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Abstract

The transmission control protocol (TCP) which is the dominant
congestion control protocol at the transport layer is proved to have
many performance problems with the growth of the Internet. TCP for
instance results in throughput degradation for high bandwidth delay
product networks and is unfair for flows with high round trip delays.
There have been many patches and modifications to TCP all of which
inherit the problems of TCP in spite of some performance improve-
ments.

On the other hand there are clean-slate design approaches of the
Internet. The eXplicit Congestion control Protocol (XCP) and the
Rate Control Protocol (RCP) are the prominent clean slate congestion
control protocols. Nonetheless, the XCP protocol is also proved to
have its own performance problems some of which are its unfairness
to long flows (flows with high round trip delay), and many per-packet
computations at the router. As shown in this paper RCP also makes
gross approximation to its important component that it may only give
the performance reports shown in the literature for specific choices of
its parameter values and traffic patterns.

In this paper we present a new congestion control protocol called
Network congestion Control Protocol (NCP). We show that NCP can
outperform both TCP, XCP and RCP in terms of among other things
fairness and file download times.

Keywords: Congestion Control, clean-slate, fairness, download times.

1 Introduction

Communication networks are at the core of every technological advance-
ment as entities cannot perform a reasonable task with out communicating
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some information. At the core of communication networks research in turn
is the resource allocation problem to avoid congestion (contention) as the
entities compete for scarce (bottleneck) resources. So bottleneck resource
allocation problems deal with the congestion control problem. This paper
aims at addressing this problem when the bottleneck resource is link capac-
ity of computer networks. The scheme can be adapted for other bottleneck
resources.

The current widely used protocol to address the congestion problem in
computer networks is the transmission control protocol (TCP) [10]. Even
though there are various implementations and extensions of TCP, it gener-
ally involves the slow start (SS) and congestion avoidance (CA) algorithms.
A TCP source begins with the SS algorithm where it sends two packets every
time it receives an acknowledgement (ACK) of the previously sent packets
until it reaches the slow start threshold ssthresh. This results in an expo-
nential increase of the window w of packets the source sends every round
trip time (RTT). When the the ssthresh is reached the TCP source starts
the CA algorithm where it increases the window size by one every RTT and
hence a linear window size increase. Different implementations of TCP use
different approaches on how to (multiplicatively) decrease the window size w
(how many packets to send) when a packet is lost. TCP assumes packets are
lost if the ACK times out or if (triple) duplicate acknowledgements arrives.
More details of TCP can be found in [10].

In spite of its success in reducing (avoiding) congestion in the early times
of the Internet, TCP is now finding it increasingly difficult to cope with the
growing Internet and network technologies. In particular TCP either under
utilizes or over utilizes the network bandwidth resulting in a download time
much longer than necessary. The performance limitations of TCP over high
bandwidth-delay product networks has been reported in [13]. They showed
that a random packet loss can result in a significant throughput degradation.
The same paper also show that TCP is grossly unfair towards flows with
higher round trip delays. On the other hand TCP is not fair for short-lived
flows as shown in [9] as the bottleneck bandwidth is dominated by long-
lived flows whose window size has grown so large. As has been extensibly
reported in the literature [16] TCP is also not suitable for wireless networks.
The main reason is that TCP assumes that all packet losses are due to
network congestion while in the case of wireless networks it can be due to
some wireless link errors which may correct themselves in the next round.

Both the user datagram protocol (UDP) and TCP are transport layer
protocols. While TCP is a reliable protocol which makes sure that pack-
ets are received by the destination, UDP is unreliable protocol which just
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cares about the speed of the communication and gives no guarantee that
packets are received by the destination. The unreliable nature of UDP can
cause congestion collapse and there are new TCP-friendly proposals like
the Datagram Congestion Control Protocol (DCCP) [12] to deal with these
problems. DCCP is based on the TCP algorithms. There are many variants
of and modifications to TCP an example of which is the HighSpeed TCP [8].
Nonetheless they all inherit the basic limitations of TCP in spite of some
improvements over the original TCP.

On the other hand there are clean-slate design protocols like XCP [11]
and RCP [4] to deal with limitations of TCP and avoid network congestion.
The Network congestion Control Protocol (NCP) we present in this paper
largely belongs to this category. We will discuss these protocols further in
section 2 below.

To this end the main contributions of this report are as follows.

• It points out the limitations of XCP and RCP which are the well
known existing clean slate congestion control protocols in addition to
similar studies in the literature. It further gives exact derivations of
conditions under which XCP and RCP perform or don’t perform well.

• It presents NCP which is a noble congestion control protocol and
proves that NCP can generalize both XCP and RCP.

• It presents an exact characterization of the average file download time
of processor sharing (PS) systems.

• It provides one extension of NCP for scenarios where it is easy to count
the number of active flows sharing a link (resource) and another ex-
tension which improves NCP fairness for scenarios where the variance
of the RTTs of the flows is too high and when the number of active
flows changes every round.

• The paper presents an easy proof of the feasibility of the well known
early deadline first (EDF) and the Pfair scheduling algorithms using
a simple PS and rate concept.

• The paper briefly describes possible NCP case studies for overlay net-
works (TEEVE applications), an active queue management approach
(the core-stateless fair queueing) and scheduling.

• The paper also presents some NS2 simulation results and briefly de-
scribes a simple but accurate simulator which can be used to simulate
different feedback and non-feedback based systems.
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The rest of this paper is organized in such a way that we first discuss the
related work in section2. We then present the formulation of NCP, how NCP
works and how it achieves PS in sections 3, 4 and 5. In sections 6 and 7 we
discuss some refinements and extensions of NCP. Following this in section 8
we show how NCP can generalize existing clean-slate design protocols and
in section 9 how the simple rate based ideas used in NCP can be used with
a scheduling algorithm. In section 10 we discuss some case studies where
NCP can be used and discuss performance evaluation of NCP against XCP
and NCP, the two well known clean-slate protocols in section 11. Finally we
give a brief summary and description of the ongoing work in section 12.

2 Related Work

The major congestion control protocols which fall under the Clean-Slate
Internet design category are the eXplicit Congestion control Protocol (XCP)
and the Rate Control Protocol (RCP). Under XCP all flows increase their
sending rates by the same amount if there is available bandwidth and they
all decrease it if the network is loaded. This means that both long and short
flows increase their sending rates at the same time making XCP unfair to
short-lived flows as shown in section 2.1 below. Besides, XCP requires many
per packet computations at the routers. The RCP scheme on the other hand
tries to approximate processor sharing (PS) by making a rough estimation of
the number of active flows at a router. This estimation is the main limitation
of RCP as shown in section 2.2 below.

2.1 On the Performance of XCP

The fact that XCP is not fair to short flows (flows with small data to send)
makes its average file completion (download) time (AFCT) much higher
than TCP as shown in [5]. For example let’s consider three short lived flows
which just started with a congestion window size of 1 and need to send 50
packets each and one long lived flow which needs to send 500 packets and
already has a window size of 60 packets. Without loss of generality let’s
assume that they all have the same round trip time (RTT). If the spare
link capacity is 20 packets per RTT then XCP shares it equally among all
four flows allowing each flow to increase its congestion window by 4 packets
per RTT. This implies that the window size of the three short lived flows is
now set to 5 packets per RTT. Hence it takes 50/5 = 10 rounds (RTT) to
download each of the short lived flows and hence a longer AFCT. But NCP
and RCP attempt to reduce this by dividing the entire link capacity (say
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80 packets/RTT) equally among all four flows. This implies that each flow
sets (resets) its window size to 80/4 = 20 packets per RTT. This implies
that each of the short lived flows (the majority) will have a file download
time of about 2.5 rounds (RTT). We will discuss more about how the rate
allocation scheme of XCP differs from that of NCP in section 8.2.

2.2 On the Performance of RCP

The rate update equation of the newly proposed rate control protocol (RCP)
[4] for the Internet is given by

R(t) = R(t − d0) +
(α(C − y(t)) − β q(t)

d0
)

N(t)
(1)

where d0 is a moving average of the RTTs measured across all packets,
R(t − d0) is the last (previous) updated rate, C is the link capacity, y(t) is
the measured input traffic rate during the last update interval (d0 in this
case), q(t) is the instantaneous queue size, N(t) is the router’s estimate of
the number of ongoing flows (i.e. number of flows actively sending traffic)
at time t and α, β are parameters chosen for stability and performance.

In RCP and the rate control protocol with acceleration control (RFC-
AC) [6], the number of ongoing flows, N(t) is estimated as

N(t) =
C

R(t − d0)
. (2)

But this is a heuristic estimate and is where the major limitation of RCP
lies.

So RCP either over-estimate or under-estimate the allocated rate R(t).
When the initial value of R(t− d0) from which N(t) is obtained is too small
then N(t) is too large . This in turn results in the router unnecessarily
dividing the capacity into too many flows resulting in link under-utilization.
Let’s consider an initial rate of R(t − d0) = C/200 whose corresponding
N(t) = 200. If the link receives only 40 flows/sec for an RTT of 0.1 sec, we
have an actual number of 4 flows. If the router allocates each of these flows
only C/200, then the total arrival rate for the next round becomes C/50
which is 1/50 of the available link capacity.

On the other hand if the initial value of R(t − d0) is too large, then
N(t) becomes too small. As a result the router divides the capacity into
fewer number of flows and hence over-estimates the rate allocation. This
causes link over-utilization, more queuing delays and packet losses. In fact
the simulation setup of RCP uses a huge buffer capacity (to avoid this).
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For example let the initial sending rate R(t − d0) = C/4. Then the
corresponding N(t) = 4. If the flow arrival rate is 200 flows/sec for an RTT
of 0.1 sec, the actual number of flows is 20. The router then tells each of
these 20 flows to send at the rate of R(t−d0) = C/4. If they all send at this
rate then the total arrival rate Λ = 20C/4 = 5C. Hence the link receives 5
times more packets than it can handle.

We next explain why RCP seems to closely emulate processor sharing in
the published literature.

2.3 Does RCP really closely emulate processor sharing?

In [4] and other similar works, RCP is reported to closely emulate processor
sharing (PS). In the simulation setup used to evaluate the performance of
RCP flows arrivals are Poisson and flow sizes are Pareto distributed. These
distributions are reasonable for the performance evaluation of such conges-
tion control protocols. However the link load is fixed in all simulation setups
(to be less than 1). In reality the link load ρ = Λ/C where Λ is the total
packet arrival rate, highly depends on the flow arrival rate and on the way
the protocol allocates rate R(t) to the flows. Hence the load should not be
fixed. In the simulation setup the authors also calculate the average flow
arrival rate frate as a direct function of the load and the average flow size
fsize which is also fixed as follows.

frate =
ρC

fsize

=
Λ

fsize

. (3)

By fixing the values the authors are making sure that on average there
will be no overflow even if all flows send on average all packets (frate×fsize)
they have (all files) in one round. Hence if the average RTT is 0.1 sec then the
average flow completion time (AFCT) is about 0.1 sec for the SYN/ACK to
discover the rate allocation plus about 0.05 sec for the flow to be completely
transmitted plus about 0.05 sec processing time which gives about 0.2 sec
which is the average value shown in the RCP papers. A similar argument
applies when the link load is a fixed number greater than 1.

Therefore such “convenient simulation” approach on average hides the
over-shooting nature of RCP even if on average all files of the flows are
sent in one round. Thus RCP doesn’t really closely emulate PS unlike
what is shown in the RCP plots of [4] as it under or over estimates the
number of active flows into which the link capacity has to be allocated. We
believe that the performance of such congestion control protocols should
be evaluated by considering realistic and different what if scenarios. In
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particular a congestion control protocol shouldn’t only be evaluated under
no congestion (0.9 total load). In section 8.1 we summarize the scenarios
where RCP works and doesn’t work well. Nonetheless NCP uses an exact
derivation for the number of flows and avoids all limitations of RCP and
XCP as discussed in the following sections.

3 The NCP Formulation

The NCP rate allocation can be formulated as follows. Let wj be the current
cwnd (congestion window) of a flow attached to the jth packet of the Li

packets which arrive to router i during the control interval d0 and which is
used to calculate the throughput R(t) and the cwnd w′

j for the next round.
Define the per packet throughput to be the number of packets a source
sends per unit time at an arrival of each of the wj ACKs of the (wj) packets
sent in the previous round.

The sum of the per packet throughput shouldn’t exceed the link capacity
minus the bandwidth needed to drain the queue within a round trip time
(RTT) or within a control interval. That is

Li
∑

j=1

R(t)

wj

= αC − β
q(t)

d0
. (4)

This implies that

R(t) =
αC − β q(t)

d0
∑Li

j=1(1/wj)
. (5)

By using the estimation wj = d0R(t − d0) in Equation 5 the NCP rate
can be given by

R(t) =
(αC − β q(t)

d0
)R(t − d0)

Λi

(6)

where Λi = Li/d0 is total packet arrival rate to router i. This simplified
version of NCP is called NCP-S in this paper needs less work at the routers.

The NCP rate can also be derived using the fact that the total number of
packets sent to a router (link) shouldn’t exceed the bandwidth-delay product
minus the queue size at the router. Hence if Rj = wj/RTTj denotes the
rate attached to the jth of the Li packets which arrive to the router,
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Li
∑

j=1

R(t)

Rj

= αCd0 − βq(t). (7)

This implies that

R(t) =
αCd0 − βq(t)
∑Li

j=1(1/Rj)
. (8)

4 How NCP Works

• First each router in the network calculates R(t) every control interval.

• A source sends a packet j with its desired rate Rj .

• Each router in the path of the flow checks if R(t) < Rj in which case
it overwrites Rj and forwards it unchanged otherwise.

• The destination then copies the Rj in the data packet to the ACK
packet.

• The source sets its current window size w′

j = RjRTTj upon receipt of
the ACK packet.

• Each router updates its R(t) value every control interval.

The routers also need the RTTj which can be obtained by making small
modification to the TCP time stamp option (see RFC1323). The modifica-
tion is that the two four-byte time stamp fields (TSval and TSecr) should
contain the previous and current time stamp values of the sender from which
any router in the path can get the round trip time of the packet passing
through it.

5 NCP Achieves PS

If we denote the total number of concurrent flows at router i with Ni, re-
arranging the headers of the packets which arrive to the router during a
control interval, Equation 5 can be written as

R(t) =
αC − β

q(t)
d0

1

w1
+

1

w1
+ · · · +

1

w1
| {z }

w1

+
1

w2
+

1

w2
+ · · · +

1

w2
| {z }

w2

+ · · · +
1

wNi

+
1

wNi

+ · · · +
1

wNi
| {z }

wNi

(9)
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which is the same as

R(t) =
αC − β q(t)

d0

Ni

(10)

which in turn is the Processor Sharing (PS) rate. Hence NCP achieves
processor sharing without having to count the exact number of concurrent
flows at a router.

6 Extending (Refining) NCP: On the number of
active flows

There are a couple of schemes [3] which try to count the number of active
flows in a link by classifying packets. Apart from the extra overhead to
classify packets and count the number of active flows, such schemes may
not be as good as the NCP scheme in estimating the fair share R(t). This
is because such counting schemes cannot tell the fraction of each flow bot-
tlenecked somewhere else in the network. This may cause a router to give
more share to the flows bottlenecked elsewhere at the expense of the other
flows bottlenecked at the allocating router. This can be clarified as follows.

If Rj denotes the rate of the bottleneck link so far which is the minimum
of the rates of the routers crossed thus far, R(t− d) = R denotes the rate at
the current router calculated in the previous interval and w = dR(t − d) is
its corresponding window size, R(t) which is the rate for the next interval
can now be calculated as

R(t) =
αC − β q(t)

d

N −
∑n

j ( 1
wj

−
1
w

)
=

αC − βq(t)

dN −
∑n

j ( 1
Rj

−
1
R

)
(11)

whenever Rj < R where N is obtained by counting flows and n is the number
of packets of the flows bottlenecked in the preceding routers. This can be
given as

R(t) =
αCd − βq(t)

dN + n
R
−

∑n
j

1
Rj

(12)

Of course n can be 0 in which case

R =
αC − β q(t)

d

N
. (13)

This additional refinement gives NCP an additional advantage over RCP,
XCP and even processor sharing (PS).
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7 Refinement of NCP: On the fairness among flows
in a fast changing network

NCP like other explicit congestion control protocols such as XCP and RCP
uses a fixed average control interval d to update the rate it allocates to the
different flows. So if the variance of the round trip times (RTT) of the flows
is too big and if the number of active flows changes every average RTT (d),
then the rate allocation may not be fair for or against flows of short or long
RTT.

For example if flow k has an RTT of RTTk > d then we have the following
cases.

Case 1: Rk ≤ R(t)
In this case flow k sends at R(t) − Rk less than the actual allocation for
RTTk − d time units (sec) as flow k updates its sending rate only after
RTTk sec. So flow k needs to be compensated for sending at a lower rate
for RTTk − d time units to achieve fairness. Therefore

Rk = R(t) +
(R(t) − Rk))(RTTk − d)

RTTk

. (14)

Case 2: Rk ≥ R(t)
On this other case, flow k sends at R(k) − R(t) more than the actual allo-
cation for RTTk − d time units (sec) at the expense of other flows. So flow
k should be penalized for sending at a higher rate for RTTk − d time units
to be fair to the other flows. Hence

Rk = R(t) −
(Rk − R(t))(RTTk − d)

RTTk

. (15)

If RTTk ≤ d then NCP doesn’t need any refinement as the flow always
discovers the latest allocation.

8 NCP as a generalization of existing explicit con-
gestion control schemes

In this section we present how XCP and RCP can be generalized by NCP.
We also discuss situations where XCP and RCP perform or don’t perform
well.
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8.1 General Cases when RCP works well: Derivation using
NCP

Putting Equation 1 into Equation 7

N(t) =

(

αC − αy(t) − β q(t)
d0

)

∑Li

j=1(1/wj)

αC − β q(t)
d0

− R(t − d0)
∑Li

j=1(1/wj)
. (16)

Therefore the specific scenario where RCP works well is when the ap-
proximate value of N(t) which is C/R(t − d0) equals the exact value given
by Equation 16 above. That is when

C

R(t − d0)
=

(

αC − αy(t) − β q(t)
d0

)

∑Li

j=1(1/wj)

αC − β q(t)
d0

− R(t − d0)
∑Li

j=1(1/wj)
. (17)

This implies that

αC2
−

(

β
q(t)

d0
+ (1 + α)y(t)

)

C + y(t)

(

αy(t) + β
q(t)

d0

)

= 0. (18)

By solving this quadratic equation for different values of the constants
we can see the specific scenarios where RCP works well.

For instance setting q(t) = 0.0, α = 0.1, β = 1.0 and solving the quadratic
equation using Maple we can see that RCP works well if y(t) = 10.908C or
y(t) = 0.092C. When α = 0.1, β = 1.0, q(t)/d0 = 5, C = 10 we get
y(t) = 25.62.

For all values which do not satisfy Equation 18 RCP doesn’t perform well
by either causing delays and packet losses or by under-utilizing the links or
by being so slow to converge to stability.

8.2 Deriving XCP from NCP

The rate allocation scheme of an XCP-like algorithm can be derived from
the RCP ideas as follows. The main idea of XCP is to divide the spare
bandwidth S = C − Λ − q(t)/d0 among the active flows where Λ is the
total packet arrival rate and the other variables are as defined above. If we
denote the spare bandwidth share of each flow as ∆R then the sum of the
per packet share of each flow should not exceed the total spare bandwidth
S. Hence

L
∑

j

∆R

Rj

= d0S. (19)
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This implies that

∆R =
d0S

∑L
j

1
Rj

. (20)

Hence a flow with a current sending rate of Ri sets its new sending rate
Rnew

i to

Rnew
i = Ri + ∆R

= Ri −
d0Λ

∑L
j

1
Rj

+
d0C − q(t)

∑L
j

1
Rj

= Ri −
d0Λ

∑L
j

1
Rj

+ R(t)ncp (21)

where R(t)ncp is the rate allocation of NCP. From the above derivation
it can be seen that XCP can behave like NCP if the rate at which flows send
packets Rj is the same. If this value is known and the same for all flows
then NCP, XCP and RCP all have the same performance.

The above representation of NCP (XCP) can now be modified to achieve
different objectives. For instance one can multiply Equation 21 with Rj/R
if it is needed to keep the flow sending rate proportional to its current rate
or with R/Rj if one wants to adjust the sending rates to the equal share.

So from the analysis in the previous sections we can see that both XCP
and RCP can be subsets of NCP. So NCP can be thought of as the general-
ization of such explicit (congestion) control protocols.

9 NCP and Scheduling

Here we first give a simple proof to the famous feasibility theorem by Liu
and Layland [14] of dynamic deadline driven scheduling algorithm using the
concept of rate as used in NCP. We then show how such rate approach
can easily derive and generalize the Pfair Scheduling algorithm [1, 2] for
multiprocessor scheduling.
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9.1 Proving the feasibility of EDF

The EDF theorem states that for a given set of m tasks, the deadline driven
scheduling algorithm is feasible if and only if

m
∑

i

(ci/Ti) ≤ 1 (22)

where the ci and Ti are the worst case execution time and period (deadline)
of task i respectively.

The authors took the LCM of the periods to prove the theorem. We use
the rate concept as used in NCP as follows. If processor capacity is C then
number of instructions performed during ci is ciC. Hence the rate at which
instructions corresponding to task i are performed is Ri = ciC/Ti. But the
sum of these rates shouldn’t exceed the total processor capacity. Hence

m
∑

i

Ri ≤ C (23)

which implies that
m

∑

i

(ci/Ti) ≤ 1. (24)

This is to say that the necessary and sufficient condition for such feasible
scheduling is that the total demand should be less or equal to the supply.

9.2 Generalizing the Pfair Scheduling Algorithm

The scheduling algorithms for a single processor can not be directly used
for multiple processors. One of the reasons is that when some of the tasks
are scheduled in some of the processors, the remaining capacity of each of
the processors may not be enough for any of the remaining tasks. This will
require that the remaining tasks be divided into smaller subtasks which can
fit into the remaining capacities of the processors. Scheduling algorithms
like the Pfair (Proportional fair) [2] algorithms assume this kind of dividing
tasks into subtasks. Most of the studies on Pfair scheduling assume identical
processors and use a rather lengthy proof. Here we present a generalization
of such algorithms and give a simple derivation.

Tasks tj , 1 <= j <= n with the worst case execution time (WCET) cj

(each derived using a processor of capacity Cj) and a deadline (period) Pj

are schedulable in m processors of capacities Ci, 1 <= i <= m if the total
demand is less or equal to the total supply.
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That is if

n
∑

j

Cjcj/Tj ≤

m
∑

i

Ci

where Cjcj/Tj is the rate at which task j is sending instructions to the
processor.

Now we can have many variations of the above general formulation. For
instance if all the processors are identical then the schedulability condition
is

n
∑

j=1

cj/Tj <= m, (25)

which is the case of Pfair.

In the next section we will show how NCP can be used as a scheduling
scheme.

10 NCP Case Studies

Here we present short description of some case studies where NCP can be
used.

10.1 NCP for Overlay Networks (TEEVE applications)

NCP as a congestion control protocol can be easily deployed in overlay net-
works such as the TEEVE [17] using computers with software routers. Each
software router in the overlay network estimates its corresponding inbound
and outbound link capacities, receives NCP frames (packets) and calculates
R(t). Each software router then adjusts the sending rate of the sources at-
tached to it based on the feedback it receives from the corresponding ACK
packets. Here each packet can be made to carry the interval ∆t = 1/Rj

after which it is sent following the previous packet sent by the same source.
This can then be easily used in NCP. QoS parameters can also be assigned
to each frame where NCP allocates different bandwidth accordingly. We
expect NCP to outperform any of the schemes which are currently deployed
in overlay networks.
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10.2 NCP and the CSFQ

NCP can also be implemented as a simple core-stateless fair queuing (CSFQ)
[15]. Here NCP can use the packet inter-arrival time ∆t = 1/Rj to the
ingress router used in the CSFQ algorithm. This assumes that the packet
inter-arrival time ∆t is the same as the interval between two packet sends
by the source. If the link which connects the source to the ingress router is
congested, then the switch (computer) cannot send any packet. NCP can
still be implemented as CSFQ without this simple assumption. We hope that
this scheme will achieve more simplicity and accuracy over CSFQ, future
work and analysis should show how such implementation of NCP compares
with CSFQ though.

10.3 NCP as a Scheduling Algorithm

If we consider each packet of a flow which carries the corresponding Rj and
RTTj as a task, then all these tasks are schedulable if Equation 23 holds.
This is equivalent to saying if Rj ≤ R(t). This can as well be seen as a
simple admission control protocol which admits packets if their Rj is less or
equal to the what the link can accommodate which is R(t). Here NCP can
also be modified to ensure that a task with a priority of pj is schedulable if
Rj ≤ pjR(t).

11 Performance Evaluation

In this section we first present an exact characterization of AFCT of PS
systems which many congestion control protocols try to emulate and we then
discuss numerical results which compare the performance of NCP against
XCP and RCP.

11.1 Exact characterization of the Average File Completion
Time (AFCT) of PS systems

A processor sharing system with processing capacity C allocates R(t) =
C/N of its capacity to N sources (flows). For a flow arrival rate of f during
a control interval d the number N = fd using Little’s law (independent of
the probability distribution). Hence

R(t) =
C

fd
. (26)
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Using Little’s law a file with an average size of F̄ needs F̄ /R(t) time
units (sec) to download (complete). With an overhead of about 1.5RTT to
setup and tear down a connection,

AFCTPS = 1.5RTT +
F̄ fd

C
. (27)

11.1.1 Total link load (Link Pressure) vs link load per round

The average link load ρ used in the literature is load (demand) a link can
accommodate at one time (in one round) and is usually assumed to be less
than one otherwise the queue length grows to infinity. In this paper we
define the average total load or with sith slight name abuse link pressure
(ρT ) as the ratio of the total average demand ΛT to the to the total supply
C. Here it should be noted that a PS system may fulfill the total demand
in one round d in which case ρ = ρT ≤ 1 or in many rounds nr when the
total demand is finite (flows of finite size for a finite length of time). Here
excluding the connection setup and tear down time a flow completes after
nrRTT . The average total load (link pressure) ρT = nrρ.

So for an average total load of ρT = ΛT /C and average file size of F̄ , the
flow arrival rate f = ρT C/F̄ = ΛT /F̄ . Hence

AFCTPS = 1.5RTT + dρT ≈ RTT (1.5 + ρT ). (28)

For example when RTT = 0.1sec and ρT = 0.9 as is the case in RCP
papers, the AFCT of PS and hence NCP is AFCTPS = AFCTNCP = 0.24
sec as can also be seen from Figure 1.

11.2 Numerical Results

In this section we compare the performance of NCP (which achieves PS as
shown above) with that of XCP and RCP using the ns2 simulation package.
The performance of RCP highly depends on the choice of the many param-
eters it uses. As shown in Figure 1 RCP seems to outperform all but NCP
when the flow arrival is exponential with rate

f =
ρC

F̄
(29)

where ρ and F̄ are the link load and mean flow size respectively.
Multiplying both sides of Equation 29 with the average flow completion

time AFCT we get
Nflow = ρC/Rflow
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Figure 1: Average File Completion Time with smaller flow arrival rate

where Nflow and Rflow are the average total number of flows and average
flow sending rates respectively. So with this initial values and simulation
setup which give the almost exact estimate of the number of active flows,
it is not surprising that RCP gives results close to PS. This however is not
always the case with real networks. For example if the flow arrival rate is
exponential with rate f = 2ρC/F̄ the performance of RCP is worse than
XCP and TCP as shown in Figure 2.

We further validated these congestion control protocols using our own
simpler but efficient SimpSim simulator which is briefly described below.

11.2.1 The SimpSim Simulator

In the SimpSim simulator there are source and network models which con-
tinuously exchange data. The SimpSim simulator is specially suitable for
reliable feedback protocols such as TCP, XCP, RCP and NCP where the
sources send packets to the network and the network controls their sending
rate in different ways. This feedback behavior of reliable protocols is better
modeled with the fixed point theory [7] which our SimpSim is based. The
SimpSim simulator can also be easily used with non-reliable protocols such

17



Figure 2: Average File Completion Time with larger flow arrival rate

as UDP. Here the source model of the simulator sends data at the sources
rate and the network model measures (calculates) the performance metric
without sending a feedback.

The SimpSim uses the rich field of queueing theory and accurate ana-
lytical models derived from the protocols to get the performance metrics.
It can be shown that SimpSim can scale to bigger networks than the ns2
simulator.

As can be seen from Figures 3, 4, 5 and 6 RCP doesn’t always outperform
TCP. The simplified version of NCP which we call NCP-S outperforms them
all and NCP outperforms both TCP and RCP. All AFCT results are for file
sizes ranging from 200 to 800 packets. The link capacity is in packets/sec, the
buffer size is in packets and the AFCT (avgCompletionTime) is in seconds.
The link capacity is in packets/sec, the buffer size is in packets and the
AFCT (avgCompletionTIme) is in seconds.
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C buffer nIterToBeStable avgCompletionTime

-------------------------------------------------------------

200.000000 20.000000 88 18.355020

300.000000 30.000000 57 12.781763

400.000000 40.000000 38 8.212026

500.000000 50.000000 28 5.696982

600.000000 60.000000 23 4.591052

700.000000 70.000000 19 3.617752

800.000000 80.000000 17 2.935318

900.000000 90.000000 15 2.712573

1000.000000 100.000000 15 2.650614

Figure 3: TCP AFCT

C buffer nIterToBeStable avgCompletionTime

-----------------------------------------------------------

200.000000 20.000000 92 18.050947

300.000000 30.000000 73 13.910848

400.000000 40.000000 62 11.606824

500.000000 50.000000 54 10.050722

600.000000 60.000000 49 9.020102

700.000000 70.000000 45 8.125041

800.000000 80.000000 41 7.424306

900.000000 90.000000 38 6.789594

1000.000000 100.000000 36 6.345465

Figure 4: RCP AFCT
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C buffer nIterToBeStable avgCompletionTime

-----------------------------------------------------------

200.000000 20.000000 42 8.917652

300.000000 30.000000 28 5.914731

400.000000 40.000000 23 4.595455

500.000000 50.000000 18 3.597167

600.000000 60.000000 15 2.975374

700.000000 70.000000 14 2.686840

800.000000 80.000000 12 2.276415

900.000000 90.000000 11 2.075967

1000.000000 100.000000 10 2.007141

Figure 5: NCP AFCT

C buffer nIterToBeStable avgCompletionTime

-----------------------------------------------------------

200.000000 20.000000 42 8.892529

300.000000 30.000000 28 5.894903

400.000000 40.000000 22 4.455842

500.000000 50.000000 18 3.449792

600.000000 60.000000 15 2.825743

700.000000 70.000000 14 2.532917

800.000000 80.000000 12 2.245854

900.000000 90.000000 11 2.046303

1000.000000 100.000000 10 1.862041

Figure 6: NCP-S AFCT
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12 Summary and Ongoing Work

In this paper we showed the limitations of existing clean-slate congestion
control protocols and presented a new congestion control protocol called
NCP. Through detailed mathematical analysis and some simulation results
we have shown that NCP can outperform existing congestion control pro-
tocols. We gave brief descriptions of some case studies where NCP can be
used.

We are currently working on more detailed simulation results and router
implementation of the NCP protocol using the click software router. We plan
to conduct extensive implementation tests of NCP in the TEEVE overlay
network and other experimental networks.
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