research

Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?

Abstract

Suppose we are given a vector ff in RN\R^N. How many linear measurements do we need to make about ff to be able to recover ff to within precision ϵ\epsilon in the Euclidean (2\ell_2) metric? Or more exactly, suppose we are interested in a class F{\cal F} of such objects--discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ϵ\epsilon? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal fFf \in {\cal F} decay like a power-law (or if the coefficient sequence of ff in a fixed basis decays like a power-law), then it is possible to reconstruct ff to within very high accuracy from a small number of random measurements.Comment: 39 pages; no figures; to appear. Bernoulli ensemble proof has been corrected; other expository and bibliographical changes made, incorporating referee's suggestion

    Similar works