170,502 research outputs found

    Performance of parametric spectrum estimation methods

    Get PDF
    W pracy przedstawiono porównanie dokładności wyznaczania częstotliwości i amplitudy składowych sygnałów harmonicznych odkształconych przy pomocy parametrycznych metod estymacji widma: MUSIC i ESPRIT. Miarą dokładności jest błąd średniokwadratowy estymacji określonego parametru dla wielu symulowanych przebiegów. Przebiegi testowe są charakterystyczne dla zagadnień spotykanych w elektroenergetyce, stąd otrzymane wyniki mogą być zastosowane w praktyce, umożliwiając optymalny dobór parametrów tych metod obliczeniowych. Jako praktyczny przykład zastosowania metod MUSIC i ESPRIT przedstawiono wyznaczanie wskaźników jakości energii. Uzyskano ponad 50% wzrost dokładności po zastąpieniu algorytmu opartego na DFT (dyskretnym przekształceniu Fouriera) parametrycznymi metodami podprzestrzeni. ========Introduction The quality of voltage waveforms is nowadays an issue of the utmost importance for power utilities, electric energy consumers and also for the manufactures of electric and electronic equipment. The proliferation of nonlinear loads connected to power systems has triggered a growing concern with power quality issues. The inherent operation characteristics of these loads deteriorate the quality of the delivered energy, and increase the energy losses as well as decrease the reliability of a power system [4]. The methods of power quality assessment in power systems are almost exclusively based on Fourier Transform. The crucial drawback of the Fourier Transform-based methods is that the length of the window is related to the frequency resolution. Moreover, to ensure the accuracy of Discrete Fourier Transform, the sampling interval of analysis should be an exact integer multiple of the waveform fundamental period [3]. Parametric spectral methods, such as ESPRIT or MUSIC [5] do not suffer from such inherent limitations of resolution or dependence of estimation error on the window length (phase dependence of the estimation error). The resolution of these methods is to high degree independent on signal-to-noise ratio and on the initial phase of the harmonic components. The author argues that the use of high-resolution spectrum estimation methods instead of Fourier-based techniques can improve the accuracy of measurement of spectral parameters of distorted waveforms encountered in power systems, in particular the estimation of the power quality indices [4]. The paper is composed as follows: After the short description of parametric methods (ESPRIT and MUSIC), the comparison of the frequency and amplitude estimation error, based on numerical simulation is presented. Next part presents basics of selected power quality indices (harmonic sub/groups), followed by comparison of estimation error in the case of application of FFT-based algorithms and parametric methods

    Measurement of IEC Groups and Subgroups Using Advanced Spectrum Estimation Methods

    Get PDF
    The International Electrotechnical Commission (IEC) standards characterize the waveform distortions in power systems with the amplitudes of harmonic and interharmonic groups and subgroups. These groups/subgroups utilize the waveform spectral components obtained from a fixed frequency resolution discrete Fourier transform (DFT). Using the IEC standards allows for a compromise among the different goals, such as the needs for accuracy, simplification, and unification. In some cases, however, the power-system waveforms are characterized by spectral components that the DFT cannot capture with enough accuracy due to the fixed frequency resolution and/or the spectral leakage phenomenon. This paper investigates the possibility of a group/subgroup evaluation using the following advanced spectrum estimation methods: adaptive Prony, estimation of signal parameters via rotational invariance techniques, and root MUltiple-SIgnal Classification (MUSIC). These adaptive methods use variable lengths of time windows of analysis to ensure the best fit of the waveforms; they are not characterized by the fixed frequency resolution and do not suffer from the spectral leakage phenomenon. This paper also presents the results of the applications of these methods to three test waveforms, to current and voltage waveforms obtained from simulations of a real dc arc-furnace plant, and to waveforms measured at the point of common coupling of the low-voltage network supplying a high-performance laser printer

    Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multi-wavelets

    Get PDF
    A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The time-varying modelling problem is then reduced to regression selection and parameter estimation, which can be effectively resolved by using a forward orthogonal regression algorithm. Two examples, one for an artificial signal and another for an EEG signal, are given to show the effectiveness and applicability of the new TVAR modelling method

    On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems

    Full text link
    Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performance loss. In this article, we discuss several important issues based on the most recent research on mmWave massive MIMO systems relying on low-resolution ADCs. We discuss the key transceiver design challenges including channel estimation, signal detector, channel information feedback and transmit precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative technique of improving the overall system performance. Finally, the associated challenges and potential implementations of the practical 5G mmWave massive MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin

    Power spectral density estimation for wireless fluctuation enhanced gas sensor nodes

    Get PDF
    Fluctuation enhanced sensing (FES) is a promising method to improve the selectivity and sensitivity of semiconductor and nanotechnology gas sensors. Most measurement setups include high cost signal conditioning and data acquisition units as well as intensive data processing. However, there are attempts to reduce the cost and energy consumption of the hardware and to find efficient processing methods for low cost wireless solutions. In our paper we propose highly efficient signal processing methods to analyze the power spectral density of fluctuations. These support the development of ultra-low-power intelligent fluctuation enhanced wireless sensor nodes while several further applications are also possible
    corecore