at the average and the devi-

ation we find that the hyper-heuristic performs equally well as standard methods

(producing superior solutions in more cases on the First Fit and Best Fit but

slightly worse solutions on Next Fit). Particularly, for the new class of instances

we created according to Baker et al. 1111, hyper-heuristics are superior.

62

datas('t no. of instances First Fit :'>Il'xt Fit I Bt'st Fit
HHwin GAwin ('qnal HH win GA win ('qnal . HH winGA\\'in -(.(Iimi

nl-nl2 12 5 5 2 2 !) !) 2
c1-c7 21 12 7 2 8 12 11 10 ()

nla-n7t' 35 16 19 0 21 14 0 18 17 0
new 8 8 0 0 6 2 0 7 I 0

total 76 41 31 4 I 37 37 2 I 45 30

Table 3.2: Average over 100 runs

dataset no. of instances First Fit :'>Iext. Fit Bpst Fit
HHwin GAwin (·qual HH win GA win ('qual HH win GA win ('qual

nl-nl2 12 5 6 5 6 8 2 2
e1-1'7 21 13 7 7 13 !) 11

Illa-n7e 35 17 18 0 16 19 () 17 16 2
new 8 5 3 0 3 5 0 5 2

total 76 40 34 2 I 31 43 2 I 39 31 6

Table 3.3: Standard deviation over 100 runs

3.4.3 Convergence

We also carried out a further test to explore the convergence properties of the

proposed algorithm. For each problem, we plot the average results obtained from

10 to 300 generations with a step size of 10 (with a fixed population of 50). The

actual run time for both NC-HH and C-HH are around 2% higher than GA, which

reflects the slight overhead of computation of choosing heuristics. Figure 3.9 gives

examples of the non-competing hyper-heuristic (NC-HH) on two instances (same

results observed on all other instances), from which we can see clearly that the

hyper-heuristic converges as quickly as a standard GA. This result suggests that

the increase in search space can be compensated by the effectiveness of the hyper-

heuristic.

3.4.4 Effects of the number of heuristics in a set

The above experiments show the effectiveness of hyper-heuristics. However, as we

explained in section 3.3, the greater the number of heuristics we make available

to the hyper-heuristic, the larger the search space of the algorithm. In the next

set of experiments we attempt to find a suitable trade-off between the size of

63

42.9 I Instance: c2-1

--- GA --HHI .. ·········HH2
42.7

42.5

42.3

f,
tI 421
ｾ ~

419

41.7

41.5

6 11 16 21 26

,ener.tionl (Xl01

535 Instance:n2

--- GA --HHI ···········HH2

51 .i---

11 16 21 26

,ener.tlonl (Xl0)

Figure 3.9: Average converging over 10 to 300 generations

the set (and thus computational time) and solution quality. In Table 3.4, we

present a comparison between four runs of a hyper-heuristic (C-HH version) where

heuristics are all randomly chosen and the set size varies between 4 and 8. It

can be seen that many of the best results (highlighted) are produced with just

four heuristics, while hyper-heuristics with five or more decoding heuristics are

superior on less instances. The experiment supports our hypothesis that increasing

the number of low-level heuristics makes the search algorithm more effective by

64

combining the strength of multiple heuristics. The experiments also show there

is a trade-off between the effectiveness of multiple heuristics and the increased

search complexity. Interestingly, for larger instances such as nll and n12 (300

and 500 shapes respectively), where the search spaces are already much larger, the

negative effects of increasing search complexity seem not as significant as in smaller

instances, where the hyper-heuristics with six and seven decorlers outperformed

the ones with less decoders. Therefore, we recommend employing four heuristics

for small and mid-sized problems, while for larger problems more heuristics can

be beneficial.

3.4.5 Comparison with other methods

In this chapter we want to evaluate the effectiveness of a GA-based hyper-heuristic

with the primary goal to show the advantages of multiple decoders over a single

decoder. In the literature there are other specially designed hybrid methods that

perform particularly well on cutting and packing problems. Table 3.5 shows two

other approaches, GRASP [31 and a hybrid method of Best-fit with Decreasing

Width (BFDW) [28]. However, many of these methods may have difficulty in solv-

ing certain dasses of problems when only a single heuristic is userl. On the other

hand, the hyper-heuristic's framework is flexible, and we could adopt GRASP as

high-level search strategy and/or BFDW as one of the lower-level decoders. We

believe by combining other meta-heuristics search operators and heuristics de-

coders, the results could be further improved. It is worth noting that the results

from the hyper-heuristic approach are robust as indicated by the smaller standard

deviation values in Table 3.5, when compared to the other approaches. Burke et

al. [27] pointed out hyper-heuristic approaches have the potential to be utilised for

a much wider set of domains which is not the case with bespoke systems developed

for a given domain.

65

Instance set size 4 set size 5 set size 6 set size 7

n1 40 40 40 40
n2 51.51 51.32 51.08 51.22
n3 52.59 52.61 52.65 52.66
n4 84.08 84.29 84.39 84.4
n5 106.19 106.42 106.5 106.42
n6 104.78 104.63 104.7 104.55
n7 110.04 110.37 110.2 110.26
n8 85.79 86.26 86.02 86.35
n9 156.48 156.61 156.7 156.63

nlO 154.36 154.66 154.8 154.64
nll 155.88 155.97 155.8 155.75
n12 317.26 317.28 317.2 317.13

C1-1 20.02 20 20.01 20
Cl-2 21.19 21.24 21.21 21.2
Cl-3 20.09 20.04 20.05 20.08
C2-1 41.64 41.74 41.81 41.67
C2-2 41.35 41.44 41.33 41.4
C2-3 40.97 40.94 40.96 40.95
C3-1 63.23 63.22 63.27 63.22
C3-2 63.14 63.3 63.3 63.3
C3-3 63.34 63.38 63.41 63.4
C4-1 64.72 64.95 64.88 64.98
C4-2 64.59 64.77 64.83 64.88
C4-3 64.13 64.34 64.37 64.41
C5-1 64.41 64.68 64.71 64.72
C5-2 65.12 65.55 65.49 65.51
C5-3 64.58 64.72 64.71 64.79
C6-1 86.05 86.42 86.48 86.48
C6-2 87.11 87.41 87.5 87.33
C6-3 86.21 86.52 86.55 86.53
C7-1 173.41 173.99 174.1 174.13
C7-2 172.29 173.1 173.2 173.05
C7-3 173.65 173.7 174.8 174.54

Table 3.4: Heuristic set size affects results

3.5 Summary

In this chapter we have demonstrated an improvement over standard genetic al-

gorithms by adopting a hyper-heuristic framework to tackle NP-hard problems,

in particular packing problems. The idea is to combine a set of heuristic decoders

66

Instance Opt Burke GA Alvarez- NC-HH C-HH
+ BF Valdes

GRASP
nl 40 40 40 40 40
n2 50 50 50 50 50
n3 50 52 51 51 51
n4 80 83 81 83 83
n5 100 104 102 104 104
n6 100 102 101 103 103
n7 100 104 101 104 104
n8 80 82 81 83 84
ng 150 152 151 154 154
nlO 150 152 151 152 152
nll 150 153 151 154 154
n12 300 306 303 315 314

Table 3.5: Compare with other algorithms

with a high level search operator. The hyper-heuristic is able to raise the generality

of an algorithm by overcoming the drawbacks of just employing a single heuristic.

Both analysis of the algorithm's framework and empirical studies demonstrated

that the hyper-heuristic approach works well and is certainly worthy of further

investigation. The potential benefits can be summarised as follows:

• Compared to standard approaches the hyper-heuristic is able to explore a

larger solution space. Therefore, it has the potential to find the global optima

or better results than some other standard meta-heuristics.

• Its built-in learning mechanism is highly automated requiring less user judge-

ment, as all suitable lower-level heuristics can be put in a set, and the hyper-

heuristic itself will choose from that set. It is also flexible for further expan-

sion by having the option to add new heuristics into the candidate set.

• Our empirical study shows that, by selecting appropriate parameters (in our

case the size of heuristic set), the hyper-heuristic is able to converge at the

same rate as more traditional meta-heuristics, and also to perform more

consistently.

67

In this chapter we have only investigated standard GA as a search operator and a

relatively small number of heuristics as decoders. There is space for improvement

by integrating other (meta-) heuristics into the hyper-heuristic framework, such as

GRASPI3j. However, there is further work required to understand the dynamics

among different level of operators. It is especially interesting to observe the inter-

action and trade-off between the intelligent evolutionary sampling and the more

complex search space.

The hyper-heuristics proposed in this chapter belongs to the family of Evolu-

tionary Algorithm (EA). While for the hyper-heuristics we are interested in the

learning mechanism for the selection of decoding heuristics, other aspects of EAs,

including representation and neighborhood search strategies, have significant ef-

fects on performance. In the next chapters we will investigate these important

aspects of EAs and further improve their performance on the packing problems.

In Chapter 4 we will continue to investigate a GA-based algorithm, which has

an even more sophisticated chromosome representation and explicitly enhance the

building block hypothesis of GAs. In Chapter 5 we will explore a hybrid genotypic

and phenotypic representation.

68

Chapter 4

Dynamic Grouping Genetic

Algorithm

4.1 Introduction

In the previous chapter we improved a standard GA by utilising a set of decoding

heuristics rather than just relying on one. In this chapter, we focus our attention

on a number of fundamental issues surrounding GAs, especially the representation,

the recombination mechanism and the theoretical basis of the Schema Theorems

and the Building Block Hypothesis (BBH). In particular, this chapter further

investigates an important extension of genetic algorithms, the Grouping Genetic

Algorithm (GGA), for solving cutting and packing problems. The algorithm was

first proposed by Falkenauer [66J for one-dimensional bin packing. GGAs use

more complex genotype representations than simple GAs and search for good

partial solutions which are then recombined to build new solutions. The idea is

to explicitly enhance the building blocks (BBs) implied in simple GAs.

This chapter makes contributions on both EA theory and the application of

EAs on Orthognal Packing Problems. Firstly, from an algorithmic perspective, we

proposed a building-block network model to study the evolution of the algorithm

69

which can help to explain the strength and weakness of the algorithm. Based

on Holland's Schema Theorems, the BBH was first proposed by Goldberg et al.

[871 but it received heavy criticism from other researchers [1811. By analysing

the network model, as well as showing evidence from the experimental results, we

show the 'double-sided' effects of BBs. On one side the BBs helps recombination

to be an effective operator, and accelerate the search process, but on the negative

side the number of BBs will increase quickly as the instance size gets larger.

From an application perspective, we further extend the GGA to more general

orthogonal packing problems, including higher dimensional problems and single

container problems (strip packing), for which grouping is more complex. The

algorithm developed in this chapter has been able to solve benchmark instances

to optimality for instance size up to 40 items, while previous best results found in

literature are only up to 20 items.

Section 4.2 introduces a model for multi-dimensional packing problems. The

model decomposes solutions into a hierarchical network of partial solutions. It is

used to describe the relationship among groups of shapes as partial solutions, and

one way to utilise generation-wise information of evolutionary computation to help

selection be more effective. It provides a foundation for the GGA implemented in

Section 4.3. The details of the implementation include how the GGA detects good

partial solutions which are dense areas meeting some prescribed criteria, and how

to select compatible partial solutions to reproduce for the next generation. Results

for this approach are reported in section 4.4. While the simple form of a GGA

shows its strength in some of the instances, the limitation of this approach is that

the number of good partial solutions increases exponentially, and the scalability

deteriorates quickly. Potential improvement approaches are discussed in section

4.3. One of the approaches using a static grouping technique will be presented in

Chapter 5.

70

4.2 Group Network Model

The GGA developed in this chapter uses a different definition for groups compared

to both the one used in the Grouping Evolutionary Strategy (GES) in Chapter

5 and the one by Falkenauer 166]. The GGA introduced by Falkenauer was for

one dimensional bin packing problems and items are naturally grouped by bins.

In higher dimensional packing, a shape's location affects its neighbors' location in

all dimensions simultaneously, while in one dimensional problems a group size is

a simple summation of all member shapes. For strip packing problems, there is

only one container so it is not possible to group shapes by containers. Therefore,

the definition of a group has to be generalized for higher dimensional packing or

strip packing problems.

In this chapter, a group for a multi-dimensional packing is defined as a subset

of shapes 8 ｾ ~ R enclosed by minimal orthotope Q, where shape r E 8 if and

only if r is enclosed by Q. Let 181 be the size (or order) of a group, which is the

number of its shape elements. Let V : r -+ ｾ ~ denote a volume function, i.e. Vi IS

the volume of i. The density of a group is then

and () E [0, 1] is a pre-defined threshold for a 'good' group.

The relationship among groups can be illustrated by a hierarchical network as

shown in Figure 4.1. A node in the network represents a group. A directed edge

(Si' Sj) means Si appears in Sj as a subgroup (therefore the order of Sj is less than

Sj, i.e. lSi I < ISj I). Nodes are arranged in layers from left to right with increasing

size. For example, nodes in the first layer (leftmost) are all individual shapes of

an instance; the next layer on the right contains groups of two shapes that can

be built from layer one; and the rightmost layer are complete solutions containing

71

all shapes. Notice that some directed edges may not go from one layer to the

next but "jump" to a few layers to the right, meaning one group may appear as a

subgroup in another group of several orders larger, ISd - ISjl > 1. Group Si and

Sj are compatible groups when they share no common shapes, i.e. Sj n Si = 0.

First layer:
IndiVidual
shapes

Middle layer:
Groups of 2
shapes

Middle layer:
Groups of 3
shapes

Other middle
lavers

Last layer:
Final solutions
of all shapes

.-----------. .------------- .-----------------. .---------------- .----------------

In

CD

3

I
I
I

4

I
I
I

111 2 I

111 2 14 I
I
I
I

I
I

ｾ ~
I
I
I

ｾ
ｓ ｬ l

4 2
3

I
I
I
I
I I

I
I

I
I
I

I I

'-----------' '-------------- '-----------------' Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ~
I I
I ______ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ~

Figure 4.1: Hierarchical network of groups of a packing problem (some arcs and
packings omitted for clarity)

The network describes the relationship among partial solutions. Although

having an incremental nature, it is, however, not a model for an online packing

process as many heuristics are. As explained before, a node may jump, meaning

the it does not necessarily align with another shape to make a larger group but

it may align with other groups containing a few shapes to transform to a new

group of several orders larger. Moreover, even if a node increases its order by

one i.e. aligned with only one other shape, this newly added shape does not

necessarily come immediately behind, but maybe after many other shapes in the

packing sequence. In essence, the model captures the information of the final

location of each shape rather than consider permutations of packing sequences. It

is a desirable feature since redundancy is avoided and network size is drastically

72

reduced. The threshold () can also help us control the number of nodes in the

network model. For example, when () = 1, we only look at perfectly packed

partial solutions which have no wasted area.

Another feature of the network model is its ability to incorporate statistical

information when nodes transform from low order to high order. Given a group Si,

if we uniformly randomly select a fixed number of groups from compatible groups,

a transition matrix can be calculated to describe the probability for a node to

transform to a larger node. If we maintain a record of nodes identified, not only

within a generation, but for several generations, this probability matrix will be

able to reflect the generation-wise evolution information on how larger groups are

gradually formed during a search process.

There are some limitations of this network model. First, although the number

of nodes is less than the number of permutations of each subset of the shapes, it

can still increase exponentially as instance size increases. In such a scenario, it

is not possible to derive a complete transition matrix as the table would be too

large to compute. Some techniques will be needed to limit the nodes to a more

tractable size, such as those used in Bayesian Optimization Algorithms (BOA)

[157]. Another limitation is for a non-guillotine packing instance where no subset

of shapes can form a group with density above a () value. For example, in Figure

4.2, no subset of shapes can form a no-waste partial packing, i.e. any subset of

shapes is a concave having a very low value of (). In such a case, the network

will not provide much useful information to guide the search. How to model the

packing process for these instances is an interesting open question. For the OPP

investigated in this thesis we do not enforce special patterns (such as guillotine

pattern) and the network model is applicable.

The network model is consistent with the building block hypothesis, since the

nodes can be regarded as explicit building blocks. The model provides the founda-

tion for the GGA introduced in the next section. At the beginning of the search we

73

Figure 4.2: 2D non-guillotine packing

initialize the population, some groups of low orders are likely to be detected and

inserted as new nodes into the left side of the network. During subsequent search,

nodes of higher order are gradually found, mainly by recombining smaller building

blocks, towards left side of the network. The mutation operator may introduce

some new building blocks that have been undetected before. The replacement

strategy used in the GGA approach is not to replace an entire generation, but

only to replace the worst members. This means, in the network, we retain some

building blocks found in previous generations, which are usually smaller on av-

erage. These small blocks are necessary to complement large blocks in building

up further blocks. The threshold () is a control parameter and would be tuned

for different instances. For guillotine instances, there are paths made up with

perfect nodes, zero waste partial solutions, from left to right in the network. We

would like the search to be biased towards such paths, so we can set () to 1. For

instances of free form packing, () tends to be less than 1 to allow more exploration

of not so perfect partial solutions. One difficulty for the GGA is the possibility

of exponentially increasing the number of building blocks. Some remedies can be

conjectured from analysis of the search process within the network model, which

will be explained towards the end of this chapter.

74

4.3 Implementation

4.3.1 Overview

This section presents the implementation details of the GGA. The overall frame-

work of this approach is shown in the pseudo-code (Algorithm 6) and flow chart

(Figure 4.3). There are two important differences between this approach and SiIIl-

pIe GAs. First, chromosomes in the GGA have varied length with each allele

being a single shape or a group of shapes. While in standard GAs, each allele is

an individual shape, thus the chromosomes are made up of these alleles and have

equal length. Secondly, besides the common steps as in standard GAs (lines 3, 4,

5 and 9 for selection, recombination, decoding, replacement), there are a few extra

steps (lines 6, 7 and 8) in the GGA search loop. In line 6, after all shapes being

packed, solutions will be examined to see if any new groups have been created.

Once identified, the new groups will be used to transform the encoding before its

being merged back into population (line 7). The algorithm also moves groups to

a tabu list, if any of the groups has been re-used many times but are not able to

improve the results(line 8).

Algorithm 6 Pseudo-code for grouping genetic algorithm
1: initialize population
2: while not meet stop criteria do
3: select two parents from population;
4: generate two children;
5: decode children;
6: identify groups;
7: transform encoding with identified groups;
8: move unfit groups to tabu list;
9: merge populations;

10: end while

75

population select
, , , , , , ,
, F , , , ,

parents

, , , , , , ,
iii i

merge

crossover
mutation

children decode

i , , , , ,

, , , 8 8 i'

transform
encoding

ｾ ~ remove,;
tabu list

solutions

ｾ ~ identify

groups

Figure 4.3: Flow chart of the search loop in Grouping Genetic Algorithm

4.3.2 Chromosome

In standard GAs for packing problems, chromosomes are most commonly encoded

as linear structures 1109], e.g. vector, list, and the alleles are individual shapes

to be packed. The structure can be modified to suit GGAs by allowing alleles to

be groups of shapes as in Figure 4.4(a). This domain-independent structure has

a strength that it can be used for many other problem domains such as the Trav-

eling Salesman Problem (TSP), and scheduling, etc. Many operators, including

crossover and mutation, are easily applied in order to generate new populations.

For cutting and packing problems, due to the Euclidean geometric property, an-

other potential choice is to use tree structures as shown in Figure 4.4(b), which

is a more natural hierarchical representation of the grouping relationship. Leaf

nodes correspond to individual shapes. Some leaf nodes can make up groups rep-

resented by non-leaf nodes, which may recursively construct further larger groups

up to the root node, representing the final packing layout. If this tree structure is

adopted, tree operators such as those in Genetic Programming (GP) can be used

11251. In this chapter, we implement the linear structure (Figure 4.4(a)) as it is

76

mor ver atil , so that the algorithm develop d h r an be furth r derived into

other algorithms or transferred to other problem domains.

[]

1 2 3

(a) List Chromo orne (b) Tree hromosome

Figur 4.4: Two forms of GGA hromosomes

When initializing the population, a chromosome is simply a random p rmuta-

tion of all shapes. After packing, and in the genetic encoding transform step, if

some shapes can be grouped together, they will b removed from the sequence and

the group will be inserted as a single allele at th location where the first member

of the group appeared in the original sequence. Some complexities in compo ing

and transforming the genetic encoding are explain d below (see Figur 4.5).

ｉ ｾ ｉ I D 10 1 0
decode

original encoding ｾ ~

ｾ ~groupl

IQdI D 1
transform

new encoding «----

Figure 4.5: Grouping Geneti Algorithm transform original encoding to new n-
coding

The first issue, when grouping shapes into a block, is if the den ity () is less

than 1 it will allow gap or "dents" in th block. The block is th n no longer

an orthotope as the original hapes were, but a p cial type of irregular con ave

wher each edge is parall I to one of th axes. One way to handle thi problem i

to use the phenotype operators d veloped in Chapter 5 to pa k su h non-ped ct

77

orthotopes. Another way is to set () equal to 1 to force each group to be a no-

waste orthotope. The latter approach will be adopted for the experiments in this

chapter, while the first approach will be explained in more detail in Chapter 5.

In many real situations multiple groups often exist in one packing solution. The

relationship between any two groups can be categorized into three types: disjoint,

one enclosed within another or sharing some shapes. Some subtleties have to be

considered due to these relationships.

In the first two cases, two important questions to ans\ver are: when transform-

ing the original encoding, how many groups should be used (single or multiple

groups); and if a group contains some subgroups, which of them should be used

(large or small groups)? It is natural to conjecture that different approaches to

these two questions will cause some trade-off between search speed and quality. In

one aspect, the more (or larger) groups being identified, the shorter the encodings

and the smaller search space, which will usually leads to a faster search. Whereas,

more individual shapes (or smaller groups) can help the search be more exploita-

tive around local areas, since smaller pieces give us more leeway and can be used

to fill gaps that would otherwise be wasted. In our experiments, three strategies

will be compared:

1. single group, only the biggest group is used;

2. a greedy strategy using multiple groups with as many shapes as possible;

3. a balanced multi-group strategy depending on the stage of search. Initially

it uses a greedy strategy combining as many shapes as possible, and the

maximum number of groups will be used, while towards the end of the

search some smaller pieces will not be grouped to allow more local search.

When groups share some subsets of shapes, one reasonable approach is to keep

only one of the groups and break up the others into smaller groups until there

are no conflicts. The question IS, when conflict occurs, how to evaluate these

78

groups and decide which ones should be kept and which ones should be broken

into smaller groups. Below are a number of heuristics that could be utilised:

1. favor groups with more shapes. The more pieces grouped together, the

smaller the transformed instance size, and thus the smaller the search space.

However, it is more likely to become trapped in a local optima;

2. favor the groups with largest total volume. Larger groups usually imply a

better lower bound for the rest of shapes;

3. favor the groups with least sum of square of sizes on each dimension. This

heuristic differentiates odd groups which are larger on some dimensions but

smaller on others;

4. for some instances, favor groups with small sizes on particular dimensions.

e.g. in strip packing where we are particularly interested in minimizing the

height, we favor groups with less height;

5. use weighted average on the above measurements to make a more balanced

decision. In our experiments the evaluation is based on a function weighted

on two ratios: the ratio of group volume to total volume of all shapes and

the ratio of group member size to instance size:

V· IS·I
'WI x L J + W2 X IRJI;

iER Vi

where WI, 'W2 are some arbitrary weights depending on preference of size or

volume metrics. In our experiments, as we have no preference, both 'WI, W2

are set to 0.5;

6. probabilistic choice among groups according to some of the measurements

above. In our experiments, we used roulette wheel selection based on the

number of elements in a group.

79

4.3.3 Group identification

The subroutine for identifying the groups within a packing solution needs to be

efficient to avoid expensive computation. As the chromosomes are in a linear

structure to mimic an online packing process, we could check for groups when

each shape is added into the solution (see the pseudo-code shown in Algorithm

7). This subroutine maintains a temporary list of potential blocks, initially set to

empty (line 2). When a shape is added to a solution, a new block starting with

the shape will be inserted first to the temporary list (line 3). It checks the relation

of the newly added shape with the rest of the blocks already in the final list (lines

4 to 14). There are three possible relations: disjoint, overlap and adjacent. When

disjoint (Figure 4.6(a)), there is no effect on the final list and the temporary list.

(As the GGA utilises a standard bottom left heuristic decoder, a disjoint relation

implies that some shapes in between separate the block and the shape. Therefore,

the new group enclosing the block and the shape is either non-perfect orthotope

or a duplicate of the group containing the separating shapes.) If they overlap

(Figure 4.6(b)), i.e. some part of the block is already occupied, and the occupied

space exceeds the maximal allowed ratio 1 - (), the block will be removed from the

list (lines 5 to 9). Otherwise, if they are adjacent (Figure 4.6(c)), a new block,

enclosing both the shape and the block and having minimal size on each dimension,

will be added to the temporary list (lines 10 to 14). After all the shapes have been

packed, we remove any blocks in the temporary list with density ratio less than ()

and merge to the final list.

4.3.4 Crossover and mutation

Crossover on variable length chromosomes is more complicated than for fixed

length chromosomes. When groups from two parents are exchanged, conflicts may

happen if any two groups share common shapes. We will examine two approaches

80

r3 -r-----._

---I

1 r2 1
1

rl

(a) Disjoint, no effect on ex- (b) Overlap, delete (c) Adjacent, enlarg the
isting block the existing bl ck existing block (to the ex-

tent of the dotted line)

Figur 4.6: Relationships between the newly added hap r3 and an existing po-
tential block (the dash-lined area)

Algorithm 7 Pseudo-code for identifying groups
1: for i = 1 to n adding shape Si do
2: init ialize T empList +-- 0
3: T empList +-- TempList U Si
4: for X +-- List.Fir t to Li t.Last do
5: if X , Si overlap then
6: Vcumulatewaste +-- Vcumulatewaste + Voverlap

7: if Vcumulatewaste/vX > 1 - e then
8: List +-- List\X
9: end if

10: else if X , Si adjac nt then
11: N ewBlock +-- minimal orthotope covering X , Si
12: TempList +-- TempList U N ewBlock
13: end if
14: end for
15: List +-- List U TempLi t
16: end for

to handl the issue. The fir t i to avoid conflict by only using groups from one

parent while carrying out rossover on the rest of the shapes. For group inherited

from a single parent, we pass the largest possible group to the children if there

xist multiple ways of grouping. This strategy is named Single Large L Group

(SLG). The other approach, Multip le Largest Group (MLG), exchanges group

81

but with an additional conflict resolving design. The algorithm will iteratively

check each pair of groups and keep only compatible groups in the chromosome.

Another variation of MLG, Balance Multiple Groups (BMG), avoids using groups

which are too large at the latter stages of the search by intentionally selecting

smaller groups.

Crossover for the remaining non-grouped shapes can be of any form of order-

based crossover methods such as partially match crossover (PMX) 1168], or even

standard one-point, two-point and uniform crossover as in standard GAs. How-

ever, in the GGA a crossover operation often leads to conflicts among groups, since

two different groups may share some subset of shapes. When this happens, two

strategies can be used to resolve conflicts. The first strategy is to remove the con-

flicting pieces from one group, which results in an orthotope with holes, and then

the phenotype operators developed in Chapter 5 can be used. The second strategy

is similar to the conflict resolving method used in transforming the encoding, i.e.

gradually breaking up one of the conflicting groups into smaller groups until any

conflicting shapes can be separated and removed from the order. In this chapter,

the second strategy will be used so that we always deal with orthotope packing,

and the fitness functions used to decide which group should be kept are the same

as those in Section 4.3.2.

There are two different types of mutations in the GGA. One takes the form of

standard GAs where two alleles swap their positions in the packing sequence. In

this form of mutation each group is still treated as a whole and appear in the new

solution unchanged. The other form is called re-assemble, in which a group may be

selected and broken up into smaller groups, in the same way as resolving conflicts

among groups during crossover. These smaller groups and shapes will then be

added to the packing sequence to be re-assembled. In this form of mutation a

group may only keep its partial subgroups in the new packing solution.

82

4.3.5 Selection and Replacement

We use the standard truncate selection with selection pressure set to 3 1541, i.e.

the top third will be randomly selected to reproduce a new population whose size

is equal to the size of the parent population. Different selection methods have also

been tested, including tournament selection and roulette wheel selection. Their

performances are similar to truncate selection. The replacement strategy adopted

in the experiments is also the standard replacing-worst strategy.

In GGAs the genotype encoding is represented by groups. One motivation of

this representation is to make the encoding more correlated with the evaluation of

the objective function. However, good partial packings (groups) may not always

generate good overall solutions. There are a few possible explanations: the in-

teraction between groups is not linear and there may be some "bad" groups that

outweigh the "good" groups; or groups slightly out of place may lead to poor pack-

ings especially when the groups get bigger at the latter stages. In our experiments,

we use a combined fitness evaluation to facilitate selection:

where WI, W2 are some arbitrary weights, ｦ ｾ ~ is the fitness of the best group in

an encoding based on chromosome fitness functions in section 4.3.2, E fg is the

sum of fitness of the best group of each individual in the population, fo is the

value of the objective function and lb is the instance lower bound which is used

to normalize the value. In our experiments we will also compare two other fitness

functions: one based purely on group fitness, the other based only on objective

function.

83

4.3.6 Hybrid strategies

Hybridization is an effective strategy in meta-heuristic search [94J. In the experi-

ments in the next section, the GGA utilise two strategies.

Tabu list The idea of using a tabu list to exclude some local search moves is to

avoid the search being trapped in a local optima. In the GG A a local optima

may be caused by some groups dominating the population but those groups

may not be found in the global optima. To implement the tabu list, the

GGA maintains a count of how many times a group is chosen and evaluated.

Once the count for a group is above a threshold, the group will be added to

the tabu list and be excluded from being chosen for a number of iterations.

Restart Random restart is another technique to avoid the search being trapped

in a local optima [89J. The reason for using restart can be justified with the

building block network model. Suppose the initial supply of BBs are inad-

equate and not all initial BBs are in the global optima, the search will end

up in local optima. Even if mutation breaks up existing BBs, the chances of

a new BB forming, which is in the global optima, could be small. In such a

scenario, restart will have more chance of forming new BBs and give them

an equal opportunity in competition with other BBs. Therefore, unlike the

tabu list, this approach regularly re-initializes the whole population from

scratch and intends to find completely different paths to the optimal solu-

tion. The GGA uses the convergence information to decide when to restart,

i.e. if there is no improvement after a certain number of generations, the

population will be re-initialized. Later, we carry out an experiment that will

test the frequency and draw some empirical evidence on good values for this

parameter.

Initial Building Blocks (BBs) As groups are explicit BBs and are gradually

built up from smaller BBs, the initial BBs are critical as they are the starting

84

points which greatly affect the search direction. If too few BBs are supplied

there is a risk of not starting from the right point and subsequently prop-

agating them to future generations. However when too many individuals

are randomly generated, there could be too much noise as the number of

ineffective BBs also increases and more evolution time could be required to

converge the population. So we speculate that there is a trade-off between

too few and too many initial BBs. To test the the effects of initial BBs in the

GGA, we generate more random chromosomes in the first few populations

to produce more initial BBs. As the search progresses random chromosomes

are generated less frequently. This process is controlled by producing more

random packings in the initial few generations with a probability function

1 - .,L where i is a counter of finished evaluations, and im is the maximum
1m

number of evaluations allowed by the GGA. The number of random pack-

ings in percentage of the total number of evaluations is used to indicate the

relative quantity of initial BBs.

4.4 Experimental Results

Our empirical study will investigate the effectiveness of the proposed GGA. It

will also explore the settings for the important parameters discussed in the pre-

vious sections. The benchmark instances are taken from Burke et aLl28J and the

OR-library (http://people.brunel.ac.ukrmastjjb/jeb/orlib/files/). C1

to C7 are seven categories with three instances in each, ranging from 16 to 197

shapes. n1 to nlO have between 10 and 200 items (running time for nll and n12,

containing 300 and 500 shapes, are too long, therefore these instances are not

tested). The algorithm was implemented in C++ and tested on a grid computer

with 2.2GHz CPUs, 2GB memory and GCC compiler. To obtain statistics on

average and standard deviation, every experiment has been run 100 times. The

85

parameters that are common in the GG and G s are set to values that are

mostly found in literature [54]: population size - 100, numb r of generations -

100, crossover rate = 0.99, mutation rate = 0.01, truncate sele tion with pressure

of 3 and replacing only the wor t.

4.4.1 Effects of e

The first parameter of inter st is the threshold value () shown in Table 4.1. For

higher () values, the search is more biased towards non-waste orthotope. While

some instances such as guillotine cases could benefit from a highly biased s arch,

other instances may prefer lower value. of () so as to explore more of the search

space. The best results are obtained when setting () to 1 or 0.97, i.e. using

groups close to zero waste. This suggests search based on les -waste groups (i.e.

good partial solutions) are more likely to achiev better re ults, which is strong

supporting evidence for the Building Block Hypothesis.

1 0.97 0.95 0.9 0.8 0.7 0.6 0.5

nl 40 40 40 40 40 40 40 40

n2 50.00 50.00 50.05 50.12 50.01 50.23 50.17 50.24

n3 53.36 53.31 53.50 53.43 53.59 53.61 53.47 53.59

n4 84.31 84.24 84.36 84.37 84.58 84.42 84.49 84.48

n5 104.86 104.80 104.89 104.89 105.11 105.24 105.11 105.07

n6 103.77 103.72 103.88 103.77 103.90 103.92 103.93 103.94

n7 109.01 109.10 109.07 109.04 109.20 109.25 109.11 109.29

n8 85.94 86.02 85.98 86.09 86.17 86.18 86.11 85.12

n9 155.46 155.47 155.48 155.53 155.81 155.60 155.64 155.84

nl0 153.65 153.61 153.70 153.68 153.78 153.86 153.78 153.83

Table 4.1: Effects of () settings (best results of each row ar highlighted in grey)

4.4.2 Effects of Recombination Strategies

Table 4.2 presents some evidence on the effects of different group recombination

heuristics. The Single Largest Group (SLG) utilises th largest group identified

from a single parent, whil the Multiple Largest Group (MLG) strategy iteratively

86

finds, from both parents, the next largest group which i ompatible to previously

found groups. In Balance Multiple Groups (BMG) we monitor the sear h proc ss

and intentionally diminish the chances of large groups dominating the solutions.

MLG and BMG performed equally well , while both produced better results than

SLG. The result indicates the recombination of BBs is more effective than simple

non-recombination approach.

Largest Multiple Balanced

Group Groups Groups

nl 40 40 40
n2 50.10 50.00 50.00
n3 53.48 53.36 53.42
n4 84.41 84.31 84.25
n5 104.98 104.86 104.86
n6 103.84 103.77 103.73
n7 109.07 109.01 109.01
n8 86.06 85.94 85.94
n9 155.56 155.46 155.47
n10 153.78 153.65 153.58

Table 4.2: Effects of recombination strategies

4.4.3 Effects of Fitness Functions

Apart from the grouping heuristics, we also investigated some different fitness

functions of groups (Table 4.3), as introduced in the previous section. However,

the experiment does not provide supportive evidence for us to favour any heuri tics

over the others.

4.4.4 Hybridised Strategies

The following tables (4.4 and 4.5) show the effectiveness of various hybrid strate-

gies. As we can see the tabu list and restart strategies h Ip to improve the GGA

to some extent. A group will be moved to the tabu list (forbidding it to be u ed

again for some time) if it has been chosen for 100 trials. The criteria for re tart

87

num. of sum of sqare weighted vol &
elements vol. of group on dimension nurn probabilistic

n1 40 40 40 40 40

n2 50.00 50.00 50.00 50.00 50.00
n3 53.39 53.36 53.36 53.35 53.33
n4 84.29 84.31 84.31 84.36 84.33
n5 104.83 104.86 104.87 104.86 104.89

n6 103.77 103.77 103.80 103.78 103.80
n7 109.03 109.01 109.07 109.05 109.01

n8 85.95 85.94 85.94 85.98 85.99
n9 155.49 155.46 155.45 155.49 155.45
nl0 153.68 153.65 153.66 153.68 153.67

Table 4.3: Effects of fitness functions (best r suIt of ach row are highlighted in
grey)

is no improvement in 10 generations. Both tabu and restart mechanisms slightly

improve the performance of the standard GGA.

with Tabu without
List Tabu list

n1 40 40
n2 50 50

n3 52.49 53.36
n4 83.96 84.31

n5 104.88 104.86
n6 103.72 103.77

n7 108.89 109.01
n8 85.98 85.94

n9 155.49 155.46
nl0 153.60 153.65

Table 4.4: Effect of tabu list

The third hybrid strategy u cs a d cr a ing temperature to control th gen-

eration of the initial BBs (Table 4.6). W test d a set of values, the percentage

represents the ratio of randomly generated chromosomes to total valuated chro-

mosome . As the result shows, the initial number of BBs can make a difference to

the results. In our test 10% and 15% give u the best results.

88

restart no restart

n1 40 40
n2 SO SO
n3 53.36 53.36
n4 84.11 84.31
n5 104.87 104.86
n6 103.72 103.77
n7 109.00 109.01
n8 85.93 85.94
n9 155.47 155.46
nl0 153.63 153.65

Table 4.5: Effect of restart

5% 100..6 15% 20% 25%

n1 40 40 40 40 40

n2 50.00 50.00 50.00 50.04 50.05

n3 53.37 53.36 53.37 53.43 53.38

n4 84.35 84.31 84.30 84.35 84.35
n5 104.84 104.86 104.85 104.95 104.92

n6 103.78 103.77 103.73 103.84 103.82
n7 109.05 109.01 109.01 109.07 109.08

n8 85.94 85.94 85.92 86.00 86.02

n9 155.49 155.46 155.46 155.51 155.51

nl0 153.67 153.65 153.64 153.70 153.69

Table 4.6: Effect of initial BBs

4.4.5 Compare with Ot her Al gorithms

The main purpose of this chapter is to ll se grouping techniqnrs to (lnhanc(l standard

meta-heuristics such as GAs to solve the type of NP-hard problems wh re elements

are to be clustered into groups. shown in Table 4.7 and 4.8, the GGA can find

the optimal solut ion for in tances up to 40 shape, whil standard GA and other

methods in the lit erature can only find the optimal for much small er instances.

Even if standard GAs can also find optimal solu tions for 20-shape instance, it only

achieves this with 20% success rate, while the GGA finds th optimal in every run.

89

20 items 30 items 40 items
(opt. 50) (opt. 50) (opt. 80)

min % opt. min % opt. min % opt.

GA 50 20% 51 0% 83 0%
GRASP 50 N/A 51 N/A 81 N/A
GGA 50 100% 50 18% 80 3%

Table 4.7: Compare GGA with simple GA and GRASP

However, as shown in Table 4.8, when the instance size increases the perfor-

mance of the GGA deteriorates to the same level as a standard GA. The possible

reason is that, as we have explained in Section 4.2, the number of groups is in-

creasing at an exponential rate.

4.5 Summary

In this chapter, we have investigated the Grouping Genetic Algorithm, using a

more complex genetic encoding and grouping techniques as an enhancement to

standard GAs. The OPP is a good test example for the Building Block Hypothesis,

by using GG A to explicitly trace the use of BBs. While the result shows the

strength of this approach on small and middle sized instances, the algorithm is

difficult to scale up to larger sized instances. The reason is that the GGA proposed

in this chapter discovers groups 'on-the-fly', and the number of groups increases

exponentially. There are two possible approaches to overcome the drawbacks of

GGAs. One approach is to consider only the most promising groups rather than

tracking all groups discovered during the evolution. However, how to evaluate

and identify good groups remains an open problem. It might be helpful to apply

statistical learning techniques to find good paths in the network model in section

4.2. Another way to tackle the limitation of the GGA is to use more static grouping

techniques and avoid the dynamic grouping strategy. For example, we can divide

shapes into only two groups, critical group for big shapes and non-critical group

90

I
GA + First Fit I GA + Best Fit I Grouping GA I GRASP

No. Shapes Instance Avg Min Avg Min Avg Min Avg Min

10 n1 40 40 40 40 40 40 40
20 n2 51.58 50 51.26 50 50 50 50
30 n3 52.71 51 52.69 51 52.39 50 51
40 n4 84.57 83 84.24 83 83.79 80 81
50 n5 105.76 104 105.78 104 104.79 103 102
60 n6 103.63 102 103.83 103 103.55 102 101
70 n7 109.62 106 108.35 105 108.72 102 101
80 n8 85.61 84 84.99 84 85.82 84 81
100 n9 155.86 154 155.38 153 155.39 154 151
200 nlO 153.74 153 153.43 152 153.42 153 151

16 or 17 C1 20.01 20 20 20 20 20 20
21.18 20 21.18 21 21.2 21 20
20.14 20 20.03 20 20 20 20

25 C2 16 16 16 16 15.89 15 15
16 16 16 16 15.95 15 15

15.96 15 15.93 15 15.17 15 15
28 or 29 C3 31.93 31 31.87 31 30.8 30 30

32.22 31 32.1 32 31.94 31 31
32.12 31 32 31 30.13 30 30

49 C4 64.27 63 64.26 64 63.85 62 61
64.31 63 64.23 64 64.37 63 61
63.8 62 63.72 63 63.69 61 61

73 C5 95.67 94 95.58 94 95.58 93 91
96.78 95 96.79 94 96.85 94 91
95.9 94 95.89 94 96.05 93 91

97 C6 127.58 126 127.88 126 127.45 125 121.9
127.79 125 127.57 125 127.3 126 121.9
127.97 126 128.23 126 128.97 126 121.9

196 or 197 C7 256.26 254 257.09 254 257.29 253 244
253.95 251 255.08 250 254.64 254 242.9
254.91 252 255.44 252 254.84 253 243

Table 4.8: Compare the GGA with simple GAs (implemented according to 11081)
and GRASP 131 (GA and GGA are allowed to run 10,000 evaluations, GRASP is
allowed to run 60 seconds as reported by the authors)

91

40
50
51
81

102
101
101
81

151
151
20
20
20
15
15
15
30
31
30
61
61
61
91
91
91

121
121
121
244
242
243

for smaller ones. To apply such a static grouping strategy would require a different

representation and neighbourhood search strategy. It naturally leads us into the

domain of Evolution Strategy (ES) which will be investigated in Chapter 5.

92

Chapter 5

Phenotype Representation and

Evolution Strategy

5 .1 Introduction

In this chapter we investigate various Evolution Strategies (ES) for Orthogonal

Packing Problems. ESs often utilise phenotype representation as the search space

and rely on mutation to perform neighborhood search, unlike genetic algorithms

which use genetic encoding as a surrogate search space and crossover recombina-

tion as the main source of variation. Underlying the different implementation of

ES approaches, there are significant implications on the fitness landscape when

using phenotype representation and mutation search operators. Based on some

properties of the ESs' fitness landscape (see section 5.7.1), we propose some basic

and hybrid approaches to tackle packing problems. The ESs approaches obtain

better quality results compared to most of other approaches in the literature.

This chapter is arranged as follows. In section 5.2 we present a formal def-

inition of the phenotype representation for orthogonal packing problems. While

the representation provides a direct description of solutions, an abstraction of the

representation using interval graphs 1721 is a useful tool to compare the similar-

93

ity among solutions. Associated with the phenotype representation we develop in

section 5.3 specific operators for orthogonal space manipulation. The principle of

the mutation operator, the most important strategy in ESs, will be introduced in

section 5.4.

Section 5.5 presents the implementation details of various ESs, especially the

methods for adjusting strategy parameters. We pay attention to a special ca.<;p of

ES, Grouping ES (GES) which, in effect, decomposes a problem and can be par-

ticularly effective for heterogeneous instances. Further to the simple approaches,

we develop more advanced algorithms by hybridising the ESs with a Variable

Neighborhood Search (VNS) strategy (see section 5.6.3) which takes advantage

of the neighborhood structure and population-wise information during evolution.

Empirical results for the algorithms will be analysed in section 5.7.

5.2 Phenotype Representation

5.2.1 Definition

In the previous two chapters, we introduced genetic algorithms which evolve per-

mutations of shapes as a surrogate search space for packing problems. The se-

quence of shapes is also called a genetic encoding or genotype representation of

the search problem. This metaphor to molecular's DNA is somewhat misleading

and problematic. As we have shown in the last two chapters, there are some

weaknesses of such genetic encoding of combinatorial problems:

Loss of information GA's reproduction operators treat all elements indiffer-

ently with its symbolic encoding (binary vector, and ordinal numbers, etc.).

Critical domain specific knowledge is ignored during crossover and mutation,

such as sizes of individual shapes, interaction between items, dynamics of ex-

ternal constraints. Although by undiiferentiating items, GA's operators can

94

be problem domain independent, the genotype representation often causes

other difficulties in search. For example, building block disruption is often

observed, when the same schema may result in different fitness evaluations

depending on the context.

Ineffective neighborhood structure The neighborhood structure can easily

be defined for genotype representations, e.g. mutation by swapping two

items, crossover by exchanging segments of encodings. However, such a

neighborhood move may not correlate with objective function values, as

witnessed by extreme cases of the so called deceptive objective functions, in

which cases the genetic encoding provide false feedback on the correct search

direction.

Dependency on mapping function GAs rely on a mapping function to trans-

late the genetic encoding to a final objective value. As we have shown in

chapter 3, a single decoding function may be insufficient to search the entire

co-domain of solutions, or the quality of the decoder may affect solution

quality, e.g. Next Fit heuristic for bin packing problems generates inferior

results compared to Best Fit or First Fit for the majority of the benchmark

instances.

Computational cost Since genetic encoding requires a decoding step before

evaluation, there is extra computational cost involved in such a mapping.

Phenotype encoding is another type of representation for combinatorial opti-

mization problems that avoids some of the problems mentioned above. A phe-

notype reflects the solution directly and contains all domain related information.

For the packing problems, we define the phenotype representation as a set of

coordinate d-tuples Lp = {('h,('h,'" ,(')n}, with each d-tuple (·)iE{l,2, ... ,n} rep-

resenting the position of the ith shape in d dimensional space. Without loss of

95

generality, a d-tuple corresponds to the position of a shape's bottom left cor-

ner. The d-tuples cannot take arbitrary values, but have to satisfy the feasibility

constraints of orthogonal packing. Therefore it implicitly incorporates the size

information of shapes. Moreover, given the available space (i.e. the containers'

space), set Lp's complement set La denote all available spaces deterministically.

Therefore, the phenotype representation encompasses all information regarding a

specific problem: all shapes' sizes and their positions and spaces still available,

and directly represent a solution. One clear benefit of such an explicit phenotype

representation is that the representation is highly correlated to the objective func-

tion, i.e. the feedback information from evaluation of phenotypes will not mislead

the search process.

A potential disadvantage of a phenotype representation is that the neighbor-

hood structure may be complicated and designing search operators could be diffi-

cult, since the operators need to be versatile and able to avoid infeasible solutions,

such as the collision of shapes. We introduce some space manipulation operators

in section 5.3 and a generic drop-and-add mutation operator in section 5.4.

5.2.2 Interval Graph Abstraction

As discussed above, a phenotype representation encompasses comprehensive in-

formation regarding a solution. However, it is often necessary, but not trivial,

to analyze phenotypic traits, such as comparing similarity between two pheno-

types. The real-valued location information of each shape, though intuitive, is

complicated to express and compute. We propose a weighted interval graph as an

abstraction of the phenotypes, which keeps essential information while also greatly

reducing the computational burden.

The weighted interval graphs are based on the packing classes model proposed

by Fekete and Sheperd [731 (see chapter 2). In their model shapes are treated

as homogeneous nodes with no difference. This model will cause problems as

96

illustrated by Figure 5.1. Both figure 5.1(a) and 5.1(b) have a valid pair of

interval graphs, however if taking item sizes into consideration, in 5.1 (b) the edge

between nodes 1 and 4 shouldn't exist.

Nevertheless, the interval graphs are still a useful tool to measure similarity

between different packings. We extend the model by assigning weights to each node

according to each shape' size. on-weighted interval graphs can be implemented

with a binary string data structure, which can be easil y compared u ing a hamming

distance. The difference when measuring weighted int rval graphs is that, each bit

is only a flag indicating if the corresponding weight is to be counted or not, while

in Hamming Distance each different bit accounts for one in the distanc (i.e. all

weights are equal to one). This model can easily be implemented by a n x n (lower)

triangular matrix (n is the number of shapes). Each column (or row) of the matrix

is labell ed by a shape's index, so the coordinates of each element in the matrix

corresponds to the two labellin g shapes on the row and column respectivply. The

weight for each element is calculated by summing up the quare of the sizes of

the two labellin g shapes. If two shapes overlap on a direction the element will be

equal to one, or be zero if otherwise.

ｾ ~
1

1 3 G. 4 3 G,
2 2

'\ .1

Gy 1 3 Gy 4 3

2 2

(a) feasible (b) infeasible

Figure 5.l: Interval graphs ignoring shape sizes can be infeasible

97

5.3 Phenotype Operators

A search algorithm using phenotype representation, in theory, does not require

any decoding heuristics to evaluate a solution, as long as the mutation operators

can manipulate phenotypes directly to perform a neighbourhood search. For or-

thogonal packing problems, one intuitive operator could be defined as shifting a

shape to specific coordinates or over a certain distance. Such an operator would,

however, be computationally expensive, as it needs to determine if the destination

location is feasible and would require complex collision detection. Instead, we use

a more generic operator, drop-and-add (DAA, section 5.4) as the search strategy

which takes certain shapes out of a phenotype representation (erased from Lp and

update La) and re-packs them in different places. The DAA mutation strategy

suits many different problem domains and is less computationally expensive. How-

ever, it requires some space manipulation operators to calculate feasible positions

for each shape.

The purpose of the space operators for phenotype representation is to main-

tain the sets of Lp (for shapes' position) and La (for available spaces for future

packing). Every time a shape is added or removed from a packing, both Lp and

La need to be updated. For example, at the beginning of a packing process, Lp

is empty and La contains all available bins; then shapes are inserted one by one

by certain heuristics, Lp and La will be modified accordingly. To facilitate the

advanced operators, in section 5.3.1, we present two fundamental operators, split

and merge, which can be applied to any dimensional orthogonal Euclidean space.

The phenotype representation and two operators include comprehensive informa-

tion about a packing status, therefore they are more general than other methods

in the literature, such as those calculating skyline 1281 or docking points 11461

The basic operators can also be combined to create more sophisticated opera-

tors. 'rVe develop three such operators: shift, jostle and relocate (details are shown

98

in sections 5.3.2 and 5.3.3). These operators are applied on a complete packing, in

order to make further improvements without massive structural changes. The shift

operator finds gaps and eliminates them by slightly moving neighboring pieces to-

wards a certain direction, while relocate fills gaps with pieces that may be some

distance away. The shift and relocate operators may need to be applied recursively

to many shapes, since once a shape has been shifted or relocated a new gap may

be generated due to the movement. The jostle operator is a variation of the shift

operator. The difference is that the jostle operator applies the shift iteratively

with changing directions. It starts with shifting pieces in one direction as far as

possible. Once no more movements in this direction can be done, it changes the

direction to a new direction and checks if any shapes can be shifted in this direc-

tion. It mimics the shaking of a container that violently changes directions of all

the shapes.

5.3.1 Split and Merge

Split

Space split is a subroutine that is used when adding a shape. It takes three input

parameters, a list of prior available spaces ｌ ｾ Ｌ , a shape ri and certain position Pi

the shape is to be placed, and it returns a list of posterior available spaces ｌ ｾ Ｎ . We

will first introduce the basic space split function, followed by explaining how to

apply the basic function to a real situation. For multiple shapes, the split routine

will be applied to each shape, i.e. pack shapes one by one as if in an online packing

scenarIo.

Figure 5.2 shows the general cases for one and two dimensional space split. It

is easy to see that generally the original interval, on each dimension, will be cut

in the middle to create two smaller sub-intervals. Therefore the number of newly

created subspaces is 2 x d (d is the dimension of the space), e.g. the subspace

99

generated for one dim n ional case two, and for tw dim nsional cas . it i.

four.

Before

After

(a) One-dimensional

I I -. ------- ------

Before

[EJ
ｦ ｩ ｩ ｉ Ｍ ］ ｬ ｾ ~
ｾ ｾ ~

After

(b) Two-dimen ional

Figure 5.2: Changes on availabl spa s (in gr y) b fore and after placement of ri
(in black)

Th sp cial ca es of th general placement ar to align shapes to spe ial po-

sit ions within a space, e.g. bottom-left corner, as many h uris tic u ually do.

In uch cases some of the subspaces have zero valu on at lea t on dimen ion.

Therefore these subspaces can be ignored and omitted from the list of posterior

available spaces.

With the basic space split function introduc d above, we can ta kle th mor

complicated real situation in th packing proc s. For in tan s with tw r more

dimen ions, some available pac in the list La may be overlapping (as in Figure

5.2(b)). Therefore wh n a hape affects any overlapping areas, it split ev ral

available spaces simultaneou ly. For each space in La , affected by the placem nt

of a hap, we calculate and store the ub pa s in a temporary list. In the

temporary list som ub pa are enclo ed in oth r pace , either existing spaces

in La or other newly created larger ubspac in the temporary list. n xample

is hown in Figure 5.3. Initially La had four availabl spaces {A,B, C,D} (Figure

5.3(a)). After placing ri, A,B are affected and split into ubspaces {1 ,2} and

{3,4,5} respectively, which are add d to the temporary Ii t. Space C i di joint

and D is adjacent to r i, 0 they are not affect d (Figure 5.3(b)). In the t mporary

100

list, su b paces 2,3 ar n losed in 4 and 1 r pe ti vi, so they ar eliminat d.

further ch k consolidat s sub pac 1 and D, as 1 is en I cd in D. her £ r the

final list of available pa aft r placement of Ti is {4 ,5, ,D} (Figur 5.3(c)).

(a) B fore plac m nt

I

(b) Aft r placement

(c) After consolidating enclosed space

Figure 5.3: The list of available pace i hang d from {A ,B,C,D} to
{1, 2,3,4, 5, C,D} after placem nt of Ti, then to {4 ,5, C,D} after con olidating
mall r enclosed space .

Merge

Th merge subroutine an wer the que tion that given a Ii t of availabl spacf'S

what are the maximum size of a hape that can be a comm dated? It is us ful

101

when taking shapes out of a packing. The subroutine takes some lists of spaces

as input, and detects if any spaces can be merged to form larger spaces. It is a

necessary procedure as in an evolution strategy we need operators that can move

shapes in different locations, therefore subspaces can not only be occupied but

also created.

Two spaces can be merged, if and only if, they are not disjoint, i.e. overlaping,

adjacent or enclosed. Generally, for d dimensional cases, when two spaces A, B

overlap, they can merge and create a total of d new spaces. For each dimension

d' E d, there is a new space with size sized' = Ad' U Bd, and sizexEd\d' = Ax n Bx.

Figure 5.4{a) shows the general case of how two two-dimensional spaces can be

partially merged to form two more spaces.

Adjacent and enclosures are special cases of overlap. When A, B are adjacent,

sizex = Ax n Bx = 0 for all xEd \ d' where d' is the dimension that A, B's

projection intersect, therefore only one new space will be created (see Figure 5.4(b)

for an example in 2D). When A, B enclose (without loss of generality we assume

A c B), Ad' c (Ad' U Bd,) C Bd, for all d' E d, i.e. all merged spaces are equal to

B, so no space will be added (Figure 5.4(c) shows such an example in 2D).

In ESs the merge subroutine will be called by other phenotype operators (shift,

jostle and relocate introduced later), and only the adjacent case will be encoun-

tered. This is because when a phenotype operator moves a shape around, and

the space previously occupied by the shape will be merged, if and only if, there

is any adjacent available spaces. However, a complication in the merge process is

that newly merged spaces may be further merged with other spaces. A recursive

routine (Algorithm 8) is needed to check if any newly merged space can be further

merged with available spaces.

Having introduced the two geometric operators, split and merge for DAA mu-

tation, the next few sections will introduce the three phenotype operators, shift,

relocate and jostle, based on the two basic operators, which are optimization op-

102

A A A

.... :.' 'it I;.
B B

(a) Overlap, two new spaces (in gr y) created

A A A

B B

(b) Adjacent, one new space (in grey) created

(c) Enclose, no new space created (even areas in grey enclosed in A), one
existing space B eliminated

Figure 5.4: Merge two spa s A and B

Algorithm 8 Consolidate(Spac new, Spaceold)
for all i E Spacenew do

for all j E Spaceold do
if i, j overlap or adj acent then

Space merge f- SpacemergeU n w spaces merged by i, j
else if i, j nclose or equal then

delete the small er space
end if

end for
end for
S paceold f- S pacenew U S paceold
if Spacemerge =1= 0 then

Consolidate(Spac merge, Spac old)
end if

103

era tor in the final packing.

5.3.2 Shift and Jostle

When we mutate a ph notype, shapes are not pIa d by a gr dy heuristi· but

at points designated by th mutation strat gy. The han e are that gap may

exi t between shap s, which can be eliminat d by hifting shapes to mak marC:'

compact packings. Th shift operator is in fact a det rmini tic local improvem nt.

For xample, in the orthogonal packing problem , w will check the final packing

to see if any shapes can be moved towards the bottom-left corner, which an often

improv initial packing results.

ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

I
I

I I l. ___________ J

Figure 5.5: Eft ct of hifting a hape from initial position (olid lin) to a n w
position (dotted lin)

The shift operator can be ea ily implemented with split and merge operat rs.

Figure 5.5 shows how hifting a shape affect the available pace li st La. When

a shap shift s from its original position (solid lin) to n w p sition (dott d lin e),

th eft cts are spliting La by a dummy hape 2 (in bla k) and m rg a dummy

shape 1 (in grey, of the am siz as shape 2) with La.

Shift op rations usually have to be appli d recursiv ly. Wh n a hap i hifted,

it will return its originally 0 upi d space ba k to the availabl spac list La, which

will usually cause a chain reaction a other shap rna be able to shift in th same

dire tion. The shift operation stop wh n no shap s an b moved in a ho en

dire tion, normally the bottom-l ft corn r.

Jostle wa fir t introduced by Dowsland et al. 157] for irregular shape packing.

104

We implement a similar idea of jostling that is a variant of shift and mimics the

action of shaking a container to reduce the unevenness of the surface. It initially

tries to shift all items in one direction, and when no shapes can be shifted further

it suddenly changes to a different direction. The motivation behind the operator

is illustrated by Figure 5.6. Assuming we initially shift all shapes to a bottom-

left position, a better result can be achieved by shifting shape A to bottom-right

direction.

-
A

-1

-
Figure 5.6: Jostling shapes to different directions to achieve better results

5.3.3 Relocate

Unlike shift and jostle operators that move shapes to an adjacent available space,

the relocate operator can find a better position which is out of immediate reach

of a shape. In Figure 5.7 the operator checks shapes from the top of the packing

and gaps from the bottom, to see if a shape can be relocated to a lower position.

As with shift operator, the effects of relocating are splitting La by the new space

(in black) and merge old space (in grey) with La. Again, possible chain reactions

have to be considered if any shapes can be further shifted or relocated.

5.4 Synopsis of Mutation

Most ESs rely on mutation as the main source of variation to search through phe-

notype space. Mutation as a neighbourhood search operator defines the ordering

of representations on the fitness landscape, and has a great influence on the search

105

-
A

-
---I ,
A , ,

Figure 5.7: Effects of r locating hape A to dotted lin po ition

strategy. By adapting the mutation strength, the step ize from an xisting 0-

lution, mutation operators playa critical rol in E to balance th exploration

and exploitation proce s. To mutate an existing packing, on may be t mpted to

directly alter the value of each shape' coordinates in Lp. However, this approa h

can cause shapes to ov rlap, thu cr ating inf a ible lution. Repairing uch

infeasible solutions is often omputationally expen iv .

In what follows, we briefly xplain th prin iples of a gen ri two- tag Drop-

and-Add (DAA) mutation operator, whi h repacks rtain shap ,similar to the

in ertion operator in Gen tic 19orithms which remove and add an all I in a new

po ition. There are a f w variation for both drop and add tag s. W will discu

detail of the differ nt strat gie in section 5.5, but d tail of th impl m ntation

are al 0 lab orated upon in this section as we provid an overview of the

mutation operator and, mor importantly, the rational behind the d ign.

Th DAA mutation is compris d of two elementary stages. The drop stage is

oncerned with how many, and which shap s, ar to be r moved while th add

tage d cides how to match the r moved shapes with th available pace . Durillg

the drop stage, after each hape has been remov d from Lp , the pace merge

routine will be call ed to recalculat the availaol ｾ ｰ ｡ a La, silllilarly at til a Id

tage Lp and La will be r calculated it rativ ly after ea h shape has b n added

ba k. By counting th numb r and size of hap s being altered, we an quantify

the magnitude of th alt ration, notated by mutation trength. The drop tag

is of the greatest importanc with regard to the mutation str ngth for phenotype

106

representations, while the add stage affects the fitness landscape by deciding fitness

values with specific packing heuristics.

5.4.1 Drop

In chapter 2 we reviewed three general principles (reachability, unbiased ness and

scalability) for ESs' mutation strategies in uni-modal and continuous real-value

search domain [161. The DAA mutation operator satisfies the reach ability and

unbiasedness rules. But the scalability is harder to achieve because of the discrete

properties of the packing problems. Considering both quantity and size of shapes

provides a way to mitigate the non-differentiable issue. However, with the ES

defined by DAA mutation, there is a minimal mutation strength which is alteration

of the position of the smallest shape. For adaptation purpose, the number of shapes

can be controlled by an integer number from 1 to n exactly, or by a percentage ratio

within the range from 0 to 100%. A parametrised probability function calculates

which shapes are to be chosen. By tuning the parameter, the probability for each

shape can be changed, from preferring small shapes, to a random selection and to

preferring large shapes.

5.4.2 Add

Like many other packing heuristics, the insertion of shapes back into a partial

packing can be further decomposed into two steps: pre-treatment and matching.

Pre-treatment sorts shapes according to non-increasing width or height before

packing, which is a deterministic procedure. Unless combined with a stochastic

matching strategy, the insertion will be biased and limited to part of the solution

space (Chapter 3). On the other hand, placing large shapes earlier often generates

good packings, so we use the pre-treatment only to get one of the starting solutions

in the initial population, and in subsequent generations we resort to random orders

107

without sorting.

Matching shapes to available spaces can be done by some standard heuristics

such as Best Fit (BF), First Fit(FF). together with Bottom Left or other filling

strategies. In theory, a random placement of a shape can be done as long as fea-

sibility is satisfied. We assume the effect of this random matching is equivalent to

packing randomly ordered shapes with deterministic heuristics. Empirical results

are shown in section 5.7.

5.5 Implementation of Simple ESs

In this section we introduce the implementation of our proposed ES. In partic-

ular we focus attention on several variations of the DAA mutation operator and

corresponding strategies for adapting the search parameters. The purpose of this

section is to examine the dynamics between the phenotype landscape and the mu-

tation strength. It is also necessary to investigate the effects of adapting strategy

parameters on such a fitness landscape. Lastly, these basic approaches set the

stage for more advanced features and hybrid strategies and provide benchmarks

for comparison in later sections.

Algorithm 9 presents a template of a standard ES procedure. From lines 1 to 4,

the first generation is initialized randomly. Following the initialization, an itPrative

loop evolves further generations. Parents are selected from the population in line

8 and produce offspring by mutation in line 10. Before mutation a critical step of

ES, shown in line 9, is to adjust the endogenous parameters according to the new

results. If we generate multiple children in line 10, a selection among the children

will be performed. Such a selection of children is different from the selection of

parents in line 8. Although both apply elective pressure for evolution, there is a

subtle difference. At line 8, the selection pressure is to filter out unpromising areas

of the fitness landscape, while in line 10 the pressure is to specify the intensity of

108

search around a certain solution. At line 16, the new generation is chosen from

the parent and/or offspring population depending on a merge strategy (pIlls or

comma, see section 5.5.3). The evolution process from line 7 to line 16 will be

repeated until the stop criteria is met.

Algorithm 9 ES::solve(instance)
1: for i = 1 to POP _SIZE do
2: Si ｾ ~ RANDOM_PACKO;
3: pO ｾ ~ INSERT(si);
4: end for
5: generation count 9 ｾ ~ 0, initial parameter aD ｾ ~ IN IT I ALI Z EO
6: while 9 + + ｾ ~ gmax do
7: for if = 1 to NEW _POP SIZE do
8: sp ｾ ~ SELECT(P9);
9: a9+I ｾ ~ ADJUST(a9)

10: se ｾ ~ SEARCH(sp,a9+1
);

11: pg+1 ｾ ~ INSERT(se);
12: if Se ｾ ~ Sbest then
13: sbest ｾ ~ se;

14: end if
15: end for
16: MERGE(P9+1, P9);
17: end while
18: return sbest·

5.5.1 Endogenous Parameters

Mutation operators introduced in the previous section are the primary source of

variation in standard ESs. In this section we present several versions of DAA

which implement different strategies with regard to the following questions. How

many and which shapes are to be relocated? Which heuristic should be used to re-

place the piece? These different DAA variants determine how to make a step away

from an existing solution. There are two obvious endogenous factors affecting step

sizes: the number and size of removed shapes. Correspondingly, we use al and a2

to control the two factors and study their effects separately and jointly.

Another critical factor in tuning mutation strength is the success threshold.

109

The success rate is defined as the percentage of the descendants better than the

parents. In the real-valued continuous domain, the famous 1/5-rule 116J can be

easily justified by the discovery of evolution window 116J. However, in the combi-

natorial search domain, it is uncertain if the rate is still a good choice or even if

a constant success rate is reasonable, because the fitness landscape is much more

complex and there is a minimum step sir,e requirement. For example, in the bin

packing problem, as shapes are not differentiable, the minimum step is equal to

the removal of the smallest shape. Therefore we define a third parameter a3 to

adaptively control the required success threshold. When the mutation reaches the

minimum step size and still cannot satisfy a success rate, we will adjust a3 to a

low level according to certain rules.

For the drop strategy, the following endogenous parameters are investigated:

1. (71 for the number of shapes

The first endogenous parameter al E (0,100%] controls the percentage of

shapes to be repacked, and is the most commonly used parameter for mu-

tation strength in the literature. Though al is in a real interval, the actual

number of shapes is calculated by l al x n J. To explore the effects of aI, we

also adjust it in discrete steps uniformly distributed across the interval rather

than continuously. In the experiments in section 5.7, each gap 8 between

the tested al is set equal to 10%.

For adaptive ES introduced in section 5.5.2 the same steps are also used for

adjusting aI, according to the following rules:

if G!/Go > 0, al < 100% - 8

if G!/Go < 0, al > 8

GO denotes parental generation, G! is the success of offspring in the following

generation (s), 0 is a required success rate (discussed later in this section).

110

Note 0"1 is bounded by 0 < (11 S 100%.

Like most conventional approaches, using 0"1 alone to mntrol the mutation

strength provides only a coarse grained neighbourhood structure. Using only

this parameter, there are ambiguities when measuring mutation strength.

For example, it may be hard to compare the mutation strength of repack two

large shapes against three smaller ones. Therefore, an additional parameter

to distinguish shape size is needed.

2. (T2 for sizes of shapes

The second endogenous parameter controls the sizes of shapes to be repacked

with parameter 0"2 E lR in addition to 0"1. The parameter 0"2 is not a direct

representation of the shape sizes, instead it is used in the parametrised func-

tion calculating a value P for each shape

where Vi is the size of shape i and Vm is the median size of all shapes. For

large shapes (Vi> Vm), increasing 0"2 will increase P(i), and the larger a

shape, the faster the P value grows. For small shapes (Vi < vm) the opposite

is true, i.e. P increases as 0"2 decreases. So the overall effect is, if tuning 0"2

from high to low the system is more inclined to select small shapes, and vice

versa.

With P{ i, 0"2) for each shape i E {I, 2, ... ,n}, we use roulette wheel selection

to chose a shape from those shapes still in the packing. Therefore for a

specific shape, j' its probability of being selected is

PU', 0"2)

Lj PU, 0"2)

where j', j E J are the remaining shapes in a packing.

111

There are two important properties of the P function. It is monotonic in

terms of shape size given a a2, that is VVi ｾ ~ Vj

P(i, a2) ｾ ~ P(j, a2)

P(i, a2) = P(j, a2) = 1

P(i, a2) 2: P(j, a2)

It is also monotonic in terms of a2 itself for any two shapes Vi < Vj, that is

Therefore by adjusting a2, we can change the ratio of ［ ｩ ［ ｾ ~ and affect the

probabilities of certain shapes being selected. It is easy to induce the fol-

lowing special cases, for any two shapes i and j remaining in a packing with

corresponding sizes of Vi < Vj,

P(i, a2)
largest first (5.la) (.) ｾ ~ -00, when a2 ｾ ~ 00,

P),a2

P(i,a2) _ Vi h = 1
(.) - ,wen a2 ,

P), a2 Vj
roulette wheel (5.lb)

P(i, a2)
(.) = 1, when a2 = 0,

P),a2
random (5.le)

P(i,a2) _ Vj h --1 reciprocal (5.ld) (.) - ,wen a2 - ,
P),a2 Vi

P(i,a2)
(.) ｾ ~ 00, when a2 ｾ ~ -00,

P),a2
smallest first (5.le)

The first relationship (5.la) means that larger shapes have an infinite large

probability compared to the smaller ones (equivalent to the largest-first

heuristic), while in the last case (5.le) the smaller ones have infinite prob-

112

ability (equivalent to the smallest-first heuristic); the second relationship

(5.1 b) means two shapes are chosen proportional to their sizes (equivalent

to roulette wheel selection based on sizes), while the forth proportional to the

reciprocal of the sizes; the third relationship (5.1c) means all probabilities

are equal (equivalent to a random selection heuristic).

As long as a2 is large or small enough (set to between the interval of [-20,20]

for the benchmark instances) the probability function will achieve the desired

behaviour of largest (or smallest) first. In the experiment in section 5.7 we

also test some settings in between the five special cases in 5.1, i.e. set a2

additionally equal to ｛ Ｒ Ｌ ｾ Ｌ , Ｍ ｾ Ｌ , -2] to make ｦ ｩ ｬ ｬ ｦ ｾ ｲ r grained adjustment of a2.

Comparing with only aI, using both al and a2 to control the mutation

strength is in essence refining the mutation strength. With only al it takes

only n steps to reach the maximum mutation strength, i.e. the system sam-

ples randomly in the whole search space rather than generating an offspring

by inherit traits from a parent solution. With the additional parameter a2,

if it can take m values, there is a total of m x n combinations of parameter

settings, which offers a finer grained search space. The two parameters can

be tuned simultaneously or independently. If tuning them independently,

the algorithm will either randomly pick one or arbitrarily assign priority to

al or a2. Note the combination of two parameters is still bounded in prac-

tice, even though a2 is in lR, the lower bound is to remove the smallest shape

and the upper bound is to remove all shapes.

3. 0'3 for success rate

a3 E (0, 1) prescribes a required success rate for adaptive ESs. The param-

eter is utilised in the adaptive ES because of two conjectures we have: a

constant success rate like the 1/5-success-rule may be too rigid, as it often

witnessed in practice, it is harder to generate better offspring as the search

113

progresses; the combinatorial search domain does not have the asymptotic

property that (1 ｾ ~ 0, p ｾ ~ 1/2 as in the real domain. In the real domain,

asymptotic success rate does not depend on parental status. However, under

the phenotype representation and DAA mutation of combinatorial problems,

the success rate is clearly parent-dependent. An example is, if the parent

solution is a mere stack of all shapes, no offspring solutions will be worse

and the success rate trivially equals to one.

The parameter (13 is adjusted by a positive constant coefficient a to guarantee

its positiveness. We set the coefficient a = 0.5, that is

0 (13 . a . c1 0
If (% < (13

I
(13 =

aO . c1 0
ｾ ~ If (% > (13 a

5.5.2 Adaptive ESs

We suspect that the adaptive strategy for the combinatorial domain should be

very different from a real-valued domain. In a real-valued domain, due to the

existence of asymptotic success rate, i.e. (1 ｾ ~ 0, p ｾ ~ 1/2 when current solution

is not local (or global) optima, the adaptive strategy can always tune the mutation

strength down to maintain a desired success rate and maintain the evolvability.

In the real-valued domain, given long enough time, smaller mutation strength can

always achieve better (or equal optima) results than larger mutation strengths. In

the combinatorial domain, there is obviously a lower bound of mutation strength

which is equivalent to repacking the smallest shape, therefore asymptotic mutation

strength does not exist. Moreover, it is unlikely for the ESs to keep on improving

the solution with the smallest mutation strength, by only repacking the smallest

shape. The reason is, when mutation strength is too small, the chances are that

other shapes are in a stable position (being highly constrained by each other)

114

no matter where the smallest shapes are repacked. Therefore a smaller mutation

strength does not necessarily outperform a larger mutation strength. For these

reasons, we have to adjust the endogenous parameters based on experience and

presumptions.

This section extends the simple ES approaches to adaptivp strategy by evolving

a population consisting of both the strategy parameters and the objective variables

(Le. the shapes and locations). The rationale behind the adaptation is that

if a parameter configuration suits a local fitness landscape, it is morp likely to

produce successful new solutions on average and should be given a better chance

of surviving in competition with worse settings.

Algorithm 10 shows an implementation of this idea, which couples each individ-

ual with its own parameter configuration. The representation is now a compound

of objective variables (the phenotype x) and strategy parameters (0"1,0"2). Sup-

pose an individual (x*o, 0";0,0";0) is selected to reproduce a child (X*I, 0";1,0";1), the

phenotype part of the offspring X*1 is mutated from x*o and controlled by the

mutation strength (0";0,0";0). The strategy parameters themselves Ｈ ｏ Ｂ ｾ ｯ Ｌ , 0";0) will

also be inherited and updated to Ｈ Ｐ Ｂ ｾ Ｑ Ｌ , 0";1), depending on whether the offspring

X*1 is fitter than the parent. Note, in this strategy, the parameter 0"3 is omitted

as the success rate is no longer a ratio based on the outcome of evolution of each

generation, but a binary indicator of each individual's success. The survival of X*1

and Ｈ Ｐ Ｂ ｾ Ｑ Ｌ , 0";1) are tied together and based on the fitness of X*I.

5.5.3 Exogenous Parameters

Exogenous parameters for ES are mostly parameters controlling the selection pres-

sure, and normally denoted by J1 for parental population size, ,\ for offspring pop-

ulation size, and a selection strategy of either '+' for merge both parent and

offspring populations or ',' for selection among only the offspring population.

Selection plays an important role in directing the search to promising areas

115

Algorithm 10 Self-adaptation on compound individual
1: Parents ｾ ~ SELECT(Population)
2: for all individual iO = (XO, at ag) E Parents do
3: Xl ｾ ~ MUTATE(xO, a?, ｡ ｾ Ｉ)
4: if Xl < XO then
5: (at, ｡ ｾ Ｉ) ｾ ~ INCREASE(a?, ag)
6: else
7: (ai, aD ｾ ~ DECREASE(a?, ag)
8: end if
9: new individual i l ｾ ~ (xl, at, ｡ ｾ Ｉ)

10: end for

which are estimated on the basis of the fitness of individuals. Setting a proper

selection pressure is a key issue in many evolutionary algorithms, including GAs,

GPs and ESs. A detailed study on general topics of selection pressure can be

found in [54]. We propose to consider the selection pressure from three aspects,

which will be examined by empirical study in section 5.7.

1. Point Selection Pressure This specifies how many children a parent gen-

erates on average, which can be expressed by the ratio of offspring to parents

)..1 J1. The measure is to quantify the intensity of the search around the local

areas of specific points (Le. the existing solutions). The higher this ratio the

more extensively the neighbourhood of existing solutions will be searched.

This ratio should be understandably larger than 1 for comma selection, oth-

erwise if the ratio is less than 1 the population size will diminish and there is

a risk of population extinction, or if equal to 1 the evolution is mere random

walk. Other special cases include, if J1 = 1,).. > 1 and using plus selection

the strategy is equivalent to steepest descent; if both J1 =).. = 1, the plus

selection becomes a simple hill climber.

2. Population-wise selection pressure For multi-modal problems, it is im-

portant for an algorithm to be able to explore a wide enough search space.

One strategy to achieve this goal is to have a sufficient number of parallel

agents (other strategies include being able to escape local optimum). For

116

evolutionary algorithms candidate solutions for reproduction can be deem cd

as such agents. On the other hand, a good search algorithm has to be ablc

to identify bad solutions to maintain efficiency. In our ESs, this principle

is achieved by balancing the ratio m : Jl : A which stands for choosing 7n

candidates from Jl parents and A children. Usually m is chosen to be equal

to Jl to keep the population size stable.

3. Generation-wise selection pressure The ratio m : Jl : A is commonly

concerned with only two generations. It is however worth considering choos-

ing candidates from more generations, particularly for the situation where

a direct descendant may not show immediate improvement but may be able

to do so after a few generations, i.e. some less fit descendants having the

potential of getting better results will be discard if only two generations par-

ticipate in a truncate selection. Therefore we propose a selection strategy of

moving multiple-generation window m : L.Jl : L.A. Algorithm 11 illustrates

this strategy with a generation window of size 3. When merging popula-

tions, we use three consecutive generations Ao, Al and A2, rather than just

two generations.

Algorithm 11 Multi-generation window
1: randomly initialise m candidate solutions
2: repeat
3: AO t-- REPRODUCE(m)
4: Jlo t-- POINTSELECT(Ao)
5: Al t-- REPRODUCE(Jlo)
6: Jll t-- POINTSELECT(Ao, Ad
7: A2 t-- REPRODUCE(Jld
8: m t-- POPULATIONSELECT(Ao, AI, A2)
9: until max generation

117

5.6 Grouping Evolution Strategy (GES)

Unlike a real-valued search domain, for combinatorial optimisation problems, there

is not enough theory and empirical evidence to support self-adaptive strategies like

those in [161. Section 5.7.1 will provide some initial insights of the ES hehaviour

on OPP, which is still far from being comprehensive. For this reason, we resort

to experiences in other algorithms to design the adaptive strategy. The G ES can

be viewed as such an arbitrary adaptive strategy of ES, as opposed to a sclf-

adaptive strategy. In GES, we arbitrarily define two groups for large and small

shapes. In its simplest form, GES is indeed a special schema to adapt the mutation

strength (section 5.7.2); while in more advanced forms, we hybrid GESs with other

algorithms by applying different neighbourhood search methods to the two groups

(section 5.7.2).

5.6.1 Definition of Groups

The GES defines groups in a different way from the Grouping Genetic Algorithm

(GGA) in chapter 4. It divides the shapes of a heterogeneous instance into only two

groups: a critical group for large shapes and a non-critical group for smaller ones.

A critical group in the GES is a phenotype representation of a partial solution,

i.e. a list of relative coordinates of a proper subset of all shapes § c JR, where

Si E §, ¢=:} VSi > Vs·. Vs· is a threshold size that specifies the boundary of the

two groups. In the real implementation we define the threshold as a percentage.

For example, if we define 30% as the threshold for a 20-shape instance, we rauk ri

on volume (or height, length or any other measures) such that 1'1 < r2 < .,. < rn ,

and the largest 6 (30% x 20) pieces are members of the critical group.

The threshold can be a fixed ratio or can be adjusted during the search process.

Compared to the GGA detecting groups 'on the fly', where there could be an

exponentially increasing number of ways to group shapes, the GES has only two

118

static groups (when the threshold is fixed) or a number of combinations linear to

the instance size (when the threshold is dynamic). Due to the different definition,

the GES has the following advantages compared to the GGA.

Scalability During a search process, the GGA detects groups 'on-the-fty' and

typically has to track an exponentially increasing number of groups. In the

GES, however, it tracks only a limited number of critical groups at a time.

When instance size increases, the number of combinations of critical groups

will only increase linearly. Therefore, the GES avoids the scalability problem

of the GGA.

Correlation As explained before, the GES is utilising phenotypes, and has its

representations highly correlated to the objective value. The genotype rep-

resentation on the contrary is indirectly related to the objective value and

depends on a heuristic decoder to evaluate its fitness.

Redundancy In simple GAs, redundancy describes the phenomenon that mul-

tiple genetic encodings are evaluated to a same solution, which is usually

perceived to be undesirable as it makes the search inefficient. The GGA in

the previous chapter tries to mitigate the problem to some extent by mak-

ing the internal structure of a group 'invisible' to its outside neighbouring

shapes (treat all groups with same constituent and overall size equal, disre-

gard the internal arrangement). However, redundancy may still arise from

the translation from genetic encoding to actual layout, e.g. swapping two

shapes (groups) may still generate the same packing. In the GES, redun-

dancy can be easily controlled and effectively eliminated by interval graphs

represented packing classesl72] (details are introduced in Section 5.2.2).

119

5.6.2 Overview of GES

The GES can be regarded as a mixture of some special configurations of the

previous standard ESs. In the GES mutation procedure, initially it repacks all

shapes in both critical and non-critical groups, which is equivalent to setting (}1 =

100%. The algorithm then proceeds by repacking less shapes in the critical group

and all shapes in the non-critical group, as if the (}1 is gradually reduced from

100% to smaller percentage. Regarding the settings of (}2, the algorithm repacks

all small shapes in the non-critical group which is equivalent to setting (}2 to a

negative value and favour dropping small shapes. It further chooses some bigger

shapes in the critical group with a probability selection strategy, which is to change

the (}2 to a mid-high positive value that favours choosing larger shapes.

The GES can even be further developed beyond adapting mutation strength.

The key idea of GES is that it can apply different parameter settings or even

different search strategies to the critical and non-critical groups. For example, the

critical group can adopt Evolution Strategy for neighborhood search while the non-

critical group may use hill climbing. The benefit of hybrid GES can be illustrated

by the fitness landscape. If we arrange the neighborhood of a solution in such a

hierarchical structure that its close neighbors correspond to the mutation of the

non-critical group only (which we call an inner circle), and the further neighbours

(the outer circle) represent the larger mutation strength that also includes some

shapes in the critical group. For example, the nearest neighbor is to mutate

only the smallest shape, the next nearest neighbor is to mutate the smallest two

shapes, and so on. The critical threshold specifies a boundary, within which is the

inner circle and outside which is the outer circle. Intuitively the neighbors within

the inner circle repacks small non-critical groups while keeping larger shapes in a

similar position, which are likely to be in the same of basins of attraction as the

original solution; while the outer circle (mutation to the critical group) are likely

to be in different basins of attraction. Therefore, it is natural to adopt different

120

strategies for the two groups which are in different parts of the landscape. For the

critical group, a desirable strategy should be able to explore the landscape and

find promising basins of attraction. On the other hand, when searching in the

inner circle more exploitive strategies may be more appropriate.

Algorithm 12 illustrates the general framework for the GES which is an iterative

search procedure, where Si is the ith solution, Pc and Pnc are critical group and

non-critical group of a solution respectively, and Pt) represents the gth generation

where (.) is the place holder of either non-critical group or critical group. The

unique steps of the GES are: during initialisation, the critical group and non-

critical group are identified (line 3) and inserted (line 5) into separate populations

during evolution. The two groups are also separately selected (line 9), mutated

(line 10) and merged into each population (line 17).

Algorithm 12 GES::solve(instance)
1: for i = 1 to POP _SIZE do
2: Si f- RANADOM_PACKO;
3: Pc f- IDENTIFY _CRITICAL(si);
4: Pnc f- IDENTIFY _NONCRITICAL(Si);
5: Pg f- ｉ ｎ ｓ ｅ ｒ ｔ Ｈ ｰ ｣ Ｉ Ｌ ｐ ｾ ｣ c f- INSERT(Pnc);
6: end for
7: while stop criteria not met do
8: for if = 1 to NEW _POP _SIZE do
9: Pc f- SELECT(Pc),Pnc f- SELECT(Pnc);

10: Pc' f- SEARCH(Pc),Pnc' f- SEARCH (Pnc');
11: Si' f- EVALUATE(Pc',Pnc');
12: Pg+l f- I ｎ ｓ ｅ ｒ ｔ Ｈ ｰ ｾ Ｉ Ｌ , ｰ ｾ Ｚ ｬ l f- I NSERT(Pnc');
13: if result::; BEST _RESULT then
14: BEST RESULT f- result;
15: end if
16: end for
17: PLUS_MERGE(Pg+1, Pg) and ｾ ｅ ｒ ｇ ｅ Ｈ ｐ ｾ Ｚ ｬ Ｌ , P%J;
18: end while
19: return BEST RESULT.

121

5.6.3 Implementation of GES

For each of the two groups there are a few search strategies will be tested by

empirical study. For the critical groups, the idea is that in the parlier stag<' of the

search the critical group is more likely to mutate and explore wider search spaces,

while in the latter stages less pieces will be mutated and the search is controlled to

do more exploitive probe around certain promising structures. Beside the general

mutation strategies introduced in section 5.5.1, the following special parameter

settings of (0"1,0"2,0"3) can be implemented.

1. 0"1 is decreasing from 100% to (3 E [0%, 100%J (the critical ratio, the percent-

age of critical shapes) according to the search progress ratio of the current

iteration count to the maximum iterations allowed, and 0"2 = 0, i.e. as the

search progresses, less number of shapes will be mutated and the self'ction

of shapes is random disregard of their size.

2. similar to the strategy above, but utilizing a roulette wheel selection of

shapes based on the size of a shape i* to the total size of critical shapes

;"'i* ,which assigns smaller mutation probabilities to larger pieces.
ｾ ｖ ｩ i

For non-critical group, which will always be dropped, we choose from some

exploitative mutation strategies:

1. Random Shuffle This strategy simply shuffles all shapes before insertion.

It is a baseline case to illustrate the properties of close neighbors, and is used

for comparison with other strategies.

2. Genetic Algorithm (GA) As the non-critical shapes are always removed

during the mutation process of GES, the sequence of these shapes being

inserted back is used as genetic encoding in a standard GA. A population of

the non-critical group is kept independent of and co-evolved with the critical

group population.

122

3. Hill Climbing (HC) Unlike the above co-evolution of GA and GES, in

the He strategy each sequence of non-critical shapes is not independent but

associated with the phenotype of the critical group. The order is perturbed

by swapping the positions of a number of shape-pairs. The new sequence

is accepted to replace the old sequence only if the result is better than the

original solution. Another greedy strategy, steepest descent, is not tested

as the neighborhood size of swapping shapes increases exponentially with

the instance size, therefore it is computationally prohibitive to enumerate

through all neighbors.

4. Variable Neighborhood Search (VNS) When the solution neighborhood

can be expressed in a hierarchical structure, such as the fitness landscape

defined by DAA mutation, VNS can normally help to explore the neighbor-

hood in a more systematic way. A natural hierarchy for the VNS to da'isify

a set of neighborhood Nk is according to the first parameter 111 of the DAA

mutation, where k E {I, 2 ... ,n - n*) (n* is the number of shapes in the

critical groups). The VNS searches iteratively within each layer of the Nk

neighbor sets in order.

5.6.4 Fitness Function

Like the Grouping GA (GGA), we consider two types of fitness functions in the

GES. The first type evaluates static attributes of groups or final solutions, while

the other type takes a more dynamic learning approach by measuring historic

performance of candidate groups.

The first type includes fitness functions such as group sizes or final heights of

solutions; each of them has its own strengths and weaknesses. Generally, it is de-

sirable to have a fitness function to return evaluations which are highly correlated

to values of objective functions. Therefore the final packing result seems to be

123

a natural choice for the fitness function. However, in many empirical studies it

has been found that many alternative fitness functions outperforms the intuitive

choice especially when the objective function is deceptive. Therefore, in our ex-

periments we will compare both basic fitness functions1 based on group size and

final packing height, and investigate various combinations of them by assigning

different weights. The critical decision when choosing a static fitness function is

to balance deceptiveness and correlation with the objective function.

The second type emphasizes finding promising candidates through an iterative

learning process. In the GES, the non-critical shapes can often be packed with

the critical shapes in many different ways (thereby generate different packings).

If we regard all packings sharing the same critical group as a subset of solution

space, a conditional probability can be defined, such as P(J(h) ::; XISd where

f(h) is the final height and X is an objective height, i.e. given the group Si is

used to build final packing what is the probability of getting a packing with height

less or equal to X. f(h) can be other arbitrary fitness functions, such as average

height on historic performance. Indeed, proper choice of the statistic measure-

ment f(h) is critical to differentiate candidate groups, and to guide the search to

promising areas. From a statistical aspect, the standard deviation is probably an

equally important measure as it reflects the volatility of results when a group is

used. There are no clear rules on what fitness function is the best for all cases.

Two statistical measures, each having its own merit, will be explored in our ex-

periments: minimum(h), average(h). There can be some other fitness functions

made up by various combinations of the elementary functions. In our experi-

ments we will also test the linear combination of average and standard deviation

average(h) - standard_deviation(h).

124

5.7 Experimental Results

To understand the behavior of the ESs, we carried out extensive empirical studies

on the various algorithms designed above. In section 5.7.1, we study the effects

of both endogenous and exogenous parameters on the fitness landscape of the

standard ESs. In section 5.7.2 we present the results on the Grouping ESs. Table

5.1 below shows all experiments carried out in this chapter.

Section Description
5.7.1 effects of al mutation strength

effects of a2 repack heuristic
effects of a3 convergence and success rate
adjusting aI, a2 and a3

5.7.2 effects of critical ratio
effects of fitness function
hybridised strategies

Table 5.1: List of Experiments

The algorithms were implemented in C++ and sun on a grid computer with

2.2GHz CPUs, 2GB memory and GCC compiler. Every experiment has been run

50 times to obtain the average on each metric. Benchmark instances are taken

from Burke et al. [28]. In the following sections, we present results on one example

instance, complete results on all other instances are very similar and can be found

in Appendix B.

5.7.1 Simple ESs

Effects of al and a2

This sub-section presents experimental results that are designed to explore the

fitness landscape in relation to the mutation strength, al, a2. As explained in

section 5.5.1, al and a2 control the number and size of shapes to be dropped in

DAA mutation. With regard to the strategy to add shapes back, we use heuristics

commonly found in the scientific literature. The first heuristic is to add these

125

dropped hapes back in a random order. Exogenous parameters are set as (50 +

50), i.e. population size of 50, one parent generate on child with plus merge,

and the number of generation exercised is 300.

We first examine separately the effects of (71 (ach row of the table 5.1(a), in

Figur 5.8) and (72 (each column of the table 5.1(a), in Figure 5.9). The joint

effects of (71 and (72 are explained later (see Table 5.1(a) and 5.1(b)).

It i easy to note from Figure 5.8, that when (71 increases to 100rc, all line

converge to the same result highlighted by the dott d rectangle. Thi mans that

when (71 = 100o/c (and with random add-back heuristic), the ES i quivalent to

random packing regardless of other parameter s tting . This effect is al. 0 shown

in Figure 5.9, the dotted line representing (71 = 100o/c is almo t a horizontal line

and not sensitive to change of other parameter .

Perhaps what can be observed with a little mor surprise is that many ESs may

have wor e results than the random packing, a illustrated in both Figure 5.8 and

5.9. This indicates the importance of carefully choosing the mutation tr ngth.

16300

16200

16100

16000

ｾ ~ 15900
.r;
Ｎ ｾ ~ 15800

.r; 15700

15600

155.00

15400

15300

10% 20% 30%

__ ·20 -·1-0

40% 50% 60% 70% 80% 90·0 100·"

percentage of shapes repacked

Figure 5.8: Effects of mutation strength (72, each lin represents a diffE'rent (72

changing with (71 E (Oo/c - 100o/c)

Especially in Figure 5.8, when (72 = 20 (largest shap s are dropped first) ,

the results are always worse and gradually conv rge to a random packing when

(71 ｾ ~ 100o/c. A similar observation applies, when (72 = 1 i.e. shape ar lectcd

to drop in proportion to their sizes (therefore larger shapes have more chance).

126

On the contrary when (l2 = -1 (the probability for a shap being dropped is

proportional to the r ciprocal of its size), a wid hoic of (l1 from 20o/c to 90%

all achieve better results than random packing. This observation confirm om

hypo the is that, when we are dealing with heterogeneous instances lik(' those of

our benchmark instances, it is better to keep large shapes and mutate smaller ones,

which indeed in pired us to treat large and small shapes differently and develop

the Grouping ES. Another interesting line in the figure is for (/2 = 0 (hap('s are

chosen randomly to drop with no reference to their sizes), the results initially

improve (from (/1 = 10% to 30%), but get worse when (/] increases further.

163.00

162.00

16100

160.00

.. 159.00
ｾ ~

.'1!1 15800

1! 157.00

156.00

155.00

154.00

153.00

·20 ·2

50% -90% - - 100'"

·1 ·0.5 o 0.5 20

preference of shape size

Figure 5.9: Effects of mutation str ngth (/1, each lin represent a dift rent (/]
changing with (/2 E (-20,20)

Figure 5.9 reveals some properties of (/1' For ea h different amonnt (or per-

centage) of shapes being dropped, there is an interval of (l2 that an achiev('

better-than-random performance; the interval will shift to the left id (prefer

more smaller shapes) when (/1 increases. For example, when (ll = lOo/c, the inter-

val is [-1,1]; when (/1 = 50%, the interval is [-2,0]; when (/1 = 90%, th interval

is [-0.5, - 20]. For other in tance , the exact values of the intervals may vary, bu t

the trend is similar, that is higher (/1 requires lower (l2.

The interactive relationship between (l1 and (/2 can also be clearly een from

Table 5.2. In 5.2(a) we highlight the 10 be t combination of (/1 and (/2 out of a

total of 90 different settings, which align roughly on the diagonal from top right

127

to middle-left in the tabl . If we plot all th valu s to a 3 chart (s in 5.2(b)),

it i even clearer that ther exi t a vall ey of mutation strength that can achievr

good result.

(a)

n9 01

02 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

-20 sma ｾ ｓ ｴ t f rst 162.82 162.08 160.96 161.60 159.32 159.20 157.64 156.80 155.36 156.40

-2 158.48 157.44 155.94 155.90 154.40 154.72 154.10 153.98 155.00 156.92

-1 ｲ ｾ ｣ c proca 0' 5 Z I! 157.36 154.28 155.52 154.52 153.80 153.72 154.12 154.36 155.08 15670

-0.5 155.48 154.94 154.56 154.08 154.24 154.58 155.28 155.62 156.18 156.72

0 random 155.32 154.10 154.38 154.82 156.14 156.92 158.48 159.18 158.62 157.02

0.5 155.26 155.70 159.02 160.42 161.78 162.22 161.40 159.72 158.96 156.88

1 pro pot on to 5 ZI! 156.88 158.68 161.40 161.10 161.76 161.04 159.92 159.28 158.62 156.76

2 158.40 161.04 161.84 161.56 161.34 160.54 160.06 159.64 158.28 15664

20 b U051' r5t 161.82 160.72 161.46 160.94 161.08 160.30 159.20 15812 157.40 157.04

(b)

16400 1
162.00

160.00

... 158.00 .s=
til)

'Qj
.s=

15600

154.00

20

o
-0.5

-1
-2

Tabl 5.2: Effects of mutation str ngth jointly controlled by al (1 arameter for
percentage of shape repacked) and a2 (param ter for preferen e of hap iz)

128

Effects of Repacking Heuristic

The experiments above are using a heuristic that re-packs the shapes in a random

order. Another intuitive alternative is to pack them back in the same order that

they were dropped. The change will cause an interesting consequence as shown

in Table 5.3. We still highlight the 10 best settings of (11 and (12 in the table

5.3(a). Apart from the good area in the previous experiment, another area around

the bottom right corner of the table also has many good results. On the 30-

chart 5.3(b), we can easily see these two disjoint good valleys. This phenomenon

resonates with observation of other researchers in the cutting and packing domain.

That is, normally good results can be achieved if shapes are packed with First

Fit Decrease Size (FFDS) or Best Fit Decrease Size (BFDS) heuristic. In fact,

if (11 = 100% and (12 is large enough, the DAA mutation will always remove

all shapes with the largest being removed first. It then re-packs everything in

the same order which is indeed the FFDS (or BFDS). Adjacent cells around the

bottom right corner can be regarded as a small perturbation of FFDS and BFDS.

The instance shown above has 100 shapes. If the instance size increase to 200

shapes (nlO in 128]), the valley at the bottom right corner (corresponding to high

(11 and (12) will out-perform the valley with smaller (11 and (12 (shown in Table

5.4).

To conclude our observations for this set of experiments, when we utilise the

repack-in-the-same-order heuristic, it may be worthwhile searching in the two

separate good valleys for small to mid-sized problems, or in the bottom right valley

for large-sized problems. The finding in this section provides us with insight on

how to design the self-adaptive ES in section 5.7.1.

Convergence and Success Rate (13

In this section we investigate the effects of mutation strength 011 the success rate

and convergence speed. In a real-valued domain, the relationship between muta-

129

n9
02 100. ｾ Ｐ Ｂ Ｖ 6

·20 Ｄ Ｎ . ｡ ｣ Ｎ Ｚ Ｚ ｾ ｭ m 16L64 16412

·2 15956 1S6 20

·1 1'KIf"OOI" n. 156.00 15604

ｾ Ｕ 5 1S6.28 15548

0 ,..".,.,.. 1S4.92 1S408

05 155.72 155.60

1 propoIl4n to::ia 155.114 157 36

2 157.80 1S688

20 b ｰ Ｂ ｾ ｭ m 62.04 16238

16600

164.00

16200

16000

158.00

15600

15400

152.00

(a)

30'!6 400.

162 24 16 36
15800 15592
154 76 15482
l.5416 1S4.04
l.54 114 155.24

15820 160.64
16068 159.78
158 40 15812
6048 158.44

(b)

01
sao.

16080
1S458
1S410
154 36
15632
160.70
15956
15704
15702

-·2
·1

ｾ ~

15924
1S44O
15426
1S4.66
158.08
160.70
159.32
155.94
155.72

ｾ Ｎ Ｕ 5

7r:A. 8(N !lO96 100'1>

15904 157.60 157 56 162.52
154 26 154 80 156 38 161114
1S428 154 88 15600 161.70
15532 56.08 157.68 16136
158n 15964 15882 1S6.36
15986 157.68 15616 155.00
15770 56.34 15506 153114
15544 1S468 15392 153.'"
1S416 153.62 15322 154 2'1

20

0.5
o

Table 5.3: Effects of mutation str ngth shap s are re-pack d in the am ord r
being dropped

tion tr ngth and ucc s rate is the core th ory foundation for the If-adaptiv

strategy [16] . How ver orne of th se theori s do not hold £ r th ombinatorial

problems lik e th OPP. As a cons quence, we need to onsider the elf-adaptation

strategy differentl. In this ction w u e mpiri al tudi to investigate h

dynamic between ndogenou param t rs and the converg nce speed. Based on

discu sion in thi se tion w d sign the If-adaptation strat gi in the n xt

130

n10 a1
a2 10l' 20'!0 30'10. 4(N 50'!0 60'10 7O'l6 8O'h. 90!0 100'10

-20 ｾ Ｚ ｉ ｯ Ｎ ｟ _.. t'im 158.00 158.46 158.n 15816 15940 ｉ ｓ S Ｎ ｾ ~ 15760 156.34 15568 157n

-2 157.88 15704 15718 15650 15536 154 36 Ｑ ｾ Ｐ Ｔ 4 15350 15418 15810
-1 reop-val 0' ,,;. 156.90 15598 15532 154.90 ｾ Ｚ ｵ u 153.86 15370 15352 ｾ Ｐ Ｖ 6 15826

ｾ Ｎ Ｕ 5 156.36 155.52 15528 15456 ｾ Ｒ Ｔ 4 15400 ｾ Ｐ Ｔ 4 Ｑ ｾ ~ 12 15498 157.98

0 """""" 155.16 15514 15536 156 36 Ｑ Ｕ Ｖ ｾ ~ 157.50 15708 15718 156 78 154 40

0.5 156.18 156.92 15786 158 24 15770 157.74 15650 155.08 15416 152.62
prvpotOt'l to $ttf: 156.02 15738 157 32 15724 15632 155.28 Ｑ Ｕ ｾ ~ 34 15370 15286 152.00

2 156.04 156.26 15592 154.92 ｾ Ｒ Ｐ 0 15330 Ｑ Ｕ Ｒ Ｎ ｾ Ｒ 2 152.50 152_22 152.00

20 bUUlfim 15842 15774 15648 15508 15380 15360 15302 152.84 152.22 152.00

Table 5.4: A large instance of 200 shapes, re-pa ked in the am order &'3 being
dropped

section 5.7.1. Complete experimental results ar in pp ndix C.1, while in the

following we explain our findings with some extracted examples.

In the first experiment, we run each instance over 300 gen rations with a2 = 0

and set al from 10% to 100% incremental at 10o/c each step. The exp riment out-

puts the best child's fitness in each new gen ration. (ote this is not the cumu-

lative (or steady-state) best result as in pr vious sections, since ware interested

in how the algorithm maintains the evolvability rather than the final resul ts.)

We first observe the speed of onvergenc as shown in Figure 5.10. All line

in the chart are long-tailed, i.e. they becom stagnant after a quick improvement

after a few initial generations. This property is typically found on combinatorial

problems [891·

It is clear that when al is high the variation of th best child is high. As shown

in Figure 5.10 the lines for 10% and 30% are smooth while oth r lines representing

higher al are much more volatile. Consequently, for larg a] om tim s the best

child may be worse than the best one of previous gen ration, whil small enough

al can normally improve (or not worsen) the current be t results.

Lower settings of aI, are not only more stable, but can also achieve lower

(better) results. As we can see the lines for 10%, 30o/c and 50% are better than

70%, 90% and 100%. However, among the lower ettings, it is not nece arily

the case that the lowe t setting performs better within th number of generations

tested. In fact, for most instances, the best settings is not the lowest one (10o/c),

131

but around 30%.

164.18

162.18

:§.60.18 ..
:x:

158.18

156.18

154.18

｜ ｾ ~
\ .

•

o so

n9

- - . - . - .- ""
• • •

100 150
Generations

.0.1 0.3 0 .5 - 0.7 0.9 + 1

,. • • • • • • • • • ,.
200 250 300

Figure 5.10: Convergence ov r 300 generations

In an attempt to see, when given long enough time, if the 10% line can even-

tually take over and clo e the gap between itself and the 30% lin , we run all

instances for 30,000 generations. The gap between the two lines are till open

(result are in AppendLx C.2).

Thi result suggests an important difference between OPP and real-valued op-

timization problems. In real-valued search domains, a we discus d in the section

on ES theory in Chapter 2 (section 2.6), ESs normally exhibits an asymptote be-

haviour, i.e. 0'1,0'2 -t 0 success rate P -t 1/2. Therefore, with small mutation

strength approximate to 0, the results will definitely be b tter or equal though

it may take a longer time to achieve. Corresponding to this property, in a rea)-

valued domain, when the search is close to optimal, it will have to tune down

mutation strength to maintain the evolvability, i.e. the uccess rate. The differ-

ence between discrete and continuous s ar h domain may give us som hint. as

to the explanation of the observed behavior. Firstly, for combinatorial probl m

the fitness landscape, mutation of a variable annot move by an infinitely small

step, but th re exists a minimal step which is equival nt to replace th mall t

shape. Th refore the scalability of a real-valued domain doesn't hold anymore.

132

Furthermore, in OPP interactions between shapes are more complex and highly

constrained. It is easy to think of a situation that, when only the smallest shape

is relocated, other larger shapes may be stacked in a way they interlocks with

each other (Le. no single shape can shift because it is blocked by others). In such

situations, no matter where we put the smallest piece, we won't change the main

structure of the packing. There would be a threshold of mutation strength, below

which the ESs actually would loss evolvability.

The study in this section poses some interesting open questions. Does such

threshold exist for combinatorial problems? If yes, what is the level? When above

the level, shall the ES do self adaptation in the same way as in the real-valued

domain? And lastly, what is the expected results in relation to the mutation

strength? These are difficult open theoretical questions, but we hope the empirical

studies in this chapter can shed some light to assist and motivate other researchers.

Adaptive ES

In light of what we have observed in the previous section, we explore the properties

of more dynamic self-adapting ESs in this section. We propose the following

strategies based on the previous discussions.

1. Search in the two valleys. When initializing the population, the endogenous

parameter will be randomly generated but within the two good valleys iden-

tified in section 5.7.1 (orders of shapes are still uniformly random). ai, a2

are adjusted at the same time but in opposite directions, so as to keep the

parameters within the valley.

2. When al is small and the success rate is too low, in the contrast to a real-

valued problem, we increase al to regain evolvability.

3. Use an adaptive success rate instead of requiring a static success rate of 1/5

as in the real-valued domain. When the ESs fail to meet the target success

133

rate th Y have a choice of either adjusting 0"1 , 0"2 or 0"3. Each time when 0"3

is elected, the algorithms will half the r -quired su e s rate (typically result

in a rate much lower than 1/ 5).

4. Restart when the population become stagnate. The restart trategy is similar

to the one in Chapter 4. The difference is as the ESs op rate on phenot pes,

they utilise a pair of interval graphs for each packing as an abstraction,

and detect if the population is dominat d by similar packings from a same

packing clas .

We compare the results of the dynamic self-adaptive ESs against the Ss with

static mutation strength in Table 5.5. Except for the ndogenou parameter,

other exogenous parameters are set to the same values as th tatic ESs in Se tion

5.7.1. The self-adaptive ES is superior on 6 out of 10 instan es, and 7 in tanc s

when combined with re tart mechanism.

Agont m Static Static ｃ ［ ｾ ｬ ｦ ｟ ｡ ､ ｡ ｰ ｴ t ｶ ｴ Ｇ '
Self_adaptivt'

(01 02)

nl 40.00

n2 S472 51.38 50.00

n3 55,00 5456 52,68 51.64 51.72 52.82 53.44 5276 51 88 5300 51 59

n4 91,20 9044 83,96 82,86 82.68 83,92 84 44 83.70 83.00 8792 82 68

n5 108.48 10796 104,92 105.40 104.94 106,28 107,96 105,88 104 80 10700 104 63

n6 106.96 10780 10408 102,76 102,80 103,12 10428 103.52 102.92 10308 10264

n7 118,52 11672 116,56 108,04 104,62 107,88 109 14 10614 10376 11462 103 66

n8 89,60 9038 84,48 83,60 84,26 8728 8744 8566 83,80 8464 83 61

n9 162,62 16300 154,96 154,S4 154,48 157,12 159,88 156,32 15398 1S4.36 15385

n10 158,56 15878 157,40 155,00 154,26 157,30 156,20 153,70 15212 152,12 152 15

Table 5.5: Compare static and self-adaptive ESs (bas d on maximum computa-
tional cost: 30,000 evaluations of fitness function)

5.7.2 Grouping ESs

In this section we examine the results of experiments on the Grouping ES, which

either re-pack shapes in a random order or in th sequence that they were removed.

These simple GESs can be thought of arbitrary schema that adapts mutation

strength from high to low (as if the algorithm is tray rsing table 5.1(a) from right

towards left to pick a combination of 0"1 , 0"2). Initially, all shape in the ritical

134

• Reo tart
40.00

5000

5144
8269

104 60

10208

103 63
8337

153,74
152.42

and non-critical groups are to be mutated, which is equivalent of 0"1 = 100%. Tlw

re-pack heuristic is slightly different, however, both simply randomly shufHp the

orders (0"2 = 0) and with non-increasing size (0"2 = 20). The re-pack heuristic packs

the critical group first, in the order being dropped, prior to packing the non-critical

group in a random order. This is equivalent to set 0"2 somewhere in between [0,20J.

As the evolution progresses, less critical shapes will be dropped (therefore the total

amount of mutated shapes is less), which is in effect decreasing 0"1. Towards the

end of the evolution, only non-critical shapes are mutated (no shapes in the critical

group will be dropped), 0"1 is now equal to the percentage of non-critical shapes.

That is, the GESs will never go beyond this percentage and use 0"1 which is too

small. As we can see the simple GES, although an arbitrary adaptation schema,

coincidentally fits the findings discussed in the previous section, which suggests

that the bottom right settings in Table 5.1(a) is one of the good valleys; and a

minimum mutation strength is required to maintain evolvability.

Effects of Critical Ratio

This experiment finds out what is the best critical ratio (percentage of shapes

in the critical group). The ratios are defined from 5% to 100% with step size of

5%, other parameters are set as before. We want to see which ratio gives us the

best result for each instance. Table 5.6 shows an interesting trend that, when an

instance size becomes larger (toward the bottom lines of the table) smaller ratios

tend to generate best results. For instance N7 class (around 100 shapes) the best

critical ratio is 25% to 30%, while for N6 class (around 75 shapes) the best is 30%

to 40% and so on. Complete results for other benchmark datasets are included in

Appendix D.

135

:3 ｾ ~
\l' ｾ ~
X 0" s· (t
>= c.n
3 Q)

(')

o C1
:3 trl

'"0 If)
>= .,...
ｾ ｴ ｯ o
...... ('t)
o Ul
::l

e.o
(') ｾ Ｎ .o Ul _.

.,... (')

.. Eo
w ?::o
ｯ ｾ ~
o c-.
00

ｾ ｏ Ｇ '
ｾ Ｂ Ｑ 1

>= t:::)
ｾ ~ _.
c-. ｾ ~o ('t)
::l "1
Ul ('t)

o ｾ ~....,
Ｚ Ｚ ｮ ｾ ~
.,... N
:;:::l ('t)
('t) Ul
Ul
Ul 0
....,"'"
>=
:;:::l :;:::l
(') Ul
.,... M-
-. p:> o :::l
::3 (")

('t)
Ul

....---.,
0"
g;
C':>
P.-

o
:::l

"I

"2

N3

'U

-'5

.. 6

ｾ Ｗ 7

5 ... 10'.0 15 ...

ZIon 210'- 2lLO:-
210.99 lUA6 2U13

21079 21065 21076

210M 209 79 Ｒ Ｑ Ｐ ｾ ~

2016 21036 209911
21H lU46 21251
112.1 lU.5I 21063

213. lU69 2lL62

2135 lIS 74 21357
2141 114.30 2lL}7

11356 213.22 21269
11391 11442 lU45

211.2l 21194 2USS
2160 214.04 l1!.U

21309 ill.!1 21165
214.3 lU61 21352
215.04 214.6S 21449

liB lU35 21.1.37
212.9 lU54 21141

2U6d lU.21 2U01

213.71 1I3.25 213.2l

21B3 21266 211.;$

21416 213.01 2U6.i
2162 21600 215 70

2136 ill .01 2lL47

2131 21.L88 2lL2"
2131 21140 21U4

21305 illlO 21145
2146(21402 ill 75

212.11 21142 21095

212.1 21131 21090
211.3.1 210.59 209,96

211.74 21130 210U
lI395 ill.iS 2U25

lI1.2 lI041 21017

20'. l5'. JIr.. 35 .. 40'..

2lL7J 201.5 =U 20131 2a79
2011 09 205.lCl 205.59 205 ;$ 206 2l

210.34 20501 Z04.14 Zla46 206 9
205Tl 207lS 20614 20569 20611i
209 59 209} 20940 21021 201115

21L4 211.71 21192 1l0i.t 21071
21097 210.71 1llA2 209 35 209 }Ii

llLlC ZlH 211.71 21331 2lLU

2lL13 2US! 2U36 2lLJa 210911
2lL06 2un 21243 Ｒ ｬ ｌ ｾ ~ 212.22

2lL9C 212.35 11192 21152 211.otl
21310 211.31: 21150 210i.t 21O.i!

211.14 211.05 211.22 11010 109.11
2lL76 11375 ill.lO 211.55 211.51

211.10 211.i6 21145 21095 Ｒ Ｑ Ｐ Ｎ ｾ ~

212.51 Ｒ Ｑ Ｒ ｾ ~ 21260 2U.96 211.48
214.91 211.6 21112 210.46 210.61

2l1.45 21153 1I169 21.1.31 21083
210.69 211.1C 21090 21076 Ｒ Ｑ Ｐ ｾ ~

2U09 21Ul 21147 zo!l7a 21016

2n.l 21304 21218 211.00 210.91
2lLlI 211.8 21168 211.l5 2JO.53

2lLlA 211.60 210-'1 2U.2O 21.15C
215 41: l1.511 l1.541 lU91 213.21

21LI6 212.11 21131 2U.1.2 21U3

21.2.13 1.11.2 210.93 l1.!l23 21013

Ｒ ｬ ｯ Ｎ ｾ ~ 20994 2119.10 Ｒ Ｐ Ｙ ｾ ~ 21o.U

21.128 21001 20997 20947 210.00
2U6B 1I366 212.57 211.66 21.1'
111.311 20996 Ｒ Ｐ Ｙ ｾ ~ 21037 2106B

209.33 Ｒ Ｐ Ｑ Ｎ ｾ ~ 20871 20943 210.5,
209.11 201.71: 20919 1I01l 211.04

Ｒ Ｐ Ｙ ｾ ~ 2090 2119.05 20916 211.16
210.;$ 2119.9 2101.2 Ｒ Ｑ Ｐ ｾ ~ 210gs

21016 20961: Ｒ Ｐ Ｙ ｾ Ｖ 6 209 61 21001

4510 50'. 5so. 60'. 65 ... '0'. 75' 110'. 65 .. 9O'.e 95 .. 100'10

2071 20111 201152 ｚ Ｐ 0 Ｎ ｾ ~ 2010 lffJ.YJ 20690 20712 201.7 Z08.62 2076! 2O& • .i1

20655 20566 20665 206.7l 2070 206J15 = 59 20745 = 31 20735 20613 20767

205Z 205.Ai 20IH Ｒ Ｐ Ｖ ｾ ~ Ｒ ｏ ｉ ｾ ~ 20642 1OI.t6 209 2 2011 IS 10137 10151 209 12

Ｒ Ｐ Ｕ ｾ ~ = 62 = 26 207 91 2011 20119 20126 2074: 20661 Z0713 20616 207.27

201} _.57 _za 20901 2016 20561 20179 209 U 201' 20916 20151 _65

210.11 1I09O 110U 110 17 2111 21105 11123 Ｒ Ｑ Ｐ ｾ ~ 2110 210S} 21060 210.70

2OI.S 2!a.59 20159 208.115 20&9.: 2OI.Tl 20911 20917 20914 209ZO 10l6! 2OI.1!

211.4 1I1.33 211.25 U1.6i 211.To 211li 21176 2111C 212 05 212.01 211.ti 211.n

l1o. .. 210.10 21075 210.'7 l1U3 21117 nus 21116 2U.i IlL 60 21110 211..:1

209. 210m 210.2 210.33 21041 21059 1I06.i 21059 21065 21047 21026 210.51

211.2(21115 2116S 211.i1I 211.91 IIU2 11187 211 71 2119 211.18 21195 21113

2l09& 21117 11117 21U 21176 lU06 2U40 21112 211 !Jlj 212.12 21165 21108

20966 209 76 21036 Ｒ Ｑ Ｐ Ｎ ｾ ~ 21055 1I0.l! 21070 21049 2102 21022 21006 210.06

111..36 21144 21U 21.1&C 211.66 211.12 2.11.&3 211.6.l 21171 211.36 ZU.03 211.54

21056 1I046 210.29 210.53 2107 1.10.59 21066 21061 2109 lI1.05 21062 211.03

211.011 111 07 111.51 2lU6 2l2.06 211 76 212.29 2129C 212 5 2lL39 21242 212.67

211.0 211.Tl llLH IlL} 21243 21267 21.US 2ll .03 213 03 lU16 2lL51 212.61

1105 210m 21017 2109 211.10 211.29 21131 Ｒ ｬ Ｑ Ｎ ｾ ~ 211 ｾ Ｕ 5 211.66 2U.23 211.49

1I0.0II 1I001 21Oa7 210.62 210611 111.7Ii 21144 211.7' 2117& 2lL02 I11t.! 211.38

210li: 21060 210.' 21U; 21155 212 3l 2lL27 212.63 212 Z 212.05 Ｒ Ｑ Ｒ ｾ ~ 211.16

211.9l ZIITl 2lLB 21.2.71 1.132 213 53 21365 213)(lU7 21352 21.2'3 113.14

21061 210.81 211.85 21.2.01 212.0 ill 30 2lL56 2U.A> lUll 212.44 2lLH Ｒ Ｑ ｾ ~

211.93 ill.87 212.91 213 1! 1.136 213.97 21399 21419 l.1405 21471i 11391 113 92

21l..1O ill 19 21343 213 311 2137 213.95 11459 2147'J 2150 21555 It.! 66 2142:

211.75 21236 21.2.t6 2U.05 2132 213.iS 21337 21341: 2ll Z< 114.67 21311 2132.1

211.2 21158 2UJa 21.2.69 2135 21306 21357 213 59 213.2(21481 llLlO 212."
111.05 211.81 2U5 2UOI 21321 ill.95 Ｒ ｕ ｾ ~ 2133. 213l! ill 06 2lL9O 21312

21011 21145 21.217 21.2&-! 212.9 1.13 011 213 65 2135. ill .7 l14.59 2U72 21300

lUI ill 46 21318 Ｒ Ｑ Ｓ ｾ ~ 21355 213.98 Ｑ Ｑ ｾ Ｒ Ｙ 9 21442 2143 l1.5 73 21399 214.11

1.1U 211 76 112 <U 21.2.69 212 lIE 1.1302 213ZO 11327 213 2 Ｑ Ｑ Ｔ ｾ Ｑ 1 2U9O 213 02

21L.i 21154 2U47 21.2.99 21355 2U55 21363 21375 Ｒ ｕ ｾ ~ ill 17 213P 21301
nU5 ill 1.2 212.6 21.253 1I31C 213 61 213 0:- 21361 213' ill 62 21301 213 I'

lIUE ill.14 2127'3 2U.ll 21HC 1.13.52 ZU69 213r 213.9 ill 15 IUI9 21314
212.39 ill.!!1 2U41 2140C1 2145 114Tl 2140- 11493 214 9l 21650 1l.!09 21431

lI0 7 21166 l1.2U 21.2. -6 lI311 212Ul 21293 113 32 illJ5 214.53 2U5O 212.r

As we explained before the critical ratio defines th lower bound that aJ will

traverse, smaller critical ratio actually means higher al. Therefore, it is probably

not very surprising to see the results coincide with what we had observed in section

5.7.1, that large- ized problems are more likely to have better results in the bottom

right valley in Table 5.2{a).

Effects of Fitness Function

In this section, we evaluate each critical group with different fitness functions.

Instead of using only the current packing result to assess the fiLness of a criLical

group, we are interested to see if it is better to evaluate based on its overall

historical performance. In this experiment, the algorithm maintains a record for

each critical group of all results it participated in a packing. The records are

used to calculate certain statistics, in particular, th minimum, the average and

the average minus standard deviation. In essence, the experiment is try to find if

the algorithm has any learning ability to distinguish good groups from bad ones,

therefore guide the search more efficiently.

Avg Min Avg . SId

,nst siz e Ive ""n "of I'T'In ave "" n 'f.o f min ave min %olmln

n1 10 40.00 40 100.0% 40.00 40 100.0% 40.00 40 100.0%

n2 20 51.02 SO 49.0% 50.00 SO 100.0% 50.59 SO 70.0%

n3 30 52.65 52 34.7% 52.99 52 1 .0% 52.90 52 Ｑ Ｐ Ｎ ｾ ~

n4 40 83.94 83 6.1% 83.76 83 24.0% 83.80 83 19.6%

nS 50 106.05 106 95.0% 106.00 106 100.0% 106.39 105 25.3%

n6 60 103.17 103 83.0% 103.25 103 74.7% 103.35 102 14.0%

n7 70 107.77 106 4.0% 107.36 106 32.0% 106.61 105 40.0%

n8 80 86.06 84 2.0% 86.41 85 1 .0% 85.79 85 24.0%

n9 100 157.49 157 SO.5% 156.59 ISS 2.0% 157.68 156 15.2%

n10 200 155.85 154 3.0% 155.49 155 64.6% 156.42 155 1.0%

Table 5.7: CES: Effects of Fitness Function (based on maximum computational
cost: 30,000 evaluations of fitness function)

Among the three choice of fitness functions, there is no significant dift rence

among them (see Table 5.7). So we choose the historical minimum as a surrogate

fitness (since it is the easiest to calculate compared with the average and the

standard deviation), and run another experiment to compare with the simple

137

GES. Th re ult i hown in Table 5.8.

Sl.rrogate Simple GES
Inn size aVII mIn '.of mIn aile mIn ｾ Ｎ ｯ ｦ ｭ ｩ ｮ n

n1 10 40.00 40 100.0'16 40.00 40 Ｑ ｯ ｯ Ｎ Ｈ Ｉ) ｾ ~

n2 20 50.00 SO Ｑ ｯ ｯ Ｎ Ｈ Ｉ ｏ ｾ ~ SO.OO SO 100.

n3 30 50.58 SO 43.0'16 SO.85 SO 19.()o-'

n4 40 81.88 81 13.()o-' 82.06 81 2.0'16

n5 50 103.88 103 19.0'16 103.74 103 Ｒ 2 Ｎ Ｈ Ｉ) ｾ ~

n6 60 102.04 101 3.0'16 102.02 101 3.0'16

n7 70 103.69 102 Ｔ Ｎ Ｈ Ｉ ｯ ｾ ~ 103.68 102 5 .00.\
n8 80 83.U 82 7.0'16 83.52 82 2.0'16

n9 100 153.72 152 1.0'16 154.05 153 13.()O-'

nl0 200 154.00 152 Ｑ Ｎ Ｈ Ｉ ｯ ｾ ~ 153.91 153 25.0'16

Table 5. : Compare Surrogate Fitness Function with Simpl GES (ba ed on max-
imum computational ost: 30,000 evaluations of fitn ss function)

In Table 5.8, the urrogate fitness function does not outperform simple G S

signifi cantly, alt hough it wins two more instances. Like the Grouping G netic

Algorithm, it i still an interesting open que tion whether th re is any effi ient

methods that can identify promising group .

Different Strategies on Non-critical Group

In the previous experiments, non-critical groups are repacked either randomly or

according to the order of them being dropped. The experiment in thi section

apply more sophisticated search trategies to this group. While the criti cal groups

are evolved by ES, we would like to co-evolve the non-criti al group with its own

strategy.

Tabl 5.9 compare the re ults from previous algorithms (i.e. repack shap

randomly and with non-increasing size) with Genetic 19orithm (G), Hill Climb-

ing (HC) and Variable Neighbourhood Search (VNS). In th mor sop hi ticatcd

approaches, each individual inherits not only the critical group but also the ord r

of the non-critical group. The GA uses a truncate sel ction of th top 20 p rent

to choose another parent and perform cros over on the non-criti cal group. H

randomly swaps two members of the non-critical group and applies fir st des ent.

VNS huffie more members in the non-criti cal group with a hierarchical structure

138

that define the ex hang of one pair as the 10 t neighbour and all memb rs as

the furth t.

GES+ r.ndom GES. BfDS GES. GA GES· He GES .. VNS

''''L ... ow .. ,n ｾ ｯ Ｈ Ｌ Ｎ Ｎ Ｌ Ｎ . 0"" moo offTI n ova mo ｾ ｯ ｴ ｭ Ｂ " OVI OM 'of",lf'! ova In'"

nl 10 40.00 40 100.0% 4000 40 100.0% 40.00 40 100.0% 40.00 40 1000'0 4000

.2 20 50.00 50 100.0% 50.00 50 100.0% 50.00 SO 100.0% 50.00 so 100.0'0 SO.OO

.3 30 50.56 50 440% so 84 so 16.0% 51.01 SO 40% SO.7S so 2SO% so 93 81.72 II 280% 8188 81 12.0% 81.60 81 40.0% 81.83 81 17.0% 81.40

.5 so 103.05 102 20% 103.05 103 95.0% 103.02 103 98,"" 103.02 103 980'0 103.07

.6 60 102.06 102 940% 102.00 102 100.0% 102.1S 101 85.0% 102.00 101 110'0 102.00

.7 10 102.31 101 140% 102.31 102 70.0% 102.93 101 23.0'0 102.18 101 11 0'0 102.90 ,. 80 81.87 82 19.D'fo 82.82 82 18.0% 82.68 82 32.D'fo 82.70 82 30.0% 82.46

" 100 152.88 152 16.0% 15301 152 5.0% 15286 152 IS.O% 152.97 152 30% 152.86

olD 200 151.08 151 91.0% 152.00 152 100.0% 15200 152 loo.D'fo 152.07 151 10% 152.00

Table 5.9: GES: Diffi rent Strat gies on on-critical Group (ba ed on maximum
computational co t: 30000 evaluations of fitn function)

Re ult in Tabl 5.9 are hard to differ ntiate, though VNS and H do have more

on both average and minimum, and wh n the re ult ar qual, H

and VNS have sli ghtly higher percentage on hitting th minimum. Th reason for

these algorithms' p rformance being equal i po sibly due to the r as n that on th

phenotype fitness landscape of combinatorial problems, the micro-n ighbourhood

(the clo e n ighbour that can be reached with small mutation str ngth) around

a solu t ion is more random. If the hypothesi is true it will be hard to optimi e

on such a micro-neighbourhood with the traditional search algorithm which rely

on certain properti s of a probl m to make it a bit more tractable.

5.8 Summary

Application of Evolution Strategi sand phenotyp repre ntation on 0 is a

less studied ar a in lit erature, in pite of great suc es of thes approache in

real-valued (typicall y continuou , multi-modal) s arch domains. Some recent the-

oretical developm nts have shed li ght on th appli at ion of ES on ombinatorial

domain uch as SAT, ONE-MAX problem [101- 103]. The. e probl mare cx-

pressed in binary tring and statistical techniques (e.g. finit Markov chain) can

be appli d to stud the algorithms behaviour. Many oth r combinatorial optimi-

sation problems, including OPP, are more complicated in phenotype expre ion,

139

40
so
50
81

103
102
101
82

152
l SI

,-"oflT\ln

100.0%

1000%
7.0%
Ｖ Ｐ Ｎ ｾ ~

93.0'0
100.0%

8.0'10
540%
16.0%

1.0"

and direct application of ES is not straightforward. In this chapter, we extend the

ES application on OPP and provide empirical evidence to reveal the algorithms'

behaviour on oPP.

The first step is to define a phenotype representation for the problem and design

operators that can alter the representation to effectively search the neighbourhood.

The phenotype is defined by a list, Lpl storing the coordinates of each shape

(w.l.o.g. the bottom left corner of each shape). Given an initial empty space

of the containers, Lp implies another list of available spaces La. Two geometric

operators, split and merge, are discussed, which change Lp and La whenever we

add or remove a shape from a packing. Comparing to other methods in literature,

such as calculating the sky-line, and docking points, etc., the representation and

the two operators have a great advantage of being general for geometric calculation

in orthogonal euclidean space, as the two lists provide full disclosure of information

of the status of a packing. They can be used by any orthogonal packing heuristics

for any dimension, such as First Fit, and Best Fit.

Based on split and merge operators, we further designed a generic Drop-and-

Add (DAA) operator to mutate the phenotype representation. The operator is

designed to meet as far as possible the three principles of mutation (reachability,

unbiasedness and scalability) and avoid huge computational complexity. Due to

the combinatorial nature of OPP, it is difficult to achieve full scalability, however,

the DAA provides better control over mutation strength with the help of two

parameters, al for quantity and a2 for sizes of shapes.

We discussed the implication of representation and the DAA operator on the

fitness landscape and implementation of a basic form of ES. The experiments

on the basic ES provides deep understanding on the dynamics between mutation

strength and evolution progress. We discovered two good valleys of mutation

strength for the OPP problem. We also discussed the impact on the two valleys

when the instance size increase and different repacking heuristics are used.

140

In an attempt to find a good adaptive strategy for the ESs, a set of experiments

explored the convergence speed and success rate in relation to mutation strength.

The study shows great difference between real-valued and combinatorial domain.

On the basis of the findings, we proposed some adaptive strategies which are

different from ESs on real-valued problems. The adaptive ESs outperforms ESs

with static mutation strength. We also propose GES as another extension of the

simple ESs. GESs are more arbitrary adaptive strategies, which also intend to

overcome the scalability issue with the GGA in Chapter 4. The GES outperform

many other algorithms found in the literature.

There are some interesting open questions. It is still a challenging topic to

understand the behaviour of basic ESs on combinatorial search domains, from

both a theoretical and an empirical perspective. On the practical side, better

design of adaptive strategies is needed, either self-adaptive or arbitrary heuristics.

How to overcome the scalability issue and maintain the evolvability? What is

asymptotic success rate and the expected hitting time? When search converged

around some local optima is there any better strategies to exploit the areas?

141

Chapter 6

Conclusions

6.1 Summary of Key Contributions

This thesis contributes to the understanding and application of Evolutionary Algo-

rithms on orthogonal packing problems. We first introduce the definition and dif-

ferent models of the problem, followed by overview of the typology of other closely

connected problems. The orthogonal packing problems are NP-hard problems and

highly constrained by container sizes, other shapes and have different dimensions

(for two and more dimensional packing). A survey of the state-of-the-art algo-

rithms, including exact algorithm, heuristics, meta-heuristics and hyper-heuristics

is also included, so as to highlight strength and weakness of various approaches.

Chapter 3 contributes to the literature by pointing out the issue that many

meta-heuristics' search spaces are restricted to partial solution spaces due to the

bias of the low level heuristics they employ, and proposing a hyper-heuristic ap-

proach that can mitigate the problem by utilizing multiple heuristic decoders. As

an emerging search methodology, theoretical models for understanding the behav-

ior of hyper-heuristics are still needed. We use a framework to explain why the

algorithm has the capability to search larger solution space, therefore, raising the

level of generality of the search method. The proposed hyper-heuristic utilizes a

142

heuristic space that can map the same genetic encoding to different phenotypes in

the solution space. To test the effectiveness of the algorithm a set of new instances

were constructed. Experimental results on the new instances have shown that the

hyper-heuristic can find optimal solutions while conventional mate-heuristics fail

to do so. When instance size increases, both algorithms cannot solve a problem

to optimality, the hyper-heuristic still outperforms meta-heuristics. We also show

that the hyper-heuristic has a learning strategy that can evolve the heuristics it

chooses. This learning ability enables the algorithm to maintain the same effi-

ciency as conventional meta-heuristics and result in the same convergence speed

and comparable results on benchmark instances in the literature.

opp is an ideal test example for the the Building Block Hypothesis (BBH),

one of the fundamental and continuously debated theory of Genetic Algorithms.

In Chapter 4 we extend the Grouping Genetic Algorithm (GGA) to higher dimen-

sional OPPs that includes a strip packing (single bin) scenario to examine how

BBs (low order schemata) are built up to guide the evolutionary search. We have

designed different chromosomes from the original GGA for one-dimensional bin

packing. Initially chromosomes are individual shapes as in standard GAs. After

packing the initial chromosomes, an additional step is taken to identify blocks

(subsets of shapes that can form no-waste meta-rectangles) in each solution. In

the following generations, compatible blocks and individual shapes will be mixed

together to form variable length chromosomes. We also propose a hierarchical

network to describe the block formation process, i.e. to model the build up of BBs

from lower order to high order and help us to understand the behavior of GGA.

Three special issues are considered in the implementation of the GGA. Firstly,

since the recombination of chromosomes are more complicated, blocks from differ-

ent parents may be in conflict with others as they may share the same individual

shapes. Secondly, evaluation of the blocks to identify promising ones are prob-

lematic, because blocks are only partial solutions and evaluation of their fitness

143

using arbitrary fitness function may be deceptive, i.e. the evaluation of blockfi doefi

not reflect the correct paths leading to a successful search of complete solution.

Finally, the initial supply of BBs may affect the search results. If the initial pop-

ulation dose not include the correct BBs, receding populations may be ､ ｩ ｦ ｦ ｾ ｣ ｴ ･ ､ d to

wrong areas of the search space. We carried out a set of experiments to test the

best settings of these strategies. In particular, we implemented two mechanismfi

to adaptively rectify the 'wrong' decisions made by preceding populations. The

first mechanism is to hybridise the GGA with a tabu list and forbid using a certain

number of blocks for some generations if they fail to generate desired results after

a certain number of trials. The second mechanism is to restart the whole search

process if the search has not made any progress for certain number of evaluations,

in case all initial blocks are not good BBs or the search has been stuck at local

optima.

As the literature review has pointed out, symbolic encodings like GAs may

face the problem of deceptiveness, which means the fitness evaluation on geno-

types may miss-align with the phenotypes and guide the search into bad areas.

However, direct mutation and recombination of phenotypes of OPP is rarely in-

vestigated in the literature due to the computational complexity involved. In

Chapter 5, we propose a phenotype representation as well as two operators that

unify the calculation of orthogonal packing for any dimensions. The representation

is based on the simple data structure of a list of all shapes' bottom left coordi-

nates. Given initial empty space(s), the split operator can calculate incrementally

available spaces when each shape is added. Another operator, merge, allows us to

calculate the enlarged available spaces when shapes are removed from a packing.

The representation and the two operators give us the freedom to easily mutate

a packing by a drop-and-add strategy to repack certain shapes, which forms the

foundation of developing Evolution Strategies for OPP in the rest of Chapter 5.

Another obstacle for applying ESs to orthogonal packing problems is that

144

most ESs' adaptive strategies are on the theory basis of real-valued domain. Most

importantly the asymptotic success rate P --t 1/2 when mutation strength a --t 0

and current solution is not local (or global) optima. This behaviour in a real-

valued and continuous domain enables the algorithm to always tune down a to

maintain the success rate above a certain required threshold. However, in discrete

and combinatorial search domains, such as OPP, the theory is not just.ifiable.

Some recent researches study the ESs behaviour on the combinatorial optimisation

problems with simple representation, such as the first hitting time of One-Max

problem 1103] represented by binary strings. However, the theory is still insufficient

to provide comprehensive understanding on the algorithms.

In this thesis the empirical studies of ESs on orthogonal packing problems

provide further insights on understanding the ESs behaviour on such a domain,

especially, on what are the best settings for mutation strength, what is the rela-

tionship between mutation strength and the success rate (convergence speed). The

mutation of the simple ES is controlled by two parameters al for quantity and a2

for size of shapes to be repacked. Compared to the conventional mutation strength

measurement that counts the number of shapes swapped in genetic encoding, the

mutation we designed is a much finer tuning strategy. To find the best static muta-

tion strength, we tested two repack heuristics, one using random orderings and the

other using a first-drop-first-add order. We find that for both repack heuristics,

there is a same valley of good mutation strength which runs along the diagonal

line of the landscape (suggesting combination of large al with small a2 or small

al with large a2). The finding suggests a medium-weak mutation strength gives

the best results, which coincident with the ES's evolution window found in real-

valued domain. When the first-drop-first-add heuristic is applied, another good

valley of mutation strength appears towards the corner repacking all shapes with

non-increasing sizes. It is also noted, this new valley of good mutation strength

outperforms the first valley when instance size increases, which explains why for

145

many large instances simple greedy heuristics can beat more sophisticated search

algorithms, and the best results are achieved by slightly perturbing the greedy

heuristic in the second valley.

Another important finding with the simple ESs on OPP suggests the success

rate does not necessarily increase when mutation strength decreases, which is quite

different from the real-valued domains. The possible explanation is down to the

fact that OPP is highly constrained, therefore, the major structure of a packing

will not change when too few, and too small shapes, are repacked. This finding also

poses a difficulty in the design of the adaptive strategy of ESs, as the conventional

'tuning down' strategy loses its theoretical basis in the combinatorial domain (and

is indeed proved inefficient by our empirical study).

To address the adaptation issue of mutation strength for OPP, we proposed

two arbitrary adaptive ESs. The first adaptive ES is based on the findings in

preceding experiments. It searches in the two good valleys and adjusts a1 and a2

in opposite directions (one increases the other decreases) at the same time. We

also hybridise the strategy with a restart mechanism to prevent the search being

stuck at some local optima.

The second adaptive strategy, Grouping Evolution Strategies (GES), decom-

poses a problem into two groups; critical group for large shapes and non-critical

group for small shapes. When mutating a packing, the critical group will stay

in place while the non-critical group will be repacked. With further empirical

experiments, we found the critical group ratio (percentage of shapes in the crit-

ical group) ranges from 20% to 50%. We also found an interesting relationship

that larger sized instances require smaller critical ratio. Compared to the GGA

in Chapter 4, the GES utilises a less dynamic grouping strategy (only two groups

in the GES compared to an increasing number of groups in the GGA). Another

potential advantage of GES is that we can apply different search strategies for the

two different groups. The empirical results on benchmark instances demonstrate

146

that the GES is a powerful solver for OPP problems and generates comparable

results for some of the best algorithms in the literature.

6.2 Limitations and Suggestions for Future Research

Hyper-heuristics are still a relatively new search paradigm which require more

theoretical development. The ultimate objective of hyper-heuristics is to raise the

level of generality of search methods. The approach of hyper-heuristics is to use

"heuristics to choose heuristics" or "heuristics to generate heuristics 11 , therefore

requiring less injection of domain knowledge and human interference. Current

mainstream of meta-heuristics need human decisions to choose representations,

neighborhood move methods, decoding heuristics (when use symbolic encoding)

and evaluation functions. While the proposed hyper-heuristic in Chapter 3 is only

one example of how to make intelligent choice among various decoding heuristics,

all other aspects of meta-heuristics are subject to incorporation into the general

hyper-heuristic paradigm. Correspondingly, other frameworks may be used for

modelling and explaining hyper-heuristics search process.

Our hyper-heuristic framework demonstrates one advantage of mapping genetic

encodings via the heuristic search space to the solution space, which usually being

searched partially with only a single heuristic. Other benefits can be derived by

adopting hyper-heuristics' search methodology, such as increasing search efficiency

or generating better results. The learning mechanism used in the hyper-heuristics

is based on a simple reinforcement learning strategy, which may be further im-

proved by more sophisticated learning strategies such as neural networks, and

Bayesian networks, etc. However, the overhead of other learning methods need to

be considered, as the current reinforcement learning methodology is very efficient

and adds only a slight computational overhead to a standard meta-heuristic. The

proposed hyper-heuristic is using 'default' parameters that are commonly found

147

in the literature. To achieve a fully automated system, adaptive strategies for

parameter setting need to be investigated.

In Chapter 4 the hierarchical network model for groups only takes into con-

sideration condensely packed blocks (in the implementation of GGA, we even set

the threshold () = 1 to exclude imperfect groups). In Holland's schemata theorem

and the Building Blocks Hypothesis (BBH), low order schemas are not necessarily

adjacent. More general models are needed to incorporate these general situations.

The network is only an intuitive descriptive model and applicable to only small

instances when fully enumerating all potential blocks. For larger instances, it is

impractical to enumerate all blocks and the complete Markov Transition Matrix

is not available. Therefore, theoretical deriving the probability of hitting certain

packing results remains a challenging question, and there is perhaps still a long

way to go to ultimately prove (or disprove) the BBR.

Another interesting topic for future work is to see whether there are some ways

to distinguish good and bad BBs in the early stages of search. If there are, it would

have significant impact on the search strategy. Various learning strategies, such

as Bayesian Network, and Neural Network etc., can possibly be hybridised with

the GGA in predicting the goodness of BBs.

From an application perspective, the GGA, although a powerful solver for small

instances, cannot handle non-guillotine patterns very well. Since for non-guillotine

packing, no blocks in an optimal packing have utilisation ratio () equal to 1 (i.e.

groups are always imperfect), the evaluation of blocks are not providing effective

guidance for the search process. Lastly, in the GGA identifying blocks is an extra

process, which would be computational expensive if not implemented efficiently.

In our implementation, we remove bad blocks by setting the threshold () equal to

1 and remove as early as possible these blocks, so that the algorithm is tracing

less potential blocks. It is also interesting to see if any algorithms can be applied

to optimise the sub-routine.

148

Many interesting questions are left for future research in Chapter 5. Firstly,

although the two basic orthogonal space operators, split and merge, perform well

in practice, understanding their complexity of average and worst cases are still

needed. The two operators allow us to mutate a packing with DAA mutation

operator, however, recombination of multiple packings is hard to do with the

phenotype representation and could be a computationally expensive operation. A

possible approach may be like the GGA where compatible blocks are recombined.

Again, expensive computation on block identification may be involved.

For the general ES theory on combinatorial search domains like OPP, while

our initial investigation shed lights on some phenomena, there are still a lot of fun-

damental questions to ask, beside the general questions like expected first hitting

time for such a complicated representation. Although we discovered the two val-

leys of good mutation strength setting, we still need to find the reason that cause

the two valleys. In particular, it is hard to explain, although maybe intuitive, why

the valley representing greedy repacking heuristic will outperform the other valley

when instance size increases.

Since there is no asymptotic success rate as in real-valued domain, the conver-

gence properties of ES on OPP is an even more baffling question. Although the

arbitrary adaptive strategies generated high quality results for the benchmark in-

stances, without a good understanding on this topic it would be difficult to design

better adaptive strategies. Similarly for the GES, what are good evaluation func-

tions of the partial solutions of the critical group? What are good strategies for

the different groups, or is the micro-neighbourhood on this phenotype landscape

tractable? It is necessary for us to pursue further to understand the problem and

the algorithms to fully answer these questions.

149

Bibliography

II] N. Alon, Y. Azar, J. Csirik, L. Epstein, S.V. Sevastianov, A.P.A. Vestjens,

and G.J. Woeginger. On-line and off-line approximation algorithms for vec-

tor covering problems. Algorithmica, 21 (1): 104-118, May 1998.

12] R. Alvarez-Valdes, F. Parreno, and J.M. Tamarit. A tabu search algorithm

for a two-dimensional non-guillotine cutting problem. European Journal of

Operational Research, (3):1167-1182, December 2007.

13] R. Alvarez-Valdes, F. Parreno, and J.M. Tamarit. Reactive grasp for the

strip-packing problem. Computers fj Operations Research, 35(4):1065-1083,

April 2008.

14] A.R. Babu and N.R. Babu. Effective nesting of rectangular parts in multiple

rectangular sheets using genetic and heuristic algorithms. Int. J. Prod. Res.,

37(7):1625-1643, May 1999.

15] A.R. Babu and N.R. Babu. A generic approach for nesting of 2-d parts in

2-d sheets using genetic and heuristic algorithms. Computer-Aided Design,

33(12):879-891, October 2001.

16] M. Bader-EI-Den and R. Polio Generating sat local-search heuristics using

a gp hyper-heuristic framework. In N. Monmarche, EI-G. Taibi, P. Collet,

M. Schoenauer, and E. Lutton, editors, Artificial Evolution, volume 4926 of

Lecture Notes in Computer Science, pages 37-49. Springer I3erlin / Heidel-

berg, 2008.

17] R. Bai, E.K. Burke, and G. Kendall. Heuristic, meta-heuristic and hyper-

heuristic approaches for fresh produce inventory control and shelf space al-

location. Journal of the Operational Research Society, 59(10):1387-1397,

August 2007.

18] R. Bai and G. Kendall. A model for fresh produce shelf-space allocation

150

and inventory management with freshness-condition-dependent demand. IN-

FORMS Journal on Computing, 20(1):78-85, January 2008.

19] B.S. Baker. A new proof for the 1st-fit decreasing hin-packing algorithm.

Journal of Algorithms, 6(1):49-70, 1985.

110] B.S. Baker, D.J. Brown, and H.P. Katseff. A 5/4 algorithm for two-

dimensional packing. Journal of Algorithms, 2(4):348-368, 1981.

Ill] B.S. Baker, E.G. Coffman, and R.L. Rivest. Orthogonal packings in 2 di-

mensions. Siam Journal on Computing, 9(4):846-855, 1980.

[12] J.E. Beasley. An exact two-dimensional non-guillotine cutting tree-search

procedure. Operations Research, 33(1):49-64, 1985.

113] G. Belov and G. Scheithauer. A cutting plane algorithm for the one-

dimensional cutting stock problem with multiple stock lengths. European

Journal of Operational Research, pages 274-294, 2002.

[14] G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting. European

Journal of Operational Research, 171(1):85-106, May 2006.

1151 J.A. Bennell and J.F. Oliveira. The geometry of nesting problems: A tu-

torial. European Journal of Operational Research, 184(2):397--415, January

2008.

116] H. Beyer and H. Schwefel. Evolution strategies a comprehensive introduc-

tion. Natural Computing, 1:3-52, 2002. 10.1023/ A:1015059928466.

117] A.K. Bhatia and S.K. Basu. Packing bins using multi-chromosomal ge-

netic representation and better-fit heuristic. Neural Information Processing,

3316:181-186,2004.

118] A. Bortfeldt. A genetic algorithm for the two-dimensional strip packing

problem with rectangular pieces. European Journal of Operational Research,

172(3):814-837, August 2006.

119] A. Bortfeldt and H. Gehring. A hybrid genetic algorithm for the container

loading problem. European Journal of Operational Research, 131(1):143-161,

May 2001.

151

[20] J.M. Bourjolly and V. Rebetez. An analysis of lower bound procedures for

the bin packing problem. Computers (3 Operations Research, 32(3):395 405,

March 2005.

[21] B. Brugger, K.F. Doerner, R.F. Hartl, and M. Reimann. Antpacking - an

ant colony optimization approach for the one-dimensional bin packing prob-

lem. Evolutionary Computation in Combinatorial Optimization, Proceeding!>,

3004:41-50, 2004.

[22] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and .l.R. \Vood-

ward. Exploring hyper-heuristic methodologies with genetic programming.

In J. Kacprzyk, L. C. Jain, C. L. Mumford, and L. C. Jain, editors, Com-

putational Intelligence, volume 1 of Intelligent Systems Reference Library,

pages 177-201. Springer Berlin Heidelberg, 2009.

[23] E.K. Burke, E. Hart, G. Kendall, P Newall, P. Ross, and S. Schulenburg.

Hyper-heuristics: an emerging direction in modern research technology. In

Handbook of Metaheuristics, number 16, pages 457-474. Kluwer Academic

Publishers, 2003.

[24] E.K. Burke, R.S.R. Hellier, G. Kendall, and G. Whitwell. Complete and

robust no-fit polygon generation for the irregular stock cutting problem.

European Journal of Operational Research, 179:27-49, 2007.

[25] E.K. Burke, M.R. Hyde, and G. Kendall. Evolving bin packing heuristics

with genetic programming. Parallel Problem Solving from Nature - Pp.m Ix,

Proceedings, 4193:860-869, 2006.

[26] E.K. Burke and G. Kendall. Comparison of meta-heuristic algorithms for

clustering rectangles. Comput.Ind.Eng., 37(1-2):383-386, October 1999.

[27] E.K. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyperheuristic for

timetabling and rostering. Journal of Heuristics, 9:451-470, December 2003.

[28] E.K. Burke, G. Kendall, and G. Whitwell. A new placement heuristic for

the orthogonal stock-cutting problem. Operations Research, 52(4) :655 -671,

July 2004.

[291 E.K. Burke, G. Kendall, and G. Whitwell. Simulated annealing enhancement

of the best-fit heuristic for the orthogonal stock cutting problem. Informs

Journal on Computing, 2009.

152

1301 E. K. Burker, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and .1. R. Wood-

ward. A classification of hyper-heuristic approaches. In M. Gendreau and

.1. Potvin, editors, Handbook of Metaheuristics, volume 146 of Interna-

tional Series in Operations Research f3 Management Science, pages Ｔ Ｔ Ｙ ｾ ~ 468.

Springer US, 2010.

1311 A. Caprara. Properties of some ilp formulations of a class of partitioning

problems. Discrete Applied Mathematics, 87(1-3):11-23, October 1998.

1321 A. Caprara, A. Lodi, and M. Monaci. Fast approximation schemes for two-

stage, two-dimensional bin packing. Mathematics of Operations Research,

30(1):150-172, February 2005.

1331 J. Carlier, F. Clautiaux, and A. Moukrim. New reduction procedures and

lower bounds for the two-dimensional bin packing problem with fixed orien-

tation. Computers f3 Operations Research, 34(8):2223-2250, August 2007.

1341 K Chakhlevitch and P. I Cowling. Hyperheuristics: Recent developments. In

Adaptive and Multilevel Metaheuristics, volume 136, pages 3-29. Springer,

2008.

1351 B. Chazelle. The bottom-left bin-packing heuristic: an efficient implemen-

tation. Ieee Transactions on Computers, 32(8):697-707, 1983.

1361 B. Chen, A. van Vliet, and G.J. Woeginger. A lower-bound for randomized

online scheduling algorithms. Information Processing Letters, Ｕ Ｑ Ｈ Ｕ Ｉ Ｚ Ｒ Ｑ Ｙ ｾ ｾ Ｒ Ｒ Ｒ Ｌ ,

September 1994.

1371 C.S. Chen, S.M. Lee, and Q.S. Shen. An analytical model for the container

loading problem. European Journal of Operational Research, 80(1):68-76,

January 1995.

1381 P. Chen, G. Kendall, and G.V. Berghe. An ant based hyper-heuristic for

the travelling tournament problem. In G. Kendall, editor, Computational

Intelligence in Scheduling, 2007. SCIS '07. IEEE Symposium on, pages 19

26,2007.

1391 E.G. Coffman, J. Csirik, D.S. Johnson, and G.J. Woeginger. An introduction

to bin packing, 2004.

1401 E.G. Coffman, M.R. Garey, and D.S. Johnson. Approximation algorithms for

bin packing: a survey. In D. Hochbaum, editor, Approximation algorithms

for NP-hard problems, pages 46-93. PWS Publishing, Boston, 1996.

153

[41\ E.G. Coffman, M.R. Garey, D.S. Johnson, and R.E. Tarjan. Performance

bounds for level-oriented 2-dimensional packing algorithms. Siam Journal

on Computing, 9(4):808-826, 1980.

[42\ P. Cowling and K. Chakhlevitch. Hyperheuristics for managing a large collec-

tion of low level heuristics to schedule personnel. Evolutionary Computation,

2:1214-1221, May 2004.

[43\ P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A robust opti-

misation method applied to nurse scheduling. In Juan Guerv6s, Panagiotis

Adamidis, Hans-Georg Beyer, Hans-Paul Schwefel, and Jose-Luis Fernandez-

Villacaiias, editors, Parallel Problem Solving from Nature oAt PPSN VII,

volume 2439 of Lecture Notes in Computer Science, pages 851-860. Springer

Berlin, 2002.

[44\ P. I. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to

scheduling a sales summit. In Selected papers from the Third International

Conference on Practice and Theory of Automated Timetabling III, PATAT

'00, pages 176-190, London, UK, 2001. Springer-Verlag.

[45\ T. G. Crainic, G. Perboli, M. Pezzuto, and R. Tadei. New bin packing

fast lower bounds. Computers (3 Operations Research, 34(11):3439-3457,

November 2007.

[46\ T.G. Crainic, G. Perboli, M. Pezzuto, and R. Tadei. Computing the asymp-

totic worst-case of bin packing lower bounds. European Journal of Opera-

tional Research, 183(3):1295-1303, December 2007.

[47\ T.G. Crainic, G. Perboli, and R. Tadei. An interval graph-

based tabu search framework for multi-dimensional packing.

http://citeseerx. ist.psu. edu/viewdoc/summary?doi= 1 0.1.1.9.8933, 2003.

[48\ J. Csirik. On the worst-case performance of the nkf bin-packing heuristic.

Acta Cybern., 9(2):89-105, 1989.

[49\ J. Csirik, J.B.G. Frenk, and M. Labbe. 2-dimensional rectangle packing -

online methods and results. Discrete Applied Mathematics, 45(3):197-204,

September 1993.

[50\ J. Csirik and D.S. Johnson. Bounded space on-line bin packing: Best is

better than first. Algorithmica, 31(2):115-138, October 2001.

154

[51] J. Csirik, D.S. Johnson, C. Kenyon, J.B. Orlin, P.W. Shor, and R..R.. We-

ber. On the sum-of-squares algorithm for bin packing. Journal of the Acm,

53(1):1-65, January 2006.

152] J. Csirik, D.S. Johnson, C. Kenyon, P.W. Shor, and R..R. \Veber. A self or-

ganizing bin packing heuristic. Algorithm Engineering and Experimentation,

1619:246-265, 1999.

153] J. Csirik and G.J. Woeginger. Shelf algorithms for on-line strip packing.

Information Processing Letters, 63(4): 171-175, August 1997.

154] K. A. De Jong. Evolutionary Computation: A Unified Appr-oach. The MIT

Press, 1st edition, March 2002.

155] K.A. Dowsland. Some experiments with simulated annealing techniques for

packing problems. European Journal of Operational Research, 68(3):389-

399, August 1993.

[56] K.A. Dowsland and W.B. Dowsland. Packing problems. European lournal

of Operational Research, 56(1):2-14, January 1992.

157] K.A. Dowsland, W.B. Dowsland, and J.A. Bennell. Jostling for position: lo-

cal improvement for irregular cutting patterns. l.Oper.Res.Soc., 49(6):647-

658, June 1998.

158] K.A. Dowsland, E.A. Herbert, G. Kendall, and E. Burke. Using tree search

bounds to enhance a genetic algorithm approach to two rectangle packing

problems. European lournal of Operational Research, 168(2):390-402, Jan-

uary 2006.

159] H. Dyckhoff. A new linear-programming approach to the cutting stock prob-

lem. Operations Research, 29(6):1092-1104, 1981.

160] H. Dyckhoff. A typology of cutting and packing problems. European Journal

of Operational Research, 44(2):145-159, January 1990.

161] H. Dyckhoff, H.J. Kruse, D. Abel, and T. Gal. Trim loss and related prob-

lems. Omega-Int. l. Manage. Sci. , 13(1):59-72, 1985.

162] H. Dyckhoff, Guntram Scheithauer, and J. Terno. Cutting and packing. In

M. Dell'Amico, F. maffioli, and S. Martello, editors, Annotated bibliographies

in combinatorial optimization, pages 393-412. Wiley, 1997.

155

[631 J. EI Hayek, A. Moukrim, and S. Negre. New resolution algorithm and

pretreatments for the two-dimensional bin-packing problem. Computers f1

Operations Research, 35(10):3184-3201, October 2008.

[641 L. Epstein and A. Levin. A robust aptas for the classical bin packing prob-

lem. Automata, Languages and Programming, Pt 1, 4051:214-225, 2006.

1651 L. Faina. An application of simulated annealing to the cutting stock problem.

European Journal of Operational Research, 114(3):542-556, May 1999.

1661 E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal

of Heuristics, 2(1):5-30, June 1996.

1671 E. Falkenauer and A. Delchambre. A genetic algorithm for bin packing and

line balancing. pages 1186-1192, 1992.

1681 O. Faroe, D. Pisinger, and M. Zachariasen. Guided local search for the

three-dimensional bin-packing problem. Informs Journal on Computing,

15(3):267-283, 2003.

1691 S.P. Fekete. On more-dimensional packing iii: Exact algorithms.

1701 S.P. Fekete. On more-dimensional packing ii: Bounds. 1997.

[711 S.P. Fekete, E. Kohler, and J. Teich. Higher-dimensional packing with order

constraints. Algorithms and Data Structures, 2125:300-312, 2001.

[721 S.P. Fekete and J. Schepers. A combinatorial characterization of higher-

dimensional orthogonal packing. Mathematics of Operations Research,

29(2):353-368, May 2004.

[731 S.P. Fekete and J. Schepers. A general framework for bounds for higher-

dimensional orthogonal packing problems. Mathematical Methods of Opera-

tions Research, 60(2) :311-329, 2004.

[741 S.P. Fekete, J. Schepers, and J.e. van der Veen. An exact algorithm for

higher-dimensional orthogonal packing. Operations Research, 55(3):569 587,

2007.

1751 H. Foerster and G. Wascher. Simulated annealing for order spread mini-

mization in sequencing cutting patterns. European Journal of Operational

Research, 110(2):272-281, October 1998.

156

[76] A. Freville. The multidimensional 0-1 knapsack problem: An overview.

European Journal of Operational Research, 155(1):1-21, May 2004.

[77] G. Galambos and G.J. Woeginger. Repacking helps in bounded space onlilIf'

bin-packing. Computing, 49{ 4):329-338, 1993.

[78] M.R. Garey, R.L. Graham, D.S. Johnson, and A.C.C. Yao. Resource con-

strained scheduling as generalized bin packing. Journal of Combinatol'ial

Theory Series A, 21(3):257-298, 1976.

[79] M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the

theory of NP-completeness. W. H. Freeman, January 1979.

[80] P.C. Gilmore. Cutting stock problem. Canadian Mathematical Bulletin,

9(6):737, 1966.

[81] P.C. Gilmore and R..E. Gomory. A linear-programming approach to the

cutting-stock problem. Operations Research, 9(6):849-859, 1961.

[82] P.C. Gilmore and R..E. Gomory. A linear-programming approach to the

cutting stock problem .2. Operations Research, 11(6):863-888, 1963.

[831 P.C. Gilmore and R.E. Gomory. Multistage cutting stock problems of 2 and

more dimensions. Operations Research, 13(1):94, 1965.

[84] P.C. Gilmore and R..E. Gomory. Theory and computation of knapsack func-

tions. Operations Research, 14(6):1045, 1966.

[85] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,

Norwell, MA, USA, 1997.

[86] D. Goldberg and C. Bridges. An analysis of a reordering opera-

tor on a ga-hard problem. Biological Cybernetics, 62:397 ｾ Ｔ Ｐ Ｕ Ｌ , 1990.

1O.1007/BF00l97646.

[87] D. E. Goldberg. Genetic Algorithms in Search Optimization and Machine

Learning. Addison Wesley, 1989.

[881 D. E. Goldberg, K. Deb, and J. Horn. Massive multimodality, deception,

and genetic algorithms. 1992.

157

[89] C.P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search

through randomization. In Proceedings of the fifteenth national/tenth con-

ference on Artificial intelligence/Innovative applications of artificial intelli-

gence, pages 431-437, 1998.

[90] A. Gomez and D. de la Fuente. Solving the packing and strip-packing proh-

lems with genetic algorithms. In Lecture notes in computer science, volume

1606, pages 709-718, 1999.

[91] A. Gomez and D. de la Fuente. Resolution of strip-packing problems with

genetic algorithms. J.Oper.Res.Soc., 51(11):1289-1295, 2000.

[92] .T. F. Goncalves. A hybrid genetic algorithm-heuristic for a two-dimensional

orthogonal packing problem. European Journal of Operational Research,

183(3):1212-1229, December 2007.

[93] X.D. Gu, G.L. Chen, and Y.L. Xu. Average-case performance analysis of a

2d strip packing algorithm - nfdh. Journal of Combinatorial Optimization,

9(1):14-34, February 2005.

[94] R. Gunther. A unified view on hybrid metaheuristics. In F. Almeida,

M. Blesa Aguilera, C. Blum, J. Moreno Vega, M. Perez, A. Roli, and M. Sam-

pels, editors, Hybrid Metaheuristics, volume 4030 of Lecture Notes in Com-

puter Science, pages 1-12. Springer Berlin, 2006.

[95] E. Hadjiconstantinou and N. Christofides. An exact algorithm for general,

orthogonal, 2-dimensional knapsack-problems. European Journal of Opera-

tional Research, 83(1):39-56, May 1995.

[96] R.W. Haessler. A note on computational modifications to the gilmore-

gomory cutting stock algorithm. Operations Research, 28(4): 1001-1005,

1980.

[97] R.W. Haessler. One-dimensional cutting stock problems and solution pro-

cedures. Math.Comput.Model., 16(1):1-8, January 1992.

[98] R.W. Haessler and P.E. Sweeney. Cutting stock problems and solution proce-

dures. European Journal of Operational Research, 54(2):141-150, September

1991.

[99] P. Hansen and N. Mladenovic. Variable neighborhood search: Principles

and applications. European Journal of Operational Research, 130(3):449 --

467, 2001.

158

[100] P. Hansen and N. Mladenovic. Variable neighborhood search. In E. K.

Burke and G Kendall, editors, Search Methodologies: Introductory Tutorial.,;

in Optimization and Decision Support Techniques, pages 211-238. Springer,

2005.

[101] J. He and X. Yao. Drift analysis and average time complexity of evolutionary

algorithms. Artificial Intelligence, 127(1):57-85, March 2001.

[102] J. He and X. Yao. A study of drift analysis for estimating computation time

of evolutionary algorithms. Natural Computing, 3(1):21-35, March 2004.

[103] Jun He and Xin Yao. Towards an analytk framework for analysing the

computation time of evolutionary algorithms. A rtificial Intelligence, 145(1-

2):59 - 97, 2003.

[104] E.A. Herbert and K.A. Dowsland. A family of genetic algorithms for the

pallet loading problem. Annals of Operations Research, 63:415-436, 1996.

[105] A.I. Hinxman. The trim-loss and assortment problems a survey. European

Journal of Operational Research, 5(1):8-18, 1980.

[106] J. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, 1975.

[107] E. Hopper and B. Turton. Application of genetic algorithms to packing

problems - a review. In P.K. Chawdry, R Roy, and RK.; Kant, editors,

Proceedings of the 2nd on-line world conferrence on soft computing in engi-

neering design and manufacturing, pages 279-288. Springer Verlag, London,

January 1997.

[108] E. Hopper and B.C.H. Turton. An empirical investigation of meta-heuristic

and heuristic algorithms for a 2d packing problem. European Journal of

Operational Research, 128(1):34-57, January 2001.

[109] E. Hopper and B.C.H. Turton. A review of the application of meta-heuristic

algorithms to 2d strip packing problems. Artificial Intelligence Review,

16(4):257-300, December 2001.

[110] I. Ikonen, W. Biles, A. Kumar, and RK. Ragade. Concept for a genetic

algorithm for packing three dimensional objects of complex shape, 1996.

159

[Ill] S. Imahori, M. Yagiura, and T. Ibaraki. Local search algorithms for the

rectangle packing problem with general spatial costs. Mathematical Pro-

gramming, 97(3):543-569, August 2003.

[112] S. Imahori, M. Yagiura, and T. Ibaraki. Improved local search algorithms for

the rectangle packing problem with general spatial costs. European .Journal

of Operational Research, 167(1):48-67, November 2005.

[113] A. Moore J. Boyan. Learning evaluation functions for global optimization

and boolean satisfiability. In Proceedings of the Fifteenth National Confer-

ence on Artificial Intelligence, pages 3-10, 1998.

[114] S. Jakobs. On genetic algorithms for the packing of polygons. European

Journal of Operational Research, 88(1):165-181, January 1996.

[115] D. S. Johnson. Near-optimal bin packing algorithms.

[116] D. S. Johnson. Approximation algorithms for combinatorial problems. In

STOC '73: Proceedings of the fifth annual A CM symposium on Theory of

computing, pages 38-49, Kew York, NY, USA, 1973. ACM.

[117] D.S. Johnson. Fast algorithms for bin packing. Journal of Computer and

System Sciences, 8(3):272-314, 1974.

[118] D.S. Johnson and K.A. Niemi. On knapsacks, partitions, and a new dynamic-

programming technique for trees. Mathematics of Operations Research,

8(1):1-14, 1983.

[119] L. V. Kantorovich. Mathematical Methods of Organizing and Planning Pro-

duction. Management Science, 6(4):366-422, 1960.

1120] K. Karabulut and M.M. Inceoglu. A hybrid genetic algorithm for packing

in 3d with deepest bottom left with fill method. Advances in Information

Systems, Proceedings, 3261:441-450, 2004.

[121] C. Kenyon and E. Remila. A near-optimal solution to a two-dimensional

cutting stock problem. Mathematics of Operations Research, 25(4):645-656,

November 2000.

[122] W.S. Khoo, P. Saratchandran, and N. Sundararajan. A genetic approach

for two dimensional packing with constraints. Computational Science - lees

2001, Proceedings Pt 2, 2074:291-299, 2001.

160

1123] S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproxima-

bility results for max-cut and other 2-variable csps? In Proceeding.'! of the

45th Annual IEEE Symposium on Foundations of Computer Science, pages

Ｑ Ｔ Ｖ ｾ ~154, Washington, DC, USA, 2004. IEEE Computer Society.

1124] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchio Optimization by simulated

annealing. Science, 220:671-680, 1983.

1125] J. R. Koza and R. Polio Genetic programming, 2005.

1126] B. Kroger. Guillotineable bin packing - a genetic approach. European Jour-

nal of Operational Research, 84(3):645-661, August 1995.

1127] B. Kroger, P. Schwenderling, and O. Vornberger. Parallel genetic packing of

rectangles. Lecture Notes in Computer Science, 496:160-164, 1991.

1128] B. Kroger and O. Vornberger. Enumerative vs genetic optimization - 2

parallel algorithms for the bin packing problem. Lecture Notes in Computer

Science, 594:330-362, 1992.

1129] M. Labbe, G. Laporte, and H. Mercure. Capacitated vehicle routing on

trees. Operations Research, 39(4):616-, July 1991.

1130] K.K. Lai and J.W.M. Chan. Developing a simulated annealing algorithm for

the cutting stock problem. Comput.Ind.Eng., Ｓ Ｒ Ｈ Ｑ Ｉ Ｚ Ｑ Ｑ Ｕ ｾ Ｑ Ｒ Ｗ Ｌ , January 1997.

1131] C.C. Lee. A simple on-line bin-packing algorithm. J.ACM, 32(3):562-572,

1985.

1132] J. Levine and F. Ducatelle. Ant colony optimization and local search for bin

packing and cutting stock problems. J.Oper.Res.Soc., Ｕ Ｕ Ｈ Ｗ Ｉ Ｚ Ｗ Ｐ Ｕ ｾ Ｗ Ｑ Ｖ Ｌ , July

2004.

1133] .I.E. Lewis, R.K. Ragade, A. Kumar, and "V.E. Biles. A distributed chromo-

some genetic algorithm for bin-packing. Robotics and Computer-Integrated

Manufacturing, 21(4-5):486-495, August 2005.

1134] D. Liu and H. Teng. An improved bl-algorithm for genetic algorithm of the

orthogonal packing of rectangles. European Journal of Operational Research,

112(2):413-420, January 1999.

[135] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: a

survey. European Journal of Operational Research, 141(2):241 ｾ Ｒ Ｕ Ｒ Ｌ , Septem-

ber 2002.

161

[136] A. Lodi, S. Martello, and D. Vigo. Approximation algorithms for the oriented

two-dimensional bin packing problem. European Journal of Operational Re-

search, 112(1):158-166, January 1999.

[137] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches

for a class of two-dimensional bin packing problems. Informs Journal on

Computing, 11(4):345-357, 1999.

[138] A. Lodi, S. Martello, and D. Vigo. Heuristic algorithms for the three-

dimensional bin packing problem. European Journal of Operational Re-

search, 141(2):410-420, September 2002.

[139] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin

packing problems. Discrete Applied Mathematics, 123{1-3):379-396, Novem-

ber 2002.

[140] A. LodL S. Martello, and D. Vigo. Models and bounds for two-dimensional

level packing problems. Journal of Combinatorial Optimization, 8(3):363-

379, September 2004.

[141] A. Lodi, S. Martello, and D. Vigo. Tspack: A unified tabu search code for

multi-dimensional bin packing problems. Annals of Operations Research,

131{1-4):203-213, October 2004.

[142] W. Mao. Best-k-fit bin packing. Computing, 50(3):265-270, 1993.

[1431 S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing

problem. Informs Journal on Computing, 15(3):31O-319, 2003.

[144] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong

bounds for the 0-1 knapsack problem. Management Science, 45(3):414-424,

March 1999.

[145] S. Martello, D. Pisinger, and P. Toth. New trends in exact algorithms

for the 0-1 knapsack problem. European Journal of Operational Research,

123(2):325-332, June 2000.

[146] S. ｾ ｬ ｡ ｲ ｴ ･ ｬ ｬ ｯ Ｌ , D. Pisinger, and D. Vigo. The three-dimensional bin packing

problem. Operations Research, 48(2):256-267, March 2000.

[1471 S. Martello and P. Toth. Algorithm for solution of 0-1 single knapsack

problem. Computing, 21(1):81-86, 1978.

162

[1481 S. ｾ ｉ ｡ ｲ ｴ ･ ｬ ｬ ｯ o and P. Toth. Solution ofthe zero-one multiple knapsack-problem.

European Journal of Operational Research, 4(4):276-283, 1980.

[1491 S. Martello and P. Toth. An exact algorithm for large unbounded knapsack-

problems. Operations Research Letters, 9(1):15-20, January 1990.

[1501 S. Martello and P. Toth. Lower bounds and reduction procedures for the bin

packing problem. Discrete Applied Mathematics, 28(1):59-70, July 1990.

\1511 S. ｾ ｬ ｡ ｲ ｴ ･ ｬ ｬ ｯ o and P. Toth. Upper bounds and algorithms for hard 0-1 knapsack

problems. Operations Research, 45(5):768-778, September 1997.

[1521 S. ｾ ｉ ｡ ｲ ｴ ･ ｬ ｬ ｯ o and D. Vigo. Exact solution of the two-dimensional finite bin

packing problem. Management Science, 44(3):388-399, March 1998.

\1531 E.A. Mukhacheva and A.S. Mukhacheva. The rectangular packing problem:

Local optimum search methods based on block structures. A utomation and

Remote Control, 65(2):248-257, February 2004.

11541 T. Osogami. Approaches to 3d free-form cutting and packing problems and

their applications: a survey. Technical report, 1998.

[1551 T. Osogami and H. Okano. Local search algorithms for the bin packing

problem and their relationships to various construction heuristics. Journal

of Heuristics, 9(1):29-49, January 2003.

[1561 E. Ozcan, B. Bilgin, and E. Korkmaz. Hill climbers and mutational heuris-

tics in hyperheuristics. In Thomas Runarsson, Hans-Georg Beyer, Edmund

Burke, Juan Merelo-Guervos, L. Whitley, and Xin Yao, editors, Parallel

Problem Solving from Nature - PPSN IX, volume 4193 of Lecture Notes in

Computer Science, pages 202-211. Springer Berlin, 2006.

[1571 M. Pelikan, D.E. Goldberg, and E.E. Cantu-paz. Linkage problem, dis-

tribution estimation, and bayesian networks. Evol. Comput., 8:311--340,

September 2000.

[1581 D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations

Research, 45(5):758-767, September 1997.

[1591 D. Pisinger. A minimal algorithm for the bounded knapsack problem. In-

forms Journal on Computing, 12(1):75-82, 2000.

163

[1601 D. Pisinger. Heuristics for the container loading problem. European Journal

of Operational Research, 141(2):382-392, September 2002.

11611 D. Pisinger. Where are the hard knapsack problems? Computers t'tJ Opera-

tions Research, 32(9):2271-2284, September 2005.

11621 R. Qu, E. K. Burke, and B. McCollum. Adaptive automated construction

of hybrid heuristics for exam timetabling and graph colouring problems.

European Journal of Operational Research, 198(2):392 - 404, 2009.

11631 P. Ramanan, D.J. Brown, C.C. Lee, and D.T. Lee. Online bin packing in

linear time. Journal of Algorithms, 10(3):305-326, September 1989.

11641 C. Reeves. Hybrid genetic algorithms for bin-packing and related problems.

Annals of Operations Research, 63:371-396, 1996.

11651 P. Ross. Hyper-heuristics. In E.K. Burke and G. Kendall, editors, Search

methodologies: introductory tutorials in optimization and decision support

techniques, number 17, pages 529-556. Springer Science, 2005.

[1661 P. Ross, J. G. Marin-Blazquez, S. Schulenburg, and E. Hart. Learning a pro-

cedure that can solve hard bin-packing problems: A new ga-based approach

to hyper-heuristics. Genetic and Evolutionary Computation - Cecco 200.9,

Pt Ii, Proceedings, 2724:1295-1306, 2003.

11671 P. Ross, S. Schulenburg, J. G. Marin-Blazquez, and E. Hart. Hyper-

heuristics: learning to combine simple heuristics in bin-packing problems.

In CECCO '02: Proceedings of the Cenetic and Evolutionary Computation

Conference, volume 6, pages 942-948, San Francisco, CA, USA, 2002. Mor-

gan Kaufmann Publishers Inc.

[1681 K. Sastry, D. Goldberg, and G. Kendall. Genetic algorithms. In E.K. Burke

and G. Kendall, editors, Search methodologies - introductory tutorials in

optimization, search and decision support methodologies, number 4, pages

97-126. Springer, 2005.

[1691 G. Scheithauer and J. Terno. The modified integer round-up property of the

one-dimensional cutting stock problem. European Journal of Operational

Research, 84(3):562-571, August 1995.

[1701 G. Scheithauer and J. Terno. Theoretical investigations on the modified

integer round-up property for the one-dimensional cutting stock problem.

Operations Research Letters, 20(2):93-100, February 1997.

164

[1711 S.B. Shouraki and G. Haffari. Different local search algorithms in stage for

solving bin packing problem. Eurasia-let 2002: Information and Communi-

cation Technology, Proceedings, 2510:102-109, 2002.

[1721 A. Soke and Z. Bingul. Hybrid genetic algorithm and simulated annealing for

two-dimensional non-guillotine rectangular packing problems. Engineering

Applications of Artificial Intelligence, 19(5}:557-567, August 2006.

11731 A. Steinberg. A strip-packing algorithm with absolute performance bound

.2. Siam Journal on Computing, 26(2}:401-409, April 1997.

[1741 P.E. Sweeney and E.R. Paternoster. Cutting and packing problems - a

categorized, application-orientated research bibliography. J. Oper.Res. Soc.,

43(7):691-706, July 1992.

11751 P. Toth. Dynamic-programming algorithms for the zero-one knapsack-

problem. Computing, 25(1}:29-45, 1980.

[1761 J .M. Valerio de Carvalho. Lp models for bin packing and cutting stock prob-

lems. European Journal of Operational Research, 141(2}:253-273, September

2002.

[1771 A. van Vliet. On the asymptotic worst case behavior of harmonic fit. Journal

of Algorithms, 20(1}:113-136, January 1996.

11781 G. \\'ascher, Heike HaUliner, and Holger Schumann. An improved typology

of cutting and packing problems. European Journal of Operational Research,

183(3):1109-1130, December 2007.

11791 G.J. Woeginger. Improved space for bounded-space, on-line bin-packing.

Siam Journal on Discrete Mathematics, 6(4}:575-581, 1993.

11801 G.J. \\Toeginger. There is no asymptotic ptas for two-dimensional vector

packing. Information Processing Letters, 64(6}:293-297, December 1997.

11811 A. \Vright, M. Vose, and J. Rowe. Implicit parallelism. In Genetic and

Evolutionary Computation GECCO 2003, volume 2724 of Lecture Notes in

Computer Science, pages 211-211. Springer Berlin / Heidelberg, 2003.

11821 A. C. Yao. New algorithms for bin packing. J.ACM, 27(2}:207--227, 1980.

11831 L.H.W. Yeung and W.K.S. Tang. Strip-packing using hybrid genetic ap-

proach. Engineering Applications of Artificial Intelligence, 17(2):169-177,

March 2004.

165

Appendix A

New 2D Strip Packing Instances

Item Instance 1 Instance2 Instance3 Instance4 InstanceS Instance6 Instance7 Instance8

1 60:60 13:60 60:13 29:60 60:29 60:24 24:60 27:4
2 60:60 60:60 60:60 23:60 60:23 60:29 29:60 21:7
3 50:50 50:50 50:50 7:50 50:7 50:26 26:50 6:8
4 50:50 50:50 50:50 50:50 50:50 50:4 4:50 26:3
5 40:40 5:40 40:5 9:40 40:9 40:15 15:40 19:13

6 40:40 40:40 40:40 40:40 40:40 40:11 11:40 16:22
7 10:10 7:10 10:7 7:10 10:7 10:7 7:10 7:3

8 10:10 10:10 10:10 10:10 10:10 10:3 3:10 7:7
9 31:30 31:30 31:30 11:30 11:30 12:30 12:30 6:7
10 47:60 60:47 31:60 60:31 60:36 36:60 33:56

11 35:40 40:35 37:60 60:37 60:31 31:60 39:53
12 3:10 10:3 43:50 50:43 50:24 24:50 44:42
13 31:40 40:31 50:46 46:50 24:47

14 3:10 10:3 40:25 25:40 21:27

15 20:30 20:30 40:29 29:40 24:18
16 10:3 3:10 3:7
17 10:7 7:10 3:3

18 19:30 19:30 25:23

19 27:56

20 21:53
21 6:42

22 26:47

23 19:27

24 16:18
25 7:7

26 7:3

27 6:23

28 33:4
29 39:7

30 44:8

31 24:3

32 21:13

33 24:22
34 3:3

35 3:7

36 25:7
Strip width: 151

166

Appendix B

Effects of Mutation Strength of ES

167

Average of Minimum

(first drop first add, different location not required)

01: percentage of shapes being dropped;

02: parameter of size pereference, used in formula (Vi / Vm) ｾ ~ 02 where Vi is the volume of a shape, Vm Is the median volume;
Each value is an average over 50 runs;

Highlighted values are the 10 best results for each instance, i.e. the best settings of 01 and 02 for each Instance.

"2
02

-20 smallest first

-2

- 1 reciprocal of size

-0.5

o random

0.5

1 propotlon to size

2
20 biggest first

"3
02

-20 smallest first

-2
-1 reciprocal of size

-0.5

o random

0.5

1 propotion to size

2
20 biggest first

"4
02

-20 smallest first

-2

-1 reciprocal of size

-0.5

o random

0.5

1 propotlon to size

2
20 biggest first

"5
02

-20 smallest first

-2
-1 reciprocal of size

-0.5

o random

0.5

1 propotlon to size

2
20 biggest first

10%

54.92

53.88

53.16

54.02

53.36

53.70

53.70

54.20

55.00

10%

55.12

54.08

53.48

52.82

53.20

53.00

53.28

54.48

55.80

10%

89.64

86.08

86.16

84.24

83.92

83.90

84.56

85.24

91.60

10%

108.56

107.00

106.24

106.08

105.80

105.96

106.36

106.80
109.12

20%

53.40

51.68

51.44

52.20

51.80

51.64

52.70

53.40

55.50

20%

54.76

52.84

52.40

52.38

52.00

52.12

52.92

52.76

55.08

20%

88.60

84.72

83.76

83.52

83.44

83.44

83.88

84.60

90.32

20%

107.72

106.24

105.64

105.16

105.28

105.60

105.56

106.08
107.84

30%

54.36

51.52

50.32

50.56

51.32

51.28

51.92

52.72

54.64

30%

54.24

52.60

52.40

51.84

51.66

52.68

52.36

52.48
54.86

30%

88.44

84.92

83.16

83.08

82.80

83.56

83.76

83.88

88.12

30%

107.80

105.04

105.56

104.84

105.28

105.88

106.66

106.20
108.24

40%

53.52

51.28

50.24

50.56

50.00
51.76

51.76

51.64

54.56

40%

53.72

52.12

51.64

51.32

51.70

52.12

52.40

53.24
54.30

40%

90.36

84.24

82.96

83.08

82.86

83.56

84.36

83.96

88.20

40%

106.64

106.00

104.72

105.04

105.40

107.04

106.92

106.92

107.84

01
50%

53.52

50.48

50.72

50.00

50.60

50.56

50.60

51.28
54.80

01
50%

53.28

51.68

51.58

51.60
51.82

53.00

53.76

53.40
54.60

01
50%

87.88

83.48

82.28

82.76

83.28

84.08

84.34

83.88

86.64

01

50%

106.76

105.00

105.32

105.52

106.12

107.28

108.04

106.54
107.68

60%

53.32

50.00

50.00

50.00

50.72

50.24

50.72

50.DO

53.36

60%

53.48

51.52

51.76

51.76
52.76

53.76

53.80

52.92
53.80

60%

85.04

82.76

82.88

83.24

83.92

84.32

84.18

83.78

86.16

60%

106.56

104.80

105.52

105.68

106.62

107.08

107.48

106.44
106.48

70%

54.12

50.00

50.DO

50.00

50.24

51.28

51.48

50.00
54.00

70%

53.56

52.00

51.88

52.12

53.12

53.68

53.48

52.52

53.24

70%

85.60

83.00

83.00

83.28

84.12

84.36

83.90

83.48

85.44

70%

106.64

105.36

105.36

106.08

106.92

107.16

106.64

105.56

105.76

80%

53.48

50.80

50.48

50.92

52.04

51.84

51.76

50.00

53.08

80%

53.46

52.24

52.88

52.92

53.64

53.34

52.76

52.00

52.48

80%

87.00

84.00

83.52

83.84
84.08

84.12

83.88

83.06

84.68

80%

106.40

105.92

105.88

106.12

107.24

106.50

106.00

105.20

105.88

90%

53.20

52.80

51.56

52.00

51.88

52.12

51.04

50.12

53.40

90%

54.30

53.12

53.24

53.04

53.54

52.80

52.20

52.00

52.24

90%

85.58

84.12
84.00

83.92

84.32

84.00

83.76

83.08

84.60

90%

108.28

107.64

107.20

106.36

106.52

106.24

105.12

104.88

105.32

100%

54.60

54.00

53.32

52.06

51.52

50.48

50.DO

50.36

54.00

100%

55.72

55.00

54.20

54.04

52.86

52.00

51.64

51.88

52.76

100%

90.52

87.80

87.12

86.68

84.00

83.40

82.74

82.24
87.96

100%

109.08

108.68

108.76

107.52

106.24

105.48

104.84

104.60
107.00

n6

a2
-20 smallest first
-2

-1 reciprocal of size
-0.5
o random

0.5
1 propotlon to size

2
20 biggest first

n7

a2
-20 smallest first

-2
-1 reciprocal of size

-0.5
o random

0.5
pro potion to size

2

20 biggest first

n8

a2
-20 smallest first

-2

-1 reciprocal of size
-0.5

o random
0.5
1 propotlon to size

2

20 biggest first

n9

a2
-20 smallest first
-2
-1 reciprocal of size

-0.5

o random
0.5
1 propotlon to size

2
20 biggest first

n10
a2

-20 smallest first
-2

-1 reciprocal of size
-0.5

o random
0.5

1 propot /o n to size

2
20 biggest first

10%

107.40
105.40

104.44
103.78

103.54
103.64
104.32
105.02
106.96

10%

119.08
116.40
114.80
109.74

107.76
106.60
107.56

109.12
115.40

10%

90.44

87.20
86.20
84.80

84.72
84.60
85.12

86.64
90.40

10%

161.64
159.56
156.00
156.28
154.92

155.72
155.84

157.80
162.04

10%

158.00
157.88
156.90
156.36
155.16
156.18
156.02
156.04
158.42

Average of M inimum

(first drop fi rst add, different location not required)

20%

106.76
104.48

103.16
103.24
102.72

102.56
103.24
104.08
106.76

20%

117.84

114.96
111.96
108.50

107.08
105.96

109.20
109.40
115.04

20%

90.12

87.00
84.20
84.20
84.36
85.08
86.78
86.78
90.44

20%

164.12
156.20
156.04
155.48
154.08
155.60
157.36

156.88
162.38

20%

158.46
157.04
155.98
155.52
155.14
156.92
157.38

156.26
157.74

30%

106.88

103.28
102.84
102.44
102.88

102.56
103.56
104.04
107.44

30%

117.00
114.84
108.48
106.00
105.20
108.80
111.00

108.98

114.40

30%

89.76
84.16
83.76
83.96
84.64
87.50

88.86
87.88
88.76

30%

162.24

158.00
154.76
154.16
154.84
158.20
160.68
158.40
160.48

30%

158.72
157.18
155.32
155.28

155.36
157.86
157.32

155.92
156.48

40%

106.64
103.56

103.16
103.06

102.52
103.36
104.20
104.04

106.56

40%

118.60
113.82
107.32

103.92
104.76
112.48
110.48
107.76

111.60

40%

89.20

84.00
83.64
84.12

85.50
88.64
88.34

87.74
87.76

40%

162.36

155.92
154.82
154.04
155.24

160.64
159.78
158.12
158.44

40%

158.16
156.50
154.90
154.56
156.36
158.24
157.24

154.92
155.08

a1
50%

106.56
102.68

102.52
102.58
102.96

104.16
104.88
104.24
105.80

a1
50%

116.88
109.42
105.52
105.04
105.32
110.68

108.98
105.64
110.64

a1
50%

87.64

83.76

83.60
84.28

86.72
89.04
88.28
87.46
86.66

a1
50%

160.80
154.58

154.10
154.36
156.32
160.70
159.56
157.04
157.02

a1
50%

159.40

155.36
154.22
154.24
156.54
157.70
156.32
154.20
153.80

60%

105.68
103.24
102.82
102.80
103.00

104.24
104.64
103.96
104.44

60%

114.88
109.28
103.64
104.26
107.64
109.96
107.30
105.24
109.16

60%

86.00

83.76
84.14
84.56
87.12
88.66

87.56
86.24
85.54

60%

159.24
154.40

154.26
154.66
158.08

160.70
159.32
155.94

155.72

60%

157.96

154.36
153.86
154.00
157.50
157.74
155.28
153.30
153.60

70%

104.52
102.88

102.88
102.92
103.28
104.48
103.76
103.40
104.46

70%

113.72
105.00
105.12
104.08
109.16

109.08
107.00
105.24
108.52

70%

85.28
84.20
84.44
85.12
87.56

87.24
86.24
85.60
84.58

70%

159.04

154.26
154.28
155.32
158.72
159.86
157.70
155.44
154.16

70%

157.60
154.04
153.70
154.04
157.08
156.50
154.34
152.42
153.02

80%

103.88
103.16

102.88
103.04
103.72
104.08

103.64
103.00
103.48

80%

113.32

104.12
104.54
104.66
110.38
108.44
106.76
104.56
107.80

80%

85.12
84.94
84.72
85.20
87.04

86.66
85.80
84.76
84.54

80%

157.60

154.80

154.88
156.08
159.64

157.68
156.34
154.68
153.62

80%

156.34
153.50
153.52
154.12
157.18
155.08
153.70
152.50
152.84

90%

104.88
103.48

103.60
103.60
104.00
103.64

103.00
102.76
103.12

90%

112.94
106.80
107.16
107.56
109.82
107.28
105.52
103.48
107.64

90%

86.64
86.14
85.90
86.48
86.80
84.96

84.72
83.84
83.94

90%

157.56
156.38
156.00
157.68
158.82

156.16
155.06
153.92
153.22

90%

155.68
154.18
154.06
154.98
156.78
154.16
152.86

152.22
152.22

100%

106.84
106.32
106.04

104.88
103.72
103.00

102.72
102.00
103.12

100%

117.24
115.16
114.08
111.24
109.22
105.56

103.88
102.04
115.40

100%

91.44
90.48
89.46
88.40
85.48

84.20
83.78
83.76
84.80

100%

162.52
161.84
161.70
161.36
156.36
155.00
153.84
153.46
154.24

100%

157.72
158.10
158.26
157.98
154.40

152.62
152.00
152.00
152.00

Average of Minimum

(first drop first add, different location)

01: percentage of shapes being dropped;

02 : parameter of size pereference, used In formula (Vi / Vm) ｾ ~ 02 where Vi Is the volume of a shape, Vm Is the median volume,
Each value is an average over 50 runs;
Highlighted values are the 10 best results for each instance, I.e. the best sett ings of 01 and 02 for ach Instance.

-20
-2
-1

-0.5
o

0.5

2

20

n2
a2

smaUest first

reciprocal of size

random

propotlon to size

biggest first

n3
a2

-20 smaUest first

-2

-1 reciprocal of size

-0.5

o random

0.5

1 propotlon to size

2

20 biggest first

n4
a2

-20 smaUest first

-2

-1 reciprocal of size

-0.5

o random

0.5

1 pro potion to size

2
20 biggest first

n5
a2

-20 smaUest first

-2

-1 reciprocal of size

-0.5

o random

0.5

1 pro potion to size

2

20 biggest first

10%

54.72
53.72
53.20
54.00
53.44
52.72
54.12
53.74

54.68

10%

55.00

53.18

53.40
53.04
53.32
53.08

54.02
54.14
54.92

10%

91.20
86.56
85.20
84.48
84.16
84.66
84.44

85.80
91.40

10%

108.48
107.00
106.48
106.20
106.56
105.84
106.28
107.00
108.92

20%

54.32
51.26
51.96
51.20
51.12
52.12
52.44
53.64
55.36

20%

54.56

52.66
52.40
51.64
52.20

51.96

52.96
53.12

55.40

20%

90.44
86.44

83.66
83.52
83.14
83.40
83.88
83.92
89.24

20%

107.96
105.60
105.64
104.92
105.64
105.40
105.26
105.90
108.64

30%

54.16

50.96
50.48
50.08
51.04
51.44
51.04
52.24
54.88

30%

53.96

52.68
51.88
51.64
51.64
52.00

52.80

52.80
54.88

30%

88.36
83.96
82.80
82.44
83.20
83.52
83.88
84.12
88.92

30%

107.84
104.92
105.16
105.00
105.40
105.76
106.46
106.12
108.24

40%

53.44
50.24
50.56
50.00
50.72
50.96
51.76
51.76
55.16

40%

54.16

51.70
51.64
51.68
51.74
52.04

53.36
53.16
54.52

40%

87.84
83.40
82.86
82.64
83.24
83.64
84.00

83.80
88.00

40%

107.12
104.92
105.40
105.40
105.52
106.40
107.46
107.52
107.64

a1
50%

53.88
50.24
50.00
50.00
50.24
50.80
50.64
51.44
54.48

a1
50%

54.24

51.88
51.54
51.72
51.98
52.88
53.32

52.88
54.60

a1
50%

86.16
83.00
82.96
82.68
83.52

84.10
84.48

83.88
86.58

a1
50%

106.88
105.48
104.80
104.94
105.88
107.24
107.94
106.60
107.20

60%

53.96
50.00
50.00
50.12
50.48
50.24
51.12
50.48
53.76

60%

53.52

51.88
51.82
52.00
52.82
53.20
53.44
53.36

53.76

85.68
83.16

82.80
83.30
83.92
84.12
84.00

83.76
86.34

60%

107.00
105.24
105.28
105.92
106.28
107.32
107.28
106.24
106.64

70%

53.96
5000
5000
50.00
51.04
51.38
50.84
50.36
53.68

70%

53.24
52.12
51.88
52.44
52.90
53.44
53.16
52.48
53.28

70%

86.88

82.76
82.88
83.36
83.88
84.44
84.00
83.56
84.62

70%

106.60
105.64
105.76
106.06
107.00
107.96
106.50
105.82
105.88

80%

53.48
5000
50.72
51.04
50.88
51.84
50.40
50.32
53.12

80%

53.56
52.56
52.50
52.60
5346

53.28
52.76
52.08
52.52

80%

85.96
83.44
83.64
83.72
84.00
84.00
83.70

83.04
84.68

80%

106.36
105.76
106.40
106.68
106.40
106.80
105.88
105.16
106.16

90%

53.92
52.76
5152
52.36

5172
51.64
51.04
5092
53.00

54.62
53.40
53.52
5324

5302
5288
52.12
51.88
52.20

85.40
84.24
84.00
84.00
84.26

84.00
83.84

83.00
83.74

90%

108.08
107.76
106.96
106.64

106.64
105.88
105.60

104.80
105.48

100%

5420
5412
5320
5248

5188
5108
50.00
50.60
5400

100%

54.84

55.16
54.44
53.68
52.76

52.18
52.00
51.88
53.00

100%

90.32
88.32
87.36
87.40
84.56
83.40
82.92

82.00
87.92

100%

108.52
108.96
108.88
107.68
106.12
105.24

104.86
104.64
107.00

n6

02
-20 smallest first

-2
-I reciprocal of size

-0.5
o random

0.5
1 propotlon to size
2

20 biggest first

n7
02

-20 smallest first
-2

· 1 reciprocal of size

-0.5
o random

0.5

1 pro potion to size

2
20 biggest first

n8
02

-20 smallest first
-2

-I reciprocal of size
-0.5
a random

0.5
1 propotlon to size
2

20 biggest first

n9
02

-20 smallest first
-2
· 1 reciprocal of size

-0.5

o random
0.5
1 propotlon to size
2

20 biggest first

n10
02

-20 smallest first
-2

-I reciprocal of size
-0.5

o random
0.5

1 propotlon to size
2

20 biggest first

10%

106.96

105.80
103.40
104.24

104.08

103.60
104.10

104.88

107.64

10%

118.52
116.28
114.46
109.10
107.02
107.56

108.16
109.20
115.80

10%

89.60
86.34

86.06
85.20
84.60
84.92
85.44
86.16
91.12

10%

162.62
158.56
157.40
155.72
155.52
155.46
156.72
157.76
161.60

10%

158.56
157.52
157.00
156.74
155.08
155.82
155.94
156.16
158.66

Average of Minimum

(first drop first add, different location

20%

107.80
105.04
103.92
102.88
102.84

102.60

103.12

104.00

107.20

20%

116.72
116.48
109.64
107.70
105.76
105.92

108.56
108.48
116.64

20%

90.38
84.80

84.76

84.40
84.56

85.80
86.52
86.52
90.00

30%

107.08
104.08
103.64
102.84
102.64

102.62
103.24

103.72

106.92

30%

117.52
116.56
108.16
106.44
104.56
109.00
111.98
109.44
115.80

30%

89.32
84.48

84.12
83.54
85.00

87.04
88.86
88.24
88.62

20% 30%

163.00 161.44

156.82 154.96
155.!6 153.88
154.96 153.96
154.56 154.54
155.06 157.80
157.70 160.16

157.50 157.68
161.12 160.10

20%

158.78
158.00

156.20
155.20
155.06
157.40
157.78
156.30
157.72

30%

158.66
157.40

156.00
154.54
155.32
157.64
157.58
155.94

156.06

40%

106.60
102.88
102.76
102.64
102.88

103.36
104.56

104.20
106.12

40%

117.28
115.24
108.04

104.94
105.58
111.38
110.20
108.44
112.44

40%

88.04
83.68
83.60

83.96
85.56

88.68
88.98
87.56
87.40

40%

160.98
155.96
154.54
154.36
155.48
160.22
161.10
157.56
158.40

40%

158.36
155.88
155.00
154.56
156.26
157.92
157.32
154.82
155.08

01
50%

105.20
103.72
102.80
102.80

102.88
104.08
104.72

104.00

105.60

01
50%

117.88
109.76
107.64

104.62
105.48
111.50
108.84
105.76
110.56

01
50%

87.56
83.44

83.68
84.26
86.30

89.18
88.44

86.92
86.32

01
50%

160.08

155.50
153.92
154.48
156.06
160.80
160.48
156.88
156.76

01
50%

157.78

156.76
153.76
154.26
156.62
158.22
156.38
154.16
154.08

60%

105.28
103.36

102.56
102.80
103.12
104.70
104.36
103.80

104.92

60%

114.76
105.80
103.88
103.46
107.88
109.80
107.28

105.08
110.32

60%

85.88
83.82

83.68
84.60
87.28

88.68
87.50

86.12
85.76

60%

159.50
154.66
154.24
154.76

157.12
159.88
158.80
156.10
155.64

60%

158.22
154.78
154.10
153.92
157.30
157.82
155.28
153.28
153.54

70%

103.44
103.08
102.84
103.00

103.18
104.28
104.00
103.28
103.96

70%

111.52
105.04
104.16
103.86
109.78
109.14
106.28
105.26
108.80

70%

85.84
84.44

84.36
84.90
87.24
87.44
86.54
85.44
85.12

70%

157.82
154.38
154.50

155.10

159.20
159.88
158.20
155.24
154.42

70%

156.36
153.54

153.56
154.02
157.50
156.20
154.28
152.68
153.14

80%

104.36
10336
103.00
103.00
103.82
104.36
103.52
102.96
103.36

80%

113.48
105.08
104.16
104.84
110.12
108.08
106.24

105.12
107.74

80%

85.38
84.92
84.92

85.52
87.30

86.36
85.66
84.78
84.56

80%

157.20
154.82

154.90
156.24

159.64
157.98
156.32

154.66
153.68

80%

156.26
153.50

153.88
154.24
157.74
155.16
153.70
152.48

152.88

90%

104.72
103.58

103.60
104.00
104.02

103.76
103.08
102.92
103.00

90%

113.56
107.44
107.28

108.12
110.16
108.08
104.92

103.76
110.00

90%

87.40

86.34
85.92
86.18
86.68

85.30
84.70
83.80
83.88

90%

157.36
156.00
156.54
157.04

158.40
156.20
154.90

153.98
153.18

90%

156.14
154.00

154.04
154.74
157.30

154.08
152.96
152.12
152.34

100%

107.28
106.36
105.82
105.08

103.82

103.00
102.52
10200
103.08

100%

116.08
115.34
112.70
111.56
109.04
105.56

103.94
102.48
114.62

100%

90.42
90.12
89.96
87.90
85.72
84.10
83.66
83.64

84.64

100%

161.68
161.70

162.06

161.04
156.46
154.46
153.68
153.26
154.36

100%

158.10
159.08

158.72
159.00
154.04

152.60
152.08
152.00
152.12

01: percentage of shapes being dropped;

Averag of Minimum

(random add, dlff rent loe tlon)

02: parameter of size pereference, used In formula (VI / Vm) A 02 where VIis the volum of shape, Vm Is th m dl n volum ;

Each value is an average over SO runs;

Highlighted values are the 10 best results for each Instance, I.e. the best s ttlngs of 01 and 02 for 1!00ch In5t nCI!

n2

02
-20 smallest first

-2
-1 recIprocal 01 size

-0.5
o random

0.5
1 pro potion to size

2
20 biggest first

n3

02
-20 smalieSl nrst

-2

-1 reciprocal 01 size

-0.5
o random

05
propotlon to size

2
20 biggest first

n4
02

-20 smallest first

-2

·1 reciprocal 01 size

-0.5

o ｲ ｾ ｮ ､ ｯ ｭ m

0.5
1 propotlon to size

2
20 biggest first

n5
02

-20 smallest first

-2

-1 redprocal 01 size

-0.5

o random

os
1 propotlon to ,Ize

2
20 bluest first

10%

54,34

52.84
53.20
53.62

53.28
53.20

53.92
53.94

55.32

10%

55.56
53.28

53.52

52.92
53.32
52.76

53.16
54,28

55.56

10%

90.64
87.42

85.44
84.80
84.26

83.80
84.68
8566
91.08

10%

108.20
106.84
106.40
106.06

105.60
105.40
107.04

107.70

108.90

20%
54.68

52.04
51.00
51.52

51.50
51.80

52.72

53.52
54.72

20%

54.52

52.92
52.40
51.88

52.66

52.46

52.36
53.66

54.80

20%
91.04
84.88
83.64
8344

83.48

83.20
83.96

8436
86.34

20%

108.16
105.84
105,96
104,96

105.40
105.24
10612

10716
10780

30%

5356
5144
5084
5048

51.64
51.76
52.24

52.40
54.12

30%

53.84
52.64

5172
51.76
51.70
52.00

52.84
53.30
54.28

30%

90.60
84.06
83.20

8320
83.52

83.32
84.24
85.58
86.80

30%

107.08
104,98
10500
10520
105.24

10596
10706

10778
108.76

40%

52.32
5048
5024
50.32
50.68

5080
51.52

52.40

54.28

40%

54.08
5200
5174

51.76
51.76

52.60

53.06
53.84
54.48

40%

8676
83.34

82.92
83.04
83.38

83.88
85.60
86.14
85.94

40%

106.56
105.12

104.96
105.30
105.48

107.12
10838

10856
10896

01
Ｕ ｾ ~

52.88
50.48
5024
5048
5048
5124
52.00

5272
5360

01
50%

52.64

5176
51.44

51.72
52.12

53.12

5436
54.04

53.68

01

50%

87.52

82.90

82.52
82.72
83.60
8400

8572
8606
85.14

01
SO%

106.96
104 70

10480
105.38
10608
10812
10816
10816
10828

51.96
000

5000
so 00
SO 40

5084
5248
52.88
53.92

5228
51.48

5184
5176
52.40

5364

5396
5434

5400

8684
8276

82.80
8310
8400

8472
85.92
8570

8500

105.80

104 34
104 60
10528
106.64
10816
108 68
10844
10800

70%

5016
5000
so 00
so 12
5108
5174
5288
5276
53,36

5200
51.3&

5184
5200
5310
S412

5400
5410

5400

70%

8556
82.74

83.00

8336

8400
8524
8464
8532
8446

70%

10596
104 74
105.36
10588
10702

10832
108.12
10812
10728

5048

so 00
5000
50.&8
5112
5222
5272

52 &0

5264

52.12
5200

5188
52.

53.18
5374
5342
5376
5352

8312

83 02

8320
8338
8388

8 32
8504
8448
84.88

10540
104.88
10524
105.88
10664
10752

10728

10736
10700

5188
52.48

52.18
52 &0

204

52.36
SB2
5230
5288
5324
34&

53
5304
5306

8352

83 8
8376

8386

84 &2

845

84 2
8408
84.50

106.44

10628

10728

10660
106 76

J06 36

5164
51
!>l.J2

51 4

5212
1&0

5208

100'K

2.88

5288

288
308

5288
5276

288
288

52.12

100

84 20

8 60
8422
8400

48

84.28

12

84,58

10588

10612
106 J6
10612

10612

106 24

10628

106 12

n6

02
-20 smallest first

-2

-1 reciprocal of size

-0.5

o random

0.5
1 propotlon to size

2

20 biggest first

n7

02
-20 smallest first

-2

-1 reciprocal of size

-0.5
o random

0.5
1

2
20

-20
-2

-1

-0.5
o

0.5
1

2
20

propot/on to size

biggest first

n8

02
smatlestfirst

reciprocal of slz.

random

pro potion to size

biggest first

n9

02
-20 smallest first

-2
- I reciprocal of slz.

-0.5
o random

0.5
1 propotlon to size

2
20 biggest first

n10
02

-20 smallest first

-2
- I redprocal of slz.

-D.5

o random

0.5

1 propotion to size

2
20 biggest first

10%

107.96
105.96
104.36
104.36

103.44
103.64
103.84
105.08
107.16

10%

116.68
115.78
114.68
109.56
107.96
105.44
108.04

110.96
114.48

10%

90.48
87.16
85.24
85.12

84.96
85.02
85.16
87.04
90.08

10%

162.82
158.48
157.36
155.48
155.32
155.26
156.88
158.40
161.82

10%

158.64
158.12
156.48
156.04
154.68
155.60
156.90
157.56
157.38

20%

107.48
104.32
102.88
103.00

102.66
102.96
103.24
104.04
105.20

20%

119.06
116.88
111.80
109.20
106.12
106.30
110.62
113.38
113.52

20%

90.00
85.08
85.56
84.00
84.46
85.40
87.36
88.44
89.42

20%

162.08
157.44
154.28
154.94
154.10
155.70
158.68
161.04
160.72

20%

158.80
156.48
156.22
155.02
155.10
157.36
157.86
157.58
158.38

Average of Minimum

(random add, different location)

30%

106.04
103.68
103.24
102.84

102.80
102.88
103.36
104.44

105.52

30%

117.36
115.56
108.68
106.60
104.62
109.24
112.46
113.84
112.04

30%

89.64
84.52
83.60
83.40
84.80
87.70
89.76

89.84
88.86

30%

160.96
155.94
155.52
154.56
154.38
159.02
161.40
161.84
161.46

30%

159.06
156.86
155.48
154.90
155.56
158.26

158.52
158.10
157.56

40%

106.52
103.72

102.60
102.68

102.66
103.20
104.88
105.42
105.68

40%

119.26
112.92
107.78
103.68
105.32
112.32
112.76
111.52
111.44

40%

87.28
84.08
83.56
83.96
85.68
88.66
89.52
90.14
89.74

40%

161.60
155.90
154.52
154.08
154.82
160.42
161.10
161.56
160.94

40%

158.36
156.12
154.38
154.60
156.28
158.52
158.20
158.14
157.94

0 1
50%

105.08
103.24
102.84
102.36
102.86

104.48
105.08
105.34
105.32

01
50%

115.64
107.96
106.66
103.72
105.74
112.56
111.04
111.76
110.68

01
50%

86.64
83.48
83.36
83.98
86.68
89.76
89.28

89.20
89.02

0 1
50%

159.32
154.40
153.80
154.24
156.14
161.78
161.76
161.34
161.08

01
50%

158.94
155.80
154.08
154.12
156.78
158.36
157.88
157.44
157.24

60%

104.84
102.86
102.64
102.76

103.00

104.48
105.28
104.88
105.88

60%

115.48
109.96
103.44
104.00
107.98
112.10
110.72
110.84
110.28

60%

85.60
83.10
83.64
84.58
87.20
89.20
88.60
88.76
88.04

60%

159.20
154.72
153.72
154.58
156.92
162.22
161.04
160.54
160.30

60%

158.18
154.72
153.68
153.96
156.98
158.42
157.96
157.54
157.02

70%

103.52
102.72
102.50
102.76

103.12

104.52
105.04
104.88
104.88

70%

11284

105.16
103.20
103.36
108.86
110.94
110.84

110.12
109.72

70%

84.72

83.54
84.02
84.56

87.04
88.46
88.30
87.92
87.72

70%

157.64
154.10
154.12

155.28
158.48
161.40
159.92
160.06
159.20

70%

158.18
153.60
153.36
153.40
157.28
157.74
157.48
156.72
156.52

80%

10320

102.88
102.86
10300
103.78

104.88
104.56
104.60
104.60

80%

11008
10324
10342
10426
11000
111.66
110.76
109.16
109.96

80%

84.12
84.08
84.28
84.84
87.06
8724
87.60

86.88
8680

80%

156.80
15398
154.36
155.62
159.18
159.72
159.28
159.64
158.12

80%

156.24
152.96
153.10
153.56
157.18
157.00
156.86

156.64
155.76

10324
10300
10300
10332
103.52

104 60
10388
104 24
103.64

90%

106 64

104.16
104.88
10624

109 64
109 70
10982
109.88
110.24

90%

8436

84.22
8470
8524

8700
87.40
87.12

8664
8648

155.36
15500
155.08
156.18
158.62
158.96
158.62
158.28
157.40

154.00

152.92
153.20
153.76
156.98
155.94
156.32
156.12
155.42

100%

10364
103.96

10382
103.76
103.84

103.
10368
10376

10372

100%

109.32

10978
109.02
10888
109.16
109.60
108.96

10864
108.72

100%

85.76
8578
85.52
86.04

8600
8572
8588

8600
8568

100%

156.40
156.92
156.70
1672
15702
15688
15676
15664
15704

100%

15440
15442
15442
154.56
154.42
15446
15436
15436
154.04

Appendix C

Convergence of ES

174

C.l 300 Generations

nZ
57.5 0.1 0.3 0.5 - 0.7 0.9

56.5

55.5

ｾ ~

s; ..
ｾ ~ 54.5

53.5 \ - \ ｲ Ｍ ｾ ~
,. • •

I \ I I
4,

\ \
\ \ ,

52.5 ,
\1 \ ,

- L
51.5

0 50 100 150 200 250 300
Generations

n3
0.1-+-0.3 0.5 - 0.7 0.9 1

57.26

56.26

55.26

:c ..
·iii
"'54.26 ""

' - / ./ -"
\

/
53.26

.- .. •
52.26

51.26

0 50 100 150 200 250 300
Generations

92.58 n4
0.1-+-0.3 0.5 - 0.7 0.9 1

90.58

88.58
ｾ ~

s; ..
·iii

'"
86.58

84.58 -...

82.58

0 50 100 150 200 250 300
Generations

175

nS
110.74 0 .1 0 .3 O.S - 0 .7 0 .9 1

109.74

ｾ Ｎ .
'-.

ｾ ｜ \
108.74 ｾ ~ ｾ ~\ / ...-

"-
/

\ ｾ ~:;: .. ./
ｾ Ｐ 0 Ｎ Ｗ Ｔ 4

............ ---. .. -.
106.74 • ｾ Ｎ .

,.,. Ｍ ｾ ~
•

105.74

104.74

0 SO 100 150 200 250 300
Generations

n6
0 .1 0 .3 O.S - 0 .7 0 .9 1

109.18

108.18

107.18

ｾ Ｐ 0 Ｎ Ｑ Ｘ 8 \

-----'0;

ｾ ｜ \:J: -'\

I / 105.18 /
J

104.18 "- / \

.
103.18 ., ..-..
102.18

0 SO 100 150 200 250 300
Generations

123.22 n7
0.1 0 .3 O.S - 0 .7 0 .9 1

118.22

'.
,.' ',.

Ｎ ｾ Ｎ ,

108.22
....../ "-. ... ' - . - . -

103.22

0 SO 100 150
Generations

200 250 300

176

n8
92.06

•• 0.1 0.3 ,. O.S- 0.7 0.9 .. 1

91.06

90.06

89.06

§88.06 '-
41

" / / \ :J: \ "- A

87.06 / '-
/ I

\
86.06 .. ""

4" ..
•

85.06 ..
84.06

83.06

0 50 100 150 200 250 300
Generations

n9
164.18 - +- 0.1 0.3 O.S - 0.7 0.9 .. 1

162.18

oS

.J.60.18
oJ: ..
·iii
:r

......
158.18 - ... - ," - _ .. _ 'IIi.

" .-'+< • "- "-.. "
156.18 .. • • ..
154.18

0 50 100 150 200 250)00
Generations

n10
.. 0.1--0.3 0.5 - 0.7 0.9

159.82

158.82

157.82 ..
.c ..
£56.82

•
155.82

......
154.82 "-"t'

153.82

0 50 100 150 200 250 300
Generations

177

C.2 30,000 Generations

C. 2.1 Largest first

n2
sigma2 = -20 (largest first) - 0 .1 0 .2 0.3 - 0.4

54.98

54.48

53.98 ----------------- •• --- Ｍ Ｍ Ｍ Ｍ ｾ ｾ ｾ Ｎ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ft_

.l:
u ...
:I:

53.48

52.98

52.48

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n3
sigma2 = -20 (largest first) - 0 .1 0 .2 0.3 - 0 .4

55.64

55.14

.l: 54.64 ..
Ii
:I:

54.14

53.64

53.14

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n4
sigma2 = -20 (largest first) - - 0 .1 0 .2 0.3 - 0 .4

91.56

91.06

90.56 ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ ｾ Ｍ

.l: .. 90.06 'w
:I:

89.56

89.06

88.56

88.06 >

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

178

109.34

108.84

108.34 ,

-t 107.84
;;
:z:

107.34

106.84

106.34

105.84

108.96

108.46

107.96

.l: 107.46 ..
;;
:z:

106.96

106.46

105.96

105.46

119.5

119

118.5
.l: ..
;;
:z:

118

0

._---------------------

3000 6000 9000

3000 6000 9000

nS
sigma2 = -20 (largest first) 0.1 0 .2 O.! - 0.4

-- ..

12000 15000 18000 21000 24000 27000 30000

Generations

n6

sigma2 = -20 (largest first) - 0 .1 0 .2 0 .3 - 0.4

12000 15000 18000 21000 24000 27000 30000

Generations

n7
sigma2 = -20 (largest first) - - 0 .1 0 .2 0 .3 0.4

ｾ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ -- - -.. - - -- .. -- ---........... -- --........ --- -...................... .
117.5

117

0 3000 6000 9000 12000

179

15000

Generations

18000 21000 24000 27000 30000

ｾ ~

.c ..
;;

91.26

90.76

90.26

l: 89.76

89.26

88.76

88.26

164.08

163.08

162.08
1: ..
;;
l:

161.08

160.08

159.08

159.6

159.1

1: .. ;;
:J: 158.6

158.1

157.6

n8
sigma2 = -20 (largest first) 0.1 0 .2 0 .3 0.4

-----------.- ... ｾ Ｎ Ｍ ｾ Ｎ ｾ Ｎ Ｍ Ｎ ｾ Ｎ Ｌ , ---

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n9
sigma2 = -20 (largest first) 0.1 0 .2 0 .3 0.4

Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generltlons

n10
sigma2 = -20 (largest first)

0 .1 0.2 0 .3 0.4

I Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ ｾ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｎ ｾ ｾ ｾ ｾ ｟ ｾ ･ Ｎ ｾ ~ .. _

t

>

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

180

C.2.2 Prefer large

n2
sigma2 =·2 (prefer large) 0.1 0 .2 0.3 0.4

54.5

53.5

-, ,

1:
'-,

52.5 .. .OJ
:r Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

-,,----_ ... ---- ... -------
51.5

50.5

49.5

o 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n3
sigma2 =·2 (prefer large) 01 0 .2 0.3 0 .4

53.58

53.08

52.58 _- , . ,

1: .. 52.08 .OJ
------------ ----'-----------,-------

:J:

51.58

51.08

50.58

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Genef.tlons

n4
sigma2 = -2 (prefer large)

0 .1 0 .2 0.3 0 .4

84.92

84.42
" ",

83.92 '--- .. _-------
83.42

ｾ ~ \--""------c ..
Ii 82.92
:r

82.42

81.92

81.42

80.92

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Gene,"tlons

181

nS

105.62
sigma2 =·2 (prefer large) 0.1 0 .2 0 .3 0 .4

105.12

104.62 \.l..- T_ ..

'.
ｾ ~ .---------. '- -

Ｍ ﾷ ﾷ ﾷ ｾ ｾ ｾ ｗ ｊ ｴ t
'i' 104.12
:z: --- . -

103.62

103.12

102.62

0 3000 6000 9000 12000 15000 l8000 21000 24000 27000 30000

Generlt lo ns

n6
sigma2 = -2 (prefer large) 0.1 0 .2 0 .3 0 .4

104.48

103.98

103.48

ｾ ~ 102.98 ... -.- ... ----s; -,-----,---..
Ii
:z: ------

102.48

ｾ ~101.98

101.48

100.98

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n7
sigma2 =·2 (prefer large)

0 .1 0.2 0 .3 - 0 .4

112.88 , , .
111.88

. , ,
110.88

"-""'-

109.88
ｾ ~ \

-' -- . .. _---------Ii 108.88 -- -- _----- ---:z:

107.88

106.88

105.88

104.88

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

182

n8
s/gma2 = -2 (prefer large) O.J 0.2 0.3 0.4

85.34

84.84

\

84.34 --,
---- ... -

ｾ ~ 83.84 \- ... -- --------- --- .. _- _---
Ii ---_ .. - ... - ... _- ..
:z: ------ .. -

83.34

82.84
/\..AA,..
Ｍ ｾ ~

82.34

81.84

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n9
sigma2 = -2 (prefer large) 0 .1 0.2 0.3 0.4

156.04
, ,

\

155.54 " -
155.04 ",

\ -
ｾ ~

---
ｾ ~ 154.54 • :z:

154.04

153.54

153.04

152.54

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n10
sigma2 = -2 (prefer large) 0.1 0.2 0.3 0.4

158.38

157.38 ,
\ . ,

-'-
156.38 --- ...

------- _--

ｾ ~
- .. --

ｾ ~ 155.38 • :z:

154.38

153.38

152.38

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generltlons

183

C.2.3 Random

n2
sigma2 = 0 (random) - - 0.1 0 .2 0.3 - 0 .4

54

53.5
\ .

53 ｾ ~

52.5 1 ______ _ .
ｾ ~ 52 ..
'ii :r:

51.5

51

50.5

50

49.5

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generotlons

n3

sigma2 = 0 (random) - - 0.1 0 .2 0.3 - 0 .4

52.98

.
'- -.

- .
52.48 "T - ,

'-------------.
--------- -----------'-----------------------

51.98
ｾ ~

ｾ ~..
'ii :r:

51.48

50.98

50.48

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generation.

n4
sigma2= 0 (random) - - 0.1 0.2 0.3 - 0 .4

84.4

83.9

83.4

j; 82.9 ..
'ii :r:

82.4

81.9 Ｍ Ｍ ｾ ~

81.4

80.9

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

184

108.38

107.38
I

ｾ ~

'\ 106.38 • , ..
'0;
:!: 105.38

ｾ ~

.c ..
OJ
X

104.38

103.38

102.38

105.82

104.82

103.82

102.82

101.82

100.82

107.18

106.68

106.18

105.68

ｾ ~ 105.18
OJ
X

104.68

104.18

103.68

103.18

102.68

o

o

o

3000

ｾ Ｍ - '--

3000

3000

--- ... _-

6000

6000

6000

9000

--
9000

9000

nS
sigma2 = 0 (random) 0.1 0 .2 0 .3 0.4

Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｌ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

12000 15000 18000 21000 24000 27000 30000

Generations

n6

sigma2 = 0 (random) 0.1 0.2 0.3 0 .4

--------------- ---------------------------- _- ... - ... _--

12000 15000 18000 21000 24000 27000 30000

Generations

n7
sigma2 = 0 (random)

0.1 0.2 0.3 0 .4

12000 15000 18000 21000 24000 27000 30000

Gener.tlons

185

90.22

89.22

88.22

87.22

1': ..
'Ii 86.22
:I:

85.22

84.22

83.22

82.22

158.92

157.92

156.92

1': 155.92 ..
Ii
:I:

154.92

153.92

152.92

151.92

157.68

156.68

1':
!!! 155.68 ..
:I:

Ｍ ｾ ~

0

,
\

... , . , ,

0

,
\

154.68 Ｌ ｾ ~

153.68

152.68

o

3000

3000

3000

n8

sigma2 = 0 (random)

- - .:.:...::...:.. -------- ... - - - .. -------------

6000 9000 12000 15000 18000

Generations

n9

5igma2 = 0 (random)

--- .. -

0.1 0.2 0.3 0 .4

--------,--------------------

21000 24000 27000 30000

0.1 0.2 0.3 0.4

... _---- ... _---------- ---------- _--- -----._--------

6000

, --

6000

9000 12000 15000 18000

Generations

n10
sigma2 = 0 (random)

... _----- ------------ ---------

9000 12000 15000 18000

Gener.tlons

186

21000 24000 27000 30000

- - 0.1 0.2 0.3 - 0 .4

21000 24000 27000 30000

C.2.4

54.36

53.86

53.36

52.86

ｾ ~ 52.36 ..
J:

ｾ ~..
'e;
J:

51.86

51.36

50.86

50.36

49.86

54.78

54.28

53.78

53.28

52.78

52.28

51.78

51.28

50.78

89.04

88.04

87.04

-t 86.04
'ii
J:

85.04

84.04

83.04

82.04

o

T

0

0

Prefer small

" ,_

... __ _--

n2
sigma2 = 2 (prefer small)

------- _-,-----,------- ...

3000 6000 9000 12000 15000 18000

Generations

n3
sigma2 = 2 (prefer small)

I

I

I-

-- - ... _-- .. _------

3000 6000 9000 12000 15000 18000

Generations

n4

sigma2 = 2 (prefer small)

..

0.1 0.2

21000 24000

0.1 0.2

21000 24000

0.1 0.2

ａ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ _____ ... i _______ .. ___________ • ______ ｾ ~ ___ _

3000 6000 9000 12000 15000 18000 21000 24000

Generations

187

0.3 0 .4

27000 30000

0 .3 0.4

27000 30000

0.3 0 .4

27000 30000

110.46

109.46

108.46

ｾ ~ 107.46 .r: .
'ii x

106.46

105.46

104.46

103.46

0

111.34

109.34

ｾ ~
107.34 . ..

x
105.34

103.34

101.34

0

118.44

116.44

ｾ ~ 112.44 ..
'ii
x

110.44

,
108.44 ...

106.44

104.44

o

-,

n5
sigma2 = 2 (prefer small) 0.1

-- .. ------- - ... _-- ... _--

3000 6000 9000

--------- -- _--

3000

I
ｾ Ｚ ｾ ｔ T

6000

1 ｾ ~ I

Ji 1. "--;;,

9000

-- ... -------------

3000 6000 9000

.............
Ｍ ｾ Ｍ Ｍ ... Ｍ Ｎ ｾ ｾ Ｍ ｾ Ｍ Ｍ Ｎ ｾ Ｍ Ｍ

12000 15000 18000 21000

Generations

n6
sigma2 = 2 (prefer small) 0.1

Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ .

12000 15000 18000 21000

Generations

n7
sigma2 = 2 (prefer small) 0.1

... , I
, i

---- ... _--------------------

12000 15000 18000 21000

Generations

188

0.2 0.3 0.4

24000 27000 30000

0.2 0.3 0.4

24000 27000 30000

0.2 0.3 0 .•

24000 27000 30000

91.16

90.16

89.16

ｾ ~
88.16 I

.c ..
ｾ ~

87.16 ::z:

86.16

85.16

84.16

83.16

0

164.86

162.86

160.86 , '!"

.e -r 158.86
::z:

156.86

154.86

152.86

o

'='"+-

... _---- "'- .. -

3000

n8
sigma2 = 2 (prefer small)

• t,
ｾ Ｎ Ｇ ' J

Ｍ Ｂ Ｇ ｾ ~ •. """''''t'''''
I "

--------- ..
ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ

6000 9000 12000 15000

Generlllons

n9

ｾ Ｎ .

, '\' J

•

--------- ..

18000

5igma2 = 2 (prefer small)

Ｚ Ｎ Ｎ Ｎ ｾ Ｔ ｟ ［ ｟ ［ ｾ ｾ ｴ t
.c,P ;l . I .. Ｇ ｾ ~

, ,

- .. _-._---

0.1 0.2 0 .3 0 .4

... _ ... _--- ------ - .. _------

21000 24000 27000 30000

0.1 0.2 0.3 0.4

----------____ Ｍ ｊ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ｾ ~

---- .. _-------- ---------------- _----------

3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n10
sigma2 = 2 (prefer small) 0.1 0.2 0.3 0.4

161.14

160.14

159.14 ｾ ~
Ｍ Ｍ Ｍ ｾ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ｾ ｾ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ

ｾ ~..
ｾ ~ 158.14

157.14

156.14

155.14

o 3000 6000 9000 12000

189

15000

Generltlons

18000 21000 24000 27000 30000

C.2.5 Smallest First

n2
sigmaZ = 20 (smallest first) 0.1 0.2 0.3 0 .4

56.68

56.18

55.68

ｾ ~.. 55.18 "ii z

54.68

54.18

53.68

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n3
sigmaZ = 20 (smallest first) - 0.1 0.2 0.3 0.4

56.12 \

55.62
Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ

55.12

54.62

54.12

o 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n4
sigma2 = 20 (smallest first) - 0.1 0.2 0.3 0.4

92.14

91.14

___ Ｇ ｾ ~ Ｂ ｾ ｜ ｟ Ｇ ｜ \ ,' .. '_ ','" .. _'\ f4 .. 1'_ '_" .. _,\}_ .. _ ,"" ｾ ｜ ｟ _ 4'_ .. I, - - '" -' .. ,-" \ .. t\}. _ _ .. __ ' -- -"',--'
90.14

ｾ ~..
"ii
z 89.14

88.14

87.14

86.14

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

190

n5
sigma2 = 20 (smallest fir st) - 0.1 0.2 0.1 0.4

110.56

110.06

109.56
{. ..
:z:

109.06

108.56

108.06

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 10000

Generltlons

n6
sigma2 = 20 (smallest f irst) 0.1 0.2 0.1 0.4

110.76

109.76 +

:;:
ｾ ~ 108.76 ..
:z:

105.76

o 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generltlons

n7
sigma2 = 20 (smallest first) - 0.1 0.2 0.3 0.4

118.84

117.84

116.84

115.14

:;: 114.84 . ..
:z: lU .14

112.84

111.14

110.84

109.84

a 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generlt lons

191

n8
sigma2 = 20 (smallest first) 0.1 0 .2 0 .3 0 .4

90.94

90.44

ｾ ~.. 89.94 Ii
:z:

89.44

88.94

88.44

o 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n9

sigma2 = 20 (smallest first) 0.1 0 .2 0 .3 0 .4

164.16

163.66

163.16

162.66

1 ..
162.16 ..

:z:

I ;
• I I , I
•) I I I' \ ,I, ,

f I, ,I I J ｉ Ｇ ｾ ~ I I I, " I • \ \ \ I' ., ..,'\ I' ,I

ｲ Ｌ ｾ ~ ｾ Ｔ Ｎ ｬ ｩ i fit, f ｾ ~ ｉ ｊ ｴ ｾ Ｚ ｊ J Ｇ ｾ ［ ｻ Ａ Ｇ Ｎ ｉ Ｇ ' ､ ｾ Ｂ ｉ Ｋ Ｌ Ｌ Ｇ ' .. J,llJ,W •• ,1 ｴ Ｍ ｉ Ｌ ｾ ｴ Ｌ Ｎ ［ Ｎ Ｌ ,
, , I ,I I ｾ Ｇ Ｌ Ｂ Ｌ , 'I ,I,' , '" ｾ Ｂ " I 1',\1 I " 't! ", ,'j ,I t II \'" "ll, ", " t. 'It '1-" ,\ II I

I " '" I 1,1/', ,"".'" ,,'I' !""')' Ｇ Ｇ Ｇ ｾ Ｇ Ｌ Ｎ ｉ ｜ Ｇ ' -1',,"""',",_,',111' ｾ Ｑ Ｇ Ｑ ﾷ ｜ Ｂ Ｎ ｴ t .',', :",',4: ','1" :,'",
"

,,, ',. ,'/ I ',,111" "','ll • , r p I I ｾ ~ 1 I , i \ 114 '\" I, " 'I 1 I' '" " I' I } ,.

. , :.l- • '! ! \ T/ l I I • 11 I ','" I • '... ｾ Ｎ . f" t' l 1 ' !

161.66

161.16

160.66

160.16

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generations

n10
sigma2 = 20 (smallest first)

0.1 0 .2 0 .3 0 .4

160.22

159.72

159.22

1 158.72 ..
Ii
:z:

158.22

157.72

157.22

156.72

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Generltlons

192

Appendix D

GES Critical Ratio

193

GES Critical Ratio (percentage of shapes in the Critical Group)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

nl 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00
n2 so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo so so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo so.oo
n3 51.67 51.90 51.32 51.46 51.04 50.96 SO.69 50.76 50.75 SO.75 SO.96 51.15 51.30 51.42 51.38 51.43 51.42 51.78 51.16 51.30
n4 83.00 82.86 82.95 82.63 82.18 81.98 81.84 81.91 81.95 82.04 82.01 82.17 82.23 82.32 82.34 82.42 82.53 83.01 82.22 82.48
n5 104.43 104.25 104.09 104.26 103.82 104.03 103.77 103.70 103.68 103.72 103.84 103.92 104.01 104.21 104.24 104.23 104.38 105.20 104.15 104.25
n6 102.95 102.84 102.75 102.50 102.19 102.00 102.01 101.99 102.00 102.14 102.16 102.24 102.40 102.36 102.47 102.44 102.40 102.84 102.28 102.42
n7 105.20 103.45 102.38 102.53 102.82 103.28 103.55 103.79 103.88 103.89 104.17 104.18 104.24 104.29 104.41 104.55 104.31 104.72 103.76 103.84
n8 84.63 84.15 83.82 83.58 83.28 83.16 83.17 83.45 83.60 83.71 83.82 84.14 84.21 84.30 84.38 84.48 84.17 84.74 84.02 84.12
n9 154.29 153.66 153.63 153.69 153.55 153.80 153.82 153.84 154.05 154.21 154.45 154.60 154.64 154.60 154.52 154.63 154.81 154.97 154.57 154.58
n10 152.97 152.90 152.86 152.99 153.15 153.66 153.88 154.43 154.55 154.56 154.77 154.71 154.86 154.78 154.83 155.04 155.13 155.88 154.90 154.71

GES Critical Ratio (percentage of shapes in the Critical Group)

5% 10% 15% 20% 25% 30% 35% 40% 45% SO% 55% 60% 65% 70% 75% 80% 85% 90% 95" -- ------:- :---
100%

Cl 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

20.57 20.52 20.97 20.98 20.92 20.86 20.86 20.91 20.83 20.94 20.98 20.97 20.97 20.95 20.99 20.97 20.95 21.00 20.90 20.93

20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

C2 40.93 40.69 40.86 40.86 40.96 40.40 40.56 40.23 40.00 40.00 40 40.02 40.01 40.00 40.03 40.04 40.03 40.42 40.02 40.01

40.97 40.96 40.98 40.90 40.97 40.95 40.69 40.66 40.69 40.56 40.72 40.75 40.81 40.80 40.79 40.73 40.77 40.98 40.65 40.76

40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00

C2t 15.68 15.86 15.08 15.07 15.11 15.38 15.34 15.39 15.34 15.45 15.4 15.72 15.87 15.79 15.88 15.88 15.92 15.82 15.78 15.90

15.98 16.00 15.98 15.99 15.88 15.86 15.86 15.90 15.89 15.98 15.99 15.98 16.00 16.00 16.00 15.99 15.98 15.99 16.00 15.99

15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15 15.00 15.00 15.00 15.07 15.05 15.11 15.07 15.01 15.08

C3 62.63 62.44 62.24 62.54 62.37 62.16 61.47 61.24 61.33 61.37 60.92 61.17 61.25 61.20 61.43 61.37 61.32 62.28 61.19 61.24

62.46 62.36 61.95 61.99 61.97 61.94 61.84 61.69 61.43 61.49 61.58 61.68 61.67 61.85 61.78 61.77 61.74 62.12 61.73 61.77

61.63 61.57 61.48 60.70 60.68 60.92 61.04 60.52 60.59 60.72 60.64 60.59 60.90 61.05 61.17 61.20 61.03 61.81 60.97 61.09

elt 31.00 30.99 30.97 30.98 30.93 30.95 30.93 30.96 30.89 30.94 30.99 30.96 30.96 30.97 31.00 31.00 31.00 30.99 31.00 30.98

31.27 31.35 31.00 31.01 31.39 31.06 31.00 31.00 31.02 31.01 31.03 31.05 31.18 31.29 31.28 31.28 31.24 31.24 31.16 31.27

31.05 31.06 31.00 31.00 31.01 30.85 30.89 30.76 30.82 30.87 30.93 30.91 30.96 30.98 31.00 30.98 31.00 30.97 30.97 30.99

C4 63.14 63.06 62.95 62.94 62.86 62.97 62.80 62.63 62.38 62.33 62.59 62.73 62.81 62.83 62.94 62.97 62.89 63.30 62.85 62.90

62.92 62.89 62.83 62.55 62.35 62.51 62.05 62.07 62.27 62.39 62.52 62.73 62.83 62.83 62.91 62.98 62.98 63.21 62.89 62.79

62.55 62.20 62.36 62.45 61.91 61.83 61.92 61.93 61.98 62.03 62.1 62.13 62.30 62.32 62.39 62.49 62.48 62.91 62.27 62.29

C5 63.01 62.96 62.97 62.94 62.92 62.85 62.27 62.34 62.55 62.74 62.99 62.97 63.04 62.98 63.06 63.08 63.15 63.63 63.09 63.07

63.41 63.17 63.06 62.99 62.58 62.57 62.62 62.90 63.02 63.22 63.32 63.31 63.42 63.79 63.70 63.69 63.78 63.97 63.36 63.43

63.00 63.06 62.97 63.00 62.84 62.83 62.67 62.57 62.57 62.78 62.95 62.93 63.08 63.12 63.16 63.28 63.36 63.72 63.16 63.28

CSt 94.28 94.14 94.06 93.93 93.64 93.68 93.23 93.18 93.18 93.31 93.54 93.59 93.68 93.82 93.91 94.06 94.16 94.08 93.98 93.99

95.13 94.68 94.41 94.44 93.54 93.34 93.35 93.78 93.97 94.09 94.45 94.42 94.60 94.92 94.85 94.97 94.97 94.94 94.57 94.74

94.45 94.49 94.46 94.27 94.08 93.93 93.65 93.30 93.26 93.72 93.72 93.88 94.08 94.31 94.32 94.51 94.57 94.51 94.15 94.30

C6 84.40 84.22 84.13 84.20 84.26 83.53 83.46 83.64 83.75 83.82 84.36 84.61 84.54 84.68 84.75 84.83 84.85 85.28 84.48 84.66

85.04 84.83 84.13 83.53 83.20 83.82 84.13 84.34 84.47 84.84 84.94 84.95 85.03 85.17 85.21 85.34 85.20 85.85 85.09 85.11

84.59 84.16 84.01 83.97 83.97 83.62 83.67 83.79 83.90 84.24 84.48 84.55 84.65 84.91 84.83 84.95 85.00 85.53 84.84 84.87

C6t 126.57 126.29 126.09 125.84 125.80 125.05 124.68 124.94 124.85 125.17 125.76 125.75 126.26 126.48 126.59 126.49 126.57 126.45 126.18 126.46

126.09 125.71 125.41 124.86 124.04 124.49 124.94 125.16 125.39 125.71 126.08 126.16 126.58 126.62 126.75 126.74 126.80 126.95 126.36 126.46

126.51 126.38 126.26 125.97 125.79 125.36 125.03 125.09 125.23 125.49 125.87 126.14 126.33 126.41 126.49 126.53 126.77 126.55 126.45 126.52
C7 170.95 170.82 170.57 170.38 169.85 169.10 168.82 169.02 169.20 169.68 170.45 170.84 170.99 171.76 171.58 171.84 171.87 173.40 171.36 171.64

169.36 168.41 167.75 167.23 167.52 168.07 169.00 169.48 170.31 170.26 170.73 171.05 171.32 171.37 171.67 171.41 171.13 172.88 170.82 170.85
171.52 170.80 170.38 169.06 168.58 168.24 168.61 169.54 169.57 170.69 171.22 171.62 171.99 172.15 172.44 172.37 172.56 173.94 171.85 172.14

C7t 254.63 254.22 253.96 253.57 252.97 252.97 252.74 252.10 252.02 252.63 253.52 254.48 254.56 255.37 255.51 255.66 255.64 255.88 255.08 255.46
253.32 251.68 251.47 250.32 250.17 250.05 250.93 251.92 253.37 253.89 253.9 254.87 255.27 254.59 254.96 255.51 255.43 255.44 254.81 254.65
254.17 252.99 252.34 251.49 251.21 251.17 251.18 251.90 252.47 253.97 254.06 254.41 254.62 255.17 255.07 255.30 255.56 255.31 254.88 254.97

GES Critical Ratio (percentage of shapes in the Critical Group)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Nl 21088 21098 212.04 212.78 208.57 207.86 208.31 207.93 20787 20811 20852 208 20 20807 207.50 20890 20782 20872 20862 207 63 208 41

210.99 212.46 212.13 20809 205.50 205.59 205.98 206 22 20685 205.66 20685 206n 20701 206.85 207.59 207.45 207.38 207.35 206 73 20767

210.79 210.65 210.76 210.36 20541 204 24 20346 206.93 205.27 205.86 208.33 206.94 208.54 20842 20846 209.27 20829 208.37 208.51 209.12

210.96 209.79 210.34 205.77 20738 20614 205.69 206.18 205.50 207.62 207.26 20794 20812 208.19 20826 20744 20668 207.13 206.16 20727

208.61 210.36 209.96 209.59 209.31 20940 210.21 208.86 208.33 20857 208.28 20908 20863 208.68 208.79 20912 20886 209.16 208.51 20865

N2 21241 212.46 212.81 21147 211.77 211.92 210.84 210.71 210.76 210.90 21088 210.87 211.12 211.05 21123 21094 211.05 210.83 210.60 210.70

212.87 212.58 210.63 210.97 210.78 211.42 209.35 209.38 208.58 208.59 208.89 20886 20894 208.77 209.12 209.17 20914 20920 20863 208.83

213 80 212.69 212.62 212.80 213.14 212.73 213.31 212.16 211.42 211.33 211.25 211.68 211.77 211.28 211 76 211.80 212.05 212.01 211.48 21177

213.67 213.74 213.37 212.23 213.58 213.36 212.38 210.96 210.48 210.80 210.75 210.87 211.33 211.17 211.35 211.16 211.47 21160 211.10 211.48

21414 214.30 212.37 212.06 211.77 212.43 212.54 21222 209.85 210.07 210.2 210.33 210.41 210.59 210.64 210.59 210.65 210.47 210.26 210.51

N3 21356 213.22 212.69 212.90 212.35 211.92 211.52 211.41 211.20 211.15 211.68 211.70 211.91 211.82 211.87 211.73 211.93 212.18 211.95 211.83

213.98 21442 213.45 213.10 211.30 211.50 210.84 210.45 210.98 211.17 211.17 211.57 211.76 212.08 21240 212.12 211.98 212.12 211.65 212.08

21122 211.94 211.58 211.24 211.05 211.22 210.10 209.81 209.66 209.76 210.36 210.40 210.55 210.83 210.70 210.49 210.21 21022 210.06 210.06

216.07 214.04 213.24 212.76 213.75 212.80 211.85 211.57 211.36 211.44 211.3 211.80 211.66 211.82 211.88 211.65 211.72 211.36 211.03 211.64

213.09 212.21 211.65 211.10 211.48 211.45 210.95 210.54 210.58 210.48 210.29 210.53 210.72 210.59 210.66 210.61 210.97 211.05 210.62 211.03

N4 214.37 213.61 213.52 212.51 212.54 212.60 211.96 211.48 211.00 211.07 211.51 211.76 212.06 211.76 212.29 212.90 212.55 212.39 212.42 212.67

215.04 214.68 214.49 214.91 211.61 211.12 210.46 210.66 211.07 211.77 212.31 212.33 212.43 212.67 212.98 213.03 213.03 213.16 212.81 212.61

212.33 212.35 211.37 211.45 211.53 211.69 211.31 210.83 210.57 210.09 210.17 210.97 211.10 211.29 211.31 211.46 211.45 211.66 211.23 211.49

212.93 212.54 211.41 210.69 211.10 210.90 210.76 210.46 210.00 210.01 210.87 210.62 210.68 211.78 211.44 211.74 211.78 212.02 211.14 211.38

213.64 213.21 212.01 212.09 212.23 211.47 209.78 210.16 210.20 210.60 210.8 211.49 211.55 212.33 212.27 212.63 212.22 212.05 212.04 211.86

N5 213.78 213.25 213.22 213.17 213.04 212.78 211.00 210.99 211.92 211.77 212.33 212.76 213.22 213.53 213.65 213.30 213.71 213.52 212.93 213.24

213.53 212.66 211.98 212.11 211.81 211.68 211.25 210.55 210.68 210.81 211.85 212.04 212.01 212.30 212.56 212.88 212.82 212.44 212.33 212.36

214.16 213.01 212.64 212.24 211.60 210.67 211.20 211.50 211.93 212.87 212.91 213.19 213.65 213.97 213.99 214.19 214.09 214.78 213.91 213.92

216.27 216.00 215.70 215.40 215.11 215.41 213.91 213.26 212.80 213.19 213.43 213.38 213.76 213.95 214.59 214.79 215.02 215.58 214.66 214.24

213.61 213.01 212.47 211.86 212.12 211.98 211.12 211.45 211.78 212.36 212.46 213.05 213.22 213.88 213.37 213.40 213.20 214.67 213.17 213.21

N6 213.29 212.88 212.24 212.13 211.27 210.93 210.23 210.83 211.28 211.68 212.38 212.69 213.55 213.08 213.57 213.59 213.20 214.81 212.80 212.88

213.13 211.40 211.14 210.44 209.94 209.80 209.94 210.44 211.09 211.81 212.5 213.08 213.22 212.95 213.34 213.37 213.19 215.06 212.90 213.12

213.05 212.10 211.45 211.28 210.08 209.97 209.47 210.00 210.18 211.45 212.17 212.84 212.95 213.00 213.65 213.57 213.75 214.59 212.72 213.00

214.60 214.02 213.75 213.68 213.66 212.57 211.66 211.61 212.12 212.46 213.18 213.44 213.59 213.98 214.29 214.42 214.37 215.73 213.99 214.11

212.11 211.42 210.95 211.38 209.96 209.82 210.37 210.68 211.45 211.76 212.44 212.69 212.96 213.02 213.20 213.27 213.27 214.47 212.90 213.02

N7 212.11 211.31 210.90 209.33 208.46 208.71 209.43 210.57 211.41 211.54 212.47 212.99 213.39 213.55 213.63 213.75 213.47 215.87 213.27 213.Ql

211.38 210.59 209.96 209.11 208.70 209.19 210.18 211.04 211.45 212.12 212.6 212.53 213.10 213.61 213.04 213.62 213.82 215.62 213.01 213.17

211.74 211.30 210.13 209.94 209.07 209.05 209.86 211.16 211.36 212.24 212.79 213.11 213.80 213.52 213.69 213.87 213.97 215.15 212.89 213.14
213.95 212.88 212.25 210.98 209.91 210.12 210.34 210.98 212.39 212.91 213.41 214.08 214.57 214.77 214.67 214.93 214.92 216.50 214.09 214.31
211.21 210.41 210.17 210.16 209.60 209.16 209.61 210.01 210.75 211.66 212.32 212.76 213.12 212.88 212.93 213.32 213.35 214.53 212.50 212.87

GES Crit ical Ratio (percentace of shapes In the Critk al Group)

ｾ Ｂ " 10!0 15" 20% 25")010,)5'" 40!- 4S' wo. S5 ... 6(JI. W ... 70!' 75" IO!O as" 'IIl'I' 95" 100%

T\ :1092S 20100 200.1\ 20613 201.!>4 20202 20146 2Ol11 Ｒ Ｐ 0 Ｎ ｾ ~ 2Ol.lS 20314 204.16 20429 204 Ol 206.30 20600 2O'S.SO lOS 48 204 91 lOS 46

210.58 20'9 70 21049 206.46 20612 20S 61 204!JZ 2OS.lIO 20!> ,. 207.61 20101 2OU1 20796 20107 201.56 20777 20700 20688 206 liS 20727

201.13 200.14 20012 20000 200a3 20101 2OO.SO 200.52 ZOO 03 200 OS ZOO 04 20011 2004? ZOO.!>4 ZOO.94 20086 20009 20041 ZOO.OO ZOO 41

20S 76 2Cl,OClIJ . .2\10 00 20000 20000 20000 200.00 20000 ZOO 00 moo 200 16 201.11 20113 20110 20149 202 .11 202.11 20219 Ｒ Ｐ 0 Ｎ ｾ ｓ S 202.l0

21042 2\256 211 27 211 02 204 17 20225 201.17 20066 20278 20252 Z04.19 204 'l8 2OS77 20410 204 74 204 49 20S 47 20S 51 204 !>4 20612

12 :10974 2O'9lS 20'904 201 94 2OIa2 2012a 20101 20791 20105 201.82 201 53 20133 20'923 20901 209 17 20199 20176 20893 20161 20897

212 48 21227 21111 211 63 211 55 21078 211.10 21017 210s] 210.75 211 os 21156 211 71 21117 21169 211.11 21111 21117 211.14 211.36

213.58 2139S 214.11 213 51 21284 211.58 21063 2106() 21085 21095 21088 21097 211 20 21200 21110 211 76 21162 211.31 21093 211.14

21392 214)4 212.58 21227 21216 21247 212.S3 212.18 21027 21022 21065 21042 l1010 21047 21022 21058 21041 210.SO 210.39 210 SO

21301 21226 210.52 21098 21097 211 15 20961 20943 20192 208 73 l0878 20866 20165 20867 209 15 20905 20932 20918 208 74 209 16

n 21564 214)4 21324 21288 213 72 21321 21197 211.51 21119 21111 21142 21164 21189 21160 21189 21174 21143 21143 211.10 21149

21413 213 63 21299 21289 212.45 211.51 211.37 21124 211 27 21125 211.39 212.02 211.98 212 10 212.25 212.14 21255 21240 211 86 21203

212.98 21226 212.15 21194 21323 212.15 212.24 21214 210.02 210.16 210.29 210.32 210.43 210.72 210.87 210.39 21090 21079 21049 210.65

21249 21177 21042 210 os 210.79 20864 20846 207.95 20769 20756 20783 20794 208 28 20848 20907 20913 208.93 208.94 208.53 208.82

21401 21414 21386 21320 211.35 21127 21078 21073 21080 211 05 211.15 211.81 211.91 211.93 21197 211.96 212.13 212.03 21149 212.03

T4 21249 211.90 211 75 211.68 211 77 21229 212.74 210.54 210.31 210.71 21121 21145 211 22 211 74 211.86 21222 212.33 211.86 211.54 21185

212.30 212.34 211.56 211.46 21146 211.57 21166 210.81 210.59 21037 210.42 210.91 21106 211.35 211.41 211.47 211.36 211.55 211.30 211.SO

213.02 212.55 21121 210.86 210.78 211.03 210.66 210.53 20964 209.97 210.55 210.76 210.70 211.33 211.34 211.66 21185 211.87 211.24 211.47

21423 213.57 213.41 21244 212.53 212.47 21204 211.54 210.98 210.91 211.29 211.67 21209 212.05 212.39 212.76 212.97 212.62 212.53 212.75

21518 214.69 214.33 214.79 211.92 211.17 21069 210.71 211.07 211.59 212.03 212 SO 212.51 212.71 212.84 212.84 21312 21310 212.82 212.74

T5 214.30 212.92 212.62 212.27 211.60 210.85 211.12 211.51 212.07 21242 213.1 213.63 213.66 213.79 214.45 214.17 214.23 214.24 213.91 213.60

212.95 212.07 211.84 211.64 210.84 211.08 209.90 210.11 211.08 211.58 212.23 212.49 212.53 212.78 212.71 213.32 213.58 212.93 212.82 212.83

214.04 213.24 213.16 213.04 213.33 212.90 210.95 211.34 211.SO 211.60 212.36 212.75 213.15 213.30 213.68 213.55 213.53 213.49 212.77 213.16

216.24 215.86 215.73 215.33 215.14 215.45 21380 213.58 212.78 213.24 213.26 213.63 213.63 214.17 214.37 214.93 214.72 214.74 214.34 214.44

213.45 212.57 211.97 212.06 211.78 211.84 211.05 210.33 210.49 210.96 211.79 212.27 212.13 212.17 212.51 212.56 212.52 212.69 212.40 212.63

T6 215.59 214.82 214.24 213.17 212.46 210.80 209.95 211.05 211.87 211.93 212.5 213.07 213.23 213.55 214.06 213.94 214.18 214.75 213.60 213.89

212.95 212.02 211.38 211.33 209.98 210.12 20975 209.87 210.31 211.59 212.11 212.68 213.24 213.36 213.64 213.74 213.SO 213.65 212.68 212.84

212.20 211.45 211.01 211.40 210.04 209.92 210.22 210.64 211.05 211.68 212.48 212.56 212.98 213.19 213.61 213.20 213.40 213.49 212.79 213.11

213.20 211.47 210.89 210.31 209.96 210.00 209.84 210.41 211.03 212.04 212.56 212.84 213.12 213.18 213.13 213.69 213.28 212.92 212.81 213.23

211.84 211.09 210.81 210.58 210.61 209.47 210.12 210.40 211.40 211.44 211.99 212.47 212.92 213.00 213.12 213.21 212.90 213.11 212.52 212.78

T7 212.19 211.39 211.38 210.96 210.85 209.86 209.46 210.17 211.03 211.83 212.75 213.09 213.49 213.93 213.63 213.63 214.19 213.98 213.21 213.70

213.07 212.41 211.93 211.65 211.03 210.03 210.01 210.39 211.15 212.15 213.17 213.09 213.95 214.18 213.99 214.29 214.40 213. 77 213.52 213.84

213.69 212.92 212.74 212.87 212.71 211.17 210.88 211.16 211.97 212.43 213.24 213.70 213.97 214.85 215.01 214.7S 214.80 214.93 214.05 214.56

211.62 211.03 210.73 210.66 209.93 209.53 209.40 209.18 209.86 210.34 211.31 212.18 212.21 212.71 212.84 212.95 213.33 212.99 212.27 212.67

21322, ___ 213,17 212.90 212.65 212.64 211.43 210.SO 211.17 211.75 212.36 212.96 213.44 213.75 214.00 214.65 214.36 Ｒ Ｑ Ｕ 5 ｾ ~ ｾ Ｒ 2 Ｔ Ｎ Ｘ Ｖ 6 214.13 214.48
- -

