309 research outputs found

    Analysis And Mitigation Of The Impacts Of Delays In Control Of Power Systems With Renewable Energy Sources

    Get PDF
    ABSTRACT Analysis and Mitigation of the Impacts of Delays in Control of Power Systems with Renewable Energy Sources by Chang Fu Apr. 2019 Advisor : Dr. Caisheng Wang Major : Electrical and Computer Engineering Degree : Doctor of Philosophy With the integration of renewable resources, electric vehicles and other uncertain resources into power grid, varieties of control topology and algorithms have been proposed to increase the stability and reliability of the operation system. Load modeling is an critical part in such analysis since it significantly impacts the accuracy of the simulation in power system, as well as stability and reliability analysis. Traditional power system composite load model parameter identification problems can be essentially ascribed to optimization problems, and the identied parameters are point estimations subject to dierent constraints. These conventional point estimation based composite load modeling approaches suer from disturbances and noises and provide limited information of the system dynamics. In this thesis, a statistic (Bayesian Estimation) based distribution estimation approach is proposed for composite load models, including static (ZIP) and dynamic (Induction Motor) parts, by implementing Gibbs sampling. The proposed method provides a distribution estimation of coecients for load models and is robust to measurement errors. The overvoltage issue is another urgent issues need to be addressed, especially in a high PV penetration level system. Various approaches including the real power control through photovoltaic (PV) inverters have been proposed to mitigate such impact, however, most of the existing methods did not include communication delays in the control loop. Communication delays, short or long, are inevitable in the PV voltage regulation loop and can not only deteriorate the system performance with undesired voltage quality but also cause system instability. In this thesis, a method is presented to convert the overvoltage control problem via PV inverters for multiple PVs into a problem of single-input-single-output (SISO) systems. The method can handle multiple PVs and dierent communication delays. The impact of communication delays is also systematically analyzed and the maximum tolerable delay is rigorously obtained. Dierent from linear matrix inequality (LMI) techniques that have been extensively studied in handling systems with communication delays, the proposed method gives the necessary and sucient condition for obtaining a controller and the design procedure is explicitly and constructively given in the paper. The effectiveness of the proposed method is veried by simulation studies on a distribution feeder and the widely-used 33-bus distribution test system. The similar design strategy can be utilized to mitigate delay impacts in Load frequency control (LFC) as well. LFC has been considered as one of the most important frequency regulation mechanisms in modern power system. One of the inevitable problems involved in LFC over a wide area is communication delay. In this thesis, an alternative design method is proposed to devise delay compensators for LFC in one or multiple control areas. For one-area LFC, a sucient and necessary condition is given for designing a delay compensator. For multiarea LFC with area control errors (ACEs), it is demonstrated that each control area can have its delay controller designed as that in a one-area system if the index of coupling among the areas is below the threshold value determined by the small gain theorem. Effectiveness of the proposed method is veried by simulation studies on LFCs with communication delays in one and multiple interconnected areas with and without time-varying delays, respectively

    An Interactive and comprehensive software tool to promote active learning in the Loop Shaping Control System design

    Get PDF
    The classical loop shaping is a design procedure that explicitly involves the shaping of the open loop transfer function L(s), within a desired frequency spectrum by manipulating the poles, zeros, and gain of the controller C(s). Interactive software tools have proven as, particularly, useful techniques with high impact on control education. This kind of interactive tools has demonstrated in the past that students learn in a much more active way. This paper presents the basic functionality of the linear control system design (LCSD), an interactive tool for analysis and design of linear control systems with special emphasis on the classical loop shaping design. The software tool is implemented in Sysquake, a MATLAB-like language with fast execution and excellent facilities for interactive graphics, and is delivered as a stand-alone executable that is readily accessible to students and instructors. Several design problems are used to illustrate the main features of the LCSD tool to perform classical loop shaping.Postprint (published version

    Analysis And Mitigation Of The Impacts Of Delays In Control Of Power Systems With Renewable Energy Sources

    Get PDF
    ABSTRACT Analysis and Mitigation of the Impacts of Delays in Control of Power Systems with Renewable Energy Sources by Chang Fu Apr. 2019 Advisor : Dr. Caisheng Wang Major : Electrical and Computer Engineering Degree : Doctor of Philosophy With the integration of renewable resources, electric vehicles and other uncertain resources into power grid, varieties of control topology and algorithms have been proposed to increase the stability and reliability of the operation system. Load modeling is an critical part in such analysis since it significantly impacts the accuracy of the simulation in power system, as well as stability and reliability analysis. Traditional power system composite load model parameter identification problems can be essentially ascribed to optimization problems, and the identied parameters are point estimations subject to dierent constraints. These conventional point estimation based composite load modeling approaches suer from disturbances and noises and provide limited information of the system dynamics. In this thesis, a statistic (Bayesian Estimation) based distribution estimation approach is proposed for composite load models, including static (ZIP) and dynamic (Induction Motor) parts, by implementing Gibbs sampling. The proposed method provides a distribution estimation of coecients for load models and is robust to measurement errors. The overvoltage issue is another urgent issues need to be addressed, especially in a high PV penetration level system. Various approaches including the real power control through photovoltaic (PV) inverters have been proposed to mitigate such impact, however, most of the existing methods did not include communication delays in the control loop. Communication delays, short or long, are inevitable in the PV voltage regulation loop and can not only deteriorate the system performance with undesired voltage quality but also cause system instability. In this thesis, a method is presented to convert the overvoltage control problem via PV inverters for multiple PVs into a problem of single-input-single-output (SISO) systems. The method can handle multiple PVs and dierent communication delays. The impact of communication delays is also systematically analyzed and the maximum tolerable delay is rigorously obtained. Dierent from linear matrix inequality (LMI) techniques that have been extensively studied in handling systems with communication delays, the proposed method gives the necessary and sucient condition for obtaining a controller and the design procedure is explicitly and constructively given in the paper. The effectiveness of the proposed method is veried by simulation studies on a distribution feeder and the widely-used 33-bus distribution test system. The similar design strategy can be utilized to mitigate delay impacts in Load frequency control (LFC) as well. LFC has been considered as one of the most important frequency regulation mechanisms in modern power system. One of the inevitable problems involved in LFC over a wide area is communication delay. In this thesis, an alternative design method is proposed to devise delay compensators for LFC in one or multiple control areas. For one-area LFC, a sucient and necessary condition is given for designing a delay compensator. For multiarea LFC with area control errors (ACEs), it is demonstrated that each control area can have its delay controller designed as that in a one-area system if the index of coupling among the areas is below the threshold value determined by the small gain theorem. Effectiveness of the proposed method is veried by simulation studies on LFCs with communication delays in one and multiple interconnected areas with and without time-varying delays, respectively

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Robust output feedback consensus for networked negative-imaginary systems

    Get PDF
    • …
    corecore