389 research outputs found

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?

    Get PDF
    Suppose we are given a vector ff in RN\R^N. How many linear measurements do we need to make about ff to be able to recover ff to within precision Ï”\epsilon in the Euclidean (ℓ2\ell_2) metric? Or more exactly, suppose we are interested in a class F{\cal F} of such objects--discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy Ï”\epsilon? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f∈Ff \in {\cal F} decay like a power-law (or if the coefficient sequence of ff in a fixed basis decays like a power-law), then it is possible to reconstruct ff to within very high accuracy from a small number of random measurements.Comment: 39 pages; no figures; to appear. Bernoulli ensemble proof has been corrected; other expository and bibliographical changes made, incorporating referee's suggestion

    Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence

    Full text link
    In this paper, we propose a new {\it \underline{R}ecursive} {\it \underline{I}mportance} {\it \underline{S}ketching} algorithm for {\it \underline{R}ank} constrained least squares {\it \underline{O}ptimization} (RISRO). As its name suggests, the algorithm is based on a new sketching framework, recursive importance sketching. Several existing algorithms in the literature can be reinterpreted under the new sketching framework and RISRO offers clear advantages over them. RISRO is easy to implement and computationally efficient, where the core procedure in each iteration is only solving a dimension reduced least squares problem. Different from numerous existing algorithms with locally geometric convergence rate, we establish the local quadratic-linear and quadratic rate of convergence for RISRO under some mild conditions. In addition, we discover a deep connection of RISRO to Riemannian manifold optimization on fixed rank matrices. The effectiveness of RISRO is demonstrated in two applications in machine learning and statistics: low-rank matrix trace regression and phase retrieval. Simulation studies demonstrate the superior numerical performance of RISRO

    Employing data fusion & diversity in the applications of adaptive signal processing

    Get PDF
    The paradigm of adaptive signal processing is a simple yet powerful method for the class of system identification problems. The classical approaches consider standard one-dimensional signals whereby the model can be formulated by flat-view matrix/vector framework. Nevertheless, the rapidly increasing availability of large-scale multisensor/multinode measurement technology has render no longer sufficient the traditional way of representing the data. To this end, the author, who from this point onward shall be referred to as `we', `us', and `our' to signify the author myself and other supporting contributors i.e. my supervisor, my colleagues and other overseas academics specializing in the specific pieces of research endeavor throughout this thesis, has applied the adaptive filtering framework to problems that employ the techniques of data diversity and fusion which includes quaternions, tensors and graphs. At the first glance, all these structures share one common important feature: invertible isomorphism. In other words, they are algebraically one-to-one related in real vector space. Furthermore, it is our continual course of research that affords a segue of all these three data types. Firstly, we proposed novel quaternion-valued adaptive algorithms named the n-moment widely linear quaternion least mean squares (WL-QLMS) and c-moment WL-LMS. Both are as fast as the recursive-least-squares method but more numerically robust thanks to the lack of matrix inversion. Secondly, the adaptive filtering method is applied to a more complex task: the online tensor dictionary learning named online multilinear dictionary learning (OMDL). The OMDL is partly inspired by the derivation of the c-moment WL-LMS due to its parsimonious formulae. In addition, the sequential higher-order compressed sensing (HO-CS) is also developed to couple with the OMDL to maximally utilize the learned dictionary for the best possible compression. Lastly, we consider graph random processes which actually are multivariate random processes with spatiotemporal (or vertex-time) relationship. Similar to tensor dictionary, one of the main challenges in graph signal processing is sparsity constraint in the graph topology, a challenging issue for online methods. We introduced a novel splitting gradient projection into this adaptive graph filtering to successfully achieve sparse topology. Extensive experiments were conducted to support the analysis of all the algorithms proposed in this thesis, as well as pointing out potentials, limitations and as-yet-unaddressed issues in these research endeavor.Open Acces

    Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising

    Full text link
    Removing the noise and improving the visual quality of hyperspectral images (HSIs) is challenging in academia and industry. Great efforts have been made to leverage local, global or spectral context information for HSI denoising. However, existing methods still have limitations in feature interaction exploitation among multiple scales and rich spectral structure preservation. In view of this, we propose a novel solution to investigate the HSI denoising using a Multi-scale Adaptive Fusion Network (MAFNet), which can learn the complex nonlinear mapping between clean and noisy HSI. Two key components contribute to improving the hyperspectral image denoising: A progressively multiscale information aggregation network and a co-attention fusion module. Specifically, we first generate a set of multiscale images and feed them into a coarse-fusion network to exploit the contextual texture correlation. Thereafter, a fine fusion network is followed to exchange the information across the parallel multiscale subnetworks. Furthermore, we design a co-attention fusion module to adaptively emphasize informative features from different scales, and thereby enhance the discriminative learning capability for denoising. Extensive experiments on synthetic and real HSI datasets demonstrate that the proposed MAFNet has achieved better denoising performance than other state-of-the-art techniques. Our codes are available at \verb'https://github.com/summitgao/MAFNet'.Comment: IEEE JSTASRS 2023, code at: https://github.com/summitgao/MAFNe

    Quantized Compressive Sensing with RIP Matrices: The Benefit of Dithering

    Full text link
    Quantized compressive sensing (QCS) deals with the problem of coding compressive measurements of low-complexity signals with quantized, finite precision representations, i.e., a mandatory process involved in any practical sensing model. While the resolution of this quantization clearly impacts the quality of signal reconstruction, there actually exist incompatible combinations of quantization functions and sensing matrices that proscribe arbitrarily low reconstruction error when the number of measurements increases. This work shows that a large class of random matrix constructions known to respect the restricted isometry property (RIP) is "compatible" with a simple scalar and uniform quantization if a uniform random vector, or a random dither, is added to the compressive signal measurements before quantization. In the context of estimating low-complexity signals (e.g., sparse or compressible signals, low-rank matrices) from their quantized observations, this compatibility is demonstrated by the existence of (at least) one signal reconstruction method, the projected back projection (PBP), whose reconstruction error decays when the number of measurements increases. Interestingly, given one RIP matrix and a single realization of the dither, a small reconstruction error can be proved to hold uniformly for all signals in the considered low-complexity set. We confirm these observations numerically in several scenarios involving sparse signals, low-rank matrices, and compressible signals, with various RIP matrix constructions such as sub-Gaussian random matrices and random partial discrete cosine transform (DCT) matrices.Comment: 42 pages, 9 figures. Diff. btw V3 & V2: better paper structure, new concepts (e.g., RIP matrix distribution, connections with Bussgang's theorem), as well as many clarifications and correction

    Compressed Sensing in Multi-Signal Environments.

    Full text link
    Technological advances and the ability to build cheap high performance sensors make it possible to deploy tens or even hundreds of sensors to acquire information about a common phenomenon of interest. The increasing number of sensors allows us to acquire ever more detailed information about the underlying scene that was not possible before. This, however, directly translates to increasing amounts of data that needs to be acquired, transmitted, and processed. The amount of data can be overwhelming, especially in applications that involve high-resolution signals such as images or videos. Compressed sensing (CS) is a novel acquisition and reconstruction scheme that is particularly useful in scenarios when high resolution signals are difficult or expensive to encode. When applying CS in a multi-signal scenario, there are several aspects that need to be considered such as the sensing matrix, the joint signal model, and the reconstruction algorithm. The purpose of this dissertation is to provide a complete treatment of these aspects in various multi-signal environments. Specific applications include video, multi-view imaging, and structural health monitoring systems. For each application, we propose a novel joint signal model that accurately captures the joint signal structure, and we tailor the reconstruction algorithm to each signal model to successfully recover the signals of interest.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98007/1/jaeypark_1.pd

    Tensor Regression

    Full text link
    Regression analysis is a key area of interest in the field of data analysis and machine learning which is devoted to exploring the dependencies between variables, often using vectors. The emergence of high dimensional data in technologies such as neuroimaging, computer vision, climatology and social networks, has brought challenges to traditional data representation methods. Tensors, as high dimensional extensions of vectors, are considered as natural representations of high dimensional data. In this book, the authors provide a systematic study and analysis of tensor-based regression models and their applications in recent years. It groups and illustrates the existing tensor-based regression methods and covers the basics, core ideas, and theoretical characteristics of most tensor-based regression methods. In addition, readers can learn how to use existing tensor-based regression methods to solve specific regression tasks with multiway data, what datasets can be selected, and what software packages are available to start related work as soon as possible. Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis. It is essential reading for all students, researchers and practitioners of working on high dimensional data.Comment: 187 pages, 32 figures, 10 table

    New and Provable Results for Network Inference Problems and Multi-agent Optimization Algorithms

    Get PDF
    abstract: Our ability to understand networks is important to many applications, from the analysis and modeling of biological networks to analyzing social networks. Unveiling network dynamics allows us to make predictions and decisions. Moreover, network dynamics models have inspired new ideas for computational methods involving multi-agent cooperation, offering effective solutions for optimization tasks. This dissertation presents new theoretical results on network inference and multi-agent optimization, split into two parts - The first part deals with modeling and identification of network dynamics. I study two types of network dynamics arising from social and gene networks. Based on the network dynamics, the proposed network identification method works like a `network RADAR', meaning that interaction strengths between agents are inferred by injecting `signal' into the network and observing the resultant reverberation. In social networks, this is accomplished by stubborn agents whose opinions do not change throughout a discussion. In gene networks, genes are suppressed to create desired perturbations. The steady-states under these perturbations are characterized. In contrast to the common assumption of full rank input, I take a laxer assumption where low-rank input is used, to better model the empirical network data. Importantly, a network is proven to be identifiable from low rank data of rank that grows proportional to the network's sparsity. The proposed method is applied to synthetic and empirical data, and is shown to offer superior performance compared to prior work. The second part is concerned with algorithms on networks. I develop three consensus-based algorithms for multi-agent optimization. The first method is a decentralized Frank-Wolfe (DeFW) algorithm. The main advantage of DeFW lies on its projection-free nature, where we can replace the costly projection step in traditional algorithms by a low-cost linear optimization step. I prove the convergence rates of DeFW for convex and non-convex problems. I also develop two consensus-based alternating optimization algorithms --- one for least square problems and one for non-convex problems. These algorithms exploit the problem structure for faster convergence and their efficacy is demonstrated by numerical simulations. I conclude this dissertation by describing future research directions.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • 

    corecore