163 research outputs found

    SatERN: a PEP-less solution for satellite communications

    Get PDF
    In networks with very large delay like satellite IPbased networks, standard TCP is unable to correctly grab the available resources. To overcome this problem, Performance Enhancing Proxies (PEPs), which break the end-to-end connection and simulate a receiver close enough to the sender, can be placed before the links with large delay. Although splitting PEPs does not modify the transport protocol at the end nodes, they prevent the use of security protocols such as IPsec. In this paper, we propose solutions to replace the use of PEPs named SatERN. This proposal, based on Explicit Rate Notification (ERN) protocols over IP, does not split connections and is compliant with IP-in-IP tunneling solutions. Finally, we show that the SatERN solution achieves high satellite link utilization and fairness of the satellite traffic

    ECN verbose mode: a statistical method for network path congestion estimation

    Get PDF
    This article introduces a simple and effective methodology to determine the level of congestion in a network with an ECN-like marking scheme. The purpose of the ECN bit is to notify TCP sources of an imminent congestion in order to react before losses occur. However, ECN is a binary indicator which does not reflect the congestion level (i.e. the percentage of queued packets) of the bottleneck, thus preventing any adapted reaction. In this study, we use a counter in place of the traditional ECN marking scheme to assess the number of times a packet has crossed a congested router. Thanks to this simple counter, we drive a statistical analysis to accurately estimate the congestion level of each router on a network path. We detail in this paper an analytical method validated by some preliminary simulations which demonstrate the feasibility and the accuracy of the concept proposed. We conclude this paper with possible applications and expected future work

    WAN TECHNOLOGIES

    Get PDF
    A mass of organizations constructed own corporate organizations. WAN interfaces these corporate organizations among workplaces and server farms. The corporate organization comprises of a spine organization, PC organization, Internet association and communication frameworks. Organization traffic examples of these organizations have various qualities (distinctive top/off-top occasions), which have excess transmission capacities continually some place in the corporate organization. The corporate heads who hope to improve the cost proficiency of organizations, particularly diminishing the association charge of correspondence lines, and improving adaptability for the WAN uses. In addition adaptable WAN utilization, for example, utilization of datacenter administrations, guaranteeing BC/DR (business congruity/catastrophe recuperation) and utilization of public cloud administrations are needed to help. This paper examines our answers for advance WANs among workplaces and datacenters that permit our clients to settle the issues

    Towards an incremental deployment of ERN protocols: a proposal for an E2E-ERN hybrid protocol

    Get PDF
    We propose an architecture based on a hybrid E2E-ERN approach to allow incremental deployment of ERN (Explicit Rate Notification) protocols in heterogeneous networks. The proposed IP-ERN architecture combines E2E (End-to-End)and ERN protocols and uses the minimum between both congestion windows to perform. Without introducing complex operation, the resulting E2E-ERN protocol provides inter and intra protocol fairness and benefits from all ERN protocol advantages when possible. We detail the principle of this novel IP-ERN architecture and show that this architecture is highly adaptive to the network dynamic and is compliant with IPv4, IPv6 as well as IP-in-IP tunneling solutions

    X-TCP: A Cross Layer Approach for TCP Uplink Flows in mmWave Networks

    Full text link
    Millimeter wave frequencies will likely be part of the fifth generation of mobile networks and of the 3GPP New Radio (NR) standard. MmWave communication indeed provides a very large bandwidth, thus an increased cell throughput, but how to exploit these resources at the higher layers is still an open research question. A very relevant issue is the high variability of the channel, caused by the blockage from obstacles and the human body. This affects the design of congestion control mechanisms at the transport layer, and state-of-the-art TCP schemes such as TCP CUBIC present suboptimal performance. In this paper, we present a cross layer approach for uplink flows that adjusts the congestion window of TCP at the mobile equipment side using an estimation of the available data rate at the mmWave physical layer, based on the actual resource allocation and on the Signal to Interference plus Noise Ratio. We show that this approach reduces the latency, avoiding to fill the buffers in the cellular stack, and has a quicker recovery time after RTO events than several other TCP congestion control algorithms.Comment: 6 pages, 5 figures, accepted for presentation at the 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET

    A Network Congestion control Protocol (NCP)

    Get PDF
    The transmission control protocol (TCP) which is the dominant congestion control protocol at the transport layer is proved to have many performance problems with the growth of the Internet. TCP for instance results in throughput degradation for high bandwidth delay product networks and is unfair for flows with high round trip delays. There have been many patches and modifications to TCP all of which inherit the problems of TCP in spite of some performance improve- ments. On the other hand there are clean-slate design approaches of the Internet. The eXplicit Congestion control Protocol (XCP) and the Rate Control Protocol (RCP) are the prominent clean slate congestion control protocols. Nonetheless, the XCP protocol is also proved to have its own performance problems some of which are its unfairness to long flows (flows with high round trip delay), and many per-packet computations at the router. As shown in this paper RCP also makes gross approximation to its important component that it may only give the performance reports shown in the literature for specific choices of its parameter values and traffic patterns. In this paper we present a new congestion control protocol called Network congestion Control Protocol (NCP). We show that NCP can outperform both TCP, XCP and RCP in terms of among other things fairness and file download times.unpublishe

    Transport congestion events detection (TCED): towards decorrelating congestion detection from TCP

    Get PDF
    TCP (Transmission Control Protocol) uses a loss-based algorithm to estimate whether the network is congested or not. The main difficulty for this algorithm is to distinguish spurious from real network congestion events. Other research studies have proposed to enhance the reliability of this congestion estimation by modifying the internal TCP algorithm. In this paper, we propose an original congestion event algorithm implemented independently of the TCP source code. Basically, we propose a modular architecture to implement a congestion event detection algorithm to cope with the increasing complexity of the TCP code and we use it to understand why some spurious congestion events might not be detected in some complex cases. We show that our proposal is able to increase the reliability of TCP NewReno congestion detection algorithm that might help to the design of detection criterion independent of the TCP code. We find out that solutions based only on RTT (Round-Trip Time) estimation are not accurate enough to cover all existing cases. Furthermore, we evaluate our algorithm with and without network reordering where other inaccuracies, not previously identified, occur

    A Generalized FAST TCP scheme

    Get PDF

    Global Stability of FAST TCP in Single-Link Single-Source Network

    Get PDF
    We consider a single-link single-source network with FAST TCP source, and propose a static approximation of queuing delay dynamics at the link. The static approximation turns out to be a form with network feedback delay, which enables to analyze FAST TCP reflecting the effect of network feedback delay. Based on a continuous-time dynamic model of FAST TCP, we achieve the boundedness of window size and a sufficient condition for global asymptotic stability. The simulation results illustrate the validity of the sufficient condition for global asymptotic stability

    Global Exponential Stability of FAST TCP

    Get PDF
    We consider a single-link multi-source network with the FAST TCP sources. We propose a continuous-time dynamic model for the FAST TCP sources and a static model to describe the queuing delay behavior at the link. The proposed model turns out to be in a form revealing the network feedback delay, which allows us to analyze FAST TCP in due consideration of the network feedback delay. Based on the proposed model, we show the boundedness of both each source's congestion window and the queuing delay at the link; and the global exponential stability under a trivial condition that each source's congestion control parameter a is positive. The simulation results illustrate the validity of the proposed model and the global exponential stability of FAST TCP
    corecore