OATAO

Open Archive Toulouse Archive Ouverte

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints I1D: 4413

ilar papers at core.ac.uk

provided t

To cite this document: ANALLI Pascal, LOCHIN Emmanuel, HARIVELO Fanilo,
LOPEZ-PACHECO Dino Martin. Transport congestion events detection (TCED):

towards decorrelating congestion detection from TCP. In: ACM SAC 2010, 22-26
March 2010, Sierre, Switzerland.

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@inp-toulouse.fr

https://core.ac.uk/display/12042105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Transport Congestion Events Detection (TCED): Towards
Decorrelating Congestion Detection from TCP

Pascal Anelli
Universite de la Reunion; LIM;
France
pascal.anelli@univ-
reunion.fr

Fanilo Harivelo
Universite de la Reunion; LIM;
France
fanilo.harivelo@univ-
reunion.fr

ABSTRACT

TCP(Transmission Control Protocol) uses aloss-based al-

Emmanuel Lochin
CNRS; LAAS;
Universite de Toulouse; ISAE;
France
emmanuel.lochin@isae.fr

Dino Martin Lopez
Pacheco
I3S; Université de Nice;
France
dino.lopez@unice.fr

principle described in [11]. TCP considers a loss of a
segment as a congestion in the network. A congestion

gorithm to estimate whether the network is congested or not. €Vent (or loss event) corresponds to one or several losses

The main difficulty for this algorithm is to distinguish spu-]
rious from real network congestion events. Other research ¢@¢on

(or, in the context of ECN (Explicit Congestion Notifi-
) [19]: at least one ACK (acknowledgment) packet

studies have proposed to enhance the reliability of this con with an ECN-echo) occurring in one TCP window dur-

gestion estimation by modifying the internal TCP algorithm
In this paper, we propose an original congestion event algo-

ing one current RTT period [6].
TCP congestion events play a role in terms of through-

rithm implemented independently of the TCP source code. Pt performance as the congestion event involves a mul-

Basically, we propose a modular architecture to implement

tiplicative decrease from the source. It is also important

a congestion event detection algorithm to cope with the in- to clearly distinguish the loss ratio from the congestion

creasing complexity of the TCP code and we use it to un-
derstand why some spurious congestion events might not b

ratio. Indeed, the number of losses during one RTT
gs not taken into account to characterize a congestion

detected in some complex cases. We show that our proposafVent as this number only impacts on the recovery time
is able to increase the reliability of TCP NewReno conges- Period:

tion detection algorithm that might help to the design of de-
tection criterion independent of the TCP code. We find ou

that solutions based only on RTR¢und-Trip Time) esti-

TCP is strongly sensitive to spurious timeout [21]

t which trigger spurious retransmissions and result in a

throughput decrease. Spurious timeout occurs when a

mation are not accurate enough to cover all existing cases.ion 1ost packet is retransmitted due to a sudden RTT
Furthermore, we evaluate our algorithm with and without !Mcrease (handover, route fluttering, network reorder-

network reordering where other inaccuracies, not prelyous

identified, occur.

Categories and Subject Descriptors
C.2.2 [Network Protocols|: Transport Mechanisms

General Terms

Transport Protocol

Keywords

TCP, Congestion Event, Measurements

1. INTRODUCTION

TCP has the capability to adapt its sending through-
put to the changing bandwidth available following the

ing, ...) which implies an expiration of the retransmis-
sion timer [18] set with a previous, and thus outdated,
RTT value. This effect is known to be the root cause
of spurious retransmission [20]. Several research work
have raised this problem [15, 21, 3, 22].

In this paper, we propose a novel transport layer ar-
chitecture where the congestion event detection algo-
rithm is realised independently of the TCP code and
detail the essential brick of this proposal: the conges-
tion events detection mechanism. We aim to illustrate
the feasibility of this concept by demonstrating that we
can either obtain similar performances or also improve
the accuracy of this detection outside the TCP stack.
The main idea is to determine CE (i.e. the congestion
detection) which impact on the TCP flow performance
by monitoring the TCP flow itself. The principle is to

obtain a detection system, at the edge of a network or
at the sender-side which analyses the TCP behaviour
through the observation of both data packets and ac-
knowledgments paths.

We implement this Implicit Congestion Notification
(ICN) algorithm inside a framework that we call TCED
(Transport Congestion Events Detection). Thus, TCED
can be used either at the border of an autonomous sys-
tem or conjointly within a TCP stack as a sublayer.
ICN allows also to better understand and investigate
the problem of congestion events estimation as well as
proposing possible solutions to suppress inaccuracies of
the current TCP loss-based algorithm. Following more
exhaustive measurements, we show that an external
congestion event detection is thus possible and present
in section 2 the rationale of this design. Furthermore,
we have identified that solution only based on RTT es-
timation are not accurate enough to cover all existing
cases (e.g in particular retransmissions triggered at the
begin of a connection). These results are provided in
Section 4, just after the details of the algorithm (Sec-
tion 3).

2. MOTIVATIONTOBUILD A STAND-ALONE
TCP CONGESTIONEVENTSALGORITHM

These last years, the number of TCP variants and mi-
nor extensions have greatly increase (see [tcpm], [iccrg]
and [tsvwg] IETF mailing lists). Some of them are
deeply specialized to specific networks such as wireless
LAN [16] or satellites links [5] while others focus on
high speed networks [6, 23]. To date, except the histor-
ical and generic TCP Newreno/SACK (Selective AC-
Knowledgment) variant, there exists no universal TCP
protocol able to perform indifferently over any kind of
networks. The direct observable consequence of these
many proposals is that TCP source code is gaining
in complexity and that minor extensions proposed,
such as for instance F-RTO (Forward Retransmission
TimeOut-recovery) [21], do not help in terms of clarifi-
cation of the source code. Furthermore, some improve-
ments might be linked to a specific TCP version and
cannot be deployed in the common TCP source code.
Thus, the relevance of the OSI model is under question
and in a recent paper [9], the authors argue that the
transport layer should be now sliced in three sub-layers
to cope with new network characteristics and the in-
herent complexity of the source code. All these reasons
motivate the present study which aims at decorrelat-
ing the congestion events detection from the transport
layer as presented in figure 1. In a sake of clear soft-
ware engineering development, the main goal of this
architecture is to simplify the task of kernel develop-
ers as well as improving TCP performances. Indeed,
such architecture greatly facilitates protocol evolution
and permits incremental rollout of congestion detection

improvements. Finally, this scheme opens the door to
another way to react to congestion by enabling ECN
emulation at end-host. In this case, ICN emulates ECN
marking to imply a congestion window reduction (see
figure 1) with the same philosophy than in [4] where
the authors enable AQM (Active Queue Management)
emulation at end-host.

TCED: Transport Congestion
Event Estimation framework

TCP Window
React to ECN signalling

CWR :cong. window
reduction

A
TCP packets
ICN: Implicit Congestion
 Notfcation algorithm _____ TePpackes
use ACK to signal
congestion
mark ECN to signal CE
ACK/ECN ACK TCP

Figure 1: Decorrelating Congestion Detection
from the Transport Layer.

The target is to switch between the classical transport
layer with the TCED layer architecture as illustrated
figure 2.

APPLICATION APPLICATION
TCED
TRANSPORT ICN
P P

Figure 2: Re-architecture of the transport layer.

3. IMPLICIT CONGESTION NOTIFICATION
(ICN) ALGORITHM

This section presents the design of our proposal and
details the algorithm.

3.1 Design hypothesis

The design hypothesis is related to the localization
of the Congestion Event (CE) estimator (i.e. from the
source or from a node immediately connected to the
source before the edge router). In this case, the esti-
mator must be on a symmetrical path (ACK and data
segments are received by the node) and the resulting
RTT estimated is thus similar to the TCP connection.
As our estimator operates to a live analysis (and not

over past captured traces), only traffic at the sender
side must be analyzed.

As TCP is a reliable transport protocol, lost data are
obviously retransmitted. Thus, a CE can be identified
from the TCP retransmitted packets. However, neither
all of the retransmissions do not always indicate a loss,
nor all losses do not always signal a CE:

e When the TCP retransmission timer expires, TCP
triggers a Go Back N recovery procedure which
could lead to retransmissions of packets effectively
received (i.e. spurious retransmissions). Further-
more, TCP can consider losses following network
packets reordering or following a significant in-
crease of the RTT (e.g. in case of vertical hand-
off!). In this particular case, known as spurious
timeout, the ACK get back too late to reset the
retransmission time. These false losses identifica-
tions strongly impact on the TCP overall perfor-
mances in terms of achieved throughput;

e Fach loss does not have to be taken into account
when identifying a CE. Indeed, when multiple losses
occur in a single window, only the first loss is
needed to identify a CE and other losses inside
the same window must be ignored. To realize this,
we need to be able to detect the first loss and the
size of the sending window.

The ICN algorithm allows to determine which loss af-
fects the TCP flow from the capture of TCP segments.

3.2 Interpreting CE

As previously explained in the introduction, a con-
gestion event is defined as a set of losses occurring on a
TCP window which involves a TCP congestion adapta-
tion during an RTT. As a data window is emitted dur-
ing an RT'T, the estimation of the window size allows to
identify data transmitted during one RTT given. When
there is a retransmission, the bottom of the window
is set on the retransmitted segment of data while the
top of the window corresponds to the highest sequence
number data sent. Then, all retransmitted packets be-
tween these two bounds are considered as belonging to
the same CE. Indeed, a CE starts when a loss occurs
and stops when the top of the data window during this
congestion notification is acknowledged.

Detecting only retransmitted packets is not enough
to identify a loss. Indeed, we have to be sure that a
retransmission is not due to a TCP error. This case
must be taken into account to avoid an overestimation

In a mobile context, a vertical handoff occurs when a mo-
bile node is moving from a low delay network such as wireless
LAN to a high delay network such as UMTS/GPRS. Due
to the sudden RTT increase, spurious retransmissions might
occur.

of the CE over path where high RTT variations and
reordering occur.

In [20] and [2], the authors classify as unnecessary
(spurious) retransmission, those acknowledged in a de-
lay lower than « * RT Ty, (where RTT,, is the low-
est RTT measurement and o = 2). If the next new
ACK arrives in delay lower than « x RTT},;, after the
retransmission, then it means the ACK was already in
transit when the retransmission occurred, and the time-
out was spurious. This delay is a key value in the de-
tection process. Indeed, when the delay is very small,
this can lead to interpret unnecessary retransmissions
as losses. On the contrary, when the delay is close to
the current RTT, a new ACK could be received and the
retransmission would be considered as unnecessary. In
this configuration, the number of CE can be underesti-
mated. As above, the principle to identify retransmis-
sion is based on a waiting delay T before validation.
Obviously, this method introduces an additional delay
which can be considered as a trade-off between the relia-
bility and swiftness of TCP in terms of losses detection.
In this context, it exists a delay between the network
congestion and its detection by ICN. The CE detection
is twofold. First, the identification and then, the clas-
sification of a retransmission as a lost.

In brief, to obtain an accurate CE estimation we need:

e to accurately estimate the RTT to size the delay
to validate a loss;

e to take into account the TCP window size to dis-
tinguish the loss triggering a CE from the loss oc-
curring during a CE;

e to identify spurious retransmissions that should
not be identified as lost packets;

e to manage multiple data retransmissions. This
might append during severe congestions. In this
case, multiple CE occur; we denote such situation
of re-congestion.

3.3 ICN algorithm

Starting from the observation of the data segments
and the ACK, we identify each CE from each TCP con-
nection with a state machine. This state machine (given
in Figure 3) identifies the control congestion phase and
classifies retransmissions as spurious or not. TCP con-
gestion control reacts following binary notification feed-
backs allowing to assess whether the network is con-
gested or not. The state machine used enters in two
states as a function of these notification feedbacks:

1. the normal state which characterizes a TCP con-
nection without losses. Following Karn [12] al-
gorithm, we can estimate the RT'T in this state,
knowing that for each emitted segment, the de-
lay is computed until the corresponding ACK is

received. As soon as this estimation is done, the
process restarts for the next transmitted segment.
This RTT estimation is used to size the valida-
tion delay (7); In the context where connections
start over a severely congested network, the losses
of segments prevent to realize an RTT estimation.
Then, the initial value is set arbitrarily and is set
to the same value than the retransmission timer:
3 seconds [18];

2. the congestion state which starts from the loss of
the first window data segment. Each time ICN
enters in this state, a CE is counted for the TCP
connection.

Two others temporary states are added between these
both states. These states aim at identifying spurious
retransmissions with the help of the validation delay
as previously explained. Finally, when the top of the
window (denoted recover? in Figure 3) is acknowledged,
ICN enters in the normal state.

In the case where it is supposed that a retransmis-
sion of a packet has been lost, and such a packet is
retransmitted again, ICN enters into a re-congestion
state. Once in the re-congestion state, if the validation
delay T expires before recover is acknowledged, ICN
comes to the congestion state and the CE counter is
increased in one unit.

In the context of using ECN flag, congestion are not
deduced only from losses. However, for this kind of con-
nection we need to extend our algorithm to analyze this
ECN signalization. Otherwise, ICN will under estimate
the CE ratio which affects each TCP connection. A re-
cent, study proposes to help congestion events detection
using ECN marking [22]. However and to the best of
our knowledge, the deployment of ECN inside the In-
ternet remains marginal. Indeed, the authors in [17]
show that ECN flag is used only by 2.1% hosts in 2004
and all current systems do not enable ECN by default?.
As a result, we choose to study this particular case in a
future work.

It is important to note that ICN does not manage
error control which remains under the responsibility of
TCP. If some improvements concerning the retransmis-
sion decision are introduced inside TCP, as ICN does
not depend on the error control, our proposal remains
valid. As a result, ICN is a generic algorithm which
does not depend on the TCP version used.

4. VALIDATION

We use the ns-2 simulator to estimate the notification
error ratio as a function of the real CE. Our simulation

2Equivalent to the recover variable of TCP NewReno
3See Sally Floyd’s ECN page for further details http://www.
icir.org/floyd/ecn.html

Recover

RE-CONGESTION

NORMAL

Retransmission
ofa
retransmission

Recover Time-Out

Retransmission

CONGESTION

ATTEMPT Time-Out

Figure 3: ICN state machine.

model is able to apply different packet drop rates, dif-
ferent levels of statistical multiplexing and to introduce
a level of packet reordering. The proposed scenario is
motivated by the need to estimate ICN accuracy in the
presence of spurious retransmissions and complex pat-
tern packet drops. We aim at understanding the be-
haviour of ICN qualitatively rather than quantitatively.
It means that we are not interested in determining the
exact inaccuracy value through a statistical analysis but
to determine a global accuracy trend.

The experiments are done over a simple dumbbell
topology. A recent paper [13] provides a guideline to
make a simulation model to evaluate TCP congestion
control extensions. The model used afterwards follows
these recommendations. We model the network traffic
in terms of flows or sessions. Each flow corresponds to
a HTTP request supported by a TCP connection. The
link load is defined as follows:

AE|o]
P=—c (1)

with C' the bottleneck capacity. The traffic demand,
expressed in bit rate, is the product of the flow rate
arrival A with the average flow size E[o]. A reasonable
fit to the heavy-tail distribution of the flow size observed
in practice is provided by the Pareto distribution. The
shape parameter is set to 1.3 for all simulations in the
paper. As all flows are independent, the flow arrivals
are modeled by a Poisson process. The load is changed
by varying the arrival flow rate. Thus, the congestion
level increases as a function of the load.

The load introduced in the network experiences dif-
ferent RTT (ranging from 59 to 250ms). To remove
synchronization in TCP feedback and the phase effect,
a traffic load of 10% is generated in the opposite direc-
tion. Measurements are saved after a “warm-up time”
(i.e in the steady state) and the simulation duration
corresponds to the reference flow duration. The bottle-
neck link capacity is set to 10Mbps. All others links
have a capacity of 100Mbps. When the transient phase

is finished, a long live flow of 400 packets is started,
which represents the reference flow on which the ICN
algorithm is applied. The minimum RTT experienced
by the reference flow is around 100ms.

A packet reordering is applied on the reference flow
such that randomly selected packets are randomly de-
layed. The network reordering is done after the bottle-
neck to maintain a same reorder rate for each network
load. We adopt the delay distribution given in [24]. De-
lays are chosen from a normal distribution. The mean
value is set to 50ms with a standard deviation of 16ms.
Thus, the most chosen packets are delayed with values
ranging from 0 to 100ms. The reorder rate used is 3.5%.

We make no claim about how realistic our background

traffic is. We only want to reduce any simulation anomaly.

The main objective of this model is to apply various and
exhaustive congestion patterns to the analyzed flow.
Figure 4 shows the conditions applied to the reference
flow. The drop ratio results from packet drops of the
background traffic without the reference flow. The re-
order ratio is given from the measurements done on the
reference flow.

0.14
012 - Drop — 008

01 F| Reorder ---®--
0.08

0.06 0.04

004 | © Q O Qoo O @ LARRRS °
0.02
002 |

Drop ratio
Reorder ratio

Figure 4: Scenario applied to the reference flow.

The accuracy of the CE detection is given by the
inaccuracy parameter denoted € and defined as follows:

_ Nspu + Nund
Nreal + Nspu

With Ngp,: the number of spurious CE identified ei-
ther by ICN or TCP, Ny,4: the number of undetected
real CE not identified by ICN or TCP and N,.q: the
number of effective (real) CE in the network. A real CE
is deduced from the packets lost analysis (done a poste-
riori) occurring in the network with the TCP window
value when the lost is detected. When ¢ = 1, it means
that all detections are spurious and the more € tends to
0, the more real congestions are detected.

We are not interested in determining the exact num-
ber of TCP losses as the LEAST algorithm presented in
[1]. We aim at detecting when TCP congestion events
occur in the network. In this work, we choose to com-
pute a Loss Event Ratio (LER) (also called the conges-
tion event rate [7]) defined as the ratio between the
number of congestion event and the number of sent
packets.

with € € [0,1]. (2)

4.1 Choice of the validation delay

An important value which impacts on the ICN accu-
racy is the validation delay T'. Three possible values are
proposed to size T: RTTyin, SRTT (the exponential
mean of the RTT estimations) and RT'T (the last RTT
estimation). These values are adjusted according to a
fraction called « as previously explained in Section 3.2).
The goal is to find out the appropriate a that gives the
best results in terms of CE identification.

We test the following a: 0.25,0.5,0.75,1. In the con-
text of re-congestion, the validation delay will be tested
with and without fraction. Fig. 5 gives the average
inaccuracy over all possible combinations for a p back-
ground traffic ranging from 0.05 to 0.95 with a step of
0.1. All flows use TCP NewReno and the queue man-
agement for both routers is DropTail. When « is used,
no validation delay is set. The inaccuracy in this case is
the same as TCP. The a values are evaluated in grow-
ing order for each RTT base values. The dashed line
in Fig. 5, represents the case where o = 1 and when a
re-congestion is detected.

As expected in our scenario, we can see that the net-
work reorder introduces significantly errors in the con-
gestion detection. The strong RTT variations produce
spurious retransmissions. In this scenario, RT T}y, is
a good candidate to detect false CE notification. Near
0.25, ICN fails to detect spurious CE. Inversely when
the validation delay is near RTT or SRT'T, ICN fails to
detect true CE. The distinction between congestion and
re-congestion phases is not consistent. When the delay
applied in the re-congestion state depends on SRT'T or
RTT, the number of undetected CE increases. Conges-
tion also decreases because ACK which correspond to
a segment retransmitted are faster than the RTT mea-
surement duration before the packet drop. The best
trade-off for this scenario seems to choose an RTT},;,
validation delay. Indeed, this value leads to shorter de-
tection delay while avoiding false retransmission identi-
fication at a low rate. In this experiment, normal con-
gestion and re-congestion use the same validation delay.
In the following, the validation delay is set to RTTynin.-

4.2 Impact on different loads

Figure 6 shows the inaccuracy parameter as a func-
tion of load in the case where ICN uses RTT},in. To
understand figure 6, we need to firstly look at figure
7. We define SLER, the TCP Spurious LER as the ra-
tio between the number of spurious CE and the total
number of sent packets. The SLER is almost constant
in scenario with network reorder (because reorder rate
does not change in our scenario). The LER increases
with the load. Consequently and according to equation
(2), the TCP inaccuracy decreases. For example, in case
0.05, no CE occurs and network reordering introduces
spurious CE. This leads to an inaccuracy equals to 1.

TCP with reorder — ICN with reorder —&—
TCP without reorder ---- ICN without reorder --w-

Re-cong. a=1 ----

Figure 5: Sizing the validation delay.

In absence of network re-order, TCP inaccuracy is
mainly due to spurious timeout in the Fast Recovery
period. Indeed, with the impatient variant of TCP
NewReno, the retransmission timer is only reset after
the first partial ACK if a large number of packets are
dropped from a data window [8]. The retransmission
timer from the TCP sender will ultimately expire and
the TCP sender will trigger a Slow-Start whatever the
last retransmit packet outcome. The observed varia-
tions of inaccuracy in figure 6 come from unusual phe-
nomenons as:

1. Real CE overlapping in a spurious CE. This case
triggers a double error: one spurious CE and one
undetected CE for TCP. This occurs when the bot-
tom of the window is a re-ordered segment and
inside this window a segment is lost. The retrans-
mission of lost segment does not trigger a CE;

2. Packet reorder in the initial Slow-Start. This in-
serts spurious CE and let a congestion window
smaller for TCP. For example, we can observe this
for the 0.35 load, the accuracy seems better with
reorder rather than without. In fact, ICN does
not get the same number of errors but the number
of CE in the scenario without network reorder is
greater as shown figure 7. Surprisingly, reordering
in Slow-Start avoids a burst of drops and a long
delay to correct packet drops;

3. Spurious timeout from an ACK loss of a retrans-
mission sent after a timer expiration. This case
also triggers a spurious CE.

In a general manner, ICN is more accurate than TCP.
Most of errors occur at the beginning of the flow when
RTT,,in are not correctly set. When a loss occurs in the
first segments, there is a risk that a CE is not detected.
We have done measurements with TCP/SACK and
reached similar conclusions. As SACK improves TCP
retransmission decisions, there are less spurious retrans-
mission which results in a better ICN accuracy.

0.9

0.8

0.7

0.6

0.4

0.3

NS
L \ ‘ ‘

ICN with reorder —&—
TCP with reorder

ICN without reorder ----w---
TCP without reorder ---------

Figure 6: Inaccuracy function of load for TCP
NewReno.

TCP SLER without reorder --------
TCP SLER with reorder

LER without reorder ---w---
LER with reorder —&—

Figure 7: Reference flow of LER and TCP SLER
function of the load.

4.3 |ICN with timestamp

In order to distinguish an ACK resulting from a data
packet to a retransmission packet, the Eifel algorithm
[14] uses the timestamp option described in [10]. This
option allows the sender to add timestamp to a packet
later returned by the receiver in the corresponding ACK.
Thus, the sender is able to compute an RTT by sub-
tracting the current time to this timestamp.

The Eifel algorithm aims to distinguish an ACK which
arrives after a retransmit has been sent in response to
the original transmit or the retransmit. Although this
timestamp scheme is not enabled by default mainly due
to the overhead introduced by the option (i.e. 10 bytes
in every packets) we choose to verify whether it might
help the CE detection. As shown figure 8 and compare
to 6, we can see this option improves the ICN detection
but some identifications are still missing. For example,
when the network reorder introduces a delay greater
than twice the RTT (see load 0.45 in Figure 8), ICN
cannot detect the spurious retransmission. As a result
and whatever the algorithms used, a perfect detection
is not realized today. The following section proposes to
globally discuss all remaining cases.

ICN with reorder —&—
TCP with reorder

ICN without reorder ---w---
TCP without reorder ---------

Figure 8: Use of the timestamp option.

4.4 Discussion

The off-line traces analysis shows that all congestions
cannot be detected such as the case of spurious retrans-
mission dropped (which corresponds to the following se-
quence: transmit, retransmit, drop; denoted (t—r—d)).
Indeed, the drop of a retransmission is already corrected
by the initial transmission. From a transport protocol
point of view, this sequence is similar to a spurious re-
transmission (¢ — r). TCP has nothing to do (the first
transmission is well-received). In the context of ICN,
the (t —r—d) sequence is an issue as ICN cannot detect
a CE from this loss. This is an open problem since the
congestion does not appear at the transport level but
at the network level and thus, is out of the scope of the
present study.

One important result is that a solution only based
on the RTT is not really reliable at the beginning of
the connection compared to ICN. Indeed, the RTT esti-
mated is not accurate due to the weak number of possi-
ble measurements. This limits the use of such solutions
to long-lived flows.

Globally and following the scenarios proposed, ICN
algorithm gives good results. However, solutions based
on a validation delay need an RTT higher or in the
same order of magnitude than the reordering delay. If
the difference between the RTT and the reordering de-
lay is too large, it becomes difficult to detect spurious
retransmissions. In this context, ICN algorithm reaches
its limit of use. To get an accurate detection, the events’
duration which causes spurious retransmissions must be
less than an RTT.

5. CONCLUSION

This paper has proposed an algorithm (ICN) able
to estimate congestion events occurring in the network
and implemented as a stand-alone component inside a
framework (TCED). The purpose of this scheme is to
demonstrate that congestion event detection can be re-
alized independently of the TCP code in a sake of better

detecting congestion occuring in the network. This al-
gorithm is based on the combined use of two realistics
and feasible assumptions which are 1) a delay or a times-
tamp to validate a loss following retransmission and
2) the acknowledgments path. We have evaluated this
algorithm with and without network reordering cases
and shown that an external and live congestion events
detection is possible. We also emphasized that previous
solutions based only on RTT measurements are not able
to cover all cases. In particular and following measure-
ments done with the ICN algorithm, we show a lack of
differentiation between retransmissions due to reorder-
ing of loss and accuracy of the measurements with short
TCP flows when using only RTT measurements.

Following, this work and the results obtained so far,
we are currently planning the developpement of a kernel
implementation of this framework and expect to drive a
larger range of measurements which aims at benchmark-
ing our proposal compared to embedded TCP spurious
retransmission detection algorithms such as F-RTO and
Eifel.

6. ACKNOWLEDGMENTS

We would like to thank Marc Allman from the ICSI
Center for Internet Research for providing us the LEAST
code. Pierre Ugo Tournoux for the development of the
first ICN prototype and Tanguy Perennou for useful
comments about this work.

7. ADDITIONAL AUTHORS

8. REFERENCES

[1] M. Allman, W. Eddy, and S. Ostermann.
Estimating loss rates with tcp. ACM
SIGMETRICS Performance Evaluation Review,
31(3):12-24, December 2003.

[2] Mark Allman and Vern Paxson. On estimating
end-to-end network path properties. Computer
Communication Review, 29(4), October 1999.

[3] S. Bhandarkar, A. L. N. Reddy, M. Allman, and
E. Blanton. Improving the Robustness of TCP to
Non-Congestion Events. RFC 4653
(Experimental), August 2006.

[4] Sumitha Bhandarkar, Narasimha Reddy, Yueping
Zhang, and Dmitri Loguinov. Emulating aqm
from end hosts. In Proc. of ACM SIGCOMM,
2007.

[5] Carlo Caini and Rosario Firrincieli. TCP hybla: a
TCP enhancement for heterogeneous networks.
International Journal of Satellite
Communications and Networking, 22, 2004.

[6] S. Floyd. HighSpeed TCP for Large Congestion
Windows. RFC 3649 (Experimental), December
2003.

7]

8]

[10]

[11]

[12]

[18]

[19]

[20]

[21]

S. Floyd. Metrics for the Evaluation of Congestion
Control Mechanisms. RFC 5166 (Informational),
March 2008.

S. Floyd, T. Henderson, and A. Gurtov. The
NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 3782 (Proposed Standard), April
2004.

Bryan Ford and Janardhan Iyengar. Breaking up
the transport logjam. In in Seventh ACM
Workshop on Hot Topics in Networks
(HotNets-VII), Calgary, Alberta, Canada,
October 2008.

V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance. RFC 1323
(Proposed Standard), May 1992.

Van Jacobson. Congestion avoidance and control.
In Proc. of ACM SIGCOMM, pages 314-329,
Stanford, CA, August 1988.

Phil Karn and Craig Partridge. Improving
round-trip time estimates in reliable transport
protocols. ACM Computer Communications
Review, 17(5):2-7, 1987.

Andrew Lachlan, Marcondes Cesar, and Floyd
Sally. Towards a common tcp evaluation suite. In
PFLDnet, 2008.

R. Ludwig and M. Meyer. The Eifel Detection
Algorithm for TCP. RFC 3522 (Experimental),
April 2003.

Reiner Ludwig and Randy H. Katz. The eifel
algorithm: making TCP robust against spurious
retransmissions. SIGCOMM Comput. Commun.
Rev., 30(1):30-36, 2000.

Saverio Mascolo, Claudio Casetti, Mario Gerla,
M. Y. Sanadidi, and Ren Wang. Tcp westwood:
Bandwidth estimation for enhanced transport
over wireless links. In Proc. of ACM MOBICOM,
2001.

A. Medina, M. Allman, and S. Floyd. Measuring
the evolution of transport protocols in the
internet. Computer Communication Review,
35(2), April 2005.

V. Paxson and M. Allman. Computing TCP’s
Retransmission Timer. RFC 2988 (Proposed
Standard), November 2000.

K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification
(ECN) to IP. RFC 3168 (Proposed Standard),
September 2001.

S. Rewaskar, J. Kaur, and F.D. Smith. A passive
state-machine approach for accurate analysis of
tep out-of-sequence segments. ACM Computer
Communications Review, 36(3):51-64, 2006.

P. Sarolahti and M. Kojo. Forward RTO-Recovery
(F-RTO): An Algorithm for Detecting Spurious
Retransmission Timeouts with TCP and the

Stream Control Transmission Protocol (SCTP).
RFC 4138 (Experimental), August 2005.

Michael Welzl. Using the ecn nonce to detect
spurious loss events in TCP. In Proc. of IEEE
GLOBECOM, December 2008.

Lisong Xu, Khaled Harfoush, and Injong Rhee.
Binary increase congestion control (bic) for fast
long-distance networks. In Proc. of IEEE
INFOCOM, 2004.

M. Zhang, B. Karp, S. Floyd, and L. Peterson.
RR-TCP: A reordering-robust TCP with DSACK.
In Proc. of the IEEE International Conference on
Network Protocols - ICNP, 2003.

