
New and Provable Results on Network Inference Problems and Multi-Agent Optimization

Algorithms

by

Hoi To Wai

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2017 by the
Graduate Supervisory Committee:

Anna Scaglione, Chair
Visar Berisha
Angelia Nedić

Lei Ying

ARIZONA STATE UNIVERSITY

December 2017

ABSTRACT

Our ability to understand networks is important to many applications, from the anal-

ysis and modeling of biological networks to analyzing social networks. Unveiling network

dynamics allows us to make predictions and decisions. Moreover, network dynamics models

have inspired new ideas for computational methods involving multi-agent cooperation, of-

fering effective solutions for optimization tasks. This dissertation presents new theoretical

results on network inference and multi-agent optimization, split into two parts —

The first part deals with modeling and identification of network dynamics. I study

two types of network dynamics arising from social and gene networks. Based on the net-

work dynamics, the proposed network identification method works like a ‘network RADAR’,

meaning that interaction strengths between agents are inferred by injecting ‘signal’ into the

network and observing the resultant reverberation. In social networks, this is accomplished

by stubborn agents whose opinions do not change throughout a discussion. In gene net-

works, genes are suppressed to create desired perturbations. The steady-states under these

perturbations are characterized. In contrast to the common assumption of full rank input, I

take a laxer assumption where low-rank input is used, to better model the empirical network

data. Importantly, a network is proven to be identifiable from low rank data of rank that

grows proportional to the network’s sparsity. The proposed method is applied to synthetic

and empirical data, and is shown to offer superior performance compared to prior work.

The second part is concerned with algorithms on networks. I develop three consensus-based

algorithms for multi-agent optimization. The first method is a decentralized Frank-Wolfe

(DeFW) algorithm. The main advantage of DeFW lies on its projection-free nature, where

we can replace the costly projection step in traditional algorithms by a low-cost linear opti-

mization step. I prove the convergence rates of DeFW for convex and non-convex problems.

I also develop two consensus-based alternating optimization algorithms — one for least

square problems and one for non-convex problems. These algorithms exploit the problem

structure for faster convergence and their efficacy is demonstrated by numerical simulations.

I conclude this dissertation by describing future research directions.

i

DEDICATION

To my family

ii

ACKNOWLEDGMENTS

First and foremost, I am greatly indebted to my advisor, Prof. Anna Scaglione, for the

guidance and support to me throughout my PhD. Even though we may have different ‘taste’

in research at times, she has given me the liberty to work on topics that I am interested

in. This dissertation could never be completed without her wise advice. Also, thank you

my thesis committee — Prof. Visar Berisha, Prof. Angelia Nedić and Prof. Lei Ying — for

reading this dissertation and providing useful comments.

I am grateful to Prof. Eric Moulines, Prof. Asuman E. Ozdaglar for hosting me during

two productive and wonderful summers in Paris and Boston. Their advices have helped me

to diversify and explore different research topics while sharpening my mathematical skills.

In addition, I am thankful to Prof. Amir Leshem and Prof. Baruch Barzel for bringing

different aspects to my research as well as welcoming me to Tel Aviv for two short visits. I

am fortunate to have interacted and collaborated with these mentors.

Besides, I would like to thank Prof. Mahnoosh Alizadeh, Prof. Tsung-Hui Chang,

Dr. Jean Lafond, Dr. Shi Wei and Mr. César Uribe for being good collaborators and friends.

Particularly with Jean, without him I couldn’t have survived Paris with my virtually zero

knowledge of French.

Thank you everyone in the SINELab — Reinhard Gentz, Lorenzo Ferrari, Mahdi Jamei,

Kari Hreinsson, Eran Schweitzer, Raksha Ramakrishna, Prof. Xiaoxiao Wu, Dr. Bita Analui,

Nikhil Ravi, Nurullah Karakoc — for being the best team to work and have fun with.

Especially, I would like to thank Reinhard for being the most awesome lab-mate, room-

mate and coffee-mate ever, let’s not forget our promise and visit Mexico together.

I am thankful to all my friends and colleagues in Davis, San Francisco Bay area,

Tempe/Phoenix, Paris and Boston, for giving me a great time and company. The spe-

cial thanks go to the Infusion Coffee and Tea at Tempe, which makes good coffee that are

turned into theorems. Lastly, I would like to thank my family — my mother, father and

sisters — in Hong Kong, who have always been supporting me.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION. 1

1.1 Overview and Background . 1

1.2 Contributions and Organization . 4

1.2.1 Modeling and Identification of Networks . 4

1.2.2 Algorithms on Network . 5

1.3 List of Publications . 7

1.4 Prior Works . 9

1.4.1 On Network Identification . 9

1.4.2 On Multi-agent Optimization . 12

2 MATHEMATICAL PRELIMINARIES AND NOTATIONS 14

2.1 Networks and Graph Theory . 14

2.2 Linear Algebra . 15

2.3 Mathematical Analysis . 17

3 NETWORK RADAR FOR OPINION DYNAMICS . 20

3.1 Context and Background . 20

3.2 Opinion Dynamics Model . 21

3.2.1 Effects of Stubborn Agents . 24

3.3 Opinion Dynamics Identification . 28

3.4 Guarantees for DeGroot Dynamics Identification . 32

3.4.1 Random Opinion Dynamics . 36

3.5 Community Detection from Low-Rank Data . 38

3.6 Numerical Results . 43

3.6.1 Linear Opinion Dynamics . 44

iv

CHAPTER Page

3.6.2 Nonlinear Opinion Dynamics . 51

3.7 Chapter Summary . 53

3.A Proof of Observation 3.1 . 55

3.B Proof of Lemma 3.1 . 55

3.C Proof of Lemma 3.2 . 56

3.D Proof of Theorem 3.1 . 56

3.E Proof of Theorem 3.2 . 63

3.F Proof of Proposition 3.1 . 66

4 NETWORK RADAR FOR GENE DYNAMICS . 69

4.1 Context and Background . 69

4.2 Gene Dynamics Model . 70

4.3 Gene Dynamics Identification . 73

4.4 Guarantees for Gene Dynamics Identification . 74

4.5 Robust Identification of Sparse Networks . 77

4.5.1 Handling Empirical Gene Expression Data . 79

4.6 Numerical Experiments . 81

4.6.1 Synthetic Data . 81

4.6.2 Empirical Data . 84

4.7 Chapter Summary . 87

4.A Proof of Proposition 4.1 . 89

4.B Proof of Theorem 4.1 . 90

5 CONSENSUS-BASED PROJECTION-FREE OPTIMIZATION 96

5.1 Context and Background . 96

5.2 Review: Decentralized Projected Gradient (DPG) Algorithm 98

5.3 Decentralized Frank-Wolfe (DeFW) Algorithm . 101

5.3.1 Implementation: Consensus-based DeFW . 106

v

CHAPTER Page

5.4 Convergence Analysis for General DeFW . 109

5.5 Applications . 113

5.5.1 Example I: Decentralized Matrix Completion . 113

5.5.2 Example II: Communication Efficient DeFW for LASSO 115

5.6 Faster DeFW for Decentralized Low-rank Regression . 119

5.7 Numerical Results . 125

5.7.1 Decentralized Matrix Completion . 125

5.7.2 Decentralized Sparse Learning . 131

5.7.3 Fast DeFW Algorithm . 133

5.8 Chapter Summary . 135

5.A Proof of Lemma 5.1 . 137

5.B Proof of Lemma 5.2 . 138

5.C Proof of Theorem 5.3 . 140

5.D Proof of Theorem 5.4 . 143

5.D.1 Convergence rate . 143

5.D.2 Convergence to stationary point . 145

5.E Proof of Lemma 5.3 . 149

5.F Proof of Proposition 5.1 . 150

5.G Proof of Theorem 5.5 . 151

6 CONSENSUS-BASED ALTERNATING OPTIMIZATION 154

6.1 Context and Background . 154

6.2 Consensus-based AO Algorithm for Least Square Problems 156

6.2.1 Convergence Analysis . 157

6.2.2 State Estimation with Asynchronous Measurements 159

6.3 EXTRA-AO Algorithm . 162

6.3.1 Convergence Analysis . 165

6.3.2 Decentralized Dictionary Learning . 166

vi

CHAPTER Page

6.4 Numerical Experiments . 167

6.4.1 Decentralized State Estimation . 168

6.4.2 Decentralized Dictionary Learning . 170

6.5 Chapter Summary . 173

6.A Proof of Proposition 6.1 . 175

6.B Proof of Theorem 6.1 . 176

6.C Proof of Proposition 6.2 . 179

6.D Proof of Proposition 6.3 . 180

7 CONCLUSIONS AND RESEARCH PLANS . 182

7.1 Future Research . 183

7.1.1 Network Dynamics Modeling and Identification 183

7.1.2 Large-scale Optimization Utilizing Networks . 184

7.2 Final Remarks . 185

BIBLIOGRAPHY . 186

vii

LIST OF TABLES

Table Page

3.1 Minimum β′ Required by the Network Identifiability Condition in Theorem 3.1 35

4.1 GRN Identification Performance Comparison on the DREAM5 Dataset 86

5.1 Performance Comparison for the F-DeFW Algorithm . 135

viii

LIST OF FIGURES

Figure Page

1.1 Overview of the Proposed Network Identification Approach 2

1.2 Overview of Decentralized Optimization Algorithms. 3

1.3 Overview of the Contributions in this Dissertation and the Corresponding

Chapters . 4

3.1 Illustration of the Social Network with Stubborn Agents and the Sub-networks

Therein. 25

3.2 Data Acquisition for Opinion Dynamics Identification . 28

3.3 Proposed Approach for the Sketched Community Detection Method from

Low-rank Observed Opinion Data. 39

3.4 Illustrating a Network with C = 4 Communities and Its Adjacency Matrix. . . 40

3.5 Comparing the Topology Recovery Performance Against the Number of Stub-

born Agents S . 45

3.6 Comparing the Network Identification Performance using Different Regular-

izers for (3.18) and Constructions for the Stubborn-normal Network. 46

3.7 Comparing the Network Identification Performance Against the Number of

Regular Agents n. 47

3.8 Comparing the Network Identification Performance on a Large-scale Network

With n = 1000. 48

3.9 Comparing the Social Network of ReedCollege from facebook100 Dataset . . 49

3.10 Comparing the Reconstructed Network for the ReedCollege Social Network

in facebook100 Dataset — A Closer Look . 49

3.11 Community Detection Performance Against the Number of Stubborn Agents

S. 50

3.12 Comparing the Network Identification Performance with Nonlinear Opinion

Dynamics . 52

ix

Figure Page

3.13 Comparing the Network Identification Performance on Large-scale Network

with n = 1000 using Heterogeneous and Nonlinear Opinion Dynamics 53

3.14 Illustrating the Properties of an Expander Graph . 57

4.1 Overview of the Processing Steps for Empirical Data . 80

4.2 Identifying GRNs with Noiseless Synthetic Data . 82

4.3 Identifying GRNs with Noisy Synthetic Data . 83

4.4 Model Parameters Learnt for Different Gene Dynamics . 87

5.1 Illustrating the DeFW Algorithm as a Three-steps Recursive Procedure 109

5.2 Performance of DeFW on Noiseless Synthetic Data with m1 = 100,m2 = 250

and Rank K = 5. 126

5.3 Performance of DeFW on Sparse-noise Contaminated Synthetic Data with

m1 = 100,m2 = 250 and Rank K = 5. 128

5.4 Convergence of Test MSE Against Iteration Number on the Testing Set on

Noise-free Synthetic Data with m1 = 100,m2 = 250 and Rank K = 10 129

5.5 Performance of DeFW on Noiseless Synthetic Data with m1 = 200,m2 =

1000 and Rank K = 5. 129

5.6 Convergence of the DeFW Algorithm on movielens100k Dataset with Dif-

ferent Loss Functions . 130

5.7 Convergence of the Objective Value on LASSO Problem with Synthetic Dataset.132

5.8 Convergence of the Objective Value Against the Communication Cost on

LASSO Problem with sparco7 Dataset. 133

5.9 MSE on movielens100k Against the F-DeFW Iteration Number t 134

6.1 Comparing the MSE Performance Against the Frame Size T 168

6.2 Comparing the State Estimation Error against Iteration Number of the C-

AOLS Algorithm. 169

6.3 Application of C-AOLS Algorithm on PSSE . 170

x

Figure Page

6.4 Convergence Behavior of the Algorithms for Decentralized DL (6.43) 171

6.5 Objective Value Against the Iteration Number for the Decentralized DL Al-

gorithms . 172

6.6 The Dictionary Learnt from the Image babara . 172

6.7 Image reconstruction result using the dictionaries learnt . 173

xi

1 Introduction

1.1 Overview and Background

We are living in the cusp of an era where human beings are surrounded by networked

systems in their everyday life, from social-economic to biological networks, or from sensor to

computer networks. Taking the social and economic networks as an example, we see that the

network structure and dynamics determine how we make friends, how we vote in an election

and how the government’s policies are implemented. The ubiquitous presence of networks

present a challenge for scientists from all disciplines to understand networked systems of

real life and the network structure, dynamic system model underneath them, which will in

turn help human beings to predict and determine the behavior of these systems.

The first focus of this dissertation is on the network dynamics modeling and identifica-

tion issues related to the systems discussed above. For examples of the potential impacts,

reverse engineering the gene regulatory networks can help discovering the cause of diseases

and their prevention [De Smet and Marchal(2010),Buchanan(2010),Albert(2005),Ideker and

Sharan(2008), Barabasi and Oltvai(2004)]; or understanding the social networks can help

businesses to strategize advertisement spendings on their potential customers [Asch(1955),

Ansari et al.(2000),Lam and Riedl(2004),Burke et al.(2005),Williams et al.(2007),Candogan

et al.(2012)]. As we shall see later, we study the state-of-the-art models for opinion and gene

dynamics under a unified notion of perturbations and characterize its equilibrium points.

Moreover, we propose a network identification method that relies on introducing pertur-

bations above in networked systems, which in the context of social-economical networks,

it is related to modeling the stubborn agents/zealots; or in the context of gene regulatory

networks, it is related to controlling the expressions of the targeted genes. As studied

in [Das et al.(2014), Moussad et al.(2013), Ramos et al.(2015), Kuhlman et al.(2012), Kang

et al.(2015),Barzel and Biham(2009)], these perturbations may be introduced intentionally

on real networks. We would like to emphasize that we are particularly interested in the low

1

Sparse Network
with sparse prior +
network dynamics Identifiability Condition

Under some structural constraint
on the graph &

K = ⌦(dmax)

Network Identification

Issue: Only a few experiments
(K) can be performed due to

time and cost concerns

Network Identification: Background

! Goal: we identify latent network structure from network data.

Identifying latent network structures Motivation & Background 8 / 28

e.g., opinions/votes from
a social network,

gene expression, etc.

G = (V, E)
Unknown network

Low-rank network data
after PerturbationsMaximum degree:

dmax ⌧ |V |

Figure 1.1: Overview of the proposed network identification approach. Our scheme makes

use of perturbation experiments and knowledge of the network dynamics to infer the under-

lying sparse network.

rank observation regime, e.g., that can be induced by having a few perturbation experi-

ments described above. This is a practical concern as well as a technical challenge since the

empirical network data are typically low rank. For example, the opinions observed in social

networks are often clustered or polarized, and the number of perturbation experiments con-

ducted on gene networks is limited. Under these models, we demonstrate that the network

topology and the weights on its edges can be perfectly identified under a mild condition on

the number of measurements obtained or, equivalently, the rank of observed data.

The second focus of this dissertation is concerned with the computation methods on

networked systems, i.e., algorithms that run on the networks. Specifically, the networked

systems discussed above can be viewed as systems with multi-agents that are tasked with

jointly solving a certain optimization problem. Representative examples are the gossip-

like mechanism for agents to reach consensus [DeGroot(1974), Dimakis et al.(2010)], or

the pulse coupling mechanism that helps fireflies synchronize [Mirollo and Strogatz(1990)].

The above observations have inspired algorithm scientists to develop distributed algorithms

to leverage the interconnected nature of computer and sensor networks [Tsitsiklis(1984),

Sayed et al.(2013)]. These distributed algorithms have the advantages of being resilient to

network failure and having the ability to work without central coordination. Such features

made these algorithms especially attractive for scenarios when data is stored distributively

2

Local loss
Global loss
= sum of local loss

communication
& collaborate

Figure 1.2: Overview of decentralized optimization algorithms. Tackling convex and non-

convex optimization with multi-agent optimization is a natural way for harvesting the com-

putational resource distributed over a large network with many agents.

across a bandwidth limited computer network, or when the individually stored data contains

private information. This is important in the wake of ‘big data’ era and the need for high-

dimensional optimization tool in machine learning applications. For example, the task of

training hyper parameters in neural networks [LeCun et al.(2015)] with a large amount of

data may be greatly accelerated with distributed optimization. This calls for the second

goal of this dissertation, which is to develop fast optimization algorithms via distributed

optimization and to analyze their performance.

Our current ability to understand the structure and dynamics of real life networks

is limited by the lack of a disciplined analysis of the network identification method and

the insufficient theories of decentralized optimizations adequate for algorithms that han-

dle high dimensional or structured problems. Overall, this dissertation fills these gaps by

proposing and studying network identification methods and novel multi-agents optimization

algorithms. Importantly, we analyze the performance of these formulation and algorithm

from a mathematical standpoint, providing verifiable conditions that can serve as important

guidelines for the practitioners to apply these methods.

3

Network Identification: Background

! Goal: we identify latent network structure from network data.

Identifying latent network structures Motivation & Background 8 / 28

Network

Output of network dynamics
(Network Data, e.g., Facebook, Twitter)

Modeling &
Identification of Networks

- Chapter 3 (Opinion Dynamics)
- Chapter 4 (Gene Dynamics)

Algorithms on Networks

- Chapter 5 (Decentralized Projection-
 free / DeFW algorithm)
- Chapter 6 (Consensus-based AO)

G = (V, E)

Figure 1.3: Overview of the contributions in this dissertation and the corresponding chap-

ters.

1.2 Contributions and Organization

This dissertation tackles two important problems pertaining to the study of Network

Science, encompassing new results on modeling and identification as well as new computation

methods on networks; see Figure 1.3 for an illustrative overview. The contributions and

pointers to their respective chapters in this dissertation can be found below.

1.2.1 Modeling and Identification of Networks

The first part of this dissertation deals with the modeling and identification aspects of

networks, with applications on social and biological networks. The relevant contents are

found in Chapter 3 and 4. In a nutshell, our main idea is to present mathematical models

on network dynamics and to show that the corresponding network identification problem

can be studied as a similar problem as RADAR, i.e., we observe the steady states of the

system, treated as ‘reverberation’, resulted from injecting a ‘signal’ into the network. As we

shall show, this allows us to characterize the causal relationship between the reverberation

4

and the signal injected as a linear system of equations in terms of the network structure,

even though the network states may follow a non-linear dynamic system. To demonstrate

the said idea, two types of perturbations and dynamics types are studied in Chapter 3 and

Chapter 4.

For the social networks studied in Chapter 3, we consider a general (non-linear) opinion

dynamics in discrete time and perturb the system by changing the opinions of a selected

group of S stubborn agents over a number of issues. For the molecular dynamics studied in

Chapter 4, we consider a nonlinear, continuous time dynamics and introduce perturbations

by performing S experiments such that a different gene is knock out in each experiment. As

we will show in the two mentioned chapters, these perturbations lead to two similar algebraic

conditions for their dependence on the graph structure. Under a few mild assumptions on

the random graph statistics, the sparse recovery based formulation is shown to perfectly

recover the network, including the weights on its edges, as long as we have S = Ω(dmax)

stubborn agents or perturbation experiments, where dmax is the maximum in-degree of the

graph. To our best knowledge, this is the first analytical result on the recoverability of

networks from a small number of stubborn agents or perturbation experiments. As the

parameter S in the context above can also be interpreted as the rank of the observed data,

our result also shows that the network identification problem can be solved with a much laxer

assumption on the data than the prior work. For both social and gene regulatory networks,

we apply our method on synthetic and empirical data to demonstrate its competitiveness.

1.2.2 Algorithms on Network

This dissertation is also concerned with optimization algorithms that runs on network,

where we design dynamics equations on the networks to solve optimization problems. In

this regard, we propose three new consensus-based algorithms. Chapter 5 presents a new

decentralized optimization algorithm that is called the decentralized Frank-Wolfe (DeFW)

algorithm for general optimization problems. The DeFW algorithm is built on the classical

gossip-based average consensus protocol using a carefully designed message exchange mecha-

5

nism and the recently popular Frank-Wolfe algorithm [Frank and Wolfe(1956),Jaggi(2013)].

With a focus on constrained optimization, a main feature of the DeFW algorithm lies on

its projection-free nature, where we replace the costly Euclidean projection step in conven-

tional optimization algorithm by a linear minimization oracle. Depending on the problem

structure, such modification can lead to orders of savings in complexity per iteration. We

further analyze the convergence rate of the DeFW algorithm. For convex and smooth ob-

jectives, let t be the iteration number, we show that the gap to optimal objective value

for the iterates generated by DeFW decays as O(1/t); it can be accelerated to O(1/t2) if

the objective function is strongly convex and the optimal solution is in the interior of the

constraint set. For non-convex but smooth objectives, the iterates generated by the DeFW

algorithm are shown to converge to a stationary point asymptotically, and the convergence

rate is as fast as O(
√

1/t), depending on the step size rule chosen. We demonstrate appli-

cations of the DeFW algorithm on machine learning problems such as distributed matrix

completion and communication efficient sparse learning. Our numerical results on real data

suggests that the DeFW algorithm achieves a complexity saving of 20-30 times over the

projection based distributed algorithms. We also show that when applied to low-rank re-

gression problems, the DeFW algorithm can be tailor made with even lower computation

complexity requirement on individual agents.

Chapter 6 presents two new consensus-based alternating optimization (AO) algorithms.

These algorithms are suitable when the optimization problem exhibits additional structures

that are exploitable for faster solution methods. Specifically, the first algorithm, called

C-AOLS, is designed for least square problems with local nuisance parameters and rely on

computing the closed form solution in a decentralized manner. The second algorithm is

called the EXTRA-AO algorithm. The algorithm is developed from a recent gradient based

distributed optimization algorithm called EXTRA [Shi et al.(2015)] and it is shown that the

EXTRA-AO is applicable to generic smooth non-convex optimization problems. For the C-

AOLS algorithm, we prove that it converges asymptotically to a stationary point even when

the original problem is non-convex, once the algorithm is initialized at a point close enough

6

to the stationary point. For the EXTRA-AO algorithm, we provide necessary conditions

on the step sizes for the algorithm to converge to a stationary point. We demonstrate

applications of these algorithms on signal processing problems such as signal estimation

with asynchronous measurements and decentralized dictionary learning. Our results show

that the proposed algorithms outperform the state-of-the-art while requiring similar levels

of complexity.

1.3 List of Publications

Our results on network identification can be found in:

B1. H.-T. Wai, A. Scaglione and A. Leshem, “Active Sensing of Social Networks: Net-

work Identification from Low Rank Data”, chapter in Cooperative and Graph Signal

Processing, edited by Petar Djuric and Cedric Richard, Elsevier, 2017, submitted.

J1. S.-X. Wu, H.-T. Wai and A. Scaglione, “Estimating Social Opinion Dynamics Models

from Voting Records”, submitted to IEEE Transactions on Signal Processing, Aug.,

2017.

J2. H.-T. Wai, A. Scaglione and A. Leshem, “Active Sensing of Social Networks”, IEEE

Transactions on Signal and Information Processing over Networks, Sept., 2016.

C1. H.-T. Wai, S. Segarra, A. E. Ozdaglar and A. Scaglione, “Community Detection from

Low-Rank Excitations of Graph Filters”, submitted to ICASSP 2018, Oct., 2017.

C2. S.-X. Wu, H.-T. Wai and A. Scaglione, “Data Mining the Underlying Trust in the US

Congress”, in Proc. GlobalSIP 2016, Dec., 2016.

C3. H.-T. Wai, A. Scaglione and A. Leshem, “Active Online Learning of Trusts in Social

Networks”, in Proc. ICASSP 2016, March, 2016.

C4. H.-T. Wai, A. Scaglione and A. Leshem, “Identifying trust in social networks with

stubborn agents, with application to market decisions”, Invited paper, Allerton Con-

ference, Oct. 2015.

7

C5. H.-T. Wai, A. Scaglione and A. Leshem, “The Social System Identification Problem”,

in Proc. IEEE CDC 2015, Dec., 2015.

X1. H.-T. Wai, A. Scaglione, U. Harush, B. Barzel and A. Leshem, “RIDS: Robust Identifi-

cation of Sparse Gene Regulatory Networks from Perturbation Experiments”, Tech. re-

port, ArXiv/1612.06565, Dec., 2016.

Our results on multi-agents and large-scale optimization algorithms can be found in:

B2. H.-T. Wai, A. Scaglione and E. Moulines, contributed book chapter, “Methods for de-

centralized signal processing with Big Data”, chapter in Cooperative and Graph Signal

Processing, edited by Petar Djuric and Cedric Richard, Elsevier, 2017, submitted.

J3. H.-T. Wai, J. Lafond, A. Scaglione and E. Moulines, “Decentralized Projection-free

Optimization for Convex and Non-convex Constrained Problems”, IEEE Transactions

on Automatic Control, Nov., 2017.

J4. H.-T. Wai and A. Scaglione, “Consensus on State and Time: Decentralized Regression

with Asynchronous Sampling”, IEEE Transactions on Signal Processing, June, 2015.

C6. H.-T. Wai, W. Shi, A. Nedić and A. Scaglione, “Curvature-aided Incremental Aggre-

gated Gradient Method”, Allerton 2017, Oct., 2017.

C7. H.-T. Wai, A. Scaglione, J. Lafond and E. Moulines, “Fast and Privacy-preserving

Distributed Low Rank Regression”, in Proc. ICASSP 2017, Mar., 2017.

C8. J. Lafond?, H.-T. Wai? and E. Moulines, “Non-convex Optimization with Frank-Wolfe

Algorithm and Its Variants”, in NIPS 2016 Workshop on Nonconvex Optimization for

Machine Learning: Theory and Practice, Dec., 2016. (? equal contribution)

C9. H.-T. Wai, A. Scaglione, J. Lafond and E. Moulines, “A Projection-free Decentralized

Algorithm for Non-convex Optimization”, in Proc. GlobalSIP 2016, Dec., 2016.

C10. J. Lafond?, H.-T. Wai? and E. Moulines, “D-FW: Communication Efficient Dis-

8

tributed Algorithms for High-dimensional Sparse Optimization”, in Proc. ICASSP

2016, March, 2016. (? equal contribution)

C11. H.-T. Wai, T.-H. Chang and A. Scaglione, “A Consensus-based Decentralized Al-

gorithm for Non-convex Optimization with Application to Dictionary Learning”, in

Proc. ICASSP 2015, Apr., 2015.

C12. H.-T. Wai and A. Scaglione, “Decentralized Regression Under Asynchronous sub-

Nyquist Sampling”, Invited paper, Asilomar Conf. 2014, Nov., 2014.

X2. J. Lafond, H.-T. Wai and E. Moulines, “On the Online Frank-Wolfe Algorithms for

Convex and Non-convex Optimizations”, Tech. report, ArXiv/1510.01171v2, Aug.,

2016.

1.4 Prior Works

This section provides a high level overview of the prior works related to this dissertation.

We shall, however, describe in detail the mathematical formulations of these prior work in

the respective chapters.

1.4.1 On Network Identification

Understanding networks and inferring them using interaction data has been a long

sought problem pursued by researchers of different disciplines, from physicists to bio-

informatists, and from social scientists to machine learning scientists, etc. Prior methods for

network inference can roughly be characterized into statistical learning and dynamics-based

learning, whose prior arts are explored as follows.

In statistical learning methods for network topology inference, we model the interaction

data as realizations of a random process parameterized by a statistical model describing

the influence network. Among which the most popular approach is the celebrated graphical

model [Wainwright et al.(2008)]. Here, the key idea is to rely on the conditional indepen-

dence assumption pertaining to the causal relationship between the nodes — if a pair of

9

nodes are not connected, then the random variables (r.v.s) defined on them are statistically

independent when conditioned on a set of r.v.s defined on the graph cut between them.

Importantly, this implies that the network topology can be captured by the support of the

inverse of the covariance matrix. The observation above has leaded to the development

of the famous Graphical LASSO formulation [Friedman et al.(2008)], which is essentially a

penalized maximum likelihood method for the graphical model when the observations are

Gaussian. As a matter of fact, the Graphical LASSO formulation results in a non-trivial

convex optimization problem and its fast solution methods have been studied in [Fried-

man et al.(2008), Hsieh et al.(2014), d’Aspremont et al.(2008), Scheinberg et al.(2010), Yun

et al.(2011)]; the theoretical guarantees of the formulation has also been studied in [Baner-

jee et al.(2008)]. Various models have been studied — [Segarra et al.(2016)] proposed to

model the network data as graph signals observed as output of an unknown graph fil-

ter with white, full-rank excitation signals; [Tang et al.(2012b)] proposed a transfer factor

graph model to infer links on heterogenous social networks, [Tang et al.(2012a)] proposed a

trusts evolution model for product review data, [Bresler(2015)] considers Ising’s model and

proposed a greedy algorithm that is guaranteed to find the n-nodes graph using Ω(log(n))

samples, [Etesami et al.(2016), He et al.(2015)] studies the Hawkes model and model the

actions of social agents as an arrival process, [Pouget-Abadie and Horel(2015)] considered

the network inference problem from observing a cascading process. Another related ap-

proach utilizes the correlation scores between the nodes’ values and the intuition that a

pair of nodes are connected when they are correlated. They have largely been applied by

practitioners on gene regulatory network (GRN) inference. These include methods such as

random forest [Huynh-Thu et al.(2010)], ranking correlations [Küffner et al.(2012)], mutual

information [Faith et al.(2007)], etc. In fact, the random forest based method (GENIE3)

in [Huynh-Thu et al.(2010)] was the top performer in the DREAM5 network inference

challenge [Marbach et al.(2012)]; also see the derivatives of GENIE3 reported in recent

years [Petralia et al.(2015),Wu et al.(2016)]. Despite their success on GRN inference, there

lacks a theoretical understanding on the limits of using such methods. It is worth mention-

10

ing that clustering algorithms such as Latent Dirichlet Allocation (LDA) or Probabilistic

Latent Semantic Analysis (PLSA) have been adopted to infer networks such as citation

graphs and social networks, see [Xiang et al.(2010),Dietz et al.(2007)].

Lastly, dynamics-based learning assumes that certain interaction data can be inter-

preted as the states of a dynamical system, where the latter is specified by a set of differ-

ence/differential equations. This fits into the hypothesis that the states of the agents/nodes

in the networked system evolve with a fixed and known rule [Ronen et al.(2002)] and allows

us to assign physical meaning to the network inference results. Like the statistical learning

method described above, the general approach is to apply a linear regression to find the

best fit network to the dynamical system. In the case of a sparse network, a sparsity en-

hancing regularizer, i.e., the popular `1 norm, may also be adopted. These methods have

been particularly successful in inferring networked systems with known physical properties,

e.g., oscillator networks [Timme(2007)], epidemic networks [Shen et al.(2014)], social net-

works [Wang et al.(2011b),Han et al.(2015),Das et al.(2014)], gene regulatory networks [Yip

et al.(2010),Bonneau et al.(2006)] and other networks [Ching et al.(2015),Shen et al.(2017)].

When the physical properties are not perfectly known, such method has shown success to

certain degree when applied to GRN inference. Most of the above works focus on the net-

work inference problem using time series data for improved identifiability condition, with

the exception of [Sontag(2008),Timme(2007)]. Moreover, there lacks a rigorous mathemat-

ical analysis on the performance of the proposed method.

The gap filled in this thesis is to provide the theoretical underpinning of network in-

ference problems in the case of limited data. For instance, the graphical model [Banerjee

et al.(2008)] require the observed data to have rank that grows with the size of the net-

work; and the dynamics-based learning approach [Timme(2007),Shen et al.(2017)] requires

observing a large amount of the transient data. These assumptions can, however, be unre-

alistic since the actual network data are often of low-rank, as demonstrated in [DiMaggio

et al.(1996),Brunet et al.(2004),Udell and Townsend(2017)]. Moreover, in social networks,

the evolution of the opinions is latent, while the actions that result from the opinion ma-

11

tured by the agents are visible. As such, the network identification method proposed in this

dissertation follows the dynamics-based learning approach with the following distinctions

from the prior work: (i) our method requires only the steady state data, which are more

robust with respect to an imperfect observation model; (ii) the observed network data can

be of low rank, of which the rank is independent of the network size. Importantly, we proved

that the network can still be perfectly recovered under such circumstances.

1.4.2 On Multi-agent Optimization

The study of multi-agent optimization has become popular starting from the 1980s,

when it was motivated by performing distributed estimation on sensor network. Nowadays,

with the wide spread adaptations of Internet-of-Things, the application of multi-agents

optimization has evolved to handling the sophisticated problems emerging from machine

learning applications using the now-powerful mobile devices (e.g., smart phones). In partic-

ular, the focus of recent researches has shifted from simply re-distributing computation load

to more efficient handling of large dataset that is scattered within a network of computers.

Various authors have proposed decentralized optimization algorithms that are built on

the average consensus (AC) protocol [Tsitsiklis(1984), Dimakis et al.(2010)]. Prior works

include [Ram et al.(2012), Shi et al.(2015)] which studied the decentralized counterparts

of projected gradient (PG) methods. These methods are simple to implement and are

shown to converge for a large class of problems and network condition, e.g., on a time

varying network. Moreover, [Yang et al.(2014), Lorenzo and Scutari(2016)] considered the

successive convex approximation methods and a Jacobi-like scheme for decentralized op-

timization. The convergence properties and the performance of these algorithms were in-

vestigated extensively, especially when the objective is convex, see [Sayed et al.(2013), Li

and Scaglione(2013), Ram et al.(2012), Wei and Ozdaglar(2013), Shi et al.(2015), Chang

et al.(2014), Jakovetic et al.(2014), Duchi et al.(2012)]; for non-convex objectives, some

recent results have been reported in [Hong(2016), Lorenzo and Scutari(2016), Bianchi and

Jakubowicz(2013)]. A common trait found in the existing methods on the subject is that

12

each iteration of these algorithms require at least one Euclidean projection operation. When

the size of the problem is moderate, this projection step may be computed efficiently. When

the problem involves a high dimensional parameter, the projection step may become com-

putationally prohibitive, rendering most existing methods impractical.

The shortcomings with existing methods have called for a new paradigm known as the

projection-free (a.k.a. Frank Wolfe, FW, conditional gradient) optimization. Compared

to PG, the FW algorithm can often reduce the complexity by orders of magnitude for

high dimensional problems. Owing to this, the FW algorithm has become increasingly

popular in the machine learning community. However, the state-of-the-art works have only

considered centralized and convex optimization problems, e.g., [Jaggi(2013),Lacoste-Julien

and Jaggi(2015)]. The exceptions are [Bellet et al.(2015)] which considered a distributed

FW algorithm for convex problems with a specific structure; or [Reddi et al.(2016),Lacoste-

Julien(2016),Yu et al.(2014)] which analyzed the centralized FW algorithm for non-convex

problems. In contrast, this dissertation studies a decentralized FW algorithm for the general

joint optimization problem for convex and non-convex optimization.

Besides mimicking classical optimization tools such as gradient and Newton methods,

applying decomposition techniques such as alternating optimization (AO) on networks is

also attractive as they are often effective in handling complicated problem structures. To

this end, decentralized primal-dual/ADMM algorithms are recently considered in [Chang

et al.(2014),Aybat and Hamedani(2016),Hong(2016)], as well as the heuristics in [Chainais

and Richard(2013)]. Compared to PG-based methods, these methods are able to efficiently

handle more complicated constraints. However, except for [Hong(2016)], the convergence

guarantees of these method are limited to the case of convex optimization, while many

interesting applications for AO algorithms involve non-convex optimization. Examples are

problems with dictionary learning or matrix factorization. To close this gap, this disserta-

tion proposes new AO based algorithms for decentralized optimization and provides strong

evidence of its convergence in non-convex problems.

13

2 Mathematical Preliminaries and Notations

This chapter presents standard notations and definitions for the mathematical objects

used throughout this dissertation. We group these into three topics — networks and graphs,

linear algebra and mathematical analysis. For easy reference, we state a few standard results

that will be used later on, and provide proofs to them when appropriate.

2.1 Networks and Graph Theory

The network of interest is represented by a simple directed graph G = (V,E), where V

denotes the set of nodes and E ⊂ V ×V denotes the set of edges. We orient the edges such

that (i, j) ∈ E denotes there is an edge pointing from node i to node j. Unless otherwise

specified, we assume that (i, i) /∈ E. The graph is strongly connected if for any pair i, j ∈ V ,

there exists a path pij that connects i to j. The path pij from i to j is defined as an ordered

set of edges from E such that pij = {(i, v1), (v2, v3), . . . , (vp, j)}, where (i, v1), (vp, j) ∈ E

and (vk, vk+1) ∈ E for all k = 1, ..., p − 1. A path that begins and ends at the same node

is called a cycle. When the graph G is undirected, G is said to have a perfect matching if

there exists M ⊆ E such that no two edges in M have a common node and all nodes in V

are incident to an edge in M .

The node set of a bipartite graph Gbi = (Vbi, Ebi) can be decomposed such that Vbi =

A ∪ B and A ∩ B = ∅. The bipartite graph does not contain any edge within node set A

or B, or equivalently, it does not contain any cycle of odd length. We can determine if a

bipartite graph with |A| = |B| has a perfect matching by the following Hall’s theorem:

Theorem 2.1 (Hall’s Theorem [West(2000)]) Let W ⊆ A, we denote N (W) ⊆ B as

the neighborhood set of W , i.e., N (W) := ∪w∈W {j : (w, j) ∈ Ebi}. The bipartite graph Gbi

has a perfect matching if and only if

|W | ≤ |N (W)|, ∀ W ⊆ A . (2.1)

14

The concept of perfect matching is related to the expander theory that will be used in

Chapter 3.

Lastly, the graph G is associated with a square weighted adjacency matrix A ∈ R|V |×|V |

which measures the interaction strengths among nodes. We have Aji 6= 0 if (i, j) ∈ E such

that the support of A encodes the network topology completely. Similarly, the bipartite

graph Gbi is associated with a non-square weighted adjacency matrix B ∈ R|B|×|A| defined

in a similar way as A. Further conditions on V,E,A,B will be described in the context

when we consider the specific applications.

2.2 Linear Algebra

For any natural number n ∈ N, we denote [n] as the set {1, 2, ..., n}. Vectors (resp. ma-

trices) are denoted by boldfaced letters (resp. capital letters). We denote xi as the ith

element of the vector x, [E]S,: (resp. [E]:,S) denotes the submatrix of E ∈ Rm×n with only

the rows (resp. columns) selected from S ⊆ [m] (resp. S ⊆ [n]). Vector ek ∈ Rn is a unit

vector with zeros everywhere except for the kth coordinate and 1 is an all-ones vector with

suitable dimension. The superscript (·)> denotes matrix/vector transpose. ‖ · ‖2 denotes

the Euclidean norm, ‖ · ‖1 is the `1-norm and 〈x,y〉 := x>y is the inner product. The

binary operator � denotes element wise product such that [x� y]i = xiyi for all i.

Consider the generic matricesX,Y ∈ Rm1×m2 , their inner product is defined as 〈X,Y 〉 =

Tr(X>Y) and ‖X‖F =
√
〈X,X〉 denotes its Frobenius norm. Moreover,X admits a singu-

lar value decomposition such thatX = UΣV >. Here U and V are orthogonal matrices and

Σ is a m̃× m̃, non-negative diagonal matrix with m̃ = min{m1,m2} and diagonal elements

σ1 ≥ σ2 ≥ · · · ≥ σm̃ ≥ 0. The Schatten-p norm of X is defined as ‖X‖σ,p =
(∑m̃

i=1 σ
p
i

)1/p
;

and the spectral norm ‖X‖2 is the maximum singular value of X, i.e., σ1(X). The vector-

ization of a matrix X ∈ Rm1×m2 is denoted by vec(X) = [x1;x2; . . . ;xm2] ∈ Rm1m2 such

that xi is the ith column of X. We use Diag : Rn → Rn×n (resp. diag : Rn×n → Rn) to

denote the diagonal operator that maps from a vector (resp. square matrix) to a diagonal

square matrix (resp. vector) and ≥ to represent the element-wise inequality. The range

15

space R(X) and the null space null(X) of the matrix X are defined as:

R(X) := {y ∈ Rm1 : y = Xz for some z ∈ Rm2}, null(X) := {z ∈ Rm2 : Xz = 0} .

When X is a square matrix, i.e., when m = m1 = m2, then the matrix also admits an

eigenvalue decomposition such that X = QΛQ−1 where Q = [q1, . . . , qm] consists of the

m eigenvectors and Λ is a diagonal matrix with elements λ1, . . . , λm such that Xqi = λiqi.

The spectral radius of X is defined as ρ(X) := max{|λ1|, . . . , |λm|}. If X is non-negative,

then ρ(X) ≤ max1≤i≤n
∑n

j=1Xij [Horn and Johnson(1986), Theorem 8.1.22].

In this dissertation, we are particularly interested in the weighted adjacency matrix A

defined with respect to a graph G and its spectrum when it is non-negative. The following

result is a consequence of the Perron-Frobenius Theorem:

Theorem 2.2 (Theorem 6.2.24, 8.4.4 of [Horn and Johnson(1986)]) If G is a strongly

connected graph and its weighted adjacency matrix A is non-negative, then:

1. the spectral radius ρ(A) > 0 and it is an eigenvalue of A.

2. there is a positive vector x such that Ax = ρ(A)x.

3. ρ(A) is an algebraically simple eigenvalue of A, i.e., the positive vector x above is the

unique vector satisfying Ax = ρ(A)x.

In addition, if A is a stochastic matrix, such that A1 = 1, and it satisfies the conditions in

Theorem 2.2, then ρ(A) = 1 and the largest eigenvalue of A is 1, with the vector 1 being

the corresponding eigenvector.

Now, if the conditions in Theorem 2.2 are satisfied, and the weighted adjacency matrix

A is symmetric and doubly stochastic, then the following fact holds:

Fact 2.1 Let x1, ...,xN ∈ Rd be a set of N vectors and xavg := N−1
∑N

i=1 xi be their

average. Suppose A is a doubly stochastic, non-negative matrix and the conditions in The-

16

orem 2.2 are satisfied. Then the output after performing one round of average consensus

(AC) update:

xi =

N∑

j=1

Aij · xj (2.2)

must satisfy √√√√
N∑

i=1

‖xi − xavg‖2 ≤ σ2(A) ·

√√√√
N∑

i=1

‖xi − xavg‖2 , (2.3)

where σ2(A) < 1.

Notice that A corresponds to the mixing matrix required in the average consensus (AC)

protocol [Tsitsiklis(1984)]. Repeatedly applying (2.3) shows the well known fact that the

AC protocol computes the network average at a geometric rate.

2.3 Mathematical Analysis

We describe some basic concepts of mathematical analysis below. Let G,L, µ be some

non-negative constants and ‖ · ‖ be a norm defined on Rd. Consider a function f : Rd → R,

• the function f is G-Lipschitz if for all θ,θ′ ∈ Rd

|f(θ)− f(θ′)| ≤ G‖θ − θ′‖? , (2.4)

where ‖ · ‖? is the dual norm of ‖ · ‖;

• the function f is L-smooth if for all θ,θ′ ∈ Rd

f(θ)− f(θ′) ≤ 〈∇f(θ′),θ − θ′〉+
L

2
‖θ − θ′‖22 , (2.5)

where ∇f(θ) is the gradient of f evaluated at θ, note that the above is equivalent to

‖∇f(θ′)−∇f(θ)‖2 ≤ L‖θ′ − θ‖2;

17

• the function f is µ-strongly convex if for all θ,θ′ ∈ Rd,

f(θ)− f(θ′) ≤ 〈∇f(θ),θ − θ′〉 − µ

2
‖θ − θ′‖22 , (2.6)

notice that if µ = 0, the above definition reduces to that of stating that f is convex.

We also state the following descent Lemma pertaining to the proximal operator:

Lemma 2.1 Suppose that f is L′-Lipschitz and the step size β satisfies β ≤ 1/L′, then for

any potentially non-smooth g and x ∈ dom(f + g), it holds that

f(y) + g(y) ≤ f(x) + g(x)− 1

2β
‖y − x‖22 , (2.7)

where

y = proxβg(·)
(
x− β∇f(x)

)
:= arg min

z

(
g(z) +

1

2β
‖z − (x− β∇f(x))‖22

)
. (2.8)

Proof : Consider [Beck and Teboulle(2009), Lemma 2.3]. We assign L = 1/β, x = x,

F (x) = f(x)+g(x) and observe that our variable y can be calculated by pL(x) in the cited

lemma. Since f is L′-Lipschitz, we observe that:

F (pL(x)) ≤ g(pL(x)) + f(x) + 〈∇f(x), pL(x)− x〉+ L′

2
‖pL(x)− x‖22 ≤ Q(pL(x),x) , (2.9)

where Q(·) is also defined in the cited lemma. Therefore, the required condition is satisfied

and applying the conclusion in the cited lemma yields (2.7). Q.E.D.

Lastly, for some positive constants C1, C2, C3, C2 ≤ C3 and non-negative functions

f(t), g(t), the notations f(t) = O(g(t)), f(t) = Θ(g(t)) indicate f(t) ≤ C1g(t), C2g(t) ≤

f(t) ≤ C3g(t) for sufficiently large t, respectively.

18

— PART I —

Modeling and Identification of Networks

19

3 Network RADAR for Opinion Dynamics

This chapter is the first part of our expositions on the modeling and identification of net-

work dynamics. Specifically, we focus on modeling the opinion dynamics on social networks

and discuss the methodology for identifying the network underneath it.

3.1 Context and Background

Modeling opinion dynamics on social networks is a century old problem, with the original

research dating back to the beginning 20th century, focusing on explaining the phenomena

of crowd wisdom [Galton(1907)]. However, the network structure wasn’t considered in

opinion dynamics model until the 1970s when the DeGroot model [DeGroot(1974)] was

introduced. The DeGroot model postulates that agents are influenced by their immediate

neighbors and updates their opinions by calculating a convex and weighted combination of

the difference between the neighbors’ opinions and own’s opinion. The intuition behind the

model is that the agent belief is a random mixture model of its neighbors belief he/she had

before interacting. From this, several opinion dynamics models with nonlinear interactions

are considered, e.g., the Hegselmann-Krause model [Hegselmann and Krause(2002)], the

voter model [Holley and Liggett(1975)], etc. Another interesting direction is to consider

the existence of stubborn agents in the network, i.e., sociopaths who only trust their own

opinion [Mobilia(2003),Mobilia et al.(2007),Acemoglu et al.(2013),Yildiz et al.(2013)]; the

influences of these stubborn agents are also studied under the context of DeGroot model

in [Acemoglu et al.(2010),Yildiz and Scaglione(2010),Acemoglu et al.(2013)]. Such models

give a plausible explanation for the non-consensual behaviors exhibited in the actual social

networks. In this context, this chapter provides a unified view on the opinion dynamics

models and the steady state opinions resulted from it. Our model encompasses the DeGroot

model and a few nonlinear opinion dynamics model derived from it. In particular, we

analyzed the steady-state opinions resulted from these models when the social networks

20

contains a set of stubborn agents.

The identification problem of social network has attracted much attention as motivated

by recent studies on how the decision making process of an individual is affected by the

network structure [Kempe et al.(2003), Candogan et al.(2012)], as well as the availability

of network data due to the digitalized online social network platforms (e.g., Facebook and

Twitter). Recent advances in this direction can be found in [Moussäıd et al.(2013), Das

et al.(2014),De et al.(2014)], where the previous work assumed that the evolutions of opin-

ions are observed at different time instances, giving a rich set of observations on the network.

To relax the assumptions on transient observations, the celebrated graphical model also lead

to a sound heuristics following the conditional independence assumptions. However, most

of the above work rely on identifying the network from a set of full rank data which can

only be achieved when the network is excited at all nodes independently and a sufficient

amount of data is accrued. To this end, this chapter deals with a laxer assumption em-

ploying low-rank network data that is induced by a small number of stubborn agents in the

social network. Importantly, we provide a provable guarantee on the recoverability of the

network in terms of the observation rank in the steady state data.

In the following, Section 3.2 sets up the system model as well as a mathematical descrip-

tion of the perturbation experiments. Then, Section 3.3 outlines the network identification

method employed; Section 3.4 summarizes the proven recoverability conditions. Section 3.5

describes a related community detection method based on the low rank opinion data ob-

served. Lastly, we present results from our numerical experiments in Section 3.6.

3.2 Opinion Dynamics Model

Following the notations defined in Section 2.1 about networks, the social network of

interest G has n agents such that V = [n] and the weights of A represents the strength of

trust between agents. We allow self-edge in this chapter such that (i, i) ∈ E for all i. The

matrix is non-negative and it is normalized such that it is stochastic, i.e., A1 = 1. From

now on, we shall refer to this matrix as the trust matrix. We consider K different discussions

21

among the n agents. Each discussion is indexed by k ∈ [K]. The opinion of the ith agent at

discrete time t is denoted by a scalar xi(t; k), for example, the ith agent’s opinion xi(t; k)

may represent a probability distribution function of his/her stance on the discussion1, at

time t ∈ N during the kth discussion. As the individuals’ opinions are constantly influenced

by opinions of the others, we model the opinion dynamics with an iterative process:

xi(t+ 1; k) = xi(t; k) +
n∑

j=1

Aijhi
(
xj(t; k)− xi(t; k)

)
, (3.1)

where hi(·) is a response function taking the following form:

hi(x− y) = µi(|x− y|) · (x− y) , (3.2)

and µi : R+ → R+ measures the opinion distance and it satisfies the following:

(a). µi(0) = 1, (b). µi(x) ≥ 0, (c). µi(x) is non-increasing in x .

The model in (3.1) says that the opinion update for the ith agent is equal to a weighted

sum of the difference between the ith agent’s opinion and his/her friends, scaled by a non-

linear function µ. The non-increasing property of the function µ represents the fact that

the influence from one agent to another shall not increase if the two agents’ opinion are

further apart. A number of classical opinion dynamics model can be described by (3.1). For

example, the celebrated DeGroot model can be recovered from (3.1) by setting µ(x) = 1

for all x see [DeGroot(1974)] and [Friedkin and Johnsen(2011), Chapter 1] for a detailed

description of the application of the aforementioned model in social networks; the bounded

confidence model [Hegselmann and Krause(2002)] can also be recovered by setting µ(x) = 1

for x < τ and µ(x) = 0 for x ≥ τ , where τ is some threshold value. To simplify the analysis,

1While our discussion is focused on the case when xi(t; k) is a scalar, it should be noted that the techniques
developed can be easily extended to the vector case.

22

we can rewrite Eq. (3.1) as

x(t+ 1; k) =
(

Diag(1−
(
A� µ(x(t; k))

)
1) +

(
A� µ(x(t; k))

))
x(t; k) , (3.3)

where we stacked the vectors as x(t; k) = (x1(t; k), . . . , xn(t; k))>, denoted [A]ij = Aij and

µ(x(t; k)) is a symmetric, non-negative matrix given as:

[
µ(x(t; k))

]
ij

:=





µi
(
|xi(t; k)− xj(t; k)|

)
, if i 6= j and (j, i) ∈ E ,

0, if i = j or (j, i) /∈ E .

(3.4)

It can be proven that:

Observation 3.1 Suppose that the graph G is strongly connected and µi(x) > 0 for all i, x,

then with some c(k) that depends on µi and x(0; k), the steady state opinions satisfies

lim
t→∞

x(t; k) = c(k)1 . (3.5)

Note that the above is a well known fact in the distributed control literature [Blondel

et al.(2005)] for the case of linear DeGroot dynamics, for the nonlinear case, similar result

has also been shown in [Li et al.(2011b)]. For completeness, a simple proof is provided in

Appendix 3.A.

We note that the results described in Observation 3.1 may be unrealistic as consensus is

seldom reached in actual social network. Furthermore, for the purpose of retrieving A from

the observed opinions, the observation above clearly indicates that the steady-state opinions

cannot help reveal any information about the network structure. In fact, most prior works

on the topic have required complete/partial knowledge of T such that the opinion dynamics

are trackable. In addition, [De et al.(2014)] infersA by solving a simple least square problem

using a linear dynamics model; [Timme(2007),Wang et al.(2011b)] deal with a time-varying,

non-linear dynamics model and apply sparse recovery to infer A. The drawback of these

23

methods is that they require knowing the discrete time stamps for the observations made.

This knowledge may be difficult to obtain in general since the actual system states are

updated with an unknown interaction rate and the interaction timing between agents is not

observable in most practical scenarios.

To model the non-consensual behavior in social networks, we consider the effects of

stubborn agents, i.e., individuals whose opinions cannot be influenced by the others, to the

steady state of the opinion dynamics described. As we shall see next, the resulting steady

states depend on the initial opinions of the stubborn agents. In this way, the stubborn

agents can be seen as introducing perturbations into the social network. The steady states

characterized will then be used for the network identification.

Before we move on, we remark that it is possible to consider a setting with a time varying

trust matrix of random connectivity. In fact, our analysis can be extended as one replaces

A in the previous equation with a random matrix A(t; k), which satisfies the following:

H3.1 The matrix A(t; k) is an independently and identically distributed (i.i.d.) random

matrix drawn from a distribution satisfying E[A(t; k)] = A for all t ∈ N, k ∈ [K], where the

expectation is taken w.r.t. the distribution of A(t; k).

However, for simplicity, we focus on the static case from now on. A random opinion dy-

namics setting will be revisited later.

3.2.1 Effects of Stubborn Agents

We consider extending the social network G by appending S stubborn agents into the

social network. Formally, stubborn agents (a.k.a. zealots) are members of a social network

whose opinions can not be swayed by others. If agent i is stubborn, then xi(t; k) = xi(0; k)

for all t. Adapting to the DeGroot opinion dynamics, these agents can be characterized by

the structure of their respective rows in the trust matrix:

Definition 3.1 An agent i is stubborn if and only if its corresponding row in the trust

24

Stubborn agents VsRegular agents Vr

Stub.-regular net. BRegular-regular net. D

Figure 3.1: Illustration of the social network with stubborn agents and the sub-networks

therein.

matrix A is the canonical basis vector; i.e., for all j,

Aij =





1, if j = i,

0, otherwise .

(3.6)

The extended social network G′ consists of n+ S agents, denoted by V ′ = [n+ S] and the

edge set is denoted by E′ ⊆ V ′ × V ′. Without loss of generality, we let Vs := [S] be the set

of stubborn agents and Vr := V ′ \ Vs = {1 + S, ..., n+ S} be the set of regular agents. The

trust matrix A can thus be partitioned as follows:

A =



I 0

B D


 , (3.7)

where B ∈ Rn×S and D ∈ Rn×n are the sub matrices of A ∈ R(n+S)×(n+S). The matrix

B captures the sub-network between stubborn and regular agents, and D captures the

sub-network among the regular agents themselves. See Figure 3.1 for an illustration of the

sub-networks involved. We further impose the following assumptions:

H3.2 Each agent in Vr has non-zero trust in at least one agent in Vs.

25

H3.3 The induced subgraph G′[Vr] = (Vr, E
′(Vr)) is strongly connected.

It can be shown that the two assumptions above imply that the principal submatrix D

satisfies ‖D‖2 < 1. We are interested in the steady state opinion resulting from (3.1) at

t → ∞, which can be characterized using the observation below. Define the shorthand

notation xk := x(∞; k) and the partition that xk = (zk;yk) such that zk (resp. yk)

corresponds to the steady-state opinions of the stubborn agents (resp. regular agents), we

have:

Lemma 3.1 Letting t→∞ in (3.1), we have:

(
Diag(fk)−D � µ(yk)

)
yk =

(
B � µ̃(yk, zk)

)
zk and zk = z(0; k) , (3.8)

where

fk :=
(
D � µ(yk)

)
1 +

(
B � µ̃(yk, zk)

)
1 , (3.9)

and µ(yk) is defined in (3.4). The matrix µ̃(yk, zk) is defined as

[
µ̃(yk, zk)

]
ij

= µ(|yki − zkj |) . (3.10)

The proof can be found in Appendix 3.B. Notice that the above characterization leads

to a nonlinear system of equations in x(∞; k) which could be solved using a fixed point

iteration. However, it does not lead to a closed form solution in general. Nevertheless,

the stubborn agents introduce perturbations to the steady states of the opinion dynamics

systems and reveal structures of the social network in the steady states. Next, we discuss

two interesting observations on Lemma 3.1 for the special case with linear DeGroot opinion

dynamics, i.e., when µ(x) = 1 for all x.

Low Rank Steady-State Data. When restricted to the special case when µ(x) = 1 for all

x, i.e., the linear DeGroot dynamics, Lemma 3.1 instead provides a closed form expression

for the steady state opinions. Specifically, the steady state opinions of regular agents at

26

t→∞ can be written as:

yk = (I −D)−1Bzk . (3.11)

We observe:

• The steady state opinions depend on the stubborn agents and the structure of the

network. Unlike the case without stubborn agents, the information about the network

structure D,B is retained in (3.11).

• The range space of A∞, where A∞ = limt→∞At, has a dimension of at most S only.

Since the number of stubborn agents S is usually much less than the number of regular

agents, this implies that the steady-state opinion also lies in a low dimensional space.

Importantly, we see that the existence of stubborn agents in the DeGroot opinion

dynamics naturally gives rise to a low rank structure in the steady-state opinion data.

Diagonal Ambiguity. Under the linear DeGroot opinion dynamics setting, we notice

that there is an intrinsic diagonal ambiguity for the linear equation in B,D of Lemma 3.1,

as characterized by the following:

Lemma 3.2 Let ` ∈ Rn be such that 0 ≤ ` < 1 and define the matrix pair (B`,D`) such

that:

D` = Diag(`) + Diag

(
1− `

1− diag(D)

)
off(D), B` = Diag

(
1− `

1− diag(D)

)
B , (3.12)

where off(D) = D − Diag(diag(D)) and the fraction inside the bracket is an element-wise

division. Then it holds that (I −D)−1B = (I −D`)
−1B` for all `.

Once again, we relegate the proof to Appendix 3.C. In fact, the ambiguity stated above can

be understood as the loss of information on the rate of convergence in the opinion dynamics,

which is natural as the data yk, zk recorded are steady state opinions.

Lemma 3.2 implies that the equality (3.8) can be satisfied by infinitely many pairs of

(B`,D`), each with a different diagonal entries ` in the square matrix D`. As a remedy,

27

Social Network

5 10 15 20 25 30 35 40 45 50

−5

0

5

10

15

20

25

Stubborn Agents

5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

ProcessProcess

z(0; k)

Z 2 RS⇥K Y 2 Rn⇥K

Y = (I �D)�1BZ

Figure 3.2: Data acquisition for opinion dynamics identification.

we choose to emphasize the degree of ‘openness’ of the agents. We consider the normalized

network (B`,D`) with ` = 0, written as:

D0 := Diag

(
1

1− diag(D)

)
off(D), B0 := Diag

(
1

1− diag(D)

)
B . (3.13)

Notice that both the network topology and relative strengths of interaction between agents

are preserved, regardless of the chosen `. From now on, we shall use (B,D) to denote the

normalized network (B0,D0) to keep the presentation simple to follow.

Nevertheless, Lemma 3.1 motivates us to formulate a regression problem that estimates

D,B from the observed steady-state opinions, as described in the next section.

3.3 Opinion Dynamics Identification

We now study the problem of network identification using stubborn agents. Instead of

tracking the state evolution in the network similar to [De et al.(2014),Timme(2007),Wang

et al.(2011b),Shen et al.(2017)], our method is based on collecting the steady-state opinions

from K ≥ S discussions and fitting them into the equilibrium equations governed by the

dynamics. In particular, our input data can be described as the collection {yk, zk}Kk=1 of

steady state opinions.

Graphical LASSO. Before describing the proposed method, let us take a short detour

by describing a popular method for network identification with steady-state data. The

28

graphical LASSO (gLASSO) is a method introduced in [Friedman et al.(2008)] for inferring

the latent structure of the random variables (r.v.s) generated from a Gaussian Markov

random field (a.k.a. undirected graphical model) [Wainwright et al.(2008)]. The method

relies on the following observation — consider a random vector X ∈ Rn generated from

a graphical model with G = (V,E) as the underlying graph and Xi is an r.v. associated

with node i ∈ V . Assume that the covariance matrix CX of X is full rank. If (i, j) /∈ E

and S ⊆ V is a graph cut between them, then Xi, Xj are independent when conditioned

on (Xs)s∈S . Furthermore, the conditional independence property can be captured by the

support of the inverse of covariance matrix such that [C−1
X]ij = 0. In light of this, [Friedman

et al.(2008)] proposed the following Graph LASSO optimization:

min
A∈Rn×n

− log detA+ Tr(ĈXA) + ρ‖vec(A)‖1 s.t. A = A> , (3.14)

where ρ > 0 is a regularization parameter, ĈX is the empirical covariance matrix of X that

approximates the inverse of CX and therefore the connectivity of the graph G. The gLASSO

problem (3.14) is essentially a penalized maximum likelihood method for the graphical

model. In particular, if we set the regularization parameter as ρ = Θ(1/
√
k) where k is

the number of samples obtained for estimating CX , then the latent graph structure can be

recovered in high probability [Banerjee et al.(2008)].

The Graph LASSO might be applied as a heuristic to estimate the latent network

structure of the social network by operating on the covariance of the regular agents’ opinions.

To obtain insights on its performance, let us assume the linear opinion dynamics setting

and that the initial opinions of the stubborn agents are white, i.e., E[zk(zk)>] = I. The

covariance matrix of the regular agents’ opinions is:

Cy = E[yk(yk)>] = (I −D)−1BB>(I −D)−> . (3.15)

29

Note that Cy is rank deficient, and its pseudo inverse (denoted by (·)†) is given as:

C†y = (I −D)(BB>)†(I −D)> . (3.16)

Effectively, solving the Graph LASSO problem (3.14) by setting Ĉx = (1/K)
∑K

k=1 y
k(yk)>

as the empirical covariance matrix of the regular agents’ opinions finds the sparsest positive

semidefinite matrix that approximates (3.16). As I −D is sparse, it is anticipated that

the gLASSO method may be able to recover the support of D partially. However, there

is no theoretical guarantee to its identifiability condition, even when the covariance Cy is

estimated perfectly.

Proposed Method. Departing from the common graphical model based formulation,

we propose to utilize a model/dynamics-based learning approach for identifying the latent

network structure. To handle the rank deficiency issue, we exploit the sparsity of the network

and demonstrate that the network can be provably identified under such weak assumptions

on the observed data.

To begin with, consider splitting the linear equation in a row-by-row fashion, we observe

that (3.8) implies:

fki y
k
i −

(
d>i �

[
µ(yk)

]
i,:

)
yk =

(
b>i �

[
µ̃(yk, zk)

]
i,:

)
zk, ∀ i ∈ [n] , (3.17)

where bi,di denote the ith row of the matrix B,D, respectively. Importantly, the above is

a linear equation in the network parameters (bi,di). This motivates to identify the network

via solving the below problem:

min
b̂i,d̂i≥0

K∑

k=1

Jk(b̂i, d̂i) + ρ · g(b̂i, d̂i) s.t. b̂>i 1 + d̂>i 1 = 1 , (3.18)

where

Jk(b̂i, d̂i) :=
∣∣∣fki yki −

(
d̂>i �

[
µ(yk)

]
i,:

)
yk −

(
b̂>i �

[
µ̃(yk, zk)

]
i,:

)
zk
∣∣∣
2
, (3.19)

30

ρ > 0 is a regularization parameter and g(·, ·) is the regularization function. Furthermore,

if the dynamics is linear (with µ(x) = 1), we shall include the constraint [d̂i]i = 0 in (3.18)

to avoid the issue with diagonal ambiguity [cf. Lemma 3.2].

In this work, we examine two types of regularizations which focus on enforcing sparsity

of the identified network, they are chosen depending on the type of opinion dynamics and

available prior knowledge on the network:

gstub(b̂i, d̂i) := ‖b̂i‖1, gactive(b̂i, d̂i) := ‖d̂i‖1 + IΩB (b̂i) ,

such that IΩB (b̂i) =





0, if [b̂i]j = 0, ∀ (i, j) /∈ ΩB ,

∞, otherwise ,

(3.20)

where ΩB is defined as the support set of the true stubborn-regular network, i.e., ΩB :=

{(i, j) : Bij 6= 0}. For the regularization functions above, gstub(·) regularizes on the sparsity

of the stubborn-regular network; while gactive(·) assumes knowledge on the network topology

between stubborn and regular agents (only). We refer to the setting when ΩB is available

as the active sensing scenario. In the active sensing scenario, the stubborn agents are

regarded as active agents inserted intentionally in order to reveal the network structure for

the network identifier, as such, the set of agents to be influenced by them can be controlled

artificially and thus ΩB is known to us. Typically, we can achieve better performance in the

active sensing setting and in fact, certain provable identifiability guarantees can be provided

in this setting, as we shall expatiate in the next section. Notice that the support set of D,

i.e., the regular-regular agents’ network topology, is assumed to be completely unknown.

Lastly, we comment on the computational complexity of solving (3.18) using the pro-

posed regularizers. Notice that (3.18) is a convex problem with n+S variables. The above

can be solved in polynomial time using off-the-shelf package like cvx or with specific soft-

wares like GPSR [Figueiredo et al.(2007)]. To recover the entire network involving (bi,di)
n
i=1,

we can solve the n instances of (3.18) in parallel.

31

3.4 Guarantees for DeGroot Dynamics Identification

Our next endeavor is to study the network identifiability condition such that the social

network can be identified perfectly. Notice that we seek to provide conditions such that

both the network topology and the weights on the edges are recovered.

To conduct a tractable analysis, we focus on the setting with linear DeGroot dynamics,

i.e., when µ(x) = 1 for all x, and using active sensing, i.e., where the support of B, ΩB,

is known. Our goal to derive the smallest possible number of stubborn agents and the

corresponding configuration that guarantees perfect identifiability. The provided condition

in turn represents also the lowest possible opinion data rank required. We assume:

H3.4 Each row of the matrix D, di, satisfies ‖di‖0 ≤ dmax for all i ∈ [n].

H3.5 The observation model (3.11) is exact such that opinions are observed without noise

and we observe opinions from K ≥ S topics.

H3.6 The support of the matrix B, ΩB := {(i, j) : [B]ij = 0}, is known.

In light of H3.5 and H3.6, we shall study the the following network identification problem:

for all i ∈ [n],

min
b̂i,d̂i

‖d̂i‖0 s.t. b̂i ≥ 0, d̂i ≥ 0, b̂>i 1 + d̂>i 1 = 1, [d̂i]i = 0,

b̂>i z
k + d̂>i y

k = yki , ∀ k, [b̂i]j = 0, ∀ j ∈ Ωbi ,

(3.21)

the above problem is similar to problem (3.18) with the regularizer g1(·). Analyzing the set

of feasible solution to (3.21) leads us to study the linear system:

b̂>i z
k + d̂>i y

k = yki , ∀ k =⇒ Z>b̂i + Y >d̂i = yi , (3.22)

where Z := (z1, . . . ,zK) ∈ RS×K , Y := (y1, . . . ,yK) ∈ Rn×K and yi = (y1
i , . . . , y

K
i) is the

32

ith row of Y . From (3.11), it holds that

Y Z† = (I −D)−1B , (3.23)

where Z† denotes the pseudo inverse of Z. Traditionally, analyzing the identifiability of

(3.22) requires characterizing the spark of the resulting ‘sensing matrix’ (see [Eldar(2014)]).

However, determining the spark of a matrix is non-trivial.

In fact, the system (3.22) is closely related to the problem of compressed sensing, as we

consider the following alternative representation:

Z>b̂i + Y >d̂i = yi ⇐⇒ Z>b̂i + Y >(d̂i − ei) = 0

⇐⇒ b̂i + (Y Z†)>(d̂i − ei) = 0

⇐⇒ b̂i +B>(I −D)−>(d̂i − ei) = 0

⇐⇒ B>
(
(I −D)−>(d̂i − ei) + ei

)
= bi − b̂i

⇐⇒ B>(I −D)−>(d̂i − di) = bi − b̂i .

(3.24)

On the left hand side of (3.24), we note that due to the self-trust constraint [d̂i]i = 0, the

number of unknowns in di is n− 1. On the right hand side of (3.24), the difference bi − b̂i
is zero on indices j whenever [bi]j = 0, as the support of bi is known to (3.21); otherwise,

the terms on the right hand side are in general unknown.

In light of the above, a sufficient condition for network identification can be obtained

by ignoring the rows in the linear system whenever [bi]j 6= 0. In particular, we require that

the matrix obtained by deleting such rows from B>(I −D)−> ∈ RS×n have a null space

that consists only of dense vector. It follows that one could study the so-called restricted

isometry property of such matrix. Before giving our identifiability condition, we provide

two further remarks:

• Observe that B>(I−D)−> = B>(I+D+D2 + . . .)>; i.e., the sensing matrix (before

row-deletion) is a perturbed version of B>. When the perturbation induced by D is

33

small, we could study B alone as the sensing matrix.

• There exists a trade-off between |Ωbi | and the identifiability performance. Notice that

a sensing matrix’s performance (e.g., as measured by the so called restricted isometry

property constant) is typically better if the matrix is dense. However, as indicated

in (3.24), we need to ensure that there is a sufficient number of known ‘observations’

(or zeros) in the right hand side of the underdetermined system (3.24), which is

determined by |Ωbi |.

The second remark prompts us to consider an optimized placement of stubborn agents

when the matrix B> is required to be sparse while maintaining a good sensing performance.

As suggested in [Khajehnejad et al.(2011)], a good choice is to construct B such that each

row in B has a constant number ` of non-zero elements. Our proposed construction is

summarized by the following assumption:

H3.7 The support of B ∈ Rn×S, i.e., ΩB, is constructed such that each row of it has exactly

` non-zero elements, selected randomly and independently.

Notice that the above corresponds to setting the stubborn-regular network as a random,

constant left-degree bipartite graph.

The theorem below provides the main result of this chapter. It gives the condition on

dmax and S such that the social network can be identified through (3.21). Let H(x) be the

binary entropy function, we have the following sufficient condition:

Theorem 3.1 Define α := 2dmax/n, bmin := minij∈ΩB
Bij, bmax := maxij∈ΩB

Bij, β :=

S/n and β′ := β− `/n. Assume that conditions H3.4 and H3.7 hold, and that the following

conditions are also satisfied

` > max
{

4, 1 +
H(α) + β′H(α/β′)

α log(β′/α)

}
, bmin(2d− 3)− 1− 2bmax > 0 . (3.25)

Then, as n → ∞, there is a unique optimal solution to (3.21) that (b̂i, d̂i) = (bi,di) with

34

α = 0.08 α = 0.16 α = 0.24 α = 0.32 α = 0.40

` = 5 0.3420 0.5280 0.6730 0.7940 0.8950

` = 6 0.2340 0.3850 0.5100 0.6190 0.7160

` = 7 0.1870 0.3190 0.4330 0.5360 0.6290

Table 3.1: Evaluating the minimum β′ required by (3.25) for the sufficient condition of

perfect network identification with different combinations of `, α. Note that β′ > α and the

number of stubborn agents required can be evaluated as S ≈ β′n + ` and the maximum

in-degree required is αn/2.

probability one. Moreover, the failure probability is bounded as:

Pr
(

(b̂i, d̂i) 6= (bi,di), ∀ i ∈ [n]
)
≤
(
`

β

)4 `− 1

n2
+O(n2−(`−1)(`−3)) . (3.26)

The proof of Theorem 3.1 is in Appendix 3.D where the claim is proven by treating the

unknown entries of B as erasure bits, and showing that the sensing matrix with erasure

corresponds to a high quality expander graph in high probability. To the best of our

knowledge, Theorem 3.1 is a new recoverability result proven for blind compressed sensing

problems.

The first condition in (3.25) provides a guideline for determining the number of stubborn

agents S needed and the role played by the sparsity parameter ` for B. To gain some

intuition, consider the situation where n → ∞, β′, α → 0 while the ratio β′/α is constant;

then, the second condition in (3.25) can be approximated by

` > max
{

4, 1 +
β′

α

H(α/β′)
log(β′/α)

}
, (3.27)

where the right hand side is minimized by β′/α ≈ 1.27 and requiring ` > 4.362. Hence,

setting ` = 5 so this condition holds, the number of the stubborn agents needed is:

S ≥ βn = 5 + β′n ≥ 5 + 1.27αn ≥ 5 + 2.54dmax = Ω(dmax) . (3.28)

35

On the other hand, the second condition in (3.25) indicates that the amount of relative

trust on the stubborn agents in the network cannot be too small. This is reasonable since

the network identification performance should depend on the degree of influence of the

stubborn agents relative to everyone else. Table 3.1 gives a list of the values required

for β′ and subsequently the required number of stubborn agents can be derived. Note

that the number of stubborn agents required is still large. However, as this number only

corresponds to a sufficient condition for perfect network identification, in practice the model

based method also provides good performance when this condition is significantly relaxed.

We notice that Theorem 3.1 is proven for the case when an `0 norm minimization

problem (3.21) is considered. Even though (3.21) is non-convex, it can be well approximated

by its `1 approximation. In particular, problem (3.18) solved with gactive(·) gives a good

approximation that it, as we observe from the numerical experiments. We also remark that

the probability bound in (3.26) is associated to the random construction of ΩB in H3.7. In

particular, when n is finite, this failure probability grows with the size of ΩB, i.e., O(`5).

This indicates a possible tradeoff between the size of ΩB and the identification accuracy.

We conclude this section by showing how to deal with randomized interactions. Lastly, we

remark that the results above are proven only for DeGroot dynamics. An interesting but

challenging extension is to generalize the identifiability conditions for nonlinear dynamics.

3.4.1 Random Opinion Dynamics

So far, our network identification method requires collecting the steady state opinions

(zk,yk) resulted from a static opinion dynamics model. A more realistic setting is to

consider a randomized opinion dynamics. Here we focus on the DeGroot opinion dynamics

as in the previous section. Importantly, we recall H3.1 and the following randomized linear

opinion dynamics:

x(t+ 1; k) = A(t; k)x(t; k), where A(t; k) :=




I 0

B(t; k) D(t; k)


 . (3.29)

36

In the same spirit, we also define E[B(t; k)] = B and E[D(t; k)] = D. Now, let us re-

examine the requirements on the opinion data. From (3.11), as one wishes that the collected

data (yk, zk) from the kth discussion to satisfy yk = (I −D)−1Bzk. Naturally, this can

be obtained by taking the following expectations:

yk = E[y(∞; k)|zk] and zk = E[z(t; k)] . (3.30)

However, in practice, this may be difficult to realize as computing the expectation requires

taking an average over the ensemble of the sample paths of {A(t; k)}∀t,∀k.

Instead of proceeding with (3.30), we prove that the randomized opinion dynamics is an

ergodic process and replace (3.30) with a time average. To fix idea, let us consider a noisy

observation model on the opinions:

x̂(t; k) = x(t; k) + n(t; k) . (3.31)

Now, suppose that we accrue a time series of the opinions {x̂(t; k)}t∈Tk , where Tk ⊆ N is

an arbitrary sampling set. We define:

x̂(Tk; k) ,
1

|Tk|
∑

t∈Tk
x̂(t; k) ≈ E[x(∞; k)|x(0; k)] . (3.32)

Specifically, the temporal opinions samples are collected through random (and possibly

noisy) sampling at time instances on the opinions. The following theorem characterizes the

performance of (3.32):

Theorem 3.2 Consider the estimator in (3.32) and we denote the steady state opinion as

x(∞; k) , limt→∞ E{x(t; k)|x(0; k)} = A∞x(0; k). Assume that E{‖D(t; k)‖2} < 1. Let

To := min{t : t ∈ Tk}, if To →∞,

37

1. then the estimator (3.32) is unbiased:

E[x̂(Tk; k)|z(0; k)] = x(∞; k) . (3.33)

2. then the estimator (3.32) is asymptotically consistent:

lim
|Tk|→∞

E[‖x̂(Tk; k)− x(∞; k)‖22|x(0; k)] = 0 . (3.34)

For the latter case, we have

E
[
‖x̂(Tk; k)− x(∞; k)‖22 | x(0; k)

]
≤ C ′

|Tk|
(|Tk|−1∑

i=0

λmin` |t`+i−t`|
)
, (3.35)

where C ′ <∞ is a constant and λ = λmax(D) < 1, i.e., the latter term is a geometric series

with bounded sum.

Note that a similar result to Theorem 3.2 was reported in [Ravazzi et al.(2015)]. Our result

is specific to the case with stubborn agents, which allows us to find a precise characterization

of the mean square error. The proof of Theorem 3.2 can be found in Appendix 3.E.

Remark 3.1 From (3.35), we observe that the upper bound on the mean square error can

be optimized by maximizing mini,j,i6=j |ti − tj |. Suppose that the samples x̂(Tk; k) have to be

taken from a finite interval [Tmax] \ [To], Tmax < ∞ and |Tk| < ∞; here, the best estimate

can be obtained by using sampling instances that are drawn uniformly from [Tmax] \ [To].

3.5 Community Detection from Low-Rank Data

The community detection problem is a closely related to network identification described

in the above. Here, the aim is to partition the set of agents into communities which form

close knit with the other [Fortunato(2010)]. Knowing the community structure is crucial

to understanding a social network from a macroscopic view, e.g., it reveals the membership

property of specific agent such as the political party that an agent leans towards. To this

38

xk 2 Rn

Observed
Network Data

(Low-rank)

Latent Network
with clusters

Identified Network

Community Detection

Proposed Method

Figure 3.3: Proposed approach for the sketched community detection method from low-rank

observed opinion data.

end, computational methods, which are often put into the same context as data clustering,

have been studied in the prior work [Boutsidis et al.(2015),Tremblay et al.(2016)] with focus

on handling large graphs efficiently. However, almost all of the prior work require knowing

the network topology structure as the input parameter. When the network topology is

unknown, a naive approach is to adopt a two-stage procedure — we first apply the network

identification method described in Section 3.3 to infer the entire network, then we apply

the off-the-shelf methods in [Fortunato(2010)] to perform community detection. Clearly, the

two-stage approach is not desirable as it involves a relatively high computation and storage

complexity in identifying the entire network, moreover in the rank deficient case (with

limited number of stubborn agents) the network identification result may be erroneous,

leading to further errors in the community detection.

In this section, we present a new method for community detection on the low-rank

steady-state data collected under the DeGroot opinion dynamics model with stubborn

agents. Specifically, we propose a direct approach which finds the community structure

without the need of identifying the entire network, as overviewed in Figure 3.3.

Community Detection. It is instructive to describe the relationship between the com-

39

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11
 12

 13

 14
 15 16

 17
 18

 19

 20

 21 22
 23

 24 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36
 37

 38
 39 40

 41
 42

 43

 44
 45

 46

 47

 48

 49

 50

 51

 52 53

 54

 55
 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76
 77

 78
 79

 80

 81

 82

 83

 84

 85
 86

 87

 88

 89

 90

 91

 92 93

 94

 95

 96

 97
 98

 99

 100

Figure 3.4: Illustrating a network with C = 4 communities and its adjacency matrix.

(Left) Adjacency matrix with the yellow dots indicating the existence of an edge. (Right)

Visualization of the corresponding graph using a ‘force’ layout.

munity structure and the rank of adjacency matrix. In particular, a set of nodes is grouped

into a community when the edge density among these nodes is high compared to those

nodes not in the same community. An instance of such network with C = 4 communities

is illustrated in Figure 3.4. As seen, the adjacency matrix is roughly block diagonal with

C = 4 blocks, and each block is approximately equal to an all-ones matrix, i.e., a rank-one

matrix, implying that the rank of the adjacency matrix is roughly C = 4.

The above observation suggests that for a network with C communities (C � n), its

adjacency matrix should also have an approximate rank of C, i.e., a low rank matrix. In

fact, the classical spectral clustering method [Ng et al.(2002)] can be motivated from this

observation — we first find the top C left singular vectors, VC ∈ Rn×C , corresponding to

the largest C singular values, of the (weighted) adjacency matrix D, then we apply the

K-means algorithm [Hartigan and Wong(1979)] to cluster the n row vectors in VC into C

clusters. In this method, the first step can be seen as a ‘denoising’ procedure as it retains

the principal components necessary for clustering.

Proposed Method. Now we begin the development of our community detection method,

let us recall the relationship between the pair of observed tuple (yk, zk). Under the DeGroot

opinion dynamics setting, we have yk = (I −D)−1Bzk from (3.23). Through stacking the

40

K pairs of observed opinion data and taking pseudo inverse of the stubborn agents’ opinions,

the following linear transformation can be computed:

Γ := Y Z† = (I −D)−1B =
(
I +D +D2 + · · ·

)
B . (3.36)

We observe that Γ can be decomposed into:

Γ = B +D(I −D)−1B = B +
(
D +D2 + · · ·

)
B , (3.37)

Let us first focus on the last term. As n � S, the matrix above has a dimension of n × S

and it can be viewed as a sketch of the matrix series D +D2 + · · · . Moreover, the matrix

series D̃ := D(I −D)−1 = D+D2 + · · · is a superposition of the regular sub-network (or

regular-to-regular network) and its high order multiplications, note that:

[Dk]ij > 0 if there exists a path from j to i in G[Vr] with length ≤ k .

On the other hand, as ‖D‖2 < 1 under H3.3, the edge weights of the higher-order links in

Dk decays exponentially. Therefore, the community structure in the original regular-regular

network is retained in the series D̃ since the latter is dominated by D. It follows that if

there are C communities in the original regular-regular network D, the matrix series D̃

will be approximately rank C. We remark that the matrix series D̃ is also related to the

notion of Bonacich centrality [Bonacich(1987)].

Consider the second term in the decomposition (3.37), as n � S, the matrix product

D̃B can be seen as a sketched version of D̃. However, if S ≥ C and D̃ contains C

communities, under some mild conditions, it can be shown that the range space of [D̃B]C ,

the rank C approximation of D̃B, is the same as the range space of D̃. This implies the

spectral clustering result on D̃ should match with that on D̃B. The observation above can

be quantified rigorously as stated in the following proposition:

41

Proposition 3.1 Define the following SVDs of the matrices:

D̃ = V ΛU>, D̃B = PΣQ> , (3.38)

and we denote the partitions V = [VC VN−C], U = [UC UN−C], P = [PC PN−C] and

Q = [QC QN−C], such that VC (resp. VN−C) denotes the ‘left-most’ (resp. ‘right-most’) C

(resp. N − C) column vectors of V . Let [D̃]C be the rank-C approximation of D̃. If the

matrices [D̃]CB and D̃B are at least rank-C, then

‖PCP>C − VCV >C ‖22 =
γ2

1 + γ2
, γ ≤ λC+1

λC
‖U>N−CBQC‖2‖(U>CBQC)−1‖2 . (3.39)

The proof is inspired by [Boutsidis et al.(2015)] and can be found in Appendix 3.F.

The squared spectral norm error in (3.39) quantifies the difference between the range

space spanned by the top C left singular vectors of D̃ and its sketched version D̃B. Essen-

tially, the proposition shows that this error depends on the spectral gap of the ‘adjacency’

matrix D̃. Notice that the constant η := λC+1/λC � 1 if D̃ is approximately rank C. This

confirms with the intuition that if D̃ contains C communities, then the two range spaces

match and the spectral clustering applied on D̃B can recover these communities.

Now suppose that (i) S > C, i.e., there are more stubborn agents than the number

of communities in D, and (ii) the stubborn-regular network B is sparse, then the linear

transformation Γ follows a ‘sparse + low-rank’ decomposition [cf. (3.37)]. We are interested

in estimating the ‘low-rank’ component in it, this motivates us to consider the following

problem:

Y? = arg min
Y∈Rn×S

‖vec(Γ−Y)‖1 + ρ‖Y‖σ,1 , (3.40)

where ‖ · ‖σ,1 denotes the nuclear norm and ρ > 0 is a predefined parameter. In the

above problem, the first term exploits the sparseness of B and seeks to remove it from the

observation Γ; while the second term exploits the low-rankness of Γ−B.

42

Algorithm 3.1 Community detection from low-rank excitation.

1: Input: Collected opinion tuples {yk, zk}Kk=1; desired number of communities C.

2: Calculate Γ = Y Z† from the collected opinion tuples {yk, zk}Kk=1.

3: Estimate D̃B by solving the convex program (3.40) and denote Y? as the optimal

solution.

4: Find the top C left singular vectors to Y? associated with the largest C singular values.

Denote the set of singular vectors as P̂C ∈ RN×C .

5: Perform K-means clustering (e.g., [Hartigan and Wong(1979)]), which optimizes:

min
C1,...,CC

C∑

i=1

∑

j∈Ci

∥∥∥p̂j −
1

|Ci|
∑

q∈Ci
p̂q

∥∥∥
2

2
s.t. Ci ⊆ V , (3.41)

where p̂i := [P̂C]i,: ∈ RC . Let the solution be Ĉ1, ..., ĈC .

6: Output: Partition of Vr into C communities, Ĉ1, ..., ĈC .

As shown in [Chandrasekaran et al.(2011)], when B is sufficiently sparse and the ratio

C/S is sufficiently small, then the optimal solution to (3.40) will be the desired sketch D̃,

i.e., Y? ≈ D̃B. As argued by Proposition 3.1, applying spectral clustering on D̃B yields a

similar result as applying spectral clustering on D̃ (and thus D) given η � 1. Finally, we

summarize the proposed community detection method in the pseudo code Algorithm 3.1.

3.6 Numerical Results

This section validates the efficacies of our methods with numerical experiments. Specifi-

cally, we focus on cases when the network dynamics model (3.3) is exact while the measure-

ments may be noisy. In the following, we first focus on the linear DeGroot opinion dynamics

case with µ(x) = 1 for all x, then we study the network recovery performance under nonlin-

ear opinion dynamics. We mainly focus on synthetic opinion data where both the network

topology and the opinions observed on it are generated randomly. To emphasize the crucial

importance of considering data collected from real networks, e.g., the online social networks

(e.g., Facebook, Twitter), we also consider the case when the network topology is taken

43

from real world social networks.

For topology identification, we compare the area under precision-recall (AUPR) and area

under receiver operating characteristic curves (AUROC), see [Davis and Goadrich(2006)] for

the respective definitions; for the network weights identification, we compare the normalized

mean square error:

NMSE =
‖[B̂?, D̂?]− [B0,D0]‖2F

‖[B0,D0]‖2F
, (3.42)

where B0,D0 are the normalized ground truth trust matrices as defined in (3.13), and

B̂?, D̂? are the optimal solution obtained from solving (3.18). Notice that the topology

identification is perfect when AUROC and AUPR approach 1. If the NMSE is zero, then the

network topology is perfectly identified, i.e., it is a stronger condition to satisfy.

3.6.1 Linear Opinion Dynamics

The first series of numerical experiments focuses on the linear DeGroot opinion dy-

namics. In particular, our aim is to present numerical evidences to verify our theoretical

findings on perfect network identification [cf. Theorem 3.1]. We set K = 2S and ρ = 0.1 in

Problem (3.18) for all experiments below. The initial opinions are all generated as U [−1, 1].

We first focus on the case with perfect/noiseless opinion observation, i.e., the steady

state opinions yk, zk observed follow the relationship (3.11) exactly. Now let us consider

a case with a relatively small-scale network with n = 100 regular agents and compare

the performance with different number of stubborn agents, and the regular-regular network

(corr. toD) is generated as an Erdos-Renyi (ER) graph with connectivity probability of α =

0.08. Moreover, following the analysis results in Theorem 3.1, we construct the stubborn-

regular network (corr. to B) by randomly assigning ` = 5 stubborn agents to each regular

agent. The network weights are first generated as U [0, 1] and then normalized such that A

forms a stochastic matrix.

Under the setting described, Figure 3.5 shows the topology identification performance

against the number of stubborn agents S. From the figure, we observe that the AUROC /

44

10 20 30 40 50 60
0.6

0.7

0.8

0.9

1

Number of stubborn agents (S)

A
U
R
O
C

Graph LASSO

Prob. (3.18) with gstub(·)
Prob. (3.18) with gactive(·)

10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

Number of stubborn agents (S)

A
U
P
R

Graph LASSO

Prob. (3.18) with gstub(·)
Prob. (3.18) with gactive(·)

Figure 3.5: Comparing the topology recovery performance against the number of stubborn

agents S. The regular-regular network is a 100-nodes ER graph with connectivity α =

0.08. The shaded area shows the 5% / 95% percentile interval for the AUROC/AUPR

performances. Problem (3.18) is tested with two regularizers — gstub(·) and gactive(·).

AUPR performance improve as the number of stubborn agents increases. For the proposed

method via solving (3.18), a nearly perfect topology identification is achieved when S ≈

45 < n = 100. Moreover, we see that the proposed method has outperformed Graph

LASSO. Lastly, we observe that the proposed method with ‘active sensing’ (with gactive(·)

in problem (3.18)) has a slightly better topology identification performance than the case

without ‘active sensing’ (with gstub(·) in problem (3.18)).

We also compare the network weights identification performance in Figure 3.6 using

the same setting as before. Notice that Theorem 3.1 predicts that the number of stubborn

agents required is roughly S ≈ 57. This is confirmed by the left plot which shows that

the NMSE performance under the setting with ‘Reg. B’ and ‘active sensing’. In particular,

we observe that the actual performance is slightly better than the predicted one as the

latter is only a sufficient condition. In the same figure, we also examined the effect on

the performance with different construction of the stubborn-regular topology (corr. to B).

Specifically, the ER-like random construction yields a worse performance in terms of the

45

30 40 50 60
10−18

10−14

10−10

10−6

10−2

Number of stubborn agents (S)

N
M
S
E

30 40 50 60

0.9

0.95

1

Number of stubborn agents (S)

A
U
R
O
C

Reg. B & prob. (3.18) w/gstub(·) Reg. B & prob. (3.18) w/gactive(·)
ER B & prob. (3.18) w/gstub(·) ER B & prob. (3.18) w/gactive(·)

Figure 3.6: Comparing the network identification performance using different regularizers

for (3.18) and constructions for the stubborn-normal network (corr. to B). ‘Reg. B’ refers

to the setting when B is constructed according to H3.7 with ` = 5; ‘ER B’ corresponds to

the construction with random edge selection with connectivity α = 0.08. The dashed line

indicates the number of stubborn agents required by Theorem 3.1.

NMSE performance, i.e., it does not exhibit the phase-transition behavior as the case with

the regular bipartite construction in H3.7. Nevertheless, we observe that the topology

identification performance is less affected by this change, i.e., the AUROC are close to 1 as

we increase the number of stubborn agents in all cases.

We further verify the claim in Theorem 3.1 with the effect of ` in the construction of the

stubborn-regular network B. Specifically, we evaluate the NMSE and AUROC performance

against the number of regular agents n in Figure 3.7, where the regular-regular network is

constructed as ER graph with connectivity fixed at α = 0.08. We focus only on the ‘active

sensing’ setting with problem (3.18) using gactive(·) as the regularizer. The number S of

stubborn agents is set as the minimum number required by Theorem 3.1 [cf. see Table 3.1],

which is a constant fraction of the number of regular agents n. Note that the theorem

states that S can be reduced if we increase `, yet the probability of failure may increase

polynomially with ` (while still approaching zero as n increases). The results in the figure

46

60 80 100 120

10−4

10−3

10−2

Regular agents (n)

N
M
S
E

Reg. B with ` = 5

Reg. B with ` = 6

Reg. B with ` = 7

60 80 100 120

0.97

0.98

0.99

1

Regular agents (n)

A
U
R
O
C

Figure 3.7: Comparing the network identification performance against the number of regular

agents n, but using different ` for the constructions of the stubborn-regular network. The

network connectivity is fixed at α = 0.08 and the number of stubborn agents considered is

predicted using Table 3.1.

corroborate with the statement above, as the identification performance (in terms of NMSE

and AUROC) improve as n increases, for all values of `. From the results above, we also

observe that setting ` = 5, 6 gives a better performance in practice for finite n.

The next experiment considers the network identification performance on a large-scale

network. Here, we look at a similar setting as in Figure 3.6, yet the number of regular

agents is n = 1000 the regular-regular network is an ER graph with the connectivity set to

α = 1.01 log n/n ≈ 0.007. We also remark that as the observed opinion data is low-rank,

the graphical LASSO formulation is not numerically stable and is therefore skipped. As

seen from the figure, the result from Theorem 3.1 continues to hold as it predicts the perfect

identification when S ≥ 115. The result also demonstrates that the proposed method can

be scaled to handle large networks.

We now examine the performance of the proposed method applied to real network

topology. Specifically, we consider the facebook100 dataset [Traud et al.(2012)] and focus

on the medium-sized network example ReedCollege. The randomized opinion exchange

47

40 60 80 100 120

10−14

10−11

10−8

10−5

10−2

Stubborn agents S

N
M
S
E

Prob. (3.18) w/ gstub(·)
Prob. (3.18) w/ gactive(·)

40 60 80 100 120

0.75

0.8

0.85

0.9

0.95

1

Stubborn agents S

A
U
R
O
C

Prob. (3.18) w/ gstub(·)
Prob. (3.18) w/ gactive(·)

Figure 3.8: Comparing the network identification performance on a large-scale network with

n = 1000. The regular-regular network is an ER graph with connectivity α ≈ 0.007; and

the stubborn-regular network is constructed according to H3.7 with ` = 5. The dashed line

indicates the number of stubborn agents required by Theorem 3.1.

model is based on the randomized broadcast gossip protocol in [Aysal et al.(2009)] with

uniformly assigned trust weights. Out of the available agents, we picked S = 180 agents

with degrees closest to the median degree as the stubborn agents and removed the agents

that are not adjacent to any of the stubborn agents. The selection of the stubborn agents is

motivated by Theorem 1 as we require a moderate average degree for the resultant stubborn-

to-regular agent network with better recovery guarantees. Our aim is to estimate the trust

matrix D, which corresponds to the subgraph with n = 666 regular agents, |E| = 13, 269

edges and mean degree 19.92. Note that the bipartite graph from stubborn agents to

regular agents has a mean degree of 25.07. The opinion dynamics data {yk, zk}Kk=1 (with

K = 2S) is collected using the estimator in Section 3.4.1, where we set |Tk| = 5 × 105

and the sampling instances are uniformly taken from the interval [105, 5 × 107]. We apply

the FISTA algorithm to approximately solve the network reconstruction problem (3.18).

The NMSE of the reconstructed D is 0.1035 after 4 × 104 iterations. The program has

terminated in about 30 minutes on a Xeon server running MATLABTM 2014b.

48

Figure 3.9: Comparing the social network of ReedCollege from facebook100 dataset:

(Left) the original network; (Right) the estimated network.

5 10 15 20 25 30 35 40 45 50 55 60

5

10

15

20

25

30

35

40

45

50

55

60

5 10 15 20 25 30 35 40 45 50 55 60

5

10

15

20

25

30

35

40

45

50

55

60

Figure 3.10: Comparing the reconstructed network for the ReedCollege social network in

facebook100 dataset — a closer look. (Left) Original network. (Right) Reconstructed

network.

49

5 10 15 20 25 30

10−2

10−1

100

Stubborn agents S

E
rr
or

R
at
e

Two steps

Spect. Cluster. on Γ

Algorithm 3.1

Figure 3.11: Community detection performance against the number of stubborn agents

S. We consider a regular-to-regular network with C = 3 communities. The error rate

is evaluated by comparing the community detection result to the ground truth used for

generating the SBM networks.

We compared the estimated social network in both macroscopic and microscopic levels.

Figure 3.9 shows the true/estimated network plotted in gephi [Bastian et al.(2009)] using

the ‘Force Atlas 2’ layout with the edge weights taken into account. While it is impossible

to compare every edges in the network, the figure gives a macroscopic view of the efficacy of

the network reconstruction method. In particular, the estimated network follows a similar

topology as the original one. For instance, there are clearly two clusters in both the esti-

mated and original network. Moreover, the relative roles for individual agents are matched

in both networks. For example, agents {39, ..., 608} are found in the larger cluster, agents

{378, ..., 663} are found at the boundary between the clusters and agents {43, ..., 404} are

found in the smaller cluster, in both networks. Finally, in Figure 3.10 we compare the esti-

mated principal sub-matrix ofD taken from the first 60 rows/columns, i.e., this corresponds

to the social network between 60 agents. As seen, the original and estimated matrices are

similar to each other, both in terms of the support set and the weights on individual edges

between the agents.

50

Lastly, we present numerical results for the low-rank community detection method in

Section 3.5. In the following, we generate the regular-regular network according to a stochas-

tic block model (SBM) [Fortunato(2010)] with n = 120 agents, C = 3 communities, intra-

community connectivity of a = 16 log n/n and inter-community connectivity of b = log n/n.

Moreover, the stubborn-regular network is generated as a random bipartite graph with

connection probability of 6 log n/n. As a benchmark, we consider a ‘two steps’ approach,

where we first infer the regular-regular network D̂? through solving (3.18), then we detect

the communities in D̂? using the spectral clustering method; as well as a direct application

of the spectral clustering method on the linear transformation Γ obtained from opinion data

[cf. (3.36)]. In Figure 3.11, we compare the error rate made by the community detection

method against the number of stubborn agents S included, i.e., the observation rank of

the opinion data. The figure shows that the error rate decreases as S increases for both

the ‘two steps’ method and the direct method proposed in Section 3.5. However, the direct

method has significantly outperformed the ‘two steps’ method over all ranges of S. This

discrepancy in the performance is potentially caused by the errors made in the first stage of

network identification with (3.18), as the regular-regular network is not sufficiently sparse

with respect to the considered range of S.

3.6.2 Nonlinear Opinion Dynamics

We conclude this section by presenting the numerical results on network identification

when the underlying opinion dynamics is nonlinear. Similar to the last subsection, the

following numerical experiments are done when the steady state opinions are observed for

K = 2S discussions and the opinions are observed noiselessly. The nonlinear response

function is set as µ(|x|) = e−σ·x
2

to model the decay of interaction strengths when the

opinion difference between a pair of agents is large. We assume that the nonlinear function

together with its parameter σ is known. Notice that the theoretical analysis conducted in

Theorem 3.1 does not apply in this case as the response function is nonlinear.

Again, we begin by comparing the network identification performance on a small net-

51

10 20 30 40 50 60

0.6

0.8

1

Stubborn agents (S)

A
U
R
O
C

Graph LASSO

Prob. (3.18) w/ gstub(·)
Prob. (3.18) w/ gactive(·)

10 20 30 40 50 60

10−4

10−3

10−2

10−1

100

Stubborn agents (S)

N
M
S
E

Prob. (3.18) w/ gstub(·)
Prob. (3.18) w/ gactive(·)

Figure 3.12: Comparing the network identification performance with nonlinear opinion

dynamics, where the nonlinear function is set as µ(x) = e−5x2 . The regular-regular network

has n = 100 nodes and is an ER graph with connectivity α = 0.08. The shaded area shows

the 5% / 95% percentile interval for the AUROC/AUPR performances.

work with n = 100 regular agents which are connected by a graph with the ER model of

connectivity α = 0.08. The stubborn-regular network follows the same construction as in

H3.7 with ` = 5, and we set the nonlinear response function as µ(x) = e−5x2 . The numerical

results are shown in Figure 3.12. From the figure, we observe that the proposed method

with (3.18) performs well, i.e., it recovers the network topology and weights when the num-

ber of stubborn agents is S ≈ 35. We observe that the graph LASSO heuristic has a much

worse performance than in the similar case with DeGroot opinion dynamics [cf. Figure 3.5].

The advantage of using ‘active sensing’, i.e., solving (3.18) with gactive(·), compared to the

case without ‘active sensing’, is demonstrated when we compare the NMSE performance.

The ‘active sensing’ setting has a better NMSE when S ≥ 40.

Lastly, we consider the case of identifying a large-scale network with n = 1000 regular

agents and regular-regular connectivity of α = 2 log n/n, the stubborn-regular network

follows the same construction as in H3.7 with ` = 5. Moreover, we use a different nonlinear

response function for the n regular agents, i.e., we set µi(|x|) = e−σix
2

where σi ∼ U [0.2, 0.3]

for i ∈ {1, ..., 500} and σi ∼ U [0.7, 0.8] for i ∈ {501, ..., 1000}. The simulation result is

52

60 70 80 90 100 110

10−11

10−9

10−7

10−5

10−3

10−1

Stubborn agents S

N
M
S
E

Prob. (3.18) w/ gstub(·)
Prob. (3.18) w/ gactive(·)

60 70 80 90 100 110
0.96

0.97

0.98

0.99

1

Stubborn agents S

A
U
R
O
C

Prob. (3.18) w/ gstub(·)
Prob. (3.18) w/ gactive(·)

Figure 3.13: Comparing the network identification performance on large-scale network with

n = 1000 using heterogeneous and nonlinear opinion dynamics.

shown in Figure 3.13. We observe similar behavior to the case with small networks, where

the proposed methods are shown to identify the network using a number of stubborn agents

that is only a fraction of n (in this case, it is S ≈ 100 vs. n = 1000).

3.7 Chapter Summary

In this chapter, we have considered the modeling and identification of social networks

based on opinion dynamics models. We first model the opinion dynamics as a discrete time

non-linear dynamics with pairwise interactions. The considered model encompasses the

linear DeGroot model as well as other models such as bounded confidence. We show that

these models can be led into consensus when the underlying graph is strongly connected.

This does not agree with the common observation on actual social networks, where consensus

is often not reached. To remedy this, we introduce stubborn agents such that the steady

state opinions are no longer in consensus. The steady-state opinions are low-rank with the

rank dependent on the number of stubborn agents.

Upon describing and analyzing the opinion dynamics model, we propose a network

identification method based on the sparse recovery techniques. We provide a sufficient

53

condition for perfect network identification, which depends on the sparseness of the social

network as well as the number of stubborn agents in it. In addition, a consistent estimator

was derived to handle the case where the network dynamics is random. Simulation results on

synthetic and real networks indicate that the networks can be identified with high accuracy.

54

Appendix

3.A Proof of Observation 3.1

Using the matrix-form of the opinion dynamics model (3.3), the steady state xk :=

x(∞; k) satisfies the equilibrium condition:

xk =
(

Diag(1−
(
A� µ(xk)

)
1) +

(
A� µ(xk)

))
xk = Ãkxk , (3.43)

where

Ãk := Diag(1−
(
A� µ(xk)

)
1) +

(
A� µ(xk)

)
. (3.44)

We can verify that Ãk is a non-negative, stochastic matrix with an right eigenvector 1

and spectral radius of 1. Furthermore, under the assumption that µ(x) > 0 for all x ≥ 0,

the matrix has the same support as A, i.e., it corresponds to the adjacency matrix of a

strongly connected graph. As such, the matrix Ãk is an irreducible matrix. Applying the

Perron-Frobenius theorem [cf. Theorem 2.2] shows that 1 is the only right eigenvector of

Ãk with eigenvalue 1. This implies that for some c(k) ∈ R, we have

xk = c(k)1 . (3.45)

3.B Proof of Lemma 3.1

We prove the lemma by rewriting the equilibrium condition of the opinion dynamics

(3.1) with stubborn agents. In particular, for any regular agent i ∈ Vr, we have:

0 =

S∑

j=1

Bijµ(|yki − zkj |)(zkj − yki) +

n∑

j=1

Dijµ(|ykj − yki |)(ykj − yki) . (3.46)

55

In matrix form and using the definitions of µ(yk) and µ̃(yk, zk), Eq. (3.46) can be written

as:

fki y
k
i −

(
d>i �

[
µ(yk)

]
i,:

)
yk =

(
b>i �

[
µ̃(yk, zk)

]
i,:

)
zk . (3.47)

Stacking up the above for all i ∈ Vr yields the desired result.

3.C Proof of Lemma 3.2

From the construction of (B`,D`), we observe the following chain

(I −D`)
−1B` =

(
I −Diag(`)−Diag

(1− `
1− diag(D)

)
off(D)

)−1

B`

=

(
Diag

(1− `
1− diag(D)

)(
I −Diag(D)− off(D)

))−1

B`

=

(
Diag

(1− `
1− diag(D)

)(
I −D

))−1

B`

= (I − D̃)−1Diag
(1− `

1− diag(D)

)−1
B` = (I −D)−1B .

(3.48)

This concludes the proof.

3.D Proof of Theorem 3.1

The proof of Theorem 3.1 is divided into two parts. The first part shows a sufficient

condition for recovering (B,D) using (3.21); and the second part shows that the sufficient

condition holds with high probability as n→∞.

Let d(v) denote the degree of a vertex v. Our proof relies on the following definition of

an unbalanced expander graph:

Definition 3.2 An (α, δ)-unbalanced expander graph is an A,B-bipartite graph (bigraph)

with |A| = n, |B| = m with bounded left degrees2 in [dl, du] which satisfies the following:

(i) for all vi ∈ A, we have d(vi) ∈ [dl, du]; (ii) for any S ⊆ A with |S| ≤ αn, we have

δ|E(S,B)| ≤ |N(S)|, where E(S,B) is the set of edges connected from S to B and N(S) =

2We follow the convention by calling A as the ‘left’ vertices such that the left degrees refer to the degrees
of vertices in A.

56

Non-
stubborn
agents

Stubborn
agents

�|E(S, B)|  |N(S)|

Figure 3.14: Illustrating the properties of an expander graph. In the above example bipartite

graph, if α = 1/3, δ is at most 3/4 since |E(S,B)| = 4 and |N(S)| = 3 when S is the first

two vertices in the set of ordinary agents.

{vj ∈ B : ∃ vi ∈ S s.t. (vj , vi) ∈ E} is the neighbor set of S in B.

We can imagine that A (resp. B) is the set of regular (resp. stubborn) agents and E(A,B)

represents the connection between stubborn and regular agents; see the illustration in Fig-

ure 3.14. We denote the collection of (α, δ)-unbalanced expander graphs by G(α, δ). Previ-

ous works [Berinde et al.(2008), Wang et al.(2011a), Khajehnejad et al.(2011), Gilbert and

Indyk(2010)] have shown that the expander graph structure allows for the construction of

measurement matrices with good sparse recovery performance.

We now proceed by showing the sufficient condition. Consider problem (3.21), we denote

the support of b̂i− bi as Ωi
B, where |Ωi

B| = ` since the support information is incorporated

when solving (3.21) and b̂i − bi is a sparse vector supported on Ωi
B. We can thus treat

the rows where b̂i − bi is supported on as some ‘erasure bits’. In particular, the following

rows-deleted linear system can be deduced from the last line in (3.24):

B
>
(ΩiB)c(I −D)−>(di − d̂i) = 0 , (3.49)

where B>
(ΩiB)c

is an `-rows-deleted matrix obtained from B>.

We prove the sufficient condition by deriving a Restricted Isometry Property-1 (RIP-

57

1) condition for A = B>
(ΩiB)c

and its perturbation A(I − D)−>. We define amin =

minij∈supp(A)Aij and amax = maxij∈supp(A)Aij and prove the following proposition:

Proposition 3.2 Let n > m and A ∈ Rm×n be a non-negative matrix that has the

same support as the adjacency matrix of an (α, δ)-unbalanced bipartite expander graph with

bounded left degrees [dl, du]. Then A satisfies the RIP-1 property:

(
aminδdl − amax(du − δdl)

)
‖x‖1 ≤ ‖Ax‖1 ≤ duamax‖x‖1 , (3.50)

for all k-sparse x such that k ≤ αn. Furthermore, we have

υ?‖x‖1 ≤ ‖A(I −D)−>x‖1 , (3.51)

where υ? = aminδdl − amax(du − δdl)− (1− dlamin).

Proof. The following proof is a generalization of [Khajehnejad et al.(2011), Appendix D].

First of all, the upper bound in (3.50) follows from ‖Ax‖1 ≤ ‖A‖1,1‖x‖1, where ‖A‖1,1 is

the matrix norm induced by ‖ · ‖1 on A [Horn and Johnson(1986)], i.e.,

‖A‖1,1 = max
1≤j≤n

m∑

i=1

|Aij | . (3.52)

Obviously we have ‖A‖1,1 ≤ duamax.

To prove the lower bound in (3.50), using the expander property, we observe that

δdl|S| ≤ δ|E(S,B)| ≤ |N(S)| , (3.53)

for all S ⊆ supp(x) = {i : xi 6= 0} and |S| ≤ αn. As a consequence of Hall’s theorem

[West(2000)], the bigraph induced by A contains δdl disjoint matchings for supp(x). We

can thus decompose A as:

A = AM +AC , (3.54)

58

where the decomposition is based on dividing the support such that supp(AM)∩supp(AC) =

∅. In particular, AM is supported on the δdl matchings for supp(x); i.e., by the matching

property, each row of AM has at most one non-zero, and each column of AM has δdl non-

zeros, and the remainder AC has at most du − δdl non-zeros per column. Applying the

triangular inequality gives:

‖Ax‖1 ≥ ‖AMx‖1 − ‖ACx‖1 , (3.55)

since ‖AMx‖1 ≥ aminδdl‖x‖1 and ‖ACx‖1 ≤ amax(du − δdl)‖x‖1, this implies:

‖Ax‖1 ≥
(
aminδdl − amax(du − δdl)

)
‖x‖1 . (3.56)

For the second part in the lemma, i.e., (3.51), note that:

‖A(I −D)−>x‖1 ≥ ‖Ax‖1 − ‖AD>(I −D)−>x‖1 , (3.57)

since A(I −D)−>x = Ax+AD>(I −D)−>x. The latter quantity can be upper bounded

by

‖AD>(I −D)−>x‖1 ≤ ‖A‖1,1‖D>‖1,1‖(I −D)−>‖1,1‖x‖1

≤ duamax
‖D>‖1,1

1− ‖D>‖1,1
‖x‖1 ≤ (1− dlamin)‖x‖1 ,

(3.58)

where in the second to last inequality, we used the property ‖(I−C)−1‖ ≤ 1/(1−‖C‖) for

any ‖C‖ < 1 [Horn and Johnson(1986)]; and in the last inequality, we used the fact that

1− duamax ≤ ‖D>‖1,1 ≤ 1− dlamin (note that each row in D sums to at most 1− dlamin
and at least 1− duamax). Combining (3.56), (3.57) and (3.58) yields the desired inequality.

Q.E.D.

A sufficient condition for the desired `0 recovery result can be obtained by proving the

following corollary:

59

Corollary 3.1 Let the conditions from Proposition 3.2 on A holds. Suppose that both

x1,x2 are (k/2)-sparse such that k ≤ αn and:

A(I −D)−>x1 = A(I −D)−>x2 , (3.59)

then x1 = x2 if

υ? = aminδdl − amax(du − δdl)− (1− dlamin) > 0 . (3.60)

Proof. Observe that x1 − x2 is at most k-sparse, using Proposition 3.2, we have

υ?‖x1 − x2‖1 ≤ ‖A(I −D)−>(x1 − x2)‖1 = 0 . (3.61)

This implies that x1 = x2. Q.E.D.

As di is k/2-sparse, bmin ≤ amin and bmax ≥ amax, Eq. (3.25) and Corollary 3.1 guar-

antee that di is the unique solution out of all k/2-sparse vectors that di satisfies (3.49).

This means that any d̂i that satisfies (3.49) must be either di or have ‖d̂i‖0 > (k/2). Since

the optimization problem (3.21) finds the sparsest solution satisfying (3.49), we must have

d̂?i = di for all i. Furthermore, this implies b̂?i = bi in (3.24) and we have the desired result

as (B̂?, D̂?) = (B,D).

The second part of our proof shows that for all i, the support set of the `-rows-deleted

matrix B>
(ΩiB)c

corresponds to an (α, δ)-expander graph with high probability. Our plan is

to first prove that the corresponding bipartite graph has a bounded degree r ∈ [` − 1, `]

with high probability (w.h.p.), and then show that a randomly constructed bipartite with

bounded degree r ∈ [`− 1, `] is also an expander graph w.h.p..

Let us prove the following proposition:

Proposition 3.3 Let G be a random A,B-bigraph with |A| = n, |B| = ns = βn, con-

structed by randomly connecting d vertices from A to each vertex of B. All of the subgraphs

60

G1, ..., Gn have left degree r ∈ [` − 1, `] with high probability (as n → ∞) if each of these

subgraphs is formed by randomly deleting ` vertices from B in G.

Proof. We lower bound the desired probability as follows:

Pr
(
G1, ..., Gn = bipartite with (left) deg. r ∈ [`− 1, `]

)

= 1− Pr
(
∪ni=1 (Gi = bipartite with min. deg. r < `− 1)

)

≥ 1− n · Pr
(
∪nk=1 (d(vk) < `− 1, vk ∈ Ai, Ai ⊆ V (Gi))

)

≥ 1− n2 · Pr
(
d(vk) < `− 1, vk ∈ Ai, Ai ⊆ V (Gi)

)
.

(3.62)

Note that the event described in the last term is equivalent to deleting at least 2 neighbors

of vk ∈ Ai from B. As the neighbors of A are also randomly selected, the latter probability

can be upper bounded by:

Pr
(
d(vk) < `− 1, vk ∈ Ai, Ai ⊆ V (Gi)

)
= Pr

(
d(vk) = 0 ∪ · · · ∪ d(vk) = `− 2

)

≤ (`− 1) ·
(

`2

(βn)2

)2

= (`− 1) ·
(
`

βn

)4

.

(3.63)

Plugging this back into (3.62) yields the desired result. Q.E.D.

The proof of Theorem 3.1 is completed by the proposition:

Proposition 3.4 Let G be a random A,B-bipartite graph with |A| = n, |B| = m = β′n =

S− `, constructed by randomly connecting r ∈ [`− 1, `] vertices from A to each vertex of B.

Then G is an (α, 1 − 1/(` − 1))-expander graph with high probability if ` ≥ 4, α < β′ and

`− 1 > (H(α) + β′H(α/β′))/α log(β′/α).

Proof. The following proof is similar in flavor to the proof of [Khajehnejad et al.(2011),

Proposition 1], with the additional complexity that the left degree is variable. For simplicity,

we denote A as the adjacency matrix of G and let Ei1,...,ir be the event such that A:,i1,...,ir

contains at least m− r + 1 zero rows, where A:,i1,...,ir is the submatrix formed by choosing

the {i1, ..., ir} columns. Note that if r ≤ αn and Ei1,...,ir occurs, G /∈ G(α, 1 − 1/(` − 1))

61

since (1− 1/(`− 1))|E({i1, ..., ir})| ≥ r > r − 1 = |N({{i1, ..., ir})|. The failure probability

can thus be upper bounded as:

Pr
(
G /∈ G(α, 1− 1/(`− 1))

)

≤ Pr
(⋃

`−1≤r≤αn,1≤i1<i2<···<ir
Ei1,...,ir

)
≤

αn∑

r=`−1

(
n

r

)
Pr(E1,...,r) .

(3.64)

Suppose that there are r − s columns with `− 1 non-zero entries and s columns with `

non-zero entries; hence we have
(
βn
`−1

)r−s(βn
`

)s
possible sub-matrices to choose from. Now,

a necessary condition for E1,...,r is such that all the non-zero entries are contained in a

sub-sub-matrix of size r × r. There are at most
(
r
`−1

)r−s(r
`

)s
possible configurations and

(
βn
r

)
such sub-sub-matrices. For this case, we obtain the upper bound:

Pr(E1,...,r, fix s) ≤
(
β′n
r

)(
r
`−1

)r−s(r
`

)s
(
β′n
`−1

)r−s(β′n
`

)s

≤
(
β′n
r

)
·
(

r

β′n

)(r−s)(`−1)

·
(

r

β′n

)s`

=

(
β′n
r

)
·
(

r

β′n

)(r−s)(`−1)+s`

,

(3.65)

where we used the fact that
(
r
`

)
/
(
m
`

)
≤ (r/m)` if r < m in the first inequality. Taking the

union bound for all configurations s ∈ [0, r] gives:

Pr(E1,...,r) ≤
∑r

s=0 Pr(E1,...,r, fix s)

≤
(
β′n
r

)
·
((

r

β′n

)r(`−1)

+

(
r

β′n

)r(`−1)+1

+ · · ·+
(

r

β′n

)r`)

=

(
β′n
r

)
· 1

1− r/(β′n)

((
r

β′n

)r(`−1)

−
(

r

β′n

)r`+1
)

<
1

1− α/β′
(
β′n
r

)
·
(

r

β′n

)r(`−1)

.

(3.66)

The second equality is due to the geometric series and the last inequality is due to r ≤ αn.

62

We thus have:

Pr
(
G /∈ G(α, 1− 1/(`− 1))

)
≤ 1

1− α
β′

αn∑

r=`−1

(
n

r

)(
β′n
r

)(
r

β′n

)r(`−1)

. (3.67)

The remainder of the proof follows from that of [Khajehnejad et al.(2011)]; i.e., Lemma A.1

and A.2, through replacing ` by `−1. In particular, if `−1 > (H(α)+β′H(α/β′))/α log(β′/α),

we can show that

Pr
(
G /∈ G(α, 1− 1/(`− 1))

)
= O(n1−(`−1)(d−3)) . (3.68)

This completes the proof. Q.E.D.

Combining Proposition 3.3 and 3.4 implies that the `-rows-deleted sensing matrixB>
(ΩiB)c

corresponds to an (α, 1 − 1/(` − 1))-expander graph with high probability. Therefore, the

conclusion in Corollary 3.1 follows by setting δ = 1− 1/(`− 1). Moreover, by applying the

union bound, the probability of failure is upper bounded as:

Pr(Fail) ≤
(
`

β

)4 `− 1

n2
+O(n2−(`−1)(`−3)) , (3.69)

which vanishes as n→∞.

3.E Proof of Theorem 3.2

To simplify the notations, we drop the dependence on the discussion index k for the

opinion vectors x(t; k) and the trust matrices A(t; k). We first prove that the estimator is

unbiased. Consider the following chain:

E[x̂(Tk)|x(0)] =
1

|Tk|
∑

ti∈Tk
E[x̂(ti)|x(0)] =

1

|Tk|
∑

ti∈Tk
Atix(0) = A∞x(0) , (3.70)

where we used the fact that To →∞ and ti ≥ To for all ti in the last equality.

Next, we prove that the estimator is asymptotically consistent, i.e., (3.34). Without loss

63

of generality, we let t1 < t2 < . . . < t|Tk| as the sampling instances and drop the dependence

on k in A(t; k) for simplicity. The following shorthand notation will be useful:

Φ(s, t) , A(t)A(t− 1) . . .A(s+ 1)A(s) , (3.71)

where t ≥ s and Φ(s, t) is a random matrix. Our proof involves the following lemma:

Lemma 3.3 When |t− s| → ∞, the random matrix Φ(s, t) converges almost surely to the

following:

lim
|t−s|→∞

Φ(s, t) =




I 0

B(s, t) 0


 , (3.72)

where B(s, t) =
∑t

q=s(D(t) . . .D(q))B(q). Moreover, B(s, t) is bounded almost surely.

Proof: We first establish the almost sure convergence of D(t)D(t − 1) . . .D(s) to 0.

Define

β(s, t) , ‖D(t)D(t− 1) . . .D(s)‖2 , (3.73)

and observe the following chain

E[β(s, t)|β(s, t− 1), ..., β(s, s)] = E[‖D(t)D(t− 1) . . .D(s)‖2|β(s, t− 1)]

≤ E[‖D(t)‖2‖D(t− 1) . . .D(s)‖2|β(s, t− 1)]

= E[‖D(t)‖2]β(s, t− 1) ≤ cβ(s, t− 1) ,

(3.74)

where c = ‖D‖2 < 1. The almost sure convergence of β(s, t) follows from [Polyak(1987),

Lemma 7]. Now, expanding the multiplication (3.71) yields:

Φ(s, t) =




I 0

B(s, t) D(t) . . .D(s)


 . (3.75)

The desired result is achieved by observing D(t) . . .D(s)→ 0 as |t− s| → ∞.

Lastly, the almost sure boundedness of B(s, t) can be obtained from the obvious fact

64

that Φ(s, t) is a non-negative and stochastic matrix. Q.E.D.

We consider the following:

E[‖x̂(Tk)− x(∞)‖22|x(0)] = E
[∥∥∥ 1

|Tk|
∑

ti∈Tk

(
x̂(ti)− x(∞)

)∥∥∥
2

2

∣∣∣ x(0)
]
. (3.76)

Recall that x̂(ti) = x(ti) + n(ti) and the noise term n(ti) is independent of A(t) for all t.

The above expression reduces to:

E
[∥∥∥ 1
|Tk|
∑

ti∈Tk
(
x(ti)− x(∞)

)∥∥∥
2

2
|x(0)

]
+ E

[∥∥∥ 1
|Tk|
∑

ti∈Tk n(ti)
∥∥∥

2

2

]
. (3.77)

It is easy to check that the latter term vanishes when |Tk| → ∞. We thus focus on the

former term, which gives

E
[∥∥∥ 1

|Tk|
∑

ti∈Tk

(
x(ti)− x(∞)

)∥∥∥
2

2
|x(0)

]
=

1

|Tk|2
E
[∥∥∥
∑

ti∈Tk

(
Φ(0, ti)−A∞

)
x(0)

∥∥∥
2

2

]

=
1

|Tk|2
E
[
Tr
(
Ξx(0)x(0)>

)]
,

(3.78)

where

Ξ =
∑

tj∈Tk

(
Φ(0, tj)−A∞

)> ∑

ti∈Tk

(
Φ(0, ti)−A∞

)
. (3.79)

Expanding the above product yields two groups of terms — when ti = tj and when ti 6= tj .

When ti = tj , using To →∞ and Lemma 3.3, it is straightforward to show that:

‖E
[(

Φ(0, ti)−A∞
)>(

Φ(0, ti)−A∞
)]
‖ ≤ C , (3.80)

for some constant C < ∞. As a matter of fact, we observe that the above term will not

vanish at all.

For the latter case, we assume tj > ti. We have

(
Φ(0, tj)−A∞

)>(
Φ(0, ti)−A∞

)

=
(
Φ(ti + 1, tj)Φ(0, ti)−A∞

)>(
Φ(0, ti)−A∞

)
.

(3.81)

65

Taking expectation of the above term gives:

E
[(

Φ(0, ti)−A∞
)>
Atj−ti(Φ(0, ti)−A∞

)]
, (3.82)

where we used the fact that Φ(ti + 1, tj) is independent of the other random variables in

the expression and A∞A` = A∞ for any finite `. Now, note that

Atj−ti = A∞ +O(λtj−ti) , (3.83)

for some 0 < λ , λmax(D) < 1. This is due to the fact that D is sub-stochastic.

As To →∞ and by invoking Lemma 3.3, the matrix (Φ(0, ti)−A∞) has almost surely

only non-empty entries in the lower left block. Carrying out the block matrix multiplications

and using the boundedless of Φ(0, ti) gives

∥∥E
[(

Φ(0, tj)−A∞
)>(

Φ(0, ti)−A∞
)]∥∥ ≤ O(λtj−ti) . (3.84)

Combining these results, we can show

E
[
Tr
(
Ξx(0)x(0)>

)]

|Tk|2
≤ C ′

|Tk|
(|Tk|−1∑

i=0

λmink |tk+i−tk|
)
, (3.85)

for some C ′ < ∞. Notice that min` |t`+i − t`| ≥ i and the terms inside the bracket can be

upper bounded by the summable geometric series
∑|Tk|−1

i=0 λi, since λ < 1. Consequently,

the mean square error goes to zero as |Tk| → ∞. The estimator (3.32) is consistent.

3.F Proof of Proposition 3.1

Denote the rank-C approximation of D̃ as [D̃]C := VCdiag(λC)U>C , and define the

shorthand notation that B̃ := BQC , we observe that

R([D̃]C) = R([D̃]CB̃) , (3.86)

66

where R(X) denotes the range space of a matrix X and the equality above is due to

the assumption that [D̃]CB̃ has rank C, such that the linear transformation on the right

does not modify the range space of [D̃]C . If we denote the columns of ṼC as the top C

left singular vectors of [D̃]CB̃, the equality above shows that the two products are equal

VCV
>
C = ṼCṼ

>
C .

Similarly, we define [D̃B]C = PCdiag(σC)Q>C as the rank-C approximation of the sketch

and observe that:

R([D̃B]C) = R(D̃B̃) (3.87)

where the equality is due to the fact that D̃B̃ = D̃BQC = PCdiag(σC) as the columns of

QC are the top C right singular vectors. Likewise, if the columns of P̃C are the top C left

singular vectors of D̃B̃, then PCP
>
C = P̃CP̃

>
C .

Furthermore, we observe that

R([D̃]CB̃)⊥R((D̃ − [D̃]C)B̃) . (3.88)

Invoking [Boutsidis et al.(2015), Lemma 8] through setting D = D̃B̃, C = [D̃]CB̃ and

E = [D̃]N−CB̃ := (D̃ − [D̃]C)B̃ therein, we can show the following:

‖ṼCṼ >C − P̃CP̃>C ‖22 = 1− βC
(

[D̃]CB̃
(
(D̃B̃)>D̃B̃

)†
([D̃]CB̃)>

)
. (3.89)

Denote the matrix in the middle of the expression above as Π := (D̃B̃)>D̃B̃. Now, under

the stated assumptions the C×C matrix Π is non-singular. We observe the following chain:

βC

(
[D̃]CB̃Π−1([D̃]CB̃)>

)
= βC

(
diag(λC)U>C B̃Π−1(diag(λC)U>C B̃)>

)

=
1

β1

(
(diag(λC)U>C B̃)−>Π(diag(λC)U>C B̃)−1

) ,
(3.90)

where the first equality is due to βC(V AV >) = βC(A) for any V ∈ RN×C with orthogonal

67

columns. Moreover, observe that Π has the following decomposition:

Π = (D̃BQC)>D̃BQC = (diag(λC)U>CBQC)>(diag(λC)U>CBQC)

+Q>CB
>UN−Cdiag(λN−C)2U>N−CBQC .

(3.91)

This yields:

βC

(
[D̃]CB̃Π−1([D̃]CB̃)>

)

=
(

1 + β1

(
(diag(λC)U>C B̃)−>B̃>UN−C

diag(λN−C)2U>N−CB̃(diag(λC)U>C B̃)−1
))−1

=
1

1 +
∥∥∥
(
diag(λN−C)U>N−CB̃

)(
diag(λC)U>C B̃

)−1
∥∥∥

2

2

=
(

1 + γ2
)−1

,

(3.92)

where we have defined γ such that:

γ := ‖diag(λN−C)U>N−CB̃(diag(λC)U>C B̃)−1‖2

≤
(
λC+1

λC

)
· ‖U>N−CBQC‖2‖(U>CBQC)−1‖2 ,

(3.93)

as desired. This concludes the proof of our claim.

68

4 Network RADAR for Gene Dynamics

This chapter is the second part of our study on modeling and identification of networks.

In particular, our focus is on the gene regulatory networks (GRNs) dynamics.

4.1 Context and Background

Similar to social networks, studies on GRNs’ dynamics modeling can be found in a

number of prior work, e.g., [Kang et al.(2015), Barzel and Biham(2009)]. Here, the states

of genes are characterized by their concentration levels. The state-of-the-art model, e.g.,

the Michaelis-Menten dynamics [Menten and Michaelis(1913)], postulates that the rate of

change in the concentration levels of a gene is a linear combination of the nonlinearly

distorted concentration levels of its regulating genes. This is in contrast to that for the

opinion dynamics, where the changes in opinions is dependent on the convex combination

of a nonlinear distorted version of the difference in the opinions, as illustrated below:

(Opinion Dynamics) xi(t+ 1)− xi(t) =

n∑

j=1

Aijh
(
xj(t)− xi(t)

)
,

(Gene Dynamics)
dxi(t)

dt
= f(xi(t)) ·

n∑

j=1

Aijh(xj(t)) .

(4.1)

The difference between the two types of dynamics above may appear to be subtle at the first

sight. However, there are two important differences for the effects of perturbing the steady

states in these dynamics. Firstly, the gene dynamics are perturbed through knocking out

one or a few genes; while the perturbation model studied for the opinion dynamics relies on

injecting different initial opinions from the stubborn agents. Secondly, the structure of the

dynamics equations leads to a substantially different characterization of the steady states

when the system is perturbed.

Motivated by the applications in understanding diseases and discovering new drugs

[Barabasi and Oltvai(2004)], the GRN identification problem has been considered in various

69

work [Huynh-Thu et al.(2010), Haury et al.(2012)]. However, most of the prior work are

based on machine learning heuristics or they rely on observing high-rank data, the latter

is typically unavailable since the data collection requires performing actual experiments on

organisms, which are costly and time consuming. One of the aims of this chapter is to

study the minimum number of experiments required to accurately identify the GRN. We

apply tools from sparse recovery and prove that a sparse GRN can be recovered with only

observations from a few perturbation experiments. Compared to opinion dynamics model

in the previous chapter, our recoverability result requires a few more assumptions, yet a

similar conclusion can be drawn on the number of perturbation experiments required.

In the rest of the chapter, Section 4.2 set up the dynamics model and a mathematical

description of the type of perturbation experiments involved. Then, Section 4.4 shows the

provable guarantees on network recoverability; Section 4.5 presents a robustified framework

for network inference. Finally, Section 4.6 concludes the chapter with results from our

numerical experiments.

4.2 Gene Dynamics Model

We following the common notations in Section 2.1 to define the gene regulatory networks

(GRNs). We consider an GRN with n genes such that V = [n], and the weight matrix

A ∈ Rn×n encodes the strengths of regulation between the genes. The time dependent

expression (or concentration) level of gene i, xi(t), follows the nonlinear dynamics:

ẋi(t) = −xi(t) +
n∑

j=1

Aij · h(xj(t); b) , ∀ i ∈ [n] . (4.2)

where ẋi(t) := dxi(t)/dt is the rate of change of the expression level xi(t). The first term

on the right hand side captures the gene i’s self dynamics, capturing processes such as

degradation, and the sum captures the impact of i’s interacting partners; h(x; b) is the

nonlinear continuous response function describing the regulatory mechanism such that b

describes its parameters. For instance, setting h(x) = c · xb describes chemical activation,

70

where according to the law of mass action b is the level of cooperation in the activating

process. Another frequently used response function is the Hill function h(x) = xb/(1 + xb),

a saturating function such that limx→∞ h(x) = 1, which captures a switch-like process. In

matrix form, we can express any unperturbed steady state x of the system (4.2) as:

x = Ah(x; b) , (4.3)

where h(x; b) := (h(x1; b), h(x2; b), . . . , h(xn; b))> is a column vector.

Our ultimate goal is to identify the GRN from steady state observations on the gene

dynamics. A common practice to this end is to introduce perturbations to the system

through suppressing or over-expressing a selected set of genes. The corresponding steady

states are then recorded for network identification in the next stage. As a practical concern,

only a small number of genes (e.g., one or maybe a few) can be perturbed at a time. For

simplicity, here we we consider a set of K distinct perturbation experiments, where only

one node is perturbed per experiment. Note that the extension to simultaneous multiple

nodes’ perturbation is straightforward. In each experiment k = 1, 2, ...,K, we fix the state

of gene k at a desired value zk ∈ R, i.e., xk(t) = zk for all t. The perturbed steady state

x[k] takes the form

x[k] = (I − eke
>
k)Ah(x[k]; b) + zkek . (4.4)

Notice that when zk = 0, this corresponds to the deletion of gene k in the experiment. More-

over, the perturbation experiment described can be seen as setting a boundary condition on

the gene dynamics (4.2).

The expression (4.4) reveals both a good news and bad news for gene dynamics iden-

tification using perturbation experiments. On the upside, Eq. (4.4) reveals that the values

of all x[k] can be extracted from the experimental results when the nonlinear function h(·)

is known or approximated, hence despite the nonlinear interactions, the equation is linear

in the unknown A. This reveals that it is possible to retrieve the unknown using sim-

ple techniques, e.g., solving least square estimation problems. On the downside, for each k,

71

Eq. (4.4) constitutes a set of (n−1)-linear equations in the unknown parameter A. Naively,

we must conduct perturbation experiments for all n genes, yielding the required n(n − 1)

equations to reconstruct the n× (n− 1) off-diagonal terms of the unknown GRN. However,

such comprehensive perturbation experiments are seldom available. Indeed, the GRN of

most organisms comprises n ∼ 103 genes, far exceeding the scale of the majority of microar-

ray experiments, which, given the level of available resources, consists of K ∼ 101 − 102

experiments. Hence, we shall focus on the limit where K � n. In other words, we face

a similar situation as in the last chapter with only low-rank observations on the unknown

network. Similarly, our strategy is to rely on the common assumption that A is sparse and

derive a sparse optimization algorithm to extract A from the resulting underdetermined

linear system (4.4).

In addition to exploiting sparsity, our analysis shows that it is also necessary to obtain

certain side information about the GRNA to guarantee the identifiability of gene dynamics.

The following describes a curious property pertaining to the perturbed system states that

reveals the support information ofA without solving any optimization problem. To describe

the result, we denote acol,k as the kth column vector of A. Let ∇h(x[k]); b) be the diagonal

matrix with the ith diagonal element being h′(xi[k]; b), i.e., the derivative of h(xi[k]; b) with

respect to xi[k] evaluated at xi[k], we have:

Proposition 4.1 Consider the dynamics (4.2). Assume that the perturbation in the steady

states for the kth experiment, x − x[k], is small and λmax((I − eke
>
k)A∇h(x[k]; b)) < 1.

The perturbation in the steady states can be approximated by:

x− x[k] ≈ ([x]k − zk)ek + ([x]k − zk)h′(zk)acol,k . (4.5)

The proof can be found in Appendix 4.A. Proposition 4.1 implies that the perturbation

introduced by the kth experiment is limited only to the direct out-neighbor of the perturbed

node k. This matches the observation made in [Barzel and Barabasi(2013)], which showed

that the influence of a perturbation on a node decays exponentially fast with respect to the

72

shortest distance to the perturbed node.

4.3 Gene Dynamics Identification

This section describes the main algorithm that we propose for identifying the GRN from

the perturbation data. As the first step, we focus on the case when the dynamics parameter

b is known and relegate the more complicated case with unknown b to Section 4.5. The

available data can be described as a response matrix consisting of (x, {x[k]}Kk=1) in which

we gather the gene expression data from K perturbation experiments.

Motivated by our analysis from the last section, the algorithm consists of two stages —

we first identify the partial support of the GRN of the 1-hop neighbors of the perturbed

genes, then we apply a sparse regularization to the sparsest fit of the GRN to the observed

perturbed steady states.

Step 1: Finding the partial support. From Proposition 4.1, the difference vector x−x[k]

is approximately supported on supp(acol,k), i.e., the kth column of the original A. As such,

if we let δ > 0 be a pre-defined threshold and consider the index set:

S =
K⋃

j=1

{
(i, j) ∈ [n]× [n] :

[
x− x[j]

]
i

[x]j − zj
< δ
}
, (4.6)

then the set S identifies the locations of zeros or non-edges in the first K columns of the

GRN adjacency matrix A. Notice that the above set can be computed without solving any

optimization problem. Moreover, we define Si as the restriction of S to the ith row of A,

notice that Si ⊆ [K].

Step 2: Sparse recovery of GRN. We observe that (4.4) can be split in a row-by-row

fashion such that:

(x[k])i = a>i h(x[k]; b), ∀ k ∈ [K] \ {i} , (4.7)

where ai is the ith row of A. From the above, we have ≈ n unknowns in the variable ai yet

only ≈ K linear equations pertaining to ai. As K � n, we exploit the common assumption

73

that ai is sparse. This further suggests us to consider the following sparse optimization:

min
âi

‖âi‖1 s.t. [x]i = â>i h(x; b), (x[k])i = â>i h(x[k]; b), ∀ k ∈ [K] \ {i} , (4.8a)

[âi]i = 0, [âi]j = 0, ∀ j ∈ Si, âi ∈ Rn . (4.8b)

The solution to the above problem, âi, serves as an estimate for the ith row of A.

Lastly, let us comment on the complexity of the proposed method above. The first step

merely involves a thresholding operation and can be computed easily with a complexity of

O(Kn). As for the second step, each of the proposed problem (4.8) can be converted into a

linear program (LP) with (at most) 2n unknowns and K linear equality constraints [Foucart

and Rauhut(2013)]. In general, such an LP can be solved at a worst-case complexity

of O((K + 2n)3/2(2n)2 log(1/ε)) = O(n3.5 log(1/ε)) where ε > 0 is the desired solution

accuracy [Ben-Tal and Nemirovski(2001)]. Moreover, since each of the sub-problems are

decoupled and can be solved independently, a practical way is to solve these problems in

parallel. Our numerical results indicate that the proposed procedure can be completed in

reasonable time for a relatively large network with n ≈ 1000 genes.

4.4 Guarantees for Gene Dynamics Identification

To understand the fundamental limits of recovering the GRN with (4.8), we study the

scenario when the steady states x and x[k] are obtained with no noise, i.e., they satisfy

the equalities (4.3) and (4.4), and the dynamics parameter b is known. The challenge in

the analysis is that the undetermined linear system (4.8a) depends on the true network A

itself which is a sparse matrix, and the dynamical system is non-linear. We develop a new

sparse recoverability condition that is different from [Candes and Tao(2005)]. We have:

Theorem 4.1 Assume that (a) the set S is the complement of the support of A; (b) the

matrix A is non-negative; (c) the approximation in Proposition 4.1 is exact; (d) h(x; b)

admits an exact first order Taylor approximation at x[k]. For each i ∈ [n], if the support

of the matrix ([A]:,Si)
> corresponds to an (α, δ)-unbalanced expander graph with left degree

74

bounded in [dl, du] such that

‖ai‖0 ≤
α

1 + (dl/du)δ
n, ∀ i ∈ [n] , (4.9)

2(dl/du)δ >
√

5− 1, xk − zk ≥ 0, ∀ k ∈ [K] , (4.10)

then solving (4.8) with the additional constraint âi ≥ 0 yields a unique solution such that

ai = âi, where ai is the ith row of A.

The formal definition of an expander (bipartite) graph can be found in [Gilbert and

Indyk(2010)] or in Definition 3.2 of Chapter 3. The proof of Theorem 4.1 is relegated to

Appendix 4.B. A curious fact about Theorem 4.1 is that the condition (4.9) depends on

the graph structure of A as well as the sparsity of each row ai of A. This is due to the

fact that the linear system (4.8a) depends on A itself. Regarding Theorem 4.1, we have the

following comments:

• The assumptions made in the theorem above are more stringent than those for the

case with opinion dynamics [cf. Theorem 3.1]. In particular, we require the partial

support detection in (4.6) to be exact and the Taylor expansion to be exact. These

are in general not true. However, the conditions given provide insights towards the

types of the GRNs that can be identified easily.

• In contrast to our previous result for opinion dynamics [cf. Theorem 3.1], the suffi-

cient condition of identifiability depends on the choice of perturbed genes and their

corresponding local topology [cf. the expander graph assumption]. As we show in the

short discussion below, a possible scenario satisfying the conditions in Theorem 4.1

requires choosing the set of perturbed genes [K] such that each gene in V is regulated

by a similar number (∼ `) of the genes in [K].

• Eq. (4.9) requires the sparsity of each ai to be uniformly bounded. This predicts that

a GRN more similar to a regular graph will be easier to identify. However, the actual

GRNs are usually endowed with non-uniform degrees, or even with a power law degree

75

distribution. That said, the proposed method is still able to identify the sparser rows

of A accurately and our numerical experiments on empirical data confirms its good

performance.

Special case satisfying the perfect recovery conditions. We describe a case where the

perfect recovery conditions in Theorem 4.1 can be satisfied. In particular, we begin our

construction by choosing the set of perturbed genes Vp, |Vp| = K, such that for each j ∈ V ,

the jth gene is regulated by ` genes in the chosen perturbed genes, i.e., it has ` in-neighbors

from the set Vp. In other words, the sub-matrix ([A]:,Vp)
> ∈ RK×n corresponds to the bi-

partite graph with a constant degree `.

Now, the sub-sub-matrix ([A]:,Si)
> is formed by deleting a random subset of ` rows from

([A]:,Vp)
> such that K = |Si|+ `. Using a similar set of arguments in Proposition 3.3 of the

previous chapter, it can be shown that the support of the sub-matrix ([A]:,Si)
> corresponds

to a random bipartite graph with bounded degree in [`−1, `] with high probability. Finally,

we apply Proposition 3.4 to show that this bipartite graph is an (α, 1− 1/(`− 1))-expander

with a high probability. This is done by checking

`− 1 > max
{

4,
H(α) + βH(α/β̃)

α log(β̃/α)

}
, (4.11)

where |Si| = β̃ · n, and β̃ > α (note that |Si| < K). Moreover, the conditions (4.9) and

(4.10) imply that

α ≥ dmax

n
·
(
1 + δ(dl/du)

)
> 1.62 · dmax

n
, (4.12)

where dmax is the maximum in-degree for the genes in the network. A sufficient condition

satisfying the above requirement can be found by checking Table 3.1 while substituting the

β′ therein with the β̃ in the above. Now, similar to the discussion in the previous chapter,

for a fixed `, it can be shown that the ratio β̃/α approaches a constant as α, β → 0.

Consequently, the number K of perturbation experiments required satisfies K = Ω(dmax),

i.e., independent of the network size, showing that K = Ω(dmax) is a sufficient condition

76

for perfect recovery. Notice that these are only sufficient conditions for perfect recovery, as

demonstrated in Section 4.6.

4.5 Robust Identification of Sparse Networks

So far, the theoretical model above assumes that the steady state expression data are

measured noiselessly and the parameter b in the model response function h(x; b) is known.

This section proposes several practical heuristics to tackle the scenarios when b is unknown

and we have noisy expression data. In particular, we consider the following noisy observation

model:

x̃ = x+ ε and x̃[k] = x[k] + ε[k] , (4.13)

where the vectors ε, ε[k] represent additive noise which is bounded. Let i ∈ [n], b̂i be an

estimate of the parameter and define the matrix/vector:

yi :=




x̃i[1]

...

x̃i[K]

x̃i




and Hi(b̂i) :=




h(x̃[1]; b̂i)
>

...

h(x̃[K]; b̂i)
>

h(x̃; b̂i)
>




. (4.14)

We assume the underlying model parameter bi for each gene to be different for better

fitting. Naturally, one would like to relax the equalities in (4.8a) and minimize the cost

λ‖âi‖1 + ‖yi −Hi(b̂i)âi‖2 . However, we observe that the kth element of yi is expressed

as:

x̃i[k] = h(x[k]; bi)
>ai + εi[k] = h(x̃[k]; b̂i)

>ai + δ[k]>ai + εi[k] , (4.15)

where δ[k] := h(x[k]; bi)−h(x̃[k]; b̂i) is an unknown vector that scales with the magnitude

of ε[k]. The difference vector yi −Hi(bi)âi is dependent on ai and can not be modeled as

an additive noise.

77

From (4.15), for each i ∈ [n], we can model the vector yi as

yi = Hiai + ∆iai + ε , (4.16)

where ∆i models the error in the observed measurement matrix Hi. Let r > 0, the

uncertainty set for ∆i is defined such that each row vector in the matrix has a bounded

norm, i.e.,

Ur = {∆i : ‖dk‖2 ≤ r, ∀ k ∈ [K + 1]} , (4.17)

where dk is the kth row vector of ∆i. To recover ai, we consider minimizing the following

robust objective:

J(âi) = λ‖âi‖1 + max
∆i∈Ur

‖yi −Hiâi −∆iâi‖2 , (4.18)

which can be upper bounded by:

J(âi) ≤ λ‖âi‖1 + ‖yi −Hiâi‖2 + max
∆i∈Ur

‖∆iâi‖2

= λ‖âi‖1 + ‖yi −Hiâi‖2 + r
√
K + 1 · ‖âi‖2 ,

(4.19)

where the last equality is achieved by applying Cauchy-Schwarz and setting each row of ∆i

to r · âi/‖âi‖2. Setting γ = r
√
K + 1 and minimizing the upper bound function yields the

robust network recovery problem (4.20).

On the other hand, the unknown parameter bi lies in a parameter set B. As such, our

robust identification of sparse networks (RIDS) method tackles — for each i ∈ [n]:

min
âi,b̂i

J(âi; b̂i) := ‖yi −Hi(b̂i)âi‖2 + ρ‖âi‖1 + γ‖âi‖2 (4.20a)

s.t. [âi] = 0, [âi]j = 0, ∀ j ∈ Si, âi ∈ Rn, b̂i ∈ B , (4.20b)

where ρ, γ > 0 are fixed regularization parameter. This formulation is akin to the matrix

uncertainty (MU) selector in [Rosenbaum and Tsybakov(2010)] for sparse recovery with un-

certainty. Despite being robust to measurement error, the above formulation simultaneously

78

solves for the best model parameter that fits with the expression data.

However, (4.20) is a non-convex problem due to the multiplicative coupling in the least

square objective function. The problem cannot be solved directly using off-the-shelf pack-

ages. The RIDS method applies an alternating optimization (AO) approach to get around

with the issue, i.e., by running the following iterative procedure for each i ∈ [n]:

for ` = 1, 2, 3, . . . , L

â`+1
i ← arg minâi J(âi; b̂

`
i) s.t. (4.20b) satisfied ,

b̂`+1
i ← arg minb ‖(b̂`i − ε · ∇bJ(â`+1

i ; b`))− b‖2 s.t. b ∈ B ,

(4.21)

where ε > 0 is a fixed step size and ∇bJ(â`+1
i ; b̂`i) is the gradient of the cost function. The

last step is a projected gradient update step for b̂i.

The RIDS method is summarized in Figure 4.1. In the first stage, we apply a pre-process

method to de-noise the experimental data (see the subsection below); in the second stage,

we tackle the robust GRN recovery problem (4.20) using the AO procedure in (4.21).

4.5.1 Handling Empirical Gene Expression Data

Empirical gene expression data are typically poorly processed as the actual experimental

data is prone to noise. In this section, we describe a set of procedures, which are inspired

by our analysis on the gene dynamics, for denoising the empirical gene expression data such

that they can be better exploited by the proposed RIDS method.

Step 1: Subspace projection for ‘denoising’. As the first step, we apply a subspace

projection method as a pre-processing stage in the RIDS method. In particular, let the

set of chips (or vectors of expression levels) taken under the no perturbation condition be

79

AO for tackling the
non-convex problem

Chips for unperturbed exp.

Lots of noisy data with potential
contamination of outliers

Singular Value Decomposition

Xobs = U⌃V T

Chips for the kth exp.

�
[U]:,2:end[U]T:,2:end

�
· 1

|Cper[k]|
X

c2Cper[k]

xobs,c

Orthogonal Projection

`De-noised’ estimate of
gene expression levels

min
Â

KX

k=1

kf(xk; Â)k2 + ⇢kÂk1 + �kÂk2

^(x[k]� x)

RIDS Method

Principal singular vector

Non-principal
singular vectors

[U]:,2:end

x̃ / [U]:,1

Figure 4.1: Overview of the processing steps for empirical data. In the pre-processing stage,

we first recover the unperturbed steady-state expression levels x̃ by analyzing the principal

component of the stacked response matrix Xobs. Then, an orthogonal projection is applied

to the perturbed steady-state expression levels to recover x[k] − x for each perturbation

condition. This forms (K + 1) vectors where each of them correspond to a distinct pertur-

bation condition (including no perturbation). Finally, we tackle the robust sparse network

recovery problem (4.20) for GRN recovery via the AO procedure (4.21).

Cnopert, we can write the gene expression levels from the cth chip as

xobs,c = x+wc, ∀ c ∈ Cnopert =⇒
(
. . . xobs,c . . .

)
︸ ︷︷ ︸

:=Xobs

= x1> +Wobs , (4.22)

where x is the unperturbed steady state satisfying x = Ah(x) (cf. Eq. (4.3)) and wc is

modeled as an additive noise. When the noise is small, we observe that the n × |Cnopert|

matrix Xobs formed by stacking up xobs,c horizontally is close to rank-one. In light of this,

a natural way for recovering x is by taking the top left-singular vector of Xobs, i.e.,

x̃ = σ1(Xobs) · u1 where Xobs = UΣV > , (4.23)

and σ1(Xobs) is the largest singular value of Xobs.

80

On the other hand, for the perturbed steady-states where k ∈ [K], we can estimate the

difference x[k]− x by the following subspace projection:

˜(x[k]− x) =
(
[U]:,2:end[U]>:,2:end

)
· 1

|Cper[k]|
∑

c∈Cper[k]

xobs,c , (4.24)

where xobs,c is the gene expression levels from chip c and Cper[k] is the set of chips that

corresponds to the kth perturbation experiment. Naturally, we set

x̃[k] = (˜x[k]− x) + x̃ , (4.25)

to be our estimate of the kth perturbed steady state.

Step 2: Normalizing the gene expression vectors. As a final step of the preprocess-

ing, we normalize the vectors of gene expression level x̃ and x̃[k] obtained from from the

preprocessing steps detailed by dividing the vectors by the constant

cnorm :=
1

2
max

{
max
i∈[n]

(x̃i), max
k∈[K]

max
i∈[n]

(x̃i[k])
}

(4.26)

such that the values of the normalized gene expression level ranges in [0, 2].

4.6 Numerical Experiments

This section presents numerical results for verifying our theoretical claims on the per-

formance of the proposed RIDS method. To emphasize on the applications to real world

networks, our experiments cover both synthetic and empirical data. Notice that we use

the similar performance metrics to those of Section 3.6, i.e., we compare the AUROC and

normalized MSE of the algorithms under various settings.

4.6.1 Synthetic Data

In silico data. We test the models when the GRN G = (V,E) with n = 100. The weight

matrix A has entries that are uniformly distributed in [0, 1]. We evaluate the steady-state

81

10 20 30 40

0.6

0.7

0.8

0.9

1

Perturbation exp. (K)

A
U
R
O
C

RIDS (Reg.)

GENIE3 (Reg.)

TIGRESS (Reg.)

RIDS (ER)

GENIE3 (ER)

10 20 30 40
10−13

10−10

10−7

10−4

10−1

Perturbation exp. (K)

N
M
S
E

RIDS (Reg.)

RIDS (ER)

Figure 4.2: Identifying GRNs with noiseless synthetic data. The GRN has n = 100 nodes

and is generated as a random graphs — ER graph with connectivity of 0.1 and Random

regular graphs (‘Reg’) with constant degree d = 10. (Left) Area under ROC. (Right) MSE

of Â. The shaded area shows the 5% / 95% percentile interval for the AUROC performances.

gene expression levels subject to gene deletion using the 4th order Runge-Kutta method.

We include the GENIE3 method [Huynh-Thu et al.(2010)] and TIGRESS method [Haury

et al.(2012)] for benchmarks. These two were the best performing methods in the DREAM5

challenge. All algorithms tested are implemented on MATLAB 2016a. For the zeros index

set S in (4.6), we set δ = 0.02. The model response function used is h(x) = x0.5/(1 + x0.5)

and the parameters are assumed to be known.

Analysis. We notice that the TIGRESS method has encountered numerical issues for

the case with ER graphs and therefore it was shown only for the random regular graphs

case. Figure 4.2 compares the mean square error of the recovered Â and the area under

an ROC curve (AUROC) for the recovered network G versus the number of perturbation

experiments K. We assume noiseless measurements in this case and solve (4.8) to recover

the network. We observe that the proposed RIDS method achieves an AUROC of ≥ 0.9 with

K ≥ 14 perturbation experiments, significantly outperforming the GENIE3 and TIGRESS

methods under similar conditions. Moreover, we see that the proposed RIDS method has

a better performance when the underlying graph is a regular graph. In particular, with

82

10 20 30 40

0.5

0.6

0.7

0.8

0.9

Perturbation exp. (K)

A
U
R
O
C

RIDS (Noise=0.1)

GENIE3 (Noise=0.1)

RIDS (Noise=0.001)

GENIE3 (Noise=0.001)

10 20 30 40

0.5

0.6

0.7

0.8

0.9

Perturbation exp. (K)

A
U
R
O
C

RIDS (Noise=0.1)

GENIE3 (Noise=0.1)

RIDS (Noise=0.001)

GENIE3 (Noise=0.001)

Figure 4.3: Identifying GRNs with noisy synthetic data. The GRNs have n = 100 nodes

and are generated as random graphs. (Left) ER graphs with connectivity of 0.1. (Right)

Random regular graphs with constant degree d = 10. The shaded area shows the 5% / 95%

percentile interval for the AUROC performances.

K ≈ 32 perturbation experiments we have perfect recovery of both the inferred links and

interaction strengths, Aij , for the regular graph model. Perfect recovery was also observed

for the ER model for ∼ 70% of the instances at K ≥ 32, but however, as the ER graphs tend

to have hubs with high degree, its average MSE performance will be affected. Nevertheless,

having K ≈ 14 experiments (∼ 15% of the total number of genes) is sufficient to yield a

good GRN recovery performance. The above result corroborates with our analysis that

regular graphs can be identified with less number of experiments.

Figure 4.3 considers the noisy measurement scenario. With reference to (4.13), the

elements of ε, ε[k] are independently extracted from normal distributions N (0, 0.1) and

N (0, 0.01). We apply the robust formulation (4.20) with the regularizing parameters set

to ρ = 10−5, γ = 0.5, γ = 0.05 for the case with N (0, 0.1) noise and N (0, 0.01) noise,

respectively, to recover the network, notice that in this scenario the parameter b is known

and the problem (4.20) can be solved directly. Comparing the average AUROC performance

shows that the RIDS method has consistently delivered a better performance than GENIE3

and TIGRESS. However, we notice that as the noise power grows, the advantage of applying

83

our method declines, i.e., the RIDS achieves the same performance as GENIE3 when the

noise power is 0.1 in the random regular graphs case.

4.6.2 Empirical Data

In vivo data. To test our methodology against empirical data, we reconstruct the GRN

of Escherichia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae) directly from gene

perturbation experiments, using the highly curated datasets collected for the DREAM5 Net-

work Inference Challenge1. The E. coli (resp. S. cerevisiae) dataset describes 805 (resp. 536)

vectors of expression level of n = 4511 (resp. n = 5950) anonymized genes under different

experimental conditions; the dataset also lists a subset of TF = 334 (resp. TF = 333) genes

that are recognized as known transcription factors (TFs), some of whom are decoys, namely

wrongly labeled as such.

Our method relies on the expression levels in the steady state only. Therefore, we

use only 326 out of 805 (resp. 238 out of 536) vectors of expression levels in the E. coli

(resp. S. cerevisiae) dataset, i.e., about ∼ 40% of the data. The remaining vectors corre-

spond to transient states, which our method is not designed to treat. Upon grouping and

denoising the dataset using the pre-processing method described, we are left with K = 56

(resp. K = 7) vectors of expression levels for E. coli (resp. S. cerevisiae), each with a dis-

tinct perturbation conditions. From these vectors, we must reconstruct A, capturing the

GRN between the transcription factors and the genes, a total of 334×4511 (resp. 333×5950)

potential links for E. coli (resp. S. cerevisiae).

We use the following model response function for the empirical data:

h(x; b) = 0.75 · xb2/(1 + b1x
b2), B = {b ∈ R2 : b1, b2 ≥ 0} . (4.27)

The above encompasses several kinetic interaction models. When b1 → 0, the interaction

model tends to be that of a chemical activation process; otherwise the interaction model

1Available at https://www.synapse.org/#\!Synapse:syn2787209/wiki/70351.

84

has a saturating effect close to a switch-like process; b2 controls the saturation rate of the

gene interaction. We apply the RIDS method to learn simultaneously the GRN and the

model parameters. We wish to remark that our system identification algorithm is the only

one among the methods commonly used for gene network identification that gives insights

on the type of network edge rather than only detecting the existence of an edge.

Parameters of RIDS. For the zeros index set S in (4.6), we set δ = 0.005. The regular-

ization parameters ρ and γ are set to 3 × 100 and 5 × 100 (resp. 3 × 10−1 and 5 × 10−1)

in (4.20) for E. coli (resp. S. cerevisiae) network. Meanwhile, the AO procedure (4.21)

aims at tackling (4.20) with the model response function template (4.27), which has several

parameters to be initialized — for each i ∈ [n], we initialize the AO procedure by setting

b1 = 0.5 and b2 = 0.5 and the step size ε is set to 1× 10−2. Lastly, the AO procedure ter-

minates after L = 10 iterations in the numerical experiment for a better trade-off between

complexity and accuracy.

Post-processing of the estimated GRN. The proposed algorithm may recover also the

negative edge weights in Â. However, we shall treat these negative edge weights as positive

ones for the ease of benchmarking using the DREAM5 evaluation script. In particular, we

consider |Â| as our estimate of the GRN. Furthermore, we normalize the elements in |Â|

by maxi,j |[Â]ij | such that they range in [0, 1]. For the AUROC/AUPR evaluation, we only

count the top 100,000 (and 500,000) predicted links made by our algorithm.

Analysis. Table 4.1 shows the GRN recovery result for the truncated top 100,000 and

500,000 predicted links in the GRN, compared to the Gold Standard. For each method,

we evaluate the AUROC, AUPR and the prediction score, defined similarly as in [Marbach

et al.(2012)] by Score := (log10(pAUROC) + log10(pAUPR))/2, where pAUROC and pAUPR are

the p-values for AUROC/AUPR. The numerical experiment demonstrates that our robust

GRN recovery approach is able to infer GRN from few steady-state data, while achieving

superior performance to the state-of-the-art. In particular, for the E. coli network, the RIDS

method is the top performer among the compared methods, beating even the community

85

E. coli S. cerevisiae

Methods AUROC AUPR Score AUROC AUPR Score

TIGRESS [Haury
et al.(2012)]

0.595 0.069 4.41 0.517 0.02 1.082

GENIE3 [Huynh-Thu

et al.(2010)]
0.617 0.093 14.79 0.518 0.021 1.387

RankSum 0.65 0.09 24.90 0.528 0.022 6.236

bLARS [Singh and
Vidyasagar(2016)]

N/A N/A 5.841 N/A N/A 7.479

RIDS 0.6808 0.0504 32.39 0.525 0.022 4.694

(top 100k) 1.69× 10−64 9.9× 10−2 3.84× 10−8 2.3× 10−2

RIDS (opt. b, 0.6823 0.0508 33.29 0.525 0.021 4.161

top 100k) 3.13× 10−66 8.5× 10−2 6.47× 10−8 2.9× 10−2

RIDS (no TF, 0.6745 0.0540 29.12 0.524 0.0221 4.298

top 100k) 2.78× 10−57 2.0× 10−2 3.70× 10−7 4.8× 10−2

iRafNet [Petralia
et al.(2015)]

0.641 0.112 29.26 N/A N/A N/A

GENIMS [Wu
et al.(2016)]

0.705 0.052 48.33 0.533 0.02 8.454

RIDS 0.7573 0.0574 93.28 0.5734 0.0252 62.64

(top 500k) 1.04×10−184 2.7× 10−3 1.5× 10−119 2.38× 10−7

?All values/scores are calculated with the top 100k predictions. Exceptions are the iRafNet, GENIMS and

RIDS (top 500k) in the last three rows, that are based on the top 200k, all, top 500k predictions, respectively.

Table 4.1: GRN recovery result on the two in vivo dataset. Scores for RankSum, GENIE3

and TIGRESS are taken directly from the DREAM5’s leaderboard. Notice that RankSum

is the community integrated prediction. The lower columns’ scores are the p-value for the

AUROC/AUPR metrics. The RIDS method in the 5th row uses the median optimized

parameters learnt for the two networks, i.e., b1 = 0.047, b2 = 0.5893 for E. coli and b1 =

0.5571, b2 = 0.3749 for S. cerevisiae and we solve (4.20) with the fixed parameters for all

genes; the 6th row tackles (4.20) without using the list of transcription factors.

integrated prediction (RankSum) while using ∼ 60% less experimental data. Our method

gives good performance even the list of TFs are not provided when tackling (4.20). Overall,

we have the best prediction score for E. coli, and the score for S. cerevisiae is comparable

to state-of-the-art.

The model parameters learnt using RIDS are plotted in Figure 4.4. We observe that

the parameters learnt are clustered around b1 ∼ 0.05, b2 ∼ 0.6 for the E. coli network and

b1 ∼ 0.4, b2 ∼ 0.55 for the S. cerevisiae network. This suggests that the interaction model

for the former is close to a chemical activation process, while the latter is close to being

86

0 0.2 0.4 0.6 0.8
b

2
 (saturation rate)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

b
1

0 0.2 0.4 0.6 0.8
b

2
 (saturation rate)

0

0.1

0.2

0.3

0.4

0.5

0.6

b
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Parameters value

0

200

400

600

800

1000

1200

F
re

qu
en

cy

b
2
 (saturation rate)

b
1

0 0.2 0.4 0.6 0.8
Parameters' value

0

50

100

150

200

250

300

350

400

F
re

qu
en

cy

b
2
 (saturation rate)

b
1

Figure 4.4: Model parameters learnt for different gene dynamics. (Left) E. coli network.

(Right) S. cerevisiae network. The top figures show the scatter plot of the parameters.

The bottom figures show the histograms of parameters learnt, where the blue patch is

the saturation rate parameter b2 and the red patch is parameter b1 which controls if the

interaction model is more of the chemical activation type or the switching type, cf. (4.27).

a combination. The parameters learnt are also similar across different genes, which seems

to indiciate that the parameter space may be reduced by using a single set of parameters

for all genes. This is corroborated by the AUROC/AUPR performance obtained when the

RIDS method is re-applied with the same model parameter for all genes in Table 4.1. From

the table, we note that the S. cerevisiae shows a higher variance for the b1, b2 values learnt

for each gene, which is due to the fact that the in vivo data available for this network is

scarcer than the one for E. coli.

4.7 Chapter Summary

This work proposes the RIDS method for GRN identification using a limited number

of perturbation experiments. The RIDS method is developed through modeling the gene

87

expression data as the outcome of perturbing a nonlinear dynamic system. To improve

robustness, the method first applies a subspace projection method for denoising the gene

expression data, then a sparse and robust estimator is applied to recover the network.

The model parameters of the dynamic system will also be inferred simultaneously. Our

theoretical analysis, conducted under the assumption that the dynamic’s parameters are

known, shows that it is possible to recover the GRN even when there are only a few sets

of perturbation experiment data available. This is in contrary to the common belief that it

requires a large number of experiments to apply similar methods. Moreover, our experiments

on empirical data shows that the RIDS method compares favorably to the state-of-the-art

methods while requiring ∼ 60% less data. The RIDS method paves the way to study the

dynamics of gene interactions by having the ability to infer the model parameters, which is

important as studied by [Ronen et al.(2002)]. For example, our preliminary result suggests

that the genes in the E. coli and S. cerevisiae networks tend to have a different interaction

model with its neighboring genes.

88

Appendix

4.A Proof of Proposition 4.1

Define

x− x[k] = ([x]k − zk)ek + ε, (4.28)

such that the kth component of ε is zero. Our goal is to find ε. We have:

x− x[k] = A(h(x)− h(x[k])) + eke
>
kAh(x[k]) + zkek. (4.29)

Notice that ek is in the null space of (I − eke
>
k). Left-multiplying with (I − eke

>
k) to both

sides of the equation yields:

ε = (I − eke
>
k)A(h(x)− h(x[k]))

≈ (I − eke
>
k)A∇h(x[k])(([x]k − zk)ek + ε)

(4.30)

where we have taken Taylor’s expansion for h(x) centered at x[k] and assumed that the

approximation is accurate when the perturbation x− x[k] is small. This gives

ε ≈ (I − eke
>
k)A∇h(x[k])ε+ ([x]k − zk)(I − eke

>
k)A∇h(x[k])ek (4.31)

Moreover, we notice that ∇h(x[k]) is a diagonal matrix with h′(zk) on its kth entry. There-

fore the latter term can be simplified as

([x]k − zk)(I − eke
>
k)A∇h(x′)ek = ([x]k − zk)h′(zk)(I − eke

>
k)acol,k

= ([x]k − zk)h′(zk)acol,k ,
(4.32)

where the last equality is due to the fact that the kth element of acol,k is zero.

89

Finally, we observe that

ε =
(
I − (I − eke

>
k)A∇h(x[k])

)−1 · ([x]k − zk)h′(zk)acol,k

=
(
I + (I − eke

>
k)A∇h(x′)

+ ((I − eke
>
k)A∇h(x′))2 + · · ·

)
· ([x]k − zk)h′(zk)acol,k

≈ ([x]k − zk)h′(zk)acol,k ,

(4.33)

where the second equality is due to Taylor’s expansion. Notice that the series expansion

holds when λmax((I − eke
>
k)A∇h(x′)) < 1.

4.B Proof of Theorem 4.1

Using the assumptions stated in the theorem, we first reduce the linear system into a

simple form that involves an underdetermined system with a sparse sensing matrix. The

sensing matrix is then found to have the same structure/support as the bipartite graph

formed by the edges from the perturbed nodes to all other nodes. Finally, the desired perfect

recovery condition is given as a consequence of the expander property of this bipartite graph.

We are ready to begin our proof. Let ai be the ith row of A and define a set of vectors

{yi}ni=1 such that [yi]k := xi − xi[k]. We observe that yi is a collection of the data points

that depend on ai. For simplicity, let us focus on the case when i /∈ [K],

[yi]k = a>i (h(x)− h(x[k])) ≈ (xk − zk) · a>i ∇h(x)
(
h′(zk)acol,k + ek

)
, (4.34)

where we have applied Proposition 4.1 and the first order Taylor approximation on h(x)−

h(x[k]) to yield the result above. After some manipulations and applying the assumptions

90

stated in the theorem, we can express the equation above as

yi =

(
Λ 0K×(n−K)

)
ai +




(x1 − z1)h′(z1) · ∇h(x)a>col,1
...

(xK − zK)h′(zK) · ∇h(x)a>col,K




︸ ︷︷ ︸
:=Ẽi

ai , (4.35)

where Λ is an K × K diagonal matrix with the kth element being [Λ]kk = xk − zk. The

challenge is that as the non-zero elements of Λ has a larger magnitude than the matrix Ẽi

in the latter matrix-vector product, the overall sensing matrix (Λ 0) + Ẽi is dominated by

the diagonal matrix component. That is, (Λ 0) + Ẽi ≈ (Λ 0). However, this implies that

the elements of ai over the coordinates [n] \ [K] cannot be recovered from yi as the rows of

the sensing matrix supported only on [K]. It is thus necessary to exploit extra information

to recover ai.

In light of this, we note that [ai]j is zero for all j in Si. The first matrix-vector product

is thus an K − |Si|-sparse vector which is supported on the set Sci = [K] − Si. As we are

interested in studying a sufficient condition for perfect recovery, we see that (4.35) implies

the following linear system with the rows corresponding to Sci removed,

[
yi
]
Si =

[
Ẽi
]
Si,:ai . (4.36)

Compared to the original model (4.35), we can suppress the dominating diagonal component

in Ẽi using the support knowledge on ai.

The remaining task is to verify if the reduced sensing matrix
[
Ẽi
]
Si,: is a good sensing

matrix. Notice that dense and random matrices are known to exhibit good properties in

which one only requires |Si| ≥ 2‖ai‖0 · log n to achieve perfect recovery. On the other hand,
[
Ẽi
]
Si,: is a sparse matrix whose support depends on the out-neighbors of the nodes in Si.

In particular, we have supp(
[
Ẽi
]
Si,:) = supp(A>:,Si). An interesting observation is that the

support of the sensing matrix depends on the support of A itself or the network that we

91

wish to recover.

As it turns out, the perfect recovery condition for ai boils down to studying conditions

on the support of
[
Ẽi
]
Si,:. In particular, let Gbi(A,B) with |A| = n and |B| = |Si| ≤ K

be the bi-partite graph representation of [Ei]Si,: such that the adjacency matrix of Gbi,

i.e., Abi ∈ R|Si|×n, has the same support as [Ei]Si,:.

Theorem 4.2 If Gbi is an (α, δ)-unbalanced expander graph with left degree bounded in

[dl, du] such that 2(dl/du) · δ >
√

5− 1 and k ≤ α
1+ρδn, and Ẽi or −Ẽi is non-negative, then

the set

C = {âi :
[
Ẽi
]
Si,:(âi − ai) = 0} (4.37)

is a singleton for all k-sparse vector ai.

Proof: To prove Theorem 4.2, the following lemma will be instrumental. Denote Null(E)

as the null space of a matrix E, i.e., Null(E) := {y : Ey = 0}.

Lemma 4.1 If (i) the vector x is k-sparse, (ii) the matrix E ∈ Rm×n satisfies 0 6= w ∈

Null(E), |S−(w)| ≥ k + 1 where S−(w) = {i ∈ [n] : wi < 0}, then the set C = {x :

E(x− x) = 0, x ≥ 0} is a singleton.

Proof: Suppose |C| > 1 such that there exists x̃ ∈ C, x̃ 6= x. It is straightforward to see

that x̃ = x + w, where w ∈ Null(E). The assumption implies that |S−(w)| ≥ k + 1 and

x̃ = x+w � 0 as x is k-sparse. This contradicts x̃ ∈ C. Q.E.D.

The next step is to apply a generalization of [Wang et al.(2011a), Theorem 4]:

Lemma 4.2 Let n > m and E ∈ Rm×n be a non-negative matrix that has the same support

as the adjacency matrix of an (α, δ)-unbalanced bipartite expander graph with left degrees

bounded in [dl, du] and ρ = dl/du. If ρδ > (
√

5 − 1)/2, then for all k-sparse vector x, the

set

C = {x : E(x− x) = 0, x ≥ 0}, (4.38)

92

is a singleton if k ≤ α
1+ρδn.

Proof: Using Lemma 4.1, it suffices to prove that any w ∈ Null(E) with S−(w) ⊆ A,

we have |S−(w)| ≥ k + 1. We shall proceed by contradiction. Suppose that there exists

w ∈ Null(E) such that |S−(w)| ≤ k. Since |S−(w)| ≤ k ≤ αn, the expander property

implies:

δdl · |S−(w)| ≤ δ|E(S−(w), B)| ≤ |N(S−(w))|. (4.39)

The right hand side can be further upper bounded as:

|N(S−(w))| ≤ |E(S−(w), B)| ≤ du · |S−(w)| (4.40)

Moreover, we know that N(S−(w)) = N(S+(w)) = N(S−(w) ∪ S+(w)). This is because

Ew = 0 and A is non-negative, thus the neighborhood sets must coincide to enforce

nullity, otherwise this will result in Ew 6= 0. Note that in [Wang et al.(2011a)], the proof is

achieved by assuming that E is the binary adjacency matrix. We extend the same argument

to the case when E is non-negative. From the above and applying the inequality (4.39) on

N(S+(w)) = N(S−(w)), we have:

|S+(w)| ≥ |N(S+(w)|/du ≥ (dl/du)δ|S−(w)| (4.41)

As S−(w) and S+(w) are disjoint, we have |S+(w) ∪ |S−(w)| ≥ (1 + ρδ)|S−(w)|. As such,

we choose an arbitrary subset S̃ ⊆ S+(w)∪S−(w) such that |S̃| = (1 + ρδ)|S−(w)|. Notice

that |S̃| ≤ (1 + ρδ)|S−(w)| ≤ αn. Using the expander property again gives:

|N(S̃)| ≥ δ|E(S̃, B)| ≥ duδ(1 + ρδ)|S−(w)| > du|S−(w)| (4.42)

As ρδ > (
√

5− 1)/2, the last inequality is valid as ρδ(1 + ρδ) > 1.

93

Finally, we reach a contradiction as

|N(S̃)| ≤ |N(S−(w) ∪ S+(w))| = |N(S−(w)| ≤ du|S−(w)|, (4.43)

leading to du|S−(w)| > du|S−(w)|. The lemma is thus proven. Q.E.D.

Finally, by identifying that Gbi satisfies the conditions in Lemma 4.2, our desirable

results in Theorem 4.2 can be obtained.

Consequently, we observe that all the conditions in Theorem 4.2 hold, therefore solving

(4.8) yields Â = A, i.e., we achieve perfect recovery of the network.

94

— PART II —

Algorithms on Networks

95

5 Consensus-based Projection-free Optimization

This chapter studies optimization algorithms that run on networks. In contrast to

the previous part on modeling and identification of network dynamics, here we design the

dynamics on the networks. The latter leads to solution of optimization problems relevant

applications in signal estimation or machine learning.

5.1 Context and Background

In this chapter, our focus is to devise algorithms to tackle the optimization problem:

min
θ∈Rd

1

N

N∑

i=1

fi(θ) s.t. θ ∈ C , (5.1)

on a network of N agents. We shall work with a smooth optimization setting where

• the function fi(θ) is continuously differentiable (possibly non-convex), it is held by

the ith agent.

• the set C ⊆ Rd is closed, bounded and convex.

A common instance of (5.1) is the empirical risk minimization (ERM) problem, where the

private risk function fi(θ) models the loss of θ incurred over the private data held by agent

i, e.g.,

fi(θ) =
1

|Ωi|
∑

k∈Ωi

`i(θ,yi,k) , (5.2)

where `i(θ,yi,k) quantifies the mismatch between a statistical model parameterized by θ and

the kth data entry, yi,k, held by agent i. In this instance, C corresponds to a regularization

constraint imposed on θ that promotes desirable properties such as sparsity or a low-rank,

which capture prior knowledge about the solutions that can help overcome the curse of

dimensionality in searching for a solution in Rd. Problem (5.1) also covers a number of

applications in control theory and signal processing, including system identification [Liu

96

and Vandenberghe(2010)], matrix completion [Candès and Recht(2009)] and sparse learning

[Ravazzi et al.(2016),Patterson et al.(2014)]. While in most instances the inclusion of high-

dimensional constraint is a fundamental ingredient to attain good estimation performance,

the curse of dimensionality returns to haunt us due to the significant computational cost

added when enforcing such constraints through a projection step, aimed at ensuring feasible

iterates. As reviewed in Section 1.4, most of the prior work on decentralized optimization

algorithms for constrained optimizations are projection-based, and may therefore suffer

from the high computational complexity.

This chapter proposes a new decentralized projection-free optimization algorithm, called

the decentralized Frank-Wolfe (DeFW) algorithm, which addresses the computational is-

sues above with high-dimensional constraints. Specifically, we derive the DeFW algorithm

through a careful combination of the average consensus protocol with the efficient Frank-

Wolfe (FW) algorithm. Note that the latter has been applied successfully to a number

of high dimensional problems in machine learning. In fact, the FW algorithm replaces the

costly projection step in projection based algorithms with a constrained linear optimization,

which often admits a computationally efficient solution. Importantly, we provide conver-

gence rates of the DeFW algorithm for both convex and non-convex instances of (5.1).

In the rest of this chapter, after introducing the notations and necessary mathematical

concepts, Section 5.2 reviews on the classical decentralized projected gradient method [Ram

et al.(2012)] and presents the state-of-the-art convergence (rate) results. Section 5.3 gives a

brief introduction to FW algorithm and develops the decentralized FW (DeFW) algorithm

from the former. The convergence guarantees of DeFW algorithm will then be summa-

rized in Section 5.4. We then present the application examples in Section 5.5 and a faster

DeFW algorithm for low-rank regression in Section 5.6. Finally, we conclude with numerical

experiments in Section 5.7.

Notations. We use the notations introduced in Section 2.1 on networks with the addi-

tional conditions below. In particular, the network’s graph is undirected with N nodes, and

97

the weighted adjacency matrix is non-negative doubly stochastic, such thatA>1 = A1 = 1.

The second largest singular value, σ2(A), is strictly less than one, implying that the graph

is connected. We also define a communication round as the network’s nodes sharing a mes-

sage through the network edges once. We focus on the static network setting where A is

time invariant.

5.2 Review: Decentralized Projected Gradient (DPG) Algorithm

The DPG algorithm emulates the centralized projected gradient descent (PG) [Bert-

sekas(1999)]. In particular, let t ∈ N be the iteration number, the projection can be de-

scribed as:

θt+1 = PC(θt − γt∇F (θt)) , (5.3)

where γt ∈ (0, 1] is a step size and PC(·) is the projection operator onto C:

PC(x) := arg min
θ∈C

‖θ − x‖22 . (5.4)

To mimic the centralized PG algorithm in the decentralized setting, the agents need to

retrieve information about the global gradient ∇F (θt). The DPG algorithm achieves this

using the following recursions — let θit be the local iterate held by agent i at iteration t,

(Consensus step) θ̄it =
∑N

j=1Aijθ
j
t , (5.5a)

(PG step) θit+1 = PC
(
θ̄it − γt∇fi(θ̄it)

)
, (5.5b)

where θ̄it is an auxiliary variable that holds a local approximation of the global average

parameter (1/N)
∑N

j=1 θ
j
t . The consensus step (5.5a) is similar to the average consensus

protocol in [Tsitsiklis(1984)] while the PG step (5.5b) is analogous to the centralized PG

algorithm (5.3), with the exception that the global gradient ∇F (θt) is replaced by the local

gradient function ∇fi(θ̄it), evaluated at the approximate global iterate. Despite using the

local gradient vector in lieu of the global one, the DPG algorithm achieves convergence

98

since the evaluation of ∇fi(θ̄it) incorporate information about the local functions held by

the other agents that propagates through the mixing step. More specifically, the algorithm

exhibits sub-linear convergence for convex problems with a diminishing step size γt.

As seen, the iteration steps of the DPG algorithm are conceptually simple to implement.

However, for high-dimensional problems, the projection operation (5.4) can be computation-

ally prohibitive, even when a closed form solution is available for its update. For example,

when C is a trace norm ball for matrices of dimension m1 ×m2, i.e.,

C = {θ ∈ Rm1×m2 : ‖θ‖σ,1 ≤ R} , (5.6)

the projection operator admits a closed form solution as:

PC(X) = U max{0,Σ−Λ?}V >, where X = UΣV > , (5.7)

for some diagonal Λ? such that ‖PC(X)‖σ,1 ≤ R. Clearly, the projection step amounts

to computing a full singular value decomposition (SVD) of the operand. The associated

complexity of such step grows as O(max{m1m
2
2,m2m

2
1}) is a cost endured by all the N

agents in all iterations. This is highly undesirable for big-data applications where m1,m2 �

0. The DPG has served as a prototype algorithm for a number of sophisticated decentralized

optimization algorithm, e.g., [Jakovetic et al.(2014),Shi et al.(2015),Nedić et al.(2016),Qu

and Li(2016)]. These algorithms require fewer iterations to convergence, but are equally

burdened by the high complexity of the projection step.

Convergence Analysis. The convergence properties of the DPG algorithm are known

for a general setting with time varying mixing matrix (i.e., the matrix A[t] may change at

every iteration) [Ram et al.(2012)]. Specifically, it has been established in [Ram et al.(2012)]

that the algorithm converges almost surely when the step size is chosen such that
∑∞

t=1 γt =

∞ and
∑∞

t=1 γ
2
t <∞ (and the time varying network is connected in an ergodic sense). How-

ever, the convergence rate of the DPG algorithm has not been studied in [Ram et al.(2012)].

99

Here, we describe the convergence rate analysis conducted in [Chen(2012)] for convex prob-

lems, whose result can be summarized as follows:

Theorem 5.1 [Chen(2012)] Consider Problem (5.1) and suppose that each of fi is convex

and L-smooth. If we apply the DPG algorithm to solve (5.46) and choose the step size as

γt ≤ 1/L, then it holds for all T ≥ 1 that:

min
1≤t≤T

F (θit)−
(

min
θ∈C

F (θ)
)
≤ D1 +D2

∑T
t=1 γ

2
t∑T

t=1 γt
, (5.8)

where D1, D2 are some finite constants that depend on σ2(A). If we set γt = C/
√
t for some

C < ∞, then min1≤t≤T F (θit) − (minθ∈C F (θ)) = O(log T/
√
T). Moreover, the algorithm

attains consensus, that is limt→∞ ‖θit − (1/N)
∑N

j=1 θ
j
t ‖ = 0 ∀ i.

Theorem 5.1 proves that, in terms of the difference between objective values at itera-

tion T and at an optimal solution (a.k.a. the primal optimality gap), the DPG algorithm

converges sublinearly at a rate of O(log T/
√
T). The proof of Theorem 5.1 proceeds first

in showing that the algorithm attains consensus asymptotically, and then in bounding the

optimality gap by the descent lemma in [Bertsekas(1999)] (as fi is assumed to be a smooth

function).

If we relax the assumption that the objective function of Problem (5.1) is convex, little

is known about the convergence (rate) of the DPG algorithm. Recent work [Tatarenko

and Touri(2017)] has shown that a decentralized gradient descent method applied to the

unconstrained version of (5.1) converges at a sublinear rate for non-convex problems,

i.e., ‖θit−θ̄‖ = O(1/
√
t), where θ̄ is a stationary point to (5.1), yet the algorithm considered

therein is different from the DPG algorithm in (5.46). The state of the art in understanding

the convergence of the DPG applied to non-convex problem can be found in [Bianchi and

Jakubowicz(2013)] and is quoted below:

Theorem 5.2 [Bianchi and Jakubowicz(2013)] Consider Problem (5.1) and the DPG al-

gorithm (5.46). Suppose that each of fi is L-smooth. If we choose the step size such that

100

∑∞
t=1 γt =∞ and

∑∞
t=1 γ

2
t <∞, then the sequence {θit}t≥1 satisfies:

1. (Consensus) limt→∞ ‖θit − (1/N)
∑N

j=1 θ
j
t ‖ = 0 for all i ∈ [N].

2. (Stationary point) limt→∞ ‖θit − θ̄‖ = 0, where θ̄ is a stationary point of (5.1).

Finally, we remark that in a centralized setting, the PG algorithm is known to converge

at a linear rate for strongly convex objective functions. Such convergence rate is not ob-

served for the DPG algorithm since the latter requires a diminishing step size to guarantee

convergence. An active research area is to develop DPG-like algorithms that achieve linear

convergence using a constant step size, e.g., [Shi et al.(2015), Nedić et al.(2016), Qu and

Li(2016)].

5.3 Decentralized Frank-Wolfe (DeFW) Algorithm

Before we move on, let us describe a few properties of Problem (5.1) that will be useful.

In the following, we shall work with both Euclidean norms and general norms, denoted by

‖ · ‖. Firstly, the constraint set C ⊆ Rd is convex and bounded with the diameter defined

as:

ρ := sup
θ,θ′∈C

‖θ − θ′‖?, ρ̄ := sup
θ,θ′∈C

‖θ − θ′‖2 , (5.9)

where ρ is defined with respect to (w.r.t.) the dual norm ‖ · ‖? while ρ̄ is defined w.r.t.

the Euclidean norm. When the objective function F is µ-strongly convex with µ > 0, the

optimal solution to (5.1) is unique and denoted by θ?, we also define

δ := inf
s∈∂C
‖s− θ?‖2 , (5.10)

where ∂C is the boundary set of C. If δ > 0, the solution θ? is in the interior of C.

We develop the decentralized Frank-Wolfe (DeFW) algorithm from the classical FW

algorithm [Frank and Wolfe(1956)]. Let t ∈ N be the iteration number and let the initial

point θ0 ∈ C is feasible. Recalling the definition F (θ) := (1/N)
∑N

i=1 fi(θ), the centralized

101

FW algorithm for problem (5.1) proceeds by:

at−1 ∈ arg min
a∈C

〈∇F (θt−1),a〉 , (5.11a)

θt = θt−1 + γt−1(at−1 − θt−1) , (5.11b)

where γt−1 ∈ (0, 1] is a step size to be determined. Observe that θt is a convex combination

of θt−1 and at−1 which are both feasible, therefore θt ∈ C as C is a convex set. When the

step size is chosen as γt = 2/(t + 1), the FW algorithm is known to converge at a rate of

O(1/t) if F is L-smooth and convex [Jaggi(2013)]. A main feature of the FW algorithm is

that the linear optimization1 (LO) (5.11a) can be solved more efficiently than computing

a projection, leading to a projection-free algorithm. At the end of this section, we will

illustrate a few examples of C with efficient LO computations.

To this end, one would be tempted to develop a DeFW algorithm in a similar fashion

as the DPG algorithm, i.e., simply modifying the centralized FW algorithm by replacing

(5.11b) with an average consensus update while using the local gradient ∇fi(·) for the up-

date direction (5.11a). However, as we shall explain later, this procedure may not converge

to a meaningful solution of the problem (5.1).

Instead, we consider extending the FW algorithm to a decentralized setting with a

double-consensus scheme. To do so, we replace both the global gradient and iterate,

i.e., ∇F (θt), θt, in (5.11) with their respective local approximations in a similar fash-

ion as the strategy developed in [Johansson et al.(2008),Simonetto and Jamali-Rad(2016)].

In particular, let θit denotes an auxiliary iterate kept by agent i at iteration t. Define the

average iterate:

θ̄t :=
1

N

N∑

i=1

θit . (5.12)

Also, define the local iterate θ̄it as an approximation of the average iterate above kept

by agent i. We require θ̄it to track θ̄t with an increasing accuracy. Let {∆pt}t≥1 be a

1Notice that (5.11a) is a convex optimization problem with a linear objective.

102

non-negative, decreasing sequence with ∆pt → 0, we assume

H5.1 ({∆pt}t≥1) For all t ≥ 1, it holds that:

max
i∈[N]

‖θ̄it − θ̄t‖2 ≤ ∆pt . (5.13)

To compute (5.11a), ideally each agent has to access the global gradient, ∇F (θ̄t). However,

just the local function fi(·) is available and agent i can only compute the local gradient

∇fi(θ̄it). Therefore, we also need to track the average gradient as

∇tF :=
1

N

N∑

j=1

∇fj(θ̄jt) , (5.14)

by the local approximation ∇itF . Note that ∇tF is close to ∇F (θ̄t) when each of the

function fi(θ) is smooth and θ̄it is close to θ̄t. Let {∆dt}t≥1 be a non-negative, decreasing

sequence with ∆dt → 0, we assume:

H5.2 ({∆dt}t≥1) For all t ≥ 1, it holds that:

max
i∈[N]

‖∇itF −∇tF‖2 ≤ ∆dt . (5.15)

Naturally, from the local approximation ∇itF , the ith agent can compute the update direc-

tion ait = arg mina∈C〈∇itF ,a〉 and update θit+1 similarly as in (5.11b). To summarize, a

prototype of the DeFW algorithm can be found in Algorithm 5.1.

Compared to the DPG method (5.46), we note that the DeFW algorithm requires an

additional aggregation step to compute the approximate global gradient, while the global

gradient is not required in the DPG method. The primary reason for this is the fact that

the FW step computation (5.11a) is not smooth in general with respect to the gradient

∇F (θ̄t). Concretely, consider C = {θ ∈ R2 : ‖θ‖1 ≤ 1} and let ∇F (θ) = (1, 1 − ε) and

103

Algorithm 5.1 Decentralized Frank-Wolfe (DeFW) — a prototype.

1: Input: Initial point θi1 for i = 1, ..., N .

2: for t = 1, 2, ... do

3: Consensus: obtain the average parameter:

θ̄it ← NetAvgit({θjt }Nj=1), ∀ i ∈ [N] . (5.16)

4: Aggregating : obtain the average gradient:

∇itF ← NetAvgit({∇fj(θ̄jt)}Nj=1), ∀ i ∈ [N] . (5.17)

5: Frank-Wolfe Step: update

θit+1 ← (1− γt)θ̄it + γta
i
t where ait = arg min

θ∈C
〈∇itF ,θ〉 , (5.18)

for all agent i ∈ [N] and γt ∈ (0, 1] is a step size.

6: end for

7: Return: Approximate stationary point θ̄it+1,∀ i ∈ [N].

∇F (θ′) = (1, 1 + ε) be two gradient vectors for any ε > 0, we observe that

(−1, 0) = arg min
a∈C

〈∇F (θ),a〉, (0,−1) = arg min
a∈C

〈∇F (θ′),a〉 . (5.19)

Therefore, a small perturbation to the gradient direction may lead to a huge difference in

the FW direction at found. On the other hand, the projection operator in the DPG method

is non-expansive such that it tolerates small changes in the gradient direction and retains

the information in the gradient after the projection. Now, if the DeFW algorithm proceeds

by taking ait = arg mina∈C〈∇fi(θ̄it),a〉 in a similar fashion as in the DPG method, the

computed direction ait can be greatly different from that of taking it with respect to the

global gradient ∇F (θ̄t). Intuitively, this would prevent convergence to a stationary point

of (5.1) since the computed directions are likely to be completely unrelated to the global

gradient which the algorithm is supposed to follow. It is, therefore, necessary to adopt a

two-steps average consensus procedure to implement the DeFW algorithm.

104

Algorithm 5.1 requires each agent to solve the LO (5.11a) independently at each itera-

tion. As we have mentioned, this can be done more efficiently than its projection counterpart

for several interesting cases of the constraint set C. For example:

• When C is the `1 ball, C = {θ ∈ Rd : ‖θ‖1 ≤ R},

ait = −R · ek, where k ∈ arg max
j∈[d]

∣∣[∇itF]j
∣∣ . (5.20)

The solution above amounts to finding the coordinate index of∇itF with the maximum

magnitude. Importantly, this solution is only 1-sparse. Consequently, the tth iterate

θ̄t will be at most tN -sparse. The worst-case complexity of computing ait is O(d); in

comparison, the worst-case complexity for the projection into an `1 ball is O(d log d)2.

• When C is the trace norm ball, C = {θ ∈ Rm1×m2 : ‖θ‖σ,1 ≤ R}, where ‖θ‖σ,1 is the

sum of the singular values of θ. Let u1,v1 be the top-1 left/right singular vector of

∇itF , we have

ait = −R · u1v
>
1 . (5.21)

Importantly, at a target solution accuracy of δ, the top singular vectors can be

computed with a complexity of O(max{m1,m2} log(1/δ)) using the power/Lanczos

method if ‖vec(∇itF)‖0 = O(max{m1,m2}). In comparison, the projection onto the

trace norm ball requires a complexity of O(max{m1m
2
2,m2m

2
1} log(1/δ)) for comput-

ing the full SVD of an m1 ×m2 matrix [Golub and van Loan(2013)].

The examples above are relevant to the two applications described in Section 5.5. More

recently, efficient implementations are found when C admits additional structure such as

being the convex hull of all perfect matchings of a bipartite graph; see [Jaggi(2013)].

In Section 5.4, we show that the two conditions H5.1 and H5.2 are sufficient to show

the convergence of Algorithm 5.1 for a wide class of optimization problems (including non-

2There exists a randomized, accelerated algorithm for projection in [Duchi et al.(2008)] with an expected
complexity of O(d).

105

convex optimizations). However, before delving into the details of convergence analysis,

let us demonstrate that these conditions can be satisfied by running a consensus based

implementation of DeFW algorithm.

5.3.1 Implementation: Consensus-based DeFW

We now design a message exchange protocol such that H5.1 and H5.2 can be enforced by

employing the average consensus (AC) protocol [Tsitsiklis(1984),Dimakis et al.(2010)] with

a fixed number of update/communication rounds for the NetAvgit(·) subroutine. Specifically,

the following discussions are based on the static AC; note that it is possible to extend the

protocol to a randomized setting for time-varying networks (e.g., with random link failures),

see [Boyd et al.(2006)].

For each round of the AC update, the agents take a weighted average of the values

from its neighbors according to the weighted adjacency matrix A, e.g., by using an update

equation like [cf. (2.2)]:

xs+1
i =

N∑

j=1

Aij · xsj , ∀ s ≥ 1 . (5.22)

As shown in Fact 2.1, the above recursion is non-expansive and computes the average of

{x0
i }Ni=1 at a geometric rate of σ2(A). Now, let us consider the in-network computation of

θ̄it in line 3 of the DeFW algorithm. Here, the NetAvgit(·) subroutine in the consensus step

is implemented by:

θ̄it =
N∑

j=1

Aij · θjt , (5.23)

i.e., we perform one round of the AC update. Since Aij = 0 if (i, j) /∈ E, the above operation

is implemented using message exchanges among the neighbors of agent i.

Now, for some α ∈ (0, 1], we define t0(α) as the smallest integer such that

σ2(A) ≤
(t0(α)

t0(α) + 1

)α
· 1

1 + (t0(α))−α
. (5.24)

106

Notice that t0(α) is upper bounded by:

t0(α) ≤
⌈
(σ2(A)−

1
1+α − 1)−1

⌉
. (5.25)

The following lemma can be easily proven:

Lemma 5.1 Set the step size γt as 1/tα in the DeFW algorithm for some α ∈ (0, 1], then

θ̄it in (5.23) satisfies H5.1 with

∆pt ≤
Cp
tα

, ∀ t ≥ 1 , where Cp := (t0(α))α ·
√
Nρ̄ . (5.26)

The proof is postponed to Appendix 5.A, which relies on using the fact that θit is a linear

combination of θ̄it−1 and ait−1, i.e., iterates from the previous iteration. In particular, θ̄it−1

is already O(1/(t−1)α)-close to the network average from the last iteration and the update

direction ait−1 has to be weighted by the decaying step size γt−1.

In comparison to what we were able to establish above, the in-network computation of

∇itF in line 4 of the DeFW algorithm is less straightforward. Unlike the computation of

θ̄t, computing N−1
∑N

i=1∇fi(θ̄it) to an accuracy of O(1/tα) by communicating the local

gradient ∇fi(θ̄it) requires Ω(log t) rounds of updates when the AC protocol is employed.

One of the main technical issues is that the local gradient ∇fi(θ̄it) computed by the ith

agent is in general different from the local gradient computed at the other agent, even when

θ̄it is close to θ̄jt for j 6= i.

We propose an approach that is inspired by the fast stochastic average gradient (SAGA)

method [Defazio et al.(2014)] which re-uses the gradient approximate ∇it−1F from the last

iteration. Notice that a similar technique is adopted in [Qu and Li(2016),Nedić et al.(2016),

Lorenzo and Scutari(2016)] under the name of ‘gradient tracking’ for various decentralized

methods. Here we provide a rate analysis with non-asymptotic constants. Specifically,

107

define the following surrogate of local gradient at iteration t:

∇itF := ∇it−1F +∇fi(θ̄it)−∇fi(θ̄it−1), ∀ i ∈ [N] . (5.27)

When t = 1, we set ∇i1F = ∇fi(θ̄i1). Notice that (5.27) computes the incremental update

of the gradient from ∇it−1F . Similar to (5.23), the NetAvgit(·) subroutine in the aggregating

step is implemented by:

∇itF =
N∑

j=1

Aij · ∇jtF , (5.28)

i.e., using just one round of the AC update on∇itF . Below we show that the average gradient

is preserved by the surrogate ∇itF and ∇itF achieves an approximation error similar to that

in Lemma 5.1:

Lemma 5.2 Set the step size γt as 1/tα in the DeFW algorithm for some α ∈ (0, 1].

Suppose that each of fi is L-smooth, θ̄it is updated according to (5.23), then ∇itF in (5.28)

satisfies

N−1
∑N

i=1∇itF = N−1
∑N

i=1∇fi(θ̄it), ∀ t ≥ 1 , (5.29)

and H5.2 with

∆dt ≤ Cg/tα, ∀ t ≥ 1 , (5.30)

where

Cg := (t0(α))α · 2
√
N(2Cp + ρ̄)L . (5.31)

The proof can be found in Appendix 5.B. Similar intuition as in Lemma 5.1 was used

in the proof. In particular, we observe that ∇it−1F is O(1/(t − 1)α)-close to the network

average ∇t−1F from the previous iteration and ∇fi(θ̄it)−∇fi(θ̄it−1) scales as ‖θ̄it− θ̄it−1‖2 ≤

∆pt−1 = O(1/(t− 1)α) since fi is L-smooth.

Remark 5.1 It is possible for the agents to repeat the updates in (5.23), (5.28) for multiple

rounds. Mathematically, this is equivalent to replacing Aij in the above mentioned equations

108

1. consensus: ∀ i ∈ [N]

θ̄it ←
∑N

j=1Aijθ
j
t

2. aggregating: ∀ i ∈ [N]

∇itF ←
∑N

j=1Aij
(
∇jt−1F −∇fj(θ̄jt−1) +∇fj(θ̄jt)

)

3. FW step: ∀ i ∈ [N]

θit+1 ← (1− γt)θ̄it + γta
i
t where ait ← arg mina∈C〈a,∇itF 〉

Next iteration t← t+ 1

Figure 5.1: Illustrating the DeFW algorithm as a three-steps recursive procedure.

by [A`]ij. As σ2(A`) = σ2(A)`, the constants t0(α), Cp, Cg can be greatly reduced. Moreover,

when ρ̄ is large, performing multiple rounds of GAC updates within one iteration of DeFW

can be beneficial for speeding up the algorithm in practice.

A summary of the above implementation of the DeFW algorithm can be found in Fig-

ure 5.1. We remark that the DeFW algorithm is not limited to the gossip-based implemen-

tation described above. In fact, any average consensus protocols which produce in-network

averages satisfying H5.1, H5.2 with the desirable rates on ∆pt,∆dt can be applied. For

example, when the graph G of the communication network is directed, one may apply the

push-sum average consensus algorithm in [Tsianos et al.(2012)].

5.4 Convergence Analysis for General DeFW

We provide convergence analysis on the DeFW algorithm under general assumptions

H5.1 and H5.2 for each agent i ∈ [N]. Under the said assumptions, the FW update step,

i.e., line 5, in Algorithm 5.1 can be regarded as performing the (centralized) FW updates

109

(5.11) on θ̄t in an inexact manner. Below we characterize the convergence of the DeFW

algorithm. For convex objective functions, we have:

Theorem 5.3 Set the step size as γt = 2/(t + 1). Suppose that each of fi is convex

and L-smooth. Let Cp and Cg be two positive constants. Under H5.1-5.2 [∆pt = Cp/t,

∆dt = Cg/t], we have

F (θ̄t)− F (θ?) ≤ 8ρ̄(Cg + LCp) + 2Lρ̄2

t+ 1
, (5.32)

for all t ≥ 1, where θ? is an optimal solution to (5.1). Furthermore, if F is µ-strongly

convex and the optimal solution θ? lies in the interior of C, i.e., δ > 0 (cf. (5.10)), we have

F (θ̄t)− F (θ?) ≤ (4ρ̄(Cg + LCp) + Lρ̄2)2

2δ2µ
· 9

(t+ 1)2
, (5.33)

for all t ≥ 1.

The proof can be found in Appendix 5.C. We remark that θ̄t is always feasible. For

strongly convex objective functions, the conditions (5.32), (5.33) imply that the sequence

{θ̄t}t≥1 converges to an optimal solution of (5.1). Furthermore, as the consensus error,

maxi∈[N] ‖θ̄it − θ̄t‖2, decay to zero (cf. H5.1), the local iterates {θ̄it}t≥1 share similar con-

vergence guarantee as {θ̄t}t≥1.

For non-convex objective functions, we study the convergence of the FW/duality gap:

gt := max
θ∈C
〈∇F (θ̄t), θ̄t − θ〉 . (5.34)

From the definition, when gt = 0, the iterate θ̄t will be a stationary point to (5.1). Thus

we may regard gt as a measure of the stationarity of the iterate θ̄t. Also, define the set of

stationary point to (5.1) as:

C? =
{
θ ∈ C : max

θ∈C
〈∇F (θ),θ − θ〉 = 0

}
. (5.35)

110

We consider the following technical assumption:

H5.3 The set C? is non-empty. Moreover, the function F (θ) takes a finite number of values

over C?, i.e., the set F (C?) = {F (θ) : θ ∈ C?} is finite.

We now have:

Theorem 5.4 Set the step size as γt = 1/tα for some α ∈ (0, 1]. Suppose each of fi is

L-smooth (possibly non-convex). Let Cp, Cg be two positive constants and G = maxiGi,

where Gi is a Lipschitz constant for fi. Under H5.1-5.2 [∆pt = Cp/t
α, ∆dt = Cg/t

α], it

holds that:

1. for all T ≥ 6 that are even, if α ∈ [0.5, 1),

min
t∈[T/2+1,T]

gt ≤
1

T 1−α ·
1− α

(1− (2/3)1−α)
·
(
Gρ+ (Lρ̄2/2 + 2ρ̄(Cg + LCp)) log 2

)
;

(5.36)

if α ∈ (0, 0.5),

min
t∈[T/2+1,T]

gt ≤
1

Tα
· 1− α

(1− (2/3)1−α)
·
(
Gρ+

(Lρ̄2/2 + 2ρ̄(Cg + LCp))(1− (1/2)1−2α)

1− 2α

)
.

(5.37)

2. if α ∈ [0.5, 1), exactly one of the following statement holds:

(a) for some t? ∈ [T/2 + 1, T], the FW/duality gap satisfies:

min
t∈[T/2+1,T]

gt ≤
1

(t?)α

(
2ρ̄(Cp + LCg) +

Lρ̄2

2

)
= O

(1

Tα

)
. (5.38)

(b) the objective value is monotonically decreasing, i.e., F (θ̄t+1) < F (θ̄t) for all

t ∈ [T/2 + 1, T].

3. additionally, under H5.3 and α ∈ (0.5, 1], the sequence of objective values {F (θ̄t)}t≥1

converges, {θ̄t}t≥1 has limit points and each limit point is in C?.

111

The proof can be found in Appendix 5.D. Note that setting α = 0.5 gives the quickest

convergence rate of O(1/
√
T). It is worth mentioning that our results are novel compared

to prior work on non-convex FW even in a centralized setting (N = 1,∆pt = 0,∆dt = 0).

For instance, [Ghosh and Lam(2015)] requires that the local minimizer is unique; [Lacoste-

Julien(2016)] gives the same convergence rate but uses an adaptive step size. We remark

that the local iterates {θ̄it}t≥1 share similar convergence property as {θ̄t}t≥1 due to H5.1.

Notice that as ∆pt decays to zero as required in the theorems, the local iterates θ̄it also

converge to an optimal/stationary solution of (5.1). The above results give the conditions

and the respective rates of convergence for the DeFW algorithm. Their proofs can be found

in Appendix 5.C and Appendix 5.D. As a remark, the proof of Theorem 5.3 is an extension

of our recent findings in [X2 of Section 1.3] on the convergence of online and stochastic FW

algorithms; while the proof of Theorem 5.4 relies on bounding the duality gap (a.k.a. FW

gap) N−1
∑N

i=1〈∇itF , θ̄it − ait〉 defined similarly as in [Jaggi(2013)].

Finally, we also observe that the conditions on ∆pt,∆dt required by Theorem 5.3 and

5.4 can be satisfied by the NetAvgit(·) subroutine implemented with the GAC protocol in

(5.23) and (5.28) described in Section 5.3.1. This leads to the following corollary.

Corollary 5.1 The convergence guarantees in Theorem 5.3 & 5.4 hold when the NetAvgit(·)

subroutine in line 3, line 4 of the DeFW algorithm are implemented by (5.23), (5.28) re-

spectively.

In other words, the consensus-based DeFW algorithm converges for both convex and non-

convex problems, while using a constant number of communication rounds per iteration.

Remark 5.2 From Theorem 5.4, for non-convex objectives, the best theoretical rate of con-

vergence can be achieved when if we set α = 0.5 as the learning rate. However, from

Lemma 5.1 and 5.2, we notice that the approximation error also decays the slowest when

α = 0.5. From our numerical experience, we find that the approximation errors ∆pt,∆dt in-

deed play an important role in the practical performance of the DeFW algorithm. Therefore,

112

we shall set α to be higher than 0.5 for better performance.

5.5 Applications

In this section, we study two applications of the DeFW algorithm in signal processing

and machine learning problems. Our aim is to demonstrate the advantages of the DeFW

over conventional distributed algorithms in terms of complexity saving.

5.5.1 Example I: Decentralized Matrix Completion

Consider a setting when the network of agents obtain incomplete observations of a matrix

θtrue of dimension m1 × m2 with m1,m2 � 0. The ith agent has corrupted observations

from the training set Ωi ⊂ [m1]× [m2] that are expressed as:

Yk,l = [θtrue]k,l + Zk,l, ∀ (k, l) ∈ Ωi . (5.39)

To recover a low-rank θtrue, we consider the following trace-norm constrained matrix com-

pletion (MC) problem:

min
θ∈Rm1×m2

N∑

i=1

∑

(k,l)∈Ωi

f̃i([θ]k,l, Yk,l) s.t. ‖θ‖σ,1 ≤ R , (5.40)

where f̃i : R2 → R is a loss function picked by agent i according to the observations he/she

received. Notice that (5.40) is also related to the low rank subspace system identification

problem described in [Liu and Vandenberghe(2010)], where Y with [Y]k,l = Yk,l, θtrue are

modeled as the measured system response and the ground truth low rank response; also

see [Scaglione et al.(2008)] for a related work.

Similar MC problems have been considered in [Ling et al.(2012),Mackey et al.(2015),Yu

et al.(2012), Recht and Ré(2013)], where [Ling et al.(2012)] studied a consensus-based op-

timization method similar to ours and [Mackey et al.(2015), Yu et al.(2012), Recht and

Ré(2013)] studied the parallel computation setting where the agents are working syn-

chronously in a fully connected network. Compared to our approach, these work assume that

113

the rank of θtrue is known in advance and solve the MC problem via matrix factorization.

In addition, [Ling et al.(2012),Mackey et al.(2015)] required that each local observation set

Ωi only have entries taken from a disjoint subset of the columns/rows only. Our approach

does not have any of the said restrictions above.

We consider two different observation models. When Zk,l is the i.i.d. Gaussian noise of

variance σ2
i , we choose f̃i(·, ·) to be the square loss function, i.e.,

f̃i([θ]k,l, Yk,l) := (1/σ2
i) · (Yk,l − [θ]k,l)

2 . (5.41)

This yields the classical MC problem in [Candès and Recht(2009)]. The next model con-

siders the sparse+low rank matrix completion in [Chandrasekaran et al.(2011)], where the

observations are contaminated with a sparse noise. Here, we model Zk,l as a sparse noise

in the sense that there are a few number of entries in Ωi where Zk,l is non-zero. We choose

f̃i(·, ·) to be the negated Gaussian loss, i.e.,

f̃i([θ]k,l, Yk,l) :=
(

1− exp
(
− ([θ]k,l − Yk,l)2

σi

))
, (5.42)

where σi > 0 controls the robustness to outliers for the data obtained at the ith agent. Here,

f̃i(·, ·) is a smoothed `0 loss [Mohimani et al.(2007)] with enhanced robustness to outliers in

the data. Notice that the resultant MC problem (5.40) is non-convex.

Note that (5.40) is a special case of problem (5.1) with C being the trace-norm ball. The

consensus-based DeFW algorithm can be applied on (5.40) directly. The projection-free

nature of the DeFW algorithm leads to a low complexity implementation (5.40). Lastly,

several remarks on the communication and storage cost of the DeFW algorithm are in order:

• The SAGA-like gradient surrogate ∇itF (5.27) is supported only on ∪Ni=1Ωi since for

all i ∈ [N], the local gradient

∇fi(θ̄it) =
∑

(k,l)∈Ωi

f̃ ′i([θ̄
i
t]k,l, Yk,l) · ek(e′l)> (5.43)

114

is supported on Ωi, where θ̄it is defined in (5.23). In the above, ek (e′l) is the kth (lth)

canonical basis vector for Rm1 (Rm2) and f̃ ′i(θ, y) is the derivative of f̃i(θ, y) taken

with respect to θ. Consequently, the average ∇itF is supported only on ∪Ni=1Ωi. As

| ∪Ni=1 Ωi| � m1m2, the amount of information exchanged during the aggregating step

(Line 3 in DeFW) is low.

• The update direction ait is a rank-one matrix composed of the top singular vectors

of ∇itF (cf. (5.21)). Since every iteration in DeFW adds at most N distinct pair

of singular vectors to θ̄t, the rank of θ̄it is upper bounded by tN if we initialize by

θ̄i0 = 0. We can reduce the communication cost in Line 3 in DeFW by exchanging

these singular vectors. Note that (tN)·(m1+m2) entries are stored/exchanged instead

of m1 ·m2.

• When the agents are only concerned with predicting the entries of θtrue in the subset

Ξ ⊂ [m1] × [m2], instead of propagating the singular vectors as described above,

the consensus step can be carried out by exchanging only the entries of θit+1 in Ξ ∪
(
∪Ni=1 Ωi

)
without affecting the operations of the DeFW algorithm. In this case, the

storage/communication cost is |Ξ ∪
(
∪Ni=1 Ωi

)
|.

5.5.2 Example II: Communication Efficient DeFW for LASSO

Let (yi,Ai) be the available data tuple at agent i ∈ [N] such that Ai ∈ Rm×d and

yi ∈ Rm. The data yi is a corrupted measurement of an unknown parameter θtrue:

yi = Aiθtrue + zi , (5.44)

where zi ∼ N (0, σ2I) are independent noise vectors. Furthermore, we assume m� d such

that the matrix A>i Ai is rank-deficient. However, the parameter θtrue is s-sparse such that

s = ‖θtrue‖0 � d. This motivates us to consider the following distributed LASSO problem:

min
θ∈Rd

N∑

i=1

1

2
‖yi −Aiθ‖22 s.t. ‖θ‖1 ≤ R . (5.45)

115

Notice that equation (5.45) is a special case of (5.1) with fi(θ) = (1/2)‖yi −Aiθ‖22 and C

is an `1-ball in Rd with radius R. We assume that (5.45) has an optimal solution θ? that

is sparse. The settings above also correspond to identifying a linear system described by

a sparse parameter θtrue, where Ai, yi are the input, output of the system, respectively;

see [Bako(2011)] for a related formulation on the identification of switched linear systems.

A number of decentralized algorithms are easily applicable to (5.45). For example, we

recall that the DPG algorithm is described by — at iteration t,

θi,PGt+1 = PC
(∑N

j=1Aijθ
j,PG
t − αt∇fi

(∑N
j=1Aijθ

j,PG
t

))
, (5.46)

where αt ∈ (0, 1] is a diminishing step size. For convex problems, the DPG algorithm is

shown to converge to an optimal solution θ? of (5.45) at a rate of O(1/
√
t) [Chen(2012)].

Let us focus on the communication efficiency of the DPG algorithm, which is important

when the network between agents is limited in bandwidth. To this end, we define the

communication cost as the number of non-zero real numbers exchanged per agent. As seen

from (5.46), at each iteration the ith agent exchanges its current iterate θi,PGt with the

neighboring agents. From the computation step shown, θi,PGt may contain as high as

O(d) non-zeros and the per-iteration communication cost will be O(d). Despite the high

communication cost, the per-iteration computation complexity of (5.46) is also high, i.e., at

O(d log d) [Duchi et al.(2008)]. We notice that [Ravazzi et al.(2016),Patterson et al.(2014)]

have considered distributed sparse recovery algorithm with focus on the communication

efficiency. However, their algorithms are based on the iterative hard thresholding (IHT)

formulation [Blumensath and Davies(2008)] that requires a-priori knowledge on the sparsity

level of θtrue. Our consensus-based DeFW algorithm in Section 5.3.1 may also be applied

directly to (5.45). However, similar issue as the DPG algorithm may arise during the

aggregating step, since the gradient surrogate (5.27) may also have O(d) non-zeros. Lastly,

another related work is [Yildiz and Scaglione(2008)] which applies coding to ‘compress’ the

message exchanged in the consensus-based algorithms.

116

This section proposes a sparsified DeFW algorithm for solving (5.45). The modified

algorithm applies a novel ‘sparsification’ procedure to reduce communication cost during

the iterations, which is enabled by the structure of the DeFW algorithm. To describe the

sparsified DeFW algorithm, we first argue that the consensus step in the consensus-based

DeFW should remain unchanged as it already has a low communication cost. From (5.20)

and (5.23), we see that θit is at most (t−1)N+1-sparse since ait is always a 1-sparse vector3

[cf. (5.20)]. As such, the communication cost of this step is bounded by tN .

Our focus is to improve the communication efficiency of aggregating step. Here, the key

idea is that only the largest magnitude coordinate in ∇itF is sought when computing ait

(cf. (5.20)). As long as the largest magnitude coordinate in ∇itF is preserved, the updates

in the DeFW algorithm can remain unaffected. This motivates us to ‘sparsify’ the gradient

information at each iteration before exchanging them with the neighboring agents. Let

Ωt ⊆ [d] be the coordinates of the gradient information to be exchanged at iteration t. The

agents exchange the following gradient surrogate in lieu of (5.27):

∇̂itF :=
(
∇fi(θ̄it)

)
� 1Ωt , where 1Ωt =

∑

k∈Ωt

ek . (5.47)

Let `t = dCl + log(t)/ log σ2(A)−1|e where Cl is some finite constant and σ2(A) is

the second largest singular value of the weight matrix A, the sparsified DeFW algorithm

computes the approximate gradient average ∇itF in line 4 of Algorithm 5.1 by:

∇itF =

N∑

j=1

[A`t]ij · ∇̂jtF . (5.48)

Note that (5.48) requires `t rounds of AC updates to be performed at iteration t, i.e., a

logarithmically increasing number of rounds of AC updates. The update direction ait can

then be computed by sorting the vector ∇itF . As ∇itF is |Ωt|-sparse, this update direction

can be computed in O(|Ωt|) time.

3As pointed out by [Jaggi(2013)], this observation also leads to an interesting sparsity-accuracy trade-off
when applying FW on `1 constrained problems.

117

We pick the coordinate set Ωt in a decentralized manner. Consider the following de-

composition:

Ωt =
N⋃

i=1

Ωt,i , (5.49)

where Ωt,i ⊂ [d] is picked by agent i at iteration t. The coordinate set Ωt needs to be known

by all agents before (5.48). This can be achieved with low communication overhead, e.g.,

by forming a spanning tree on the graph G and broadcasting the required indices in Ωt to

all agents; see [Attiya and Welch(2004)]. Set pt as the maximum desirable cardinality of

Ωt,i, agent i chooses the coordinate set using one of the following two schemes:

• (Random coordinate) Each agent selects Ωt,i by picking pt coordinates uniformly (with

replacement) from [d].

• (Extreme coordinate) Each agent selects Ωt,i as the pt largest magnitude coordinates

of the vector ∇fi(θ̄it).

For the random coordinate selection scheme, the following lemma shows that the gradi-

ent approximation error can be controlled at a desirable rate with an appropriate choice of

pt. Let ξt := (1− (1− 1/d)ptN), we have:

Lemma 5.3 Set ε > 0 and `t = dCl+log(t)/ log σ2(A)−1e. Let pt ≥ C0t for some C0 <∞.

With probability at least 1− π2ε/6, the following holds for all θ ∈ C:

∥∥∥ξ−1
t ∇itF −

1

N

N∑

i=1

∇fi(θ̄it)
∥∥∥
∞

= O
(d
√

log(t2/ε)

tN

)
, (5.50)

for all t ≥ 1 and i ∈ [N].

The proof can be found in Appendix 5.E. Note that the above is given in terms of ξ−1
t ∇itF

instead of ∇itF . However, the result remains relevant as the LO (5.11a) in the DeFW

algorithm is scale invariant, i.e., arg mina∈C〈∇itF ,a〉 = arg mina∈C〈α∇itF ,a〉 for any α > 0.

In other words, performing the FW step with ∇itF is equivalent to doing so with ξ−1
t ∇itF .

118

As ξ−1
t ∇itF is an O(1/t) approximation to N−1

∑N
j=1∇fj(θ̄

j
t), therefore H5.2 is satisfied

with ∆dt = O(1/t). Lastly, we conclude that

Corollary 5.2 The sparsified DeFW algorithm using random coordinate selection, i.e., with

line 3 and 4 in Algorithm 5.1 replaced by (5.23) and (5.48), respectively, generates iterates

that satisfy the guarantees in Theorem 5.3 (with high probability). Under strong convex-

ity and interior optimal point assumption, the communication complexity is O(N · (1/δ) ·

log(1/δ)) to reach a δ-optimal solution to (5.45).

In Corollary 5.2, the first statement is a consequence of Lemma 5.3. The second statement

can be verified by noting that reaching a δ-optimal solution requires O(1/
√
δ) iterations and

the communication cost is O(Nt log t) at iteration t, as the agents exchange an O(Nt)-sparse

vector for Θ(log t) times.

5.6 Faster DeFW for Decentralized Low-rank Regression

This section proposes a tailor-made DeFW algorithm for low rank regression problems,

which we shall call the Fast DeFW (F-DeFW). Specifically, we focus on tackling the following

special case of (5.1):

min
θ̃∈Rm1×m2

1

N

N∑

i=1

f̃i(θ̃) s.t. ‖θ̃‖σ,1 ≤
R

2
, (5.51)

where f̃i : Rm1×m2 → R is a proper and differentiable function with Lipschitz-continuous

gradient and the constraint ‖θ̃‖σ,1 ≤ R
2 is enforced to promote a low rank solution. The

above problem encompasses the case of decentralized matrix completion discussed in the

last section. Obviously, the consensus-based DeFW algorithm discussed in the previous

sections can be applied directly to solve the above problem. While the DeFW algorithm

is projection free and can be used to handle the cases when m1,m2 � 1, each iteration

of the algorithm still requires each agent to compute the top singular vector of a large

matrix. The F-DeFW algorithm aims at further reducing the computational complexity of

119

the DeFW algorithm. Our main idea is to distribute the computation burden of the top

singular vectors to the agents via a decentralized power method. As we show below, the

convergence of the F-DeFW algorithm can still be analyzed under the framework studied

in Theorem 5.3 and 5.4.

Before we begin, let us introduce an equivalent form of (5.51) that will be easier to work

with. Let θ1 ∈ Sm1 , θ2 ∈ Rm1×m2 , θ3 ∈ Sm2 be the sub-matrices of θ ∈ Sd such that

d := m1 +m2 and δ ∈ R be a constant,

θ :=



θ1 θ2

θ>2 θ3


 and fi(θ) := f̃i(θ2) + (δ/N)Tr(θ) . (5.52)

The following problem is equivalent to (5.51):

min
θ∈Sd

F (θ) :=
1

N

N∑

i=1

fi(θ) s.t. Tr(θ) = R, θ � 0 . (5.53)

The equivalence follows from the following lemma:

Lemma 5.4 [Jaggi and Sulovsky(2010), Lemma 1] Consider a non-zero matrix θ̃ ∈ Rm1×m2.

We have the following equivalence:

‖θ̃‖σ,1 ≤
R

2
⇐⇒

∃ θ1 ∈ Sm1 ,θ3 ∈ Sm2 such that


θ1 θ̃

θ̃> θ3


 � 0, Tr(θ1) + Tr(θ3) = R.

(5.54)

In particular, for any feasible solution θ̃ to (5.51), we can find a point θ that is feasible to

(5.1) and it satisfies f̃i(θ̃) = fi(θ)− δR/N, ∀ i ∈ [N]. On the other hand, for any feasible

θ to (5.1), its sub-matrix θ2 satisfies ‖θ2‖σ,1 ≤ R/2 and is thus feasible to (5.51).

Consider applying the DeFW algorithm [Algorithm 5.1] to problem (5.53). Exploiting

120

the structure of the constraint C, the DeFW algorithm can be be described by the recursion:

θit+1 = (1− γt)θ̄it + γtR · ait(ait)>, ait = TopEV(−∇tiF) , (5.55)

where γt is a decreasing step size, TopEV(X) is the top eigenvector of a symmetric matrix

X and we have the approximations:

θ̄it ≈ N−1
N∑

j=1

θjt , ∇itF ≈ N−1
N∑

j=1

∇fj(θ̄jt) , (5.56)

As explained before, these approximations can be obtained using an average consensus

protocol which involves communications between agents on the network.

We observe that in the second equation of (5.55), one actually wishes to find the following

unit norm vector:

ât = TopEV
(
−N−1

∑N
j=1∇fj(θ̄

j
t)
)
, (5.57)

i.e., the top eigenvector of the exact average gradient. Notice that ât = ait when ∇itF =

N−1
∑N

j=1∇fj(θ̄
j
t), i.e., ∇itF is exactly equal to the average gradient. Decentralized meth-

ods for estimating the top eigenvector from the sample covariance have been proposed

in [Scaglione et al.(2008), Li et al.(2011a)]. Their convergence were only discussed empir-

ically [Scaglione et al.(2008)] or in the asymptotic case [Li et al.(2011a)]. For us, instead

the objective is to use a decentralized power method to obtain ât in (5.57). To this end, let

v0 ∈ Rd be an initial random vector and p ≥ 1, we need to compute

v̄p =
(
− 1

N

N∑

j=1

∇fj(θ̄jt)
)
· vp−1, vp =

1

‖v̄p‖ · v̄
p . (5.58)

It is well known that vp converges to the top eigenvector of ât as p → ∞ under mild

conditions [Golub and van Loan(1996)]. In the following, we demonstrate how to compute

ât in a decentralized fashion, which will lead to the design of our F-DeFW algorithm.

Decentralized Power Method. An important observation on (5.58) is that evaluating

121

Algorithm 5.2 Decentralized Power Method (DePM).

1: Input: Parameters S, P ∈ N, local gradients {∇fi(θ̄it)}Ni=1.

2: For each i ∈ [N], generate an initial point v0
i 6= 0 as a d-dimensional Gaussian random

vector.

3: for p = 1, 2, ..., P do

4: v̄p,0i ← −∇fi(θ̄it) · v
p−1
i , ∀ i ∈ [N] .

5: for ` = 1, 2, ..., S do

6: v̄p,`i ←
∑N

j=1Aij · v̄
p,`−1
j , ∀ i ∈ [N] .

7: end for

8: vpi ← v̄p,Si /‖v̄p,Si ‖, ∀ i ∈ [N] .

9: end for

10: Return: Approximate top eigenvector vPi , ∀ i ∈ [N].

v̄p is equivalent to taking the average of the N vectors {−∇fj(θ̄jt) · vp−1}Nj=1, where each

of these vectors is locally computable. This motivates us to replace each recursion of the

power method (5.58) by an average consensus step, yielding a decentralized power method

(DePM), as summarized in Algorithm 5.2. For ease of presentation, we denote the ith

agent’s output of Algorithm 5.2, vPi , as the subroutine DePMi(·) parameterized by S, P :

vPi := DePMi

(
{−∇fi(θ̄it)}Ni=1;P ;S

)
, ∀ i ∈ [N] . (5.59)

Note that Line 6 is the gossip-based average consensus step repeated for L times [Tsitsik-

lis(1984), Dimakis et al.(2010)] where information exchanges occur with the agents trans-

mitting a d-dimensional vector per round.

The DePM method requires only a matrix-vector product as indicated by Line 4. It is

also privacy preserving as the agents only exchange the product (−∇fi(θ̄it)vp−1
i), therefore

the other agents do not know who holds what portion of the observations and an eavesdrop-

per on the network cannot steal the data. Now, let us denote Mt := −N−1
∑N

j=1∇fj(θ̄
j
t),

122

and state the following assumption:

H5.4 The spectral gap σ1(Mt) − σ2(Mt) is lower bounded by ξ > 0 and σ1(Mt) is upper

bounded by B. Also, |u>1 v0
i | > 0,∀ i ∈ [N] where u1 is the top eigenvector of Mt.

The DePM method with carefully designed parameters S, P attains a desirable accuracy

with high probability (w.h.p.) in finite time.

Proposition 5.1 Under H5.4, fix 1/2 > ε > 0 and c > 0. If the algorithm parameters

satisfy that S = Ω(log(1/(ξ · ε))/ log(1/σ2(A))) and P = Ω((B/ξ) · log(d/c · ε)), then with

probability at least 1−Nc, we have:

(u>1 v
P
i)2 ≥ 1− ε2 and (u>j v

P
i)2 ≤ ε2, j = 2, ..., d , (5.60)

for all i ∈ [N], and uj is the jth largest eigenvector of Mt. Also,

‖vPi (vPi)> − vPj (vPj)>‖ = O(ε), ∀ i, j ∈ [N] . (5.61)

The proof can be found in Appendix 5.F. The omitted constants in the Ω(·) notations for

S, P in Proposition 5.1 are logarithmic in the dimension d. The above proposition shows

that by controlling the parameters S, P , the DePM can compute the top eigenvectors of

the symmetric matrix
(
−∑N

i=1∇fi(θ̄it)
)

at an arbitrary complexity and make the same

eigenvector available at all the N agents in the network.

Fast DeFW. Equipped with the DePM method, we now summarize the proposed fast

DeFW (F-DeFW) algorithm in Algorithm 5.3, which is a two-stage algorithm with an

FW update in the outer loop and the DePM method in the inner loop. In comparison to

the DeFW algorithm, Algorithm 5.3 does not require a consensus step for exchanging the

parameter variables {θit}Ni=1. In fact, all the information exchange required are done within

the DePM subroutine.

We can establish similar convergence guarantees as DeFW. LetMt = −∑N
j=1∇fj(θ̄

j
t)/N ,

123

Algorithm 5.3 Fast DeFW (F-DeFW) Algorithm.

1: Input: Initial point θ̄i0 for i = 1, ..., N .

2: for t = 1, 2, ... do

3: DePM Step: apply the decentralized power method:

ait ← DePMi({−∇fj(θ̄jt)}Nj=1;Pt;Lt), ∀ i ∈ [N] . (5.62)
4: Frank-Wolfe Step: update

θ̄it+1 ← (1− γt)θ̄it + γtR · ait(ait)>, ∀ i ∈ [N] , (5.63)

5: end for

6: Return: An approximate solution θ̄it+1 for i = 1, ..., N .

θ̄t :=
∑N

i=1 θ̄
i
t/N and C denotes the feasible set of (5.1). We have:

Theorem 5.5 Suppose that H5.4 holds for all t ≥ 1. Fix c̃ > 0 and set the parameter

St = Ω(log(t/ξ)/ log(1/σ2(A))), Pt = Ω((B/ξ) · log(dt(Nt2/c̃))). Algorithm 5.3 satisfies the

following with probability at least 1− (π2/6)c̃:

• (Convex loss) If each of fi is convex, S-smooth and the step size is γt = 2/(t + 1),

then:

F (θ̄t)− F (θ?) = O(1/t), ∀ t ≥ 1 , (5.64)

where θ? is an optimal solution to (5.1).

• (Non-convex loss) If each of fi is S-smooth and the step size is γt = t−α for some

α ∈ [0.5, 1), then for all T ≥ 20:

min
t∈[T/2+1,T]

max
θ∈C

〈∇F (θ̄t), θ̄t − θ〉 = O(1/T 1−α) . (5.65)

Moreover, for all i, j ∈ [N], we have ‖θ̄tj − θ̄ti‖ = O(1/t).

The proof can be found in Appendix 5.G. We note that the convergence analysis stems

from Theorem 5.3 and 5.4 as we analyze the F-DeFW algorithm as instances of the FW

algorithm with inexact gradients and iterates.

124

As a final remark, we note that due to the structure of ∇fi(θ) in (5.52), setting δ 6= 0 is

necessary to ensure that the spectral gap ξt = σ1(Mt)−σ2(Mt) is non-zero, since otherwise

the singular values of Mt will have multiplicity two. Unfortunately, there is no known

non-trivial lower bound on ξt. Thus, one has to set the constant terms in Pt heuristically

(this is also true for PG methods).

5.7 Numerical Results

We perform numerical experiments to verify our theoretical findings on the DeFW algo-

rithm. The following discussions will focus on the two applications described in Section 5.5

using synthetic and real data. To simulate the decentralized optimization setting, we artifi-

cially construct a network of N = 50 agents, where the underlying communication network

G is an Erdos-Renyi graph with connectivity of 0.1. For the AC steps (5.23), (5.28) &

(5.48), the doubly stochastic matrix A is calculated according to the Metropolis-Hastings

rule in [Xiao and Boyd(2004)].

5.7.1 Decentralized Matrix Completion

This section considers the decentralized matrix completion problem, where the goal is to

predict the missing entries of an unknown matrix through corrupted partial measurements.

We consider two datasets — the first dataset is synthetically generated where the un-

known matrix θtrue is rank-K and has dimensions of m1 × m2; the matrix is generated

as θtrue =
∑K

i=1 yix
>
i /K where yi,xi have i.i.d. N (0, 1) entries and different settings of

m1,m2,K will be experimented. The second dataset is the movielens100k dataset [Harper

and Konstan(2015)]. The unknown matrix θtrue records the movie ratings of m1 = 943 users

on m2 = 1682 movies; and a total of 105 entries in θtrue are available as integers ranging

from 1 to 5. We divide the entries in the dataset into the training and testing sets and

evaluate the mean square error (MSE) on the testing set as:

MSE = |Ωtest|−1
∑

(k,l)∈Ωtest

∣∣[θtrue]k,l − [θ̂]k,l
∣∣2 , (5.66)

125

101 102 103 104

Iteration number

10-4

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e
 v

a
lu

e
 /

 C
o
n
se

n
su

s
E
rr

o
r

Obj. (Sq., DPG)

Obj. (Gau., Cen.)

Obj. (Sq., Cen.)

Obj. (Gau., DeFW)

Obj. (Sq., DeFW)

Consensus Err (Gau.)

Consensus Err (Sq.)

Duality (Gau., DeFW)

101 102 103 104

Iteration number

10-2

10-1

T
e
st

 M
S
E

DPG w/ Sq. Loss

Gau. Loss (Cen.)

Sq. Loss (Cen.)

Gau. Loss (DeFW)

Sq. Loss (DeFW)

Qing et al.

0 2000 4000 6000 8000 10000
Iteration number

10-2

10-1

100

101

S
q
.

Lo
ss

 O
b
j.

DPG

DeFW

Figure 5.2: Performance of DeFW on noiseless synthetic data with m1 = 100,m2 = 250 and

rankK = 5. (Top-Left) Objective value and consensus error of θ̄it against iteration number t,

the objective values are evaluated by F (θ̄t). (Top-Right) Worst-case MSE (among agents)

against iteration number on the testing set. (Bottom) Objective value (sq. loss) against

iteration number t for DeFW and DPG. The legend ‘Gau.’, ‘Sq.’ denote the consensus-based

DeFW algorithm applied to (5.40) with the negated Gaussian and square loss, respectively.

where θ̂ denotes the estimated θ produced by the algorithm.

For the synthetic dataset, the training (testing) set contains 20% (80%) entries which are

selected randomly. For movielens100k, the training (testing) set contains 80×103 (20×103)

entries. The training data of the two datasets are equally partitioned into N = 50 parts;

for movielens100k, each agent holds 1600 entries. We evaluate the performance of the

proposed consensus-based DeFW algorithm applied to square loss and negative Gaussian

126

loss, as described in Section 5.5.1. Unless otherwise specified, we fix the number of AC

rounds applied at ` = 1 such that the agents only exchange information once per iteration.

As the negated Gaussian loss is non-convex, we set the step size as γt = t−0.75. The

centralized FW algorithm for both losses will also be compared [cf. (5.11)]; as well as

the decentralized algorithm in [Ling et al.(2012)] (labeled as ‘Qing et al.’) and the DPG

algorithm [Ram et al.(2012)] with step size set to αt = 0.1N/(
√
t + 1) applied to square

loss.

Our first example considers the noiseless synthetic dataset of problem dimension m1 =

100,m2 = 250, K = 5. The results are shown in Figure 5.2. Here, for the DeFW/DPG

algorithms, we set the trace-norm radius to R = 1.2‖θtrue‖σ,1; and the algorithm in [Ling

et al.(2012)] is supplied with the true rank K of θtrue. Notice that for this set of data, the

minimum of (5.40) can be achieved by θ = θtrue ∈ C with a zero objective value. From the

top-left plot, for the DeFW algorithm applied to the convex square loss function, we observe

an O(1/t2) trend for the objective values, corroborating with our analysis in Theorem 5.3;

for the non-convex negated Gaussian loss function, the objective value and the FW/duality

gap gt also decay with t, the latter indicates the convergence to a stationary point. Moreover,

the consensus error of θ̄it for DeFW applied to the two objective functions decay at the rate

predicted by Lemma 5.1. On the other hand, the top-right plot compares mean square error

(MSE) of the predicted matrix θ for the testing set. Here, we also compare the result with

the algorithm in [Ling et al.(2012)]. We observe that the MSE performance of the DeFW

algorithms approach their centralized counterpart as the iteration number grows, yet the

algorithm in [Ling et al.(2012)] achieves the best performance in this setting. Notice that

the true rank of θtrue is provided to this algorithm. From the bottom plot, the DPG method

applied to square loss function converges at a relatively fast rate in the beginning, but was

overtaken by DeFW as the iteration number grows. It is worth mentioning that the DeFW

algorithms have a consistently better MSE performance than DPG.

The second example considers adding noise to the observations for the same synthetic

data case in Figure 5.2. In particular, we adopt the same setting as the previous example

127

0 1000 2000 3000 4000 5000
Iteration number

400

500

600

700

800

O
b
je

ct
iv

e
 v

a
lu

e

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

C
o
n
se

n
su

s
E
rr

/D
u
a
lit

y
 g

a
p

Obj. (Sq., DPG)

Obj. (Gau., Cen.)

Obj. (Sq., Cen.)

Obj. (Gau., DeFW)

Obj. (Sq., DeFW)

Consensus Err (Gau.)

Consensus Err (Sq.)

Duality (Gau., DeFW)

10

30

50

0 1000 2000 3000 4000 5000
Iteration number

0.05

0.10

0.15

0.20

0.25

T
e
st

 M
S
E

DPG w/ Sq. Loss

Gau. Loss (Cen.)

Sq. Loss (Cen.)

Gau. Loss (DeFW)

Square Loss (DeFW)

Qing et al.

Figure 5.3: Performance of DeFW on sparse-noise contaminated synthetic data with m1 =

100,m2 = 250 and rank K = 5. (Left) Objective value and consensus error of θ̄it against the

DeFW iteration number t. Notice that the consensus error (in purple and yellow) / duality

gap (in black) are plotted in a logarithmic scale (cf. the right y-axis) while the objective

values are plotted in a linear scale; (Right) MSE against DeFW iteration number t on the

testing set.

but include a sparse noise in the observations — here, each Zk,l = pk,l · Z̃k,l where pk,l is

Bernoulli with P (pk,l = 1) = 0.2 and Z̃k,l ∼ N (0, 5) (cf. (5.39)). The convergence results

are compared in Figure 5.3. For the left plot, we observe similar convergence behaviors for

the DeFW algorithms applied to different objective functions as in the previous example.

On the right plot, we observe that the DeFW algorithm based on negative Gaussian loss

achieves the lowest MSE, demonstrating its robustness to outlier noise. We also see that

the algorithm in [Ling et al.(2012)] performs poorly on this dataset.

Another interesting discovery is that the algorithm in [Ling et al.(2012)] seems to fail

when the rank of θtrue is high, even when the true rank is known and the observations

are noiseless. In Figure 5.4, we show the MSE against iteration number of the algorithms

when the synthetic data is noiseless and generated with m1 = 100,m2 = 250,K = 10.

128

0 1000 2000 3000 4000 5000
Iteration number

0.05

0.10

0.15

0.20

T
e
st

 M
S
E

DPG w/ Sq. Loss

Gaussian Loss (Cen.)

Square Loss (Cen.)

Gaussian Loss (DeFW)

Square Loss (DeFW)

Qing et al.

Figure 5.4: Convergence of test MSE against iteration number on the testing set on noise-

free synthetic data with m1 = 100,m2 = 250 and rank K = 10.

0 50 100 150 200
Running Time (s)

10-2

10-1

100

101

102

O
b
je

ct
iv

e
 v

a
lu

e

Sq. loss, DPG

Sq. loss, DeFW

0 50 100 150 200
Running Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
e
st

 M
S
E

Sq. loss, DPG

Sq. loss, DeFW

Gau. loss, DeFW

Figure 5.5: Performance of DeFW on noiseless synthetic data with m1 = 200,m2 = 1000

and rank K = 5. (Left) Objective value against running time. (Right) Worst-case MSE

(among agents) against running time.

As seen, [Ling et al.(2012)] fails to produce a low MSE, while DeFW offers a reasonable

performance.

The next example evaluates the objective value and test MSE on synthetic, noiseless

data against the average runtime per agent. We focus on comparing the DeFW and DPG

algorithms. In Figure 5.5, DeFW demonstrates a significant advantage over DPG since the

former does not require the projection computation. In fact, the average running time per

iteration of DeFW is five times faster than DPG. We also expect the complexity advantages

to widen as the problem size grows.

129

0 2000 4000 6000 8000 10000
Iteration number

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
e
st

 M
S
E

0 2000 4000 6000 8000 10000
Iteration Number

10-6

10-5

10-4

10-3

10-2

10-1

100

D
u
a
lit

y
 /

 C
o
n
se

n
su

s
E
rr

o
r

0 2000 4000 6000 8000 10000
Iteration number

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
e
st

 M
S
E

0 2000 4000 6000 8000 10000
Iteration Number

10-6

10-5

10-4

10-3

10-2

10-1

100

D
u
a
lit

y
 /

 C
o
n
se

n
su

s
E
rr

o
r

Gau. Loss (Cen.)

Sq. Loss (Cen.)

Gau. Loss (DeFW, 1AC)

Sq. Loss (DeFW, 1AC)

Gau. Loss (DeFW., 3AC)

Sq. Loss (DeFW, 3AC)

Duality gap (1AC)

Duality gap (3AC)

Consensus Err. (Gau., 1AC)

Consensus Err. (Gau., 3AC)

Consensus Err. (Sq., 1AC)

Consensus Err. (Sq., 3AC)

Figure 5.6: Convergence of the DeFW algorithm on movielens100k dataset with different

loss functions. (Top) Noiseless observations; (Bottom) sparse-noise contaminated observa-

tions. Note that the duality gap / consensus errors are plotted in a logarithmic scale in the

right figures.

Lastly, we consider the dataset movielens100k. We set R = 105 and focus on the

test MSE evaluated against the iteration number for the proposed DeFW algorithm. The

numerical results are presented in Figure 5.6, where we also compare the case when we apply

multiple (` = 1, 3) rounds of AC updates per iteration to speed up the algorithm. The left

130

plot in Figure 5.6 considers the noiseless scenario. As seen, the proposed DeFW algorithm

applied on different loss functions converge to a reasonable MSE that is attained by the

centralized FW algorithm. We see that the DeFW with negated Gaussian loss has a slower

convergence compared to the square loss which is possibly attributed to the non-convexity

of the loss function. Moreover, the algorithms achieve much faster convergence if we allow

` = 3 AC rounds of network information exchange per iteration. The right plot in Figure 5.6

considers when the observations are contaminated with a sparse noise of the same model as

Figure 5.3. We observe that the negated Gaussian loss implementations attain the best MSE

as the non-convex loss is more robust against the sparse noise. Interestingly, the DeFW

algorithm with ` = 3 AC rounds has even outperformed its centralized counterpart. We

suspect that this is caused by the DeFW algorithm converging to a different local minimum

for the non-convex problem.

5.7.2 Decentralized Sparse Learning

This section conducts numerical experiments on the decentralized sparse learning prob-

lem. We focus on the sparsified DeFW algorithm in Section 5.5.2 that has better commu-

nication efficiency. We evaluate the performance on both synthetic and benchmark data.

For the synthetic data, we randomly generate each Ai as a (m = 20)× (d = 10000) matrix

with N (0, 1) elements (cf. (5.44)) and θtrue is a random sparse vector with ‖θtrue‖0 = 50

such that the non-zero elements are also N (0, 1). The observation noise zi has a variance of

σ2 = 0.01. For benchmark data, we test our method on sparco7 [Berg et al.(2007)], which

is a commonly used dataset for benchmarking sparse recovery algorithms. For sparco7,

we have Ai ∈ R12×2560 as the local measurement matrix and θtrue is a sparse vector with

‖θtrue‖0 = 20.

The sparsified DeFW algorithm is implemented with pt = d2+αcomm ·te, `t = dlog(t)+1e

with extreme or random coordinate selection. We compare the algorithms of PG-EXTRA

[Shi et al.(2015)] (with fixed step size α = 1/d), DPG [Ram et al.(2012)] (with step size

αt = 1/t) and BHT [Ravazzi et al.(2016)]. DeFW, PG-EXTRA and DPG are set to solve the

131

200 400 600 800 1000

Iteration number

100

101

102

103

104

105

O
b
je

ct
iv

e
 v

a
lu

e

DeFW (extreme)

DeFW (rand)

DPG

PG-EXTRA

BHT

104 105 106 107

Communication Cost

100

101

102

103

104

105

106

O
b
je

ct
iv

e
 v

a
lu

e

DeFW (extreme)

DeFW (rand)

DPG

PG-EXTRA

BHT

Figure 5.7: Convergence of the objective value on LASSO problem with synthetic dataset.

(Left) against the iteration number. (Right) against the communication cost (i.e., total

number of values transmitted/received in the network during AC updates). In the legend,

‘DeFW (extreme)’ refers to the extreme coordinate selection and ‘DeFW (rand)’ refers to

the random coordinate selection scheme.

convex problem (5.45) with R = 1.1‖θtrue‖1. BHT is a communication efficient decentralized

version of IHT and is supplied with the true sparsity level in our simulations.

The first example in Figure 5.7 shows the convergence of the algorithms on the syn-

thetic data, where we compare the objective value against the number of iterations and the

communication cost, i.e., total number of values sent during the distributed optimization.

We set αcomm = 0.05 for the DeFW algorithms. From the left plot, we observe that DeFW

and PG-EXTRA algorithms have similar iteration complexity while ‘DeFW (rand)’ seems

to have the fastest convergence. Meanwhile, BHT demands a high number of iterations

for convergence. On the other hand, in the right plot, the DeFW algorithms demonstrate

the best communication efficiency at low accuracy, while they lose to BHT at higher ac-

curacy. Lastly, ‘DeFW (extreme)’ achieves a better accuracy at the beginning (i.e., less

communication cost paid) but is overtaken by ‘DeFW (rand)’ as the communication cost

grows.

132

104 105 106

Communication Cost

10-3

10-2

10-1

O
b
je

ct
iv

e
 v

a
lu

e

DeFW (extreme)

DeFW (rand)

DPG

PG-EXTRA

BHT

Figure 5.8: Convergence of the objective value against the communication cost on LASSO

problem with sparco7 dataset. In the legend, ‘DeFW (extreme)’ refers to the extreme

coordinate selection and ‘DeFW (rand)’ refers to the random coordinate selection scheme.

We then compare the performance on sparco7, where we show the convergence of

objective value against the communication cost in Figure 5.8. We set αcomm = 0.025 for

the sparsified DeFW algorithms. At low accuracy, the DeFW algorithms offer the best

communication cost-accuracy trade-off, i.e., it performs the best at an accuracy of above

∼ 10−2. Moreover, ‘DeFW (extreme)’ seems to be perform better than ‘DeFW (rand)’

in this example. Nevertheless, the BHT algorithm achieves the best performance when

the communication cost paid is above 3 × 105. Lastly, we comment that although BHT

has the lowest communication cost at high accuracy, its computational complexity is high

as BHT requires a large number of iterations to reach a reasonable accuracy (cf. left plot

of Figure 5.7). The sparsified DeFW offers a better balance of the communication and

computation complexity.

5.7.3 Fast DeFW Algorithm

We focus on the matrix completion problem and consider the movielens100k dataset

[Harper and Konstan(2015)] using the same setting considered previously. We simulate the

distributed optimization environment by equally dividing the training set into N partitions.

To satisfy the convergence conditions in Theorem 5.5, for the F-DeFW algorithm, we set

St = d3 + 2 log te, Pt = 2St in DePM and δ = 10−4 in (5.52); for the convex square loss

133

0 1000 2000 3000 4000 5000

Iteration number

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
S
E

10-5

10-4

10-3

10-2

10-1

100

101

102

103

C
o
n
se

n
su

s
E
rr

o
r

Gau. Loss (F-DeFW)

Sq. Loss (F-DeFW)

Gau. Loss (DeFW)

Sq. Loss (DeFW)

Gau. Loss (Cen.)

Sq. Loss (Cen.)

Consensus Error (Gau.)

Consensus Error (Sq.)

0 1000 2000 3000 4000 5000

Iteration number

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
S
E

10-5

10-4

10-3

10-2

10-1

100

101

102

103

C
o
n
se

n
su

s
E
rr

o
r

Gau. Loss (F-DeFW)

Sq. Loss (F-DeFW)

Gau. Loss (DeFW)

Sq. Loss (DeFW)

Gau. Loss (Cen.)

Sq. Loss (Cen.)

Consensus Error (Gau.)

Consensus Error (Sq.)

Figure 5.9: MSE on movielens100k against the F-DeFW iteration number t: (Left) noise-

free observations; (Right) outlier-contaminated observations. We set σi = 5. Note the

consensus error, maxj∈[N] ‖θ̄jt − θ̄t‖, of F-DeFW are plotted with the logarithmic scale

(observe the different scale on the right y-axis).

(resp. non-convex Gaussian loss), we set the step size as γt = 2/(t + 1) (resp. t−0.75). In

addition to the noise-free setting when Zis = 0 for all s, i, we also consider an outliers-

contaminated setting when Zis = pis · Z̃is, where pis is Bernoulli with P (pis = 1) = 0.2 and

Zis ∼ N (0, 5). We also compare the performance of the plain DeFW algorithm (with ` = 3

average consensus steps per iteration) and a centralized FW algorithm.

We plot the mean square error (MSE) against the F-DeFW iteration number t on the

testing set in Figure 5.9, where the worst MSE among the agents is evaluated for the

decentralized algorithms. Observe that the MSE resulted from the F-DeFW algorithm

follows closely with that of centralized FW algorithm. It also converges faster than DeFW

and attains consensus gradually.

In Table 5.1, we compare the computation costs of the algorithms. As seen from the

moderate number of matrix-vector multiplications required, the F-DeFW algorithm requires

less computation time, but it requires more information exchange rounds than the DeFW

algorithm. It is important to note that the size of the messages exchanged per round

134

Runtime #Matrix-vec. products #Info. exchanges

Target MSE = 1.4 (Noise-free case, movielens100k)

F-DeFW (Sq. loss) 5.774 s 11978 167198

F-DeFW (Gau. loss) 10.548 s 23016 347580

DeFW (Sq., ` = 3) 28.377 s N/A 4440

DeFW (Gau., ` = 3) 160.09 s N/A 18480

Target MSE = 1.25 (Noise-free case, movielens100k)

F-DeFW (Sq. loss) 8.809 s 19018 279838

F-DeFW (Gau. loss) 18.810 s 43220 700372

DeFW (Sq., ` = 3) 45.742 s N/A 5778

DeFW (Gau., ` = 3) 455.91 s N/A 29556

Table 5.1: Computation and communication costs at different target MSEs. Notice that

each communication round in F-DeFW requires sending a d = (m1+m2)-dimensional vector,

while DeFW requires sending an m1×m2 matrix. The runtime represents the computation

time per agent. It is calculated by dividing the overall time by N for our experiments

performed on a single-threaded MATLAB environment.

for F-DeFW is much smaller (since d = m1 + m2 � m1m2). We remark that the original

DeFW algorithm already runs 10 to 20 times faster than a PG algorithm (e.g., D-PG [Nedić

et al.(2010)]) as the latter requires computing a full SVD per iteration.

5.8 Chapter Summary

In this chapter, we have studied a decentralized projection-free algorithm for constrained

optimization, which we called the DeFW algorithm. Importantly, we showed that the

DeFW algorithm converges for both convex and non-convex loss functions and the respective

convergence rates are analyzed. The efficacy of the proposed algorithm is demonstrated

through tackling two problems related to machine learning and signal processing, with the

advantages over previous state-of-the-art demonstrated through numerical experiments.

As an extension, we have also studied a low complexity modification of the DeFW

algorithm, specialized to the low rank regression problems. The proposed Fast DeFW (F-

DeFW) algorithm is also proven to converge at a similar rate as the plain DeFW algorithm

135

in terms of the iteration complexity. However, the computation complexity required is

shown to be even lower than the plain DeFW algorithm as it only requires the network’s

agents to perform elementary computations such as matrix-vector multiplications.

136

Appendix

5.A Proof of Lemma 5.1

For simplicity, we shall drop the dependence of α in the constant t0(α). It suffices to

show that for all t ≥ 1,

√√√√
N∑

i=1

‖θ̄it − θ̄t‖22 ≤
Cp
tα
, Cp = (t0)α ·

√
Nρ̄ . (5.67)

We observe that for t = 1 to t = t0, the above inequality is true since θ̄it, θ̄t ∈ C and the di-

ameter of C is bounded by ρ̄. For the induction step, let us assume that
√∑N

i=1 ‖θ̄it − θ̄t‖2 ≤

Cp/t
α for some t ≥ t0. Note that

θit+1 = (1− t−α)θ̄it + t−αait . (5.68)

Denote ãt = N−1
∑N

i=1 a
i
t and using Fact 2.1, we observe that,

N∑

i=1

‖θ̄it+1 − θ̄t+1‖22 ≤ σ2(A)2 ·
N∑

j=1

‖(1− t−α)(θ̄jt − θ̄t) + t−α(ajt − ãt)‖22 , (5.69)

where we have used the fact θ̄t+1 = (1− t−α)θ̄t + t−αãt. The right hand side in (5.69) can

be bounded by

N∑

j=1

‖(1− t−α)(θ̄jt − θ̄t) + t−α(ajt − ãt)‖22

≤
N∑

j=1

(
‖θ̄jt − θ̄t‖22 + t−2αρ̄2 + 2ρ̄t−α‖θ̄jt − θ̄t‖2

)

≤ t−2α(C2
p +Nρ̄2) + 2ρ̄t−α

√
N

√√√√
N∑

j=1

‖θ̄jt − θ̄t‖22

≤ t−2α(Cp +
√
Nρ̄)2 ≤

((t0)α + 1

(t0)α · tα · Cp
)2

,

(5.70)

137

where we have used the boundedness of C in the first inequality, the norm equivalence

∑N
j=1 |cj | ≤

√
N
√∑N

j=1 c
2
j in the second inequality and the induction hypothesis in the

third and fourth inequalities. Consequently, from (5.24), we observe that for all t ≥ t0,

σ2(A) · (t0)α + 1

(t0)α · tα ≤
1

(t+ 1)α
, (5.71)

and the induction step is completed. Finally, Lemma 5.1 is proven by noting that (5.67)

implies (5.26).

5.B Proof of Lemma 5.2

We prove the first condition (5.29) with a simple induction. This condition is obviously

true for the base step t = 1. For induction step, suppose that (5.29) is true up to some t,

then

N∑

i=1

∇it+1F =
N∑

i=1

(∇itF −∇fi(θ̄it)) +
N∑

i=1

∇fi(θ̄it+1) . (5.72)

Note that the first term on the right hand side is zero due to the induction hypothesis. Thus,

the induction step is completed and N−1
∑N

i=1∇itF = N−1
∑N

i=1∇fi(θ̄it) for all t ≥ 1.

Then, we prove the second condition (5.30). For simplicity, we drop the dependence of

α in the constant t0(α). Recall ∇tF := N−1
∑N

i=1∇itF . It suffices to prove:

√√√√
N∑

i=1

‖∇itF −∇tF‖22 ≤
Cg
tα
, Cg = 2

√
N(t0)α(2Cp + ρ̄)L (5.73)

for all t ≥ 1 using induction. For t = 1 to t = t0, the inequality can be easily proven using

the boundedness of the gradients. For the induction step, suppose

√∑N
i=1 ‖∇itF −∇tF‖22 ≤

Cg/t
α for some t ≥ t0. Define the slack variable δf it+1 := ∇fi(θ̄it+1)−∇fi(θ̄it). We observe

138

that ∇it+1F = δf it+1 +∇itF and ∇it+1F =
∑N

j=1Wij∇jt+1F , thus applying Fact 2.1 yields

N∑

i=1

‖∇it+1F −∇t+1F‖22 ≤ σ2(A)2 ·
N∑

i=1

‖∇itF + δf it+1 −∇t+1F‖22 . (5.74)

Similarly, define δFt+1 := ∇t+1F −∇tF = N−1
∑N

i=1 δf
i
t+1 and observe that we can bound

the right hand side of (5.74) as

N∑

i=1

‖∇itF + δf it+1 −∇t+1F‖22

≤
N∑

i=1

(
‖∇itF −∇tF‖22 + ‖δf it+1 − δFt+1‖22

+ 2 · ‖δf it+1 − δFt+1‖2 · ‖∇itF −∇tF‖2
)

(5.75)

where the first inequality is obtained by expanding the squared `2 norm and applying

Cauchy-Schwartz inequality.

Note that for all i ∈ [N], we have the following chain:

‖δf it+1‖2 = ‖∇fi(θ̄it+1)−∇fi(θ̄it)‖2 ≤ L‖θ̄it+1 − θ̄it‖2

≤ L
∥∥∥
∑N

j=1Aij
(
(θjt+1 − θ̄jt) + (θ̄jt − θ̄it)

)∥∥∥
2

≤ L∑N
j=1Aij

(
t−αρ̄+ 2Cpt

−α
)

= (2Cp + ρ̄)Lt−α ,

(5.76)

where the last inequality is due to the convexity of `2 norm, the update rule in line 5 of

Algorithm 5.1 and the results from Lemma 5.1. Using the triangular inequality, we obtain

‖δf it+1 − δFt+1‖2 =
∥∥∥
(
1− 1

N

)
δit+1 + 1

N

∑
j 6=i δ

j
t+1

∥∥∥
2

≤
(
1− 1

N

)
‖δit+1‖2 + 1

N

∑
j 6=i ‖δ

j
t+1‖2

≤ 2
(
1− 1

N

)
(2Cp + ρ̄)Lt−α ≤ 2(2Cp + ρ̄)Lt−α .

(5.77)

Finally, applying the induction hypothesis, the right hand side of Eq. (5.75) can be bounded

139

by

N∑

i=1

‖∇itF + δf it+1 −∇t+1F‖22 ≤ t−2α
(
C2
g + 4N(2Cp + ρ̄)2L2

)

+ t−α4L(2Cp + ρ̄)
√
N

√∑N
i=1 ‖∇itF −∇tF‖22

≤ t−2α ·
(
Cg + 2L

√
N(2Cp + ρ̄)

)2

≤
((t0)α + 1

(t0)α · tα · Cg
)2
,

(5.78)

where we have used the fact that
∑N

i=1 ‖∇itF − ∇tF‖2 ≤
√
N

√∑N
i=1 ‖∇itF −∇tF‖22 in

the first inequality. Invoking (5.24), we can upper bound the right hand side of (5.74) by

C2
g/(t + 1)2α for all t ≥ t0. Taking square root on both sides of the inequality completes

the induction step. Consequently, (5.30) can be deduced from (5.73).

5.C Proof of Theorem 5.3

The proof of Theorem 5.3 follows from our recent analysis on online/stochastic FW

algorithm [X2 of Section 1.3]. Using line 5 of Algorithm 5.1, we obtain:

θ̄t+1 = θ̄t + γt(N
−1
∑N

i=1 a
i
t − θ̄t) . (5.79)

Define ht := F (θ̄t)−F (θ?) where θ? is an optimal solution to (5.1). From the L-smoothness

of F and the boundedness of C, we have:

ht+1 ≤ ht +
γt
N

N∑

i=1

〈ait − θ̄t,∇F (θ̄t)〉+ γ2
t

Lρ̄2

2
, (5.80)

140

where ρ̄ was defined in (5.9). We have the following chain of inequalities for the inner

product: for each i ∈ [N],

〈ait − θ̄t,∇F (θ̄t)〉 ≤ 〈ait − θ̄t,∇itF 〉+ ρ̄‖∇itF −∇F (θ̄t)‖2

≤ 〈a− θ̄t,∇itF 〉+ ρ̄ · ‖∇itF −∇F (θ̄t)‖2, ∀ a ∈ C

≤ 〈a− θ̄t,∇F (θ̄t)〉+ 2ρ̄ · ‖∇itF −∇F (θ̄t)‖2, ∀ a ∈ C,

(5.81)

where we have added and subtracted ∇itF in the first inequality; and used the fact ait ∈

arg mina∈C〈a,∇itF 〉 in the second inequality. Recalling that ∇tF = N−1
∑N

i=1∇fi(θ̄it),

‖∇itF −∇F (θ̄t)‖2

≤ ‖∇itF −∇tF‖2 + ‖∇tF −∇F (θ̄t)‖2

≤ ∆dt +N−1
∑N

i=1 ‖∇fi(θ̄it)−∇fi(θ̄t)‖2

≤ ∆dt + L ·N−1
∑N

i=1 ‖θ̄it − θ̄t‖2

≤ ∆dt + L ·∆pt ,

(5.82)

where the third inequality is due to the L-smoothness of {fi}Ni=1. Recalling that ∆pt = Cp/t,

∆dt = Cg/t and substituting the results above into the inequality (5.80), we can see that

ht+1 ≤ ht + γt〈āt − θ̄t,∇F (θ̄t)〉+ γ2
t

Lρ̄2

2
+ 2ρ̄γt

Cg + LCp
t

, (5.83)

where āt ∈ C is the minimizer of the linear optimization (5.11a) using ∇F (θ̄t), i.e.,

āt ∈ arg min
a∈C
〈a,∇F (θ̄t)〉 . (5.84)

Case 1 : When F is convex, we have

〈āt − θ̄t,∇F (θ̄t)〉 ≤ 〈θ? − θ̄t,∇F (θ̄t)〉 ≤ −ht , (5.85)

where the first inequality is due to the optimality of āt and the last inequality stems from

141

the convexity of F . Plugging (5.85) into (5.83) yields

ht+1 ≤ (1− γt)ht + γ2
t

Lρ̄2

2
+ γt

2ρ̄(Cg + LCp)

t
. (5.86)

As γt = 2/(t+1), from a high-level point of view, the preceding inequality behaves similarly

to ht+1 ≤ (1− (1/t))ht +O(1/t2). Consequently, applying [Polyak(1987), Lemma 4] yields

a O(1/t) convergence rate for ht. In fact, this is a deterministic version of the case analyzed

by [Theorem 10 in X2 of Section 1.3]. In particular, setting α = 1,K = 2 in [(56) in X2 of

Section 1.3] and using an induction argument yield

ht ≤ 2 · (4ρ̄(Cg + LCp) + Lρ̄2)/(t+ 1), ∀ t ≥ 1 . (5.87)

Case 2 : For the case when F is µ-strongly convex and θ? lies in the interior of C with

distance δ > 0 (cf. (5.10)). Using [Lemma 6 in X2 of Section 1.3], we have

〈θ̄t − āt,∇F (θ̄t)〉 ≥
√

2µδ2ht . (5.88)

Plugging the preceding inquality into (5.83) gives

ht+1 ≤
√
ht(
√
ht − γt

√
2µδ2) + γ2

t

Lρ̄2

2
+ γt

2ρ̄(Cg + LCp)

t
. (5.89)

Compared to the case analyzed in (5.86), when ht is decreased, the decrement in ht+1

is increased, leading to a faster convergence. This is a deterministic version of the case

analyzed in [Theorem 7 in X2 of Section 1.3]. Setting α = 1,K = 2 in [(48) in X2 of

Section 1.3] and using an induction argument yield

ht ≤
(4ρ̄(Cg + LCp) + Lρ̄2)2

2δ2µ
· 9

(t+ 1)2
, ∀ t ≥ 1 . (5.90)

142

5.D Proof of Theorem 5.4

The first subsection proves the convergence rate condition in (5.36), while the second

subsection proves that the DeFW algorithm converges to a stationary point of (5.1).

5.D.1 Convergence rate

Let us recall the definition of the FW gap:

gt := max
θ∈C

〈∇F (θ̄t), θ̄t − θ〉 = 〈∇F (θ̄t), θ̄t − āt〉 , (5.91)

where we have used the definition of āt in (5.84). For simplicity, we shall assume that T is

an even integer in the following.

From the L-smoothness of F , we have:

F (θ̄t+1) ≤ F (θ̄t) + 〈∇F (θ̄t), θ̄t+1 − θ̄t〉+
L

2
‖θ̄t+1 − θ̄t‖22 . (5.92)

Observe that:

θ̄t+1 − θ̄t = N−1
∑N

i=1 γt(a
t
i − θ̄it) . (5.93)

As ait, θ̄
i
t ∈ C, we have ‖θ̄t+1 − θ̄t‖2 ≤ γtρ̄. Using (5.81) and (5.82), the inequality (5.92)

can be bounded as:

F (θ̄t+1) ≤ F (θ̄t)− γt〈∇F (θ̄t), θ̄t − āt〉

+ 2γtρ̄ · (∆dt + L ·∆pt) + γ2
t Lρ̄

2/2

= F (θ̄t)− γtgt + 2γtρ̄ · (∆dt + L ·∆pt) + γ2
t

Lρ̄2

2
.

(5.94)

From the definition, we observe that gt ≥ 0. Now, summing the two sides of (5.94) from

143

t = T/2 + 1 to t = T gives:

T∑

t=T/2+1

γtgt ≤
T∑

t=T/2+1

(
F (θ̄t)− F (θ̄t+1)

)

+
T∑

t=T/2+1

(
2γtρ̄ · (∆dt + L ·∆pt) + γ2

t

Lρ̄2

2

)
.

(5.95)

Canceling duplicated terms in the first term of the right hand side of the preceding inequality

gives:

T∑

t=T/2+1

γtgt ≤ F (θ̄T/2+1)− F (θ̄T+1)

+

T∑

t=T/2+1

(
2γtρ̄ · (∆dt + L ·∆pt) + γ2

t

Lρ̄2

2

)
.

(5.96)

As gt, γt ≥ 0, we can lower bound the left hand side as:

T∑

t=T/2+1

γtgt ≥
(

min
t∈[T/2+1,T]

gt

)
·
(T∑

t=T/2+1

γt

)
, (5.97)

and observe that for all T ≥ 6 and α ∈ (0, 1),

T∑

t=T/2+1

γt ≥
T 1−α

1− α ·
(

1−
(2

3

)1−α)
= Ω(T 1−α) . (5.98)

Define the constant C := Lρ̄2/2+2ρ̄(Cg+LCp). When α ≥ 0.5, using the fact that γt = t−α,

∆pt = Cp/t
α, ∆dt = Cg/t

α, the right hand side of (5.96) is bounded above by:

G · ρ+ C ·∑T
t=T/2+1 t

−2α ≤ G · ρ+ C · log 2 , (5.99)

note that the series is converging as we are summing from t = T/2 + 1 to t = T . Dividing

the preceding term by the lower bound (5.98) to
∑T

t=T/2+1 γt yields (5.36).

144

On the other hand, when α < 0.5, we notice that

T∑

t=T/2+1

t−2α ≤
∫ T

T/2
t−2α dt =

21−2α − 1

1− 2α

(T
2

)1−2α
. (5.100)

Therefore, the right hand side of (5.96) is bounded above by

Gρ+ C

T∑

t=T/2+1

t−2α ≤
(
Gρ+ C · 1− (1/2)1−2α

1− 2α

)
· T 1−2α . (5.101)

Dividing the preceding term by the lower bound (5.98) to
∑T

t=T/2+1 γt yields (5.37).

To prove the second statement in the theorem. Let us consider the inequality (5.94)

again. We observe that

F (θ̄t+1)− F (θ̄t) ≤ γt
(
− gt + 2ρ̄(∆dt + L∆pt) + γt

Lρ̄2

2

)
, ∀ t ∈ [T/2 + 1, T] . (5.102)

Notice that if the right hand side is negative for all t ∈ [T/2 + 1, T], then

F (θ̄t+1) < F (θ̄t) . (5.103)

Otherwise, for some t? ∈ [T/2 + 1, T], it holds that

gt? ≤ 2ρ̄(∆dt? + L∆pt?) + γt?
Lρ̄2

2
=

1

(t?)α

(
2ρ̄(Cp + LCg) +

Lρ̄2

2

)
= O(1/Tα) . (5.104)

The proof is thus completed.

5.D.2 Convergence to stationary point

Recall that the set of stationary points to (5.1) is defined as:

C? := {θ̄ ∈ C : maxθ∈C〈∇F (θ̄), θ̄ − θ〉 = 0} . (5.105)

We state the following Nurminskii’s sufficient condition:

145

Theorem 5.6 [Nurminskii(1972), Theorem 1] Consider a sequence {θ̄t}t≥1 in a compact

set C. Suppose that the following hold4:

A.1 limt→∞ ‖θ̄t+1 − θ̄t‖ = 0.

A.2 Let θ be a limit point of {θ̄t}t≥1 and {θst}t≥1 be a subsequence that converges to θ.

If θ /∈ C?, then for any t and some sufficiently small ε > 0, there exists a finite s such

that ‖θ̄s − θ̄st‖ > ε and s > st.

A.3 Let θ be a limit point of {θ̄t}t≥1 and {θst}t≥1 be a subsequence that converges to θ.

If θ /∈ C?, then for any t and some sufficiently small ε > 0, we can define

τt := min
s>st

s s.t. ‖θ̄s − θ̄st‖ > ε (5.106)

where τt is finite. Also, there exists a continuous function W (θ̄) that takes a finite

number of values in C? with

lim sup
t→∞

W (θ̄τt) < lim
t→∞

W (θ̄st) . (5.107)

Then the sequence {W (θ̄t)}t≥1 converges and the limit points of the sequence {θ̄t}t≥1 belong

to the set C?.

We apply the above theorem to prove that every limit point of {θ̄t}t≥1 is in C?. First,

A.1 can be easily verified since

‖θ̄t+1 − θ̄t‖ ≤
γt
N

N∑

i=1

‖ait − θ̄t‖ ≤
γtρ̄

N
(5.108)

and we have γt → 0 as t→∞.

As C is compact, there exists a convergent subsequence {θ̄st}t≥1 of the sequence of

iterates generated by the DeFW algorithm. Let θ be the limit point of {θ̄st}t≥1 and θ /∈ C?.
4To give a clearer presentation, we have rephrased conditions A.2 and A.3 from the original Nurminskii’s

conditions.

146

We shall verify A.2 by contradiction. In particular, fix a sufficiently small ε > 0 and assume

that the following holds:

‖θ̄s − θ̄st‖ ≤ ε, ∀ s > st, ∀ t ≥ 1 . (5.109)

As {θ̄st}t≥1 converges to θ, the assumption (5.109) implies that for some sufficiently large

t and any s > st, we have θ̄s ∈ B2ε(θ), i.e., the ball of radius 2ε centered at θ.

Since θ /∈ C?, the following holds for some δ > 0,

〈∇F (θ̄s),θ − θ̄s〉 ≤ −δ < 0, ∀ θ ∈ C, ∀s > st . (5.110)

In particular, we have 〈∇F (θ̄s), ās−θ̄s〉 ≤ −δ as we recall that ās = arg mina∈C〈∇F (θ̄s),a〉.

On the other hand, from (5.94) and using H5.1, H5.2, it holds true for all t ≥ 1 that:

F (θ̄t+1)− F (θ̄t) ≤ γt · 〈∇F (θ̄t), āt − θ̄t〉

+ γt · O(t−α) + γ2
t Lρ̄

2/2 .

(5.111)

To arrive at a contradiction, we let s > st and sum up the two sides of (5.111) from t = st

to t = s. Consider the following chain of inequalities:

F (θ̄s)− F (θ̄st) ≤
s∑

`=st

γ`(∇F (θ̄`), ā` − θ̄`〉+O(`−α))

≤ −δ
s∑

`=st

γ` +
s∑

`=st

γ`O(`−α) ,

(5.112)

where the first inequality is due to the fact that γ2
`Lρ̄

2/2 = γ`O(`−α) and the second

inequality is due to (5.110). Rearranging the terms in (5.112), we have

F (θ̄s)− F (θ̄st)−
s∑

`=st

C · `−2α ≤ −δ
s∑

`=st

`−α , (5.113)

for some C < ∞. As 1 ≥ α > 0.5, we have lims→∞
∑s

`=st
`−2α < ∞ on the left hand side

147

and lims→∞
∑s

`=st
`−α → +∞ on the right hand side. Letting s → ∞ on both sides of

(5.113) implies

lim
s→∞

F (θ̄s)− F (θ̄st) < −∞ , (5.114)

This leads to a contradiction to (5.110) since F (θ) is bounded over C. We conclude that

A.2 holds for the DeFW algorithm.

The remaining task is to verify A.3. We notice that the indices τt in (5.106) are well

defined since A.2 holds. Take W (θ) = F (θ) and observe that the image F (C?) is a finite

set [cf. H5.3]. By the definition of τt, we have θ̄s ∈ Bε(θ̄st) for all st ≤ s ≤ τt− 1. Again for

some sufficiently large t, we have θ̄s ∈ Bε(θ̄st) ⊆ B2ε(θ) and the inequality (5.112) holds for

s = τt − 1. This gives:

F (θ̄τt)− F (θ̄st) ≤
τt−1∑

`=st

γ` · (−δ +O(`−α)) . (5.115)

On the other hand, we have θ̄τt /∈ Bε(θ̄st) and thus

ε < ‖θ̄τt − θ̄st‖ ≤
τt−1∑

`=st

γ`

∥∥∥
N∑

i=1

ai`
N
− θ̄`

∥∥∥ ≤ ρ̄
τt−1∑

`=st

γ` . (5.116)

The preceding relation implies that
∑τt−1

`=st
γ` > ε/ρ̄ > 0. Considering (5.115) again, we

obtain that O(`−α) decays to zero, for some sufficiently large t, we have −δ + O(`−α) ≤

−δ′ < 0 if ` ≥ st. Therefore, (5.115) leads to

F (θ̄τt)− F (θ̄st) ≤ −δ′
τt−1∑

`=st

γ` < −
δ′ε
ρ̄
< 0 . (5.117)

Taking the limit t → ∞ on both sides leads to (5.107). The proof for the convergence to

stationary point in Theorem 5.4 is completed by applying Theorem 5.6.

148

5.E Proof of Lemma 5.3

We begin the proof by applying the triangle inequality:

∥∥∥ξ−1
mean∇itF −

1

N

N∑

j=1

∇fj(θ̄jt)
∥∥∥
∞
≤ ξ−1

mean ·
∥∥∥∇itF −

1

N

N∑

j=1

∇fj(θ̄jt)� 1Ωt

∥∥∥
∞

+
∥∥∥
(1

N

N∑

j=1

∇fj(θ̄jt)
)
� (ξ−1

mean1Ωt − 1)
∥∥∥
∞
,

(5.118)

where 1 denotes the all-one vector.

For the first term in the right hand side of (5.118), observe that ∇itF is obtained by

applying the GAC updates on the sparsified local gradients ∇fi(θ̄it) � 1Ωt for `t = dCl +

log(t)/ log σ2(A)−1e rounds, applying Fact 2.1 yields the following for all i ∈ [N]:

∥∥∥∇itF −
1

N

N∑

j=1

∇fj(θ̄jt)� 1Ωt

∥∥∥
∞

≤ σ2(A)`t ·
∥∥∥(∇fi(θ̄it)−

1

N

N∑

j=1

∇fj(θ̄jt))� 1Ωt

∥∥∥
∞
≤ σ2(A)Cl · B

t
,

(5.119)

for some B <∞ since the gradients are bounded.

For the second term in (5.118), we first apply the inequality ‖
(
N−1

∑N
i=1∇fi(θ̄it)

)
�

(ξ−1
mean1Ωt−1)‖∞ ≤ ‖N−1

∑N
i=1∇fi(θ̄it)‖∞‖(ξ−1

mean1Ωt−1)‖∞ from [Horn and Johnson(1994)].

Now, the probability that coordinate k is included is given by:

P (k ∈ Ωt) = 1− P
(

N⋂

i=1

k /∈ Ωt,i

)
= 1−

(
1− 1

d

)ptN
= ξmean , (5.120)

and that E[1Ωt] = ξmean1. Then, observing that each element in ξ−1
mean1Ωt is bounded in

[0, ξ−1
mean] and applying the Hoefding’s inequality [Massart(2003)], the following holds true

for all x > 0:

P
(
‖ξ−1
mean1Ωt − 1‖∞ ≥ x

)
≤ 2d · e−2x2/ξ−2

mean , (5.121)

where we have applied a union bound argument to take care of the `∞-norm.

149

Setting x = ξ−1
mean

√
(log(2dt2)− log ε)/2 and applying another union bound show that

with probability at least 1− (π2ε/6), the following holds for all t ≥ 1:

∥∥∥ 1

N

N∑

i=1

∇fi(θ̄it)� (ξ−1
mean1Ωt − 1)

∥∥∥
∞
≤ ξ−1

mean

∥∥∥ 1

N

N∑

i=1

∇fi(θ̄it)
∥∥∥
∞

√
log(2dt2/ε)

2
, (5.122)

As d � 0, we have ξ−1
mean ≈ d/(ptN). Recalling pt = Θ(t) yields the desired result in

Lemma 5.3.

5.F Proof of Proposition 5.1

With our choice of S, the error resulting from the gossiping step of Algorithm 5.2

(cf. Line 6) can be upper bounded as:

‖v̄p,Li −Mtv
p
i ‖ ≤

∥∥∥v̄p,Li −
N∑

j=1

v̄p,0j
N

∥∥∥+
∥∥∥

N∑

j=1

v̄p,0j
N
−Mtv

p
i

∥∥∥

≤ O(ε) +
1

N

∥∥∥∥∥∥

N∑

j=1

∇fj(θ̄jt)(vpi − v
p
j)

∥∥∥∥∥∥

≤ O(ε) +
B

N

N∑

j=1

‖vpi − v
p
j ‖ ≤ O(ε), ∀ p ≥ 1 ,

(5.123)

where the second inequality and the last inequality are due to our choice of L and the

geometric convergence of the gossip-based average consensus [Dimakis et al.(2010)]; the

third inequality is due to the boundedness of ∇fj(θ̄jt), since fj is smooth and the constraint

set is bounded.

The above shows that the DePM can be analyzed as running N noisy power methods

in parallel at N agents, each initialized by v1
i . Consequently, using our choice of P and

applying [Hardt and Price(2014), Corollary 1.1], the following holds with probability at

least 1 − Nc (we can get rid of the e−Ω(d) term in [Hardt and Price(2014), Corollary 1.1]

due to H5.4; see [Rudelson and Vershynin(2009)]):

‖(I − vPi (vPi)>)u1‖ ≤ ε, ∀ i ∈ [N] , (5.124)

150

which taking squares on the both side yields the first inequality in (5.60). The second

inequality in (5.60) is derived from decomposing vPi into the orthonormal basis {u1, ...,ud}.

Lastly, the consensus condition (5.61) follows from our choice of L such that ‖vPi − vPj ‖ =

O(ε) and the identity vPi (vPi)>−vPj (vPj)> = ((vPi −vPj)(vPi +vPj)>+(vPi +vPj)(vPi −vPj)>)/2.

5.G Proof of Theorem 5.5

Let ρ := maxθ,θ′∈C ‖θ − θ′‖ be the diameter of C, which is proportional to R. For both

convex and non-convex cases, using the L-smoothness of fi (and thus F), we have:

F (θ̄t+1) ≤ F (θ̄t) +
N∑

i=1

γt
N
〈∇F (θ̄t), Ra

i
t(a

i
t)
> − θ̄t〉+

Lρ2γ2
t

2
, (5.125)

The middle term of the right hand side above can be bounded as follows:

〈∇F (θ̄t), Ra
i
t(a

i
t)
>− θ̄t〉 ≤ ρ ·

∥∥∥∥∥∥
∇F (θ̄t)−

1

N

N∑

j=1

∇fj(θ̄jt)

∥∥∥∥∥∥

+
1

N

〈
N∑

j=1

∇fj(θ̄jt), Rait(ait)> − θ̄t
〉
.

(5.126)

As fi is L-smooth, the first term in (5.126) can be bounded as

∥∥∥∥∥∥
∇F (θ̄t)−

1

N

N∑

j=1

∇fj(θ̄jt)

∥∥∥∥∥∥
≤ L

N2
·
N∑

j=1

N∑

k=1

‖θ̄jt − θ̄tk‖. (5.127)

Now, for all j, k ∈ [N], we have

‖θ̄jt+1 − θ̄kt+1‖ ≤ (1− γt)‖θ̄jt − θ̄kt ‖+ γtR‖ajt (ajt)> − akt (akt)>‖. (5.128)

Using our choice of St and Proposition 5.1, we have ‖ajt (ajt)> − akt (akt)>‖ = O(1/t). Ap-

plying [Polyak(1987), Lemma 4 and 5], we can show that ‖θ̄jt − θ̄kt ‖ = O(1/t) regardless of

the choice of step size rule. We thus conclude that ‖∇F (θ̄t)−
∑N

j=1∇fj(θ̄
j
t)/N‖ = O(1/t).

For the second term in (5.126), let ât := TopEV(Mt) and āt := TopEV(−∇F (θ̄t)). Since

〈Mt, ât(ât)
>〉 ≥ 〈Mt,aa

>〉 for all ‖a‖ = 1, we can show:

151

〈Mt, θ̄t −Rait(ait)>〉 ≤ ρ

∥∥∥∥∥∥
∇F (θ̄t)−

1

N

N∑

j=1

∇fj(θjt)

∥∥∥∥∥∥

+R〈Mt, ât(ât)
> − ait(ait)>〉+ 〈∇F (θ̄t), Rāt(āt)

> − θ̄t〉 .

(5.129)

The first term on the right hand side of the preceding relation is bounded by O(1/t) as dis-

cussed before. For the second term, applying the eigendecomposition Mt =
∑d

k=1 λkuku
>
k

with λ1 ≥ λ2 ≥ · · · ≥ λd and the fact that ât = u1, we can express 〈Mt, ât(ât)
>−ait(ait)>〉

as:

〈Mt, ât(ât)
> − ait(ait)>〉 = λ1 −

∑d
k=1 λk(u

>
i a

i
t)

2 . (5.130)

Using our choice of Lt, Pt and Proposition 5.1, the output, ait = vPti , of the DePM method,

satisfies (5.60) with ε2 = O(1/t2) and the right hand side of (5.130) can be upper bounded

by O(1/t2) with probability at least 1 − c̃/t2. Consequently, we can upper bound (5.126)

as:

〈∇F (θ̄t), Ra
i
t(a

i
t)
>− θ̄t〉 ≤ 〈∇F (θ̄t), Rāt(āt)

> − θ̄t〉+O(1/t) . (5.131)

Now, in the convex case where γt = 2/(t+1), (5.125) and (5.131) imply that the following

relation holds with probability at least 1− (π2/6)c̃,

F (θ̄t+1) ≤ F (θ̄t) + γt〈∇F (θ̄t), Rāt(āt)
> − θ̄t〉+O(1/t2) , (5.132)

for all t ≥ 1. Thus, 〈∇F (θ̄t), Rāt(āt)
>〉 ≤ 〈∇F (θ̄t),θ〉 for all θ ∈ C since āt is the top

eigenvector of −∇F (θ̄t) and Tr(θ) = R if θ ∈ C. Taking θ = θ? and using the convexity of

F (θ) yield

F (θ̄t+1)− F (θ?) ≤ (1− γt)(F (θ̄t)− F (θ?)) +O(1/t2) , (5.133)

for all t ≥ 1, and the O(1/t) convergence of F (θ̄t) − F (θ?) follows from [Polyak(1987),

Lemma 4].

In the non-convex case, we have γt = t−α. Similarly, we can show that (5.125) and

(5.131) lead to the following inequality which holds with probability at least 1− (π2/6)c̃,

152

F (θ̄t+1) ≤ F (θ̄t)− γtgt +O(1/t2α), ∀ t ≥ 1 , (5.134)

where gt := maxθ∈C〈∇F (θ̄t), θ̄t − θ〉 ≥ 0. The relation (5.65) is then derived by summing

the above inequality from t = T/2 + 1 to t = T .

153

6 Consensus-based Alternating Optimization

This chapter continues with our study on algorithms that run on networks. We focus on

extensions of the popular alternating optimization (AO) algorithm and design its consensus-

based counterpart for multi-agent optimization. In particular, we develop two consensus-

based algorithms with applications to signal estimation and dictionary learning.

6.1 Context and Background

We consider the following multi-agent optimization problem:

min
x,{yi}Ni=1

F (x,y) :=
N∑

i=1

(
fi(x,yi) + hi(yi)

)
, (6.1)

over a connected network of N agents, where y := (yi)
N
i=1. We shall work with the following

settings regarding Problem (6.1):

• The function hi(yi) is convex and can possibly be non-smooth.

• The function fi(x,yi) is continuously differentiable (possibly non-convex) with respect

to (w.r.t.) both x and yi.

As we are interested in the multi-agent optimization setting, here both hi(·), fi(·, ·) are

private functions that are known to agent i only. In particular, the optimization variables

x ∈ Rm and yi ∈ Rn can be treated as the common variable and the private variable,

respectively. Applications of the formulation (6.1) include the popular matrix factorization

problems, and we shall discuss the applications in latter part of this chapter when the

specific algorithms are developed.

With a slight modification such as constraining x,yi to a compact set (e.g., a ball with

a sufficiently large radius), Problem (6.1) can be viewed as a special case of (5.1) studied

in the preceding chapter. Naturally, one can apply the DeFW or DPG algorithm to tackle

154

the problem. However, as (6.1) is non-convex in general, a more commonly used technique

is to apply the alternating optimization (AO) algorithm. The AO algorithm is motivated

by the separability of the objective function in (6.1). In particular, the basic idea is to

alternate between the optimization of the two variables x and {yi}Ni=1 during the successive

iterations, i.e., let t ∈ N be the iteration number, the AO algorithm updates as follows:

xt+1 = arg min
x

F (x,yt), yt+1 = arg min
y

F (xt+1,y) . (6.2)

The preceding procedure is attractive when the two sub-problems above can be solved eas-

ily, e.g., when F (·, ·) is bi-convex but not convex in both of the variables. Notice that the

exact minimization in (6.2) is often replaced by an inexact optimization step such as gra-

dient step or Newton step; see [Nesterov(2012),Yuan et al.(2012)]. Importantly, as studied

in [Grippo and Sciandrone(2000),Razaviyayn et al.(2013),Hong et al.(2017)], under the cen-

tralized setting, the AO algorithm has often nice convergence properties (i.e., convergence

to a stationary point of (6.1)) and fast practical convergence speed. For example, when

applied to some non-convex matrix factorization problems, the AO algorithm finds the glob-

ally optimal solution when the initial point for the algorithm is chosen judiciously [Arora

et al.(2015)].

To this end, we observe that the ‘y-update’ in (6.2) can be solved in a decentralized

manner since the objective function is decomposable with respect to the y variables, i.e., we

can obtain yt+1 by tackling yt+1
i = arg minyi

(
fi(x

t+1,yi) + hi(yi)
)

independently at the

ith agent. Instead, our challenge lies on the ‘x-update’ in (6.2), which deals with a common

variable that every agent over the network has to agree on (or reach a consensus about).

In the rest of this chapter, we propose two algorithms for tackling the x update in a de-

centralized manner while ensuring convergence of the resultant AO algorithm. Specifically,

Section 6.2 proposes a consensus-based AO algorithm for least square problems (C-AOLS)

to obtain an inexact solution on the x update using average consensus, and Section 6.3

proposes an EXTRA-AO algorithm that applies a decentralized gradient method on x. We

155

also discuss their motivating applications. Lastly, Section 6.4 presents result of numerical

experiments to verify the efficacy of the proposed algorithms.

Notations. We use the notations defined in Section 2.1 on networks with additional con-

ditions as follows. In particular, the network which we run our algorithms on is undirected.

It has N nodes and the weighted adjacency matrix is non-negative, doubly stochastic,

i.e., such that A>1 = A1 = 1. Its second largest singular value, σ2(A), is strictly less than

one.

6.2 Consensus-based AO Algorithm for Least Square Problems

Our first consensus-based AO algorithm is motivated by the least square estimation

problem with nuisance parameters. We consider objective functions that take the form:

fi(x,yi) = ‖gi(x,yi)‖22, hi(yi) = IBi(yi) , (6.3)

where gi : Rm × Rn → Rpi is an affine function in the first argument x, given as:

gi(x,yi) = Hi(yi)x− ζi(yi) , (6.4)

and IBi(·) is an indicator function for the convex set Bi such that IBi(yi) = 0 if yi ∈ Bi and

it is ∞ for otherwise. Observe that when yi are fixed for all i, the optimization problem is

convex in x and it admits a closed form solution:

x?(y) =
(N∑

i=1

Hi(yi)
>Hi(yi)

)−1(N∑

i=1

Hi(yi)
>ζi(yi)

)
. (6.5)

Importantly, we observe that for all i, the matrix-matrix and matrix-vector products:

Hi(yi) := Hi(yi)
>Hi(yi), θi(yi) := Hi(yi)

>ζi(yi) , (6.6)

156

can be computed locally at agent i using his/her local variables. Moreover, x?(y) can be

computed using averages of the quantities above, i.e.,

x?(y) =
(1

N

N∑

i=1

Hi(yi)
)−1(1

N

N∑

i=1

θi(yi)
)

= H(y)−1θ̄(y) , (6.7)

where we have defined H(y) := (1/N)
∑N

i=1 Hi(yi) and θ̄(y) := (1/N)
∑N

i=1 θi(yi) as the

wanted averages.

The observation above motivates us to perform the required ‘x-update’ in a decentralized

manner by applying average consensus to approximate H(y) and θ̄(y). In particular, the

proposed C-AOLS algorithm can be summarized in Algorithm 6.1. As seen, Line 3 to 6 in

the psuedo code performs an S-steps average consensus on the given network to compute

the averages H(yt) and θ̄(yt), while the remaining steps simply perform the standard AO

steps based on the approximate averages. Notice that we have applied a projected gradient

update for the ‘y-update’ stage in the AO algorithm, since a closed form solution for the

respective update may not be available.

6.2.1 Convergence Analysis

To analyze the convergence of the C-AOLS algorithm, we first show the following result

regarding the consensus step in the algorithm:

Proposition 6.1 Let B := B1 × · · · BN and suppose that

max
y∈B

∥∥∥∥∥
N∑

i=1

Hi(yi)
>Hi(yi)

∥∥∥∥∥ ·max
y∈B

∥∥∥∥∥
(N∑

i=1

Hi(yi)
>Hi(yi)

)−1
∥∥∥∥∥ · σ2(A)S < 1 , (6.12)

then the iterates computed in Algorithm 6.1 satisfy:

∑N
i=1 ‖x?(yt)− xt+1

i ‖ ≤ C̃0 · σ2(A)S , (6.13)

∑N
i=1 ‖x?(yt)− (1/N)

∑N
j=1 xt+1

j ‖ ≤ C̃1 · σ2(A)S , (6.14)

157

Algorithm 6.1 Consensus-based AO algorithm for Least Square Problems (C-AOLS).

1: Initialize: {x0
i }Ni=1, {y0

i }Ni=1, and parameter S;

2: for t = 1, 2, ... do

3: Consensus step: we set

H0,t
i = Hi(y

t
i)
>Hi(y

t
i) and θ0,t

i = Hi(y
t
i)
>ζi(yti), ∀ i ∈ [N] . (6.8)

4: for ` = 0, 1, ..., S − 1 do

5:
H`+1,t
i =

N∑

j=1

Aij ·H`,t
j and θ̄`+1,t

i =
N∑

j=1

Aij · θ̄`,tj , ∀ i ∈ [N] . (6.9)

6: end for

7: AO step: for all i = 1, ..., N , agent i updates its own copies of x and yi:

xt+1
i =

(
HS,t
i

)−1
θ̄S,ti , (6.10)

yt+1
i = PBi

(
yti − β · ∇yifi(x

t+1
i ,yti)

)
, (6.11)

where PBi(·) is the projection operator onto Bi and β > 0 is a step size.

8: end for

9: Return: an approximate solution to (6.1) — {xti}Ni=1, {yti}Ni=1.

∑N
i=1 ‖xt+1

i − (1/N)
∑N

j=1 xt+1
j ‖ ≤ C̃2 · σ2(A)S , (6.15)

where x?(yt) was defined in (6.7), and C̃0, C̃1, C̃2 are some constants that depend on the

left hand side of (6.12).

The results above show that the approximation errors decay exponentially with S, the

number of consensus exchanges used per iteration. In fact, the analysis simply follows

from standard convergence result for the average consensus protocol, as we present in Ap-

pendix 6.A. However, Proposition 6.1 is crucial to establishing the asymptotic convergence

of Algorithm 6.1.

Theorem 6.1 Let (x?,y?) be a local minimum to (6.1). Suppose that the global function

158

F (·, ·) is mo-strongly convex and Mo-smooth in the neighborhood NR?(x?,y?) with radius R?.

Moreover, each of fi(·, ·) is Lipschitz continuous with the constant Lo. Suppose β < 1/Mo,

B := maxt ‖(xt,yt)− (x?,y?)‖ ≤ R?, then the C-AOLS algorithm generates iterates which

satisfy:

lim
t→∞
‖(xt,yt)− (x?,y?)‖2 ≤ ρ

(
σ2(A)

)
, (6.16)

where xk := (1/N)
∑N

i=1 xti and

ρ
(
σ2(A)

)
:=

2

mo


(LoC̃1 +BMoC̃0)σ2(A)S +

√
(C̃0 + C̃2)σ2(A)S

1/(18B2LoMo)


 ,

(6.17)

where the constants C̃0, C̃1, C̃2 are the same constants used in Proposition 6.1.

Note that the upper bound satisfies ρ(σ2(A)) = O(σ2(A)S/2). The proof is provided in

Appendix 6.B, which is based on studying the error dynamics of the C-AOLS algorithm

as a second order dynamical system. In fact, Theorem 6.1 implies that if the iterates of

Algorithm 6.1 stay close enough to a local minimum, then the iterates converge to an ap-

proximate of that local minimum, where the approximation accuracy improves exponentially

with S, i.e., the number of average consensus used per iteration of the algorithm.

Notice that Theorem 6.1 does not assume F to be convex. However, the strong convexity

assumption on F (·, ·) around a local minimum may appear restrictive at first. However, our

numerical results indicate that Theorem 6.1 can accurately predict the performance of the

algorithm applied to the problem (6.1).

6.2.2 State Estimation with Asynchronous Measurements

As a motivating example, we observe that Problem (6.1) with the above setting encom-

passes a practical problem pertaining to state estimation with asynchronous measurements.

Our scenario of interest is a sensor network that captures the continuous-time sensor field

xc(t) ∈ Rn using N sensors. Assume that the signal is band-limited by 1/(2Ts) Hz. We

159

focus on the case when the sensors are taking memoryless, asynchronous and sub-Nyquist

measurements on xc(t). Specifically, the kth sample recorded at the ith sensor is:

ζi[k] = Hixc((kAi − bi)Ts) +wi[k] , (6.18)

where Ai ≥ 1, Ai ∈ Z is the down-sampling factor of the ith sensor and bi ∈ R is the

time offset in sampling, wi[k] ∼ N (0, σ2I) is an additive noise and Hi ∈ Rm×n represents

the measurement matrix for the pth sensor. Examples of sensing systems that can be

modeled by (6.18) include wide area measurement systems (WAMS) for power system state

estimation (PSSE) [Li and Scaglione(2013)]. As xc(t) is bandlimited, it suffices to estimate

the Nyquist-rate samples of xc(t), i.e., x[k] := xc(kTs), for our task. We assume that

the down-sampling factor Ai is known, while the time offset bi is an unknown nuisance

parameter, and we set b1 = 0 without loss of generality.

Our next endeavor is to show that the regression problem under model (6.18) with

asynchronous and sub-Nyquist sampling can be cast into a special case of the least square

problem with nuisance parameter. Note that from (6.18), it is impossible to infer a single

sample x[k] by taking one snapshot of the measured signal {ζi[k]}Ni=1, as the latter also

depends on the other samples {x[j]}j 6=k. We resort to an offline processing scheme that

performs a batch regression of the Fourier series of a data stream. In particular, we observe

that the frequency-domain equivalent model to (6.18) admits the following representation:

Observation 6.1 Let xc(t) be bandlimited by 1/(2Ts) Hz and define the frequency map:

Ωa
Ai(ω) :=

(ω
Ai
− a

Ai
2π
)

mod (−π, π] . (6.19)

The measurement model (6.18) is equivalent to the following:

Zi(e
jω) =

1

Ai

Ai−1∑

a=0

e
−jbiΩaAi (ω)

HiX
(
e
jΩaAi

(ω)
)

+ Vi(e
jω) , (6.20)

160

where Zi(e
jω), Vi(e

jω) and X(ejω) are the discrete-time Fourier transform (DTFT) of ζi[k],

vi[k] and x[k], respectively.

A key to verifying the above observation is to decompose x[k] into its polyphase components

and study the spectrum of the down-sampled signal; see [Vaidyanathan(1993)].

Observation 6.1 shows that the observation on X(ejω) is subjected to linear transfor-

mation, linear phase shift and aliasing. These effects, when combined, can be viewed as a

linear transformation on X(ejω) with given time offset bi. To see this, we need to ensure

that the measured samples are obtained at the same sampling rate. It can be achieved by

generating the following samples from ζi[k]:

ζqi [k] = ζi[Qik − q], q = 0, 1, ..., Qi − 1 , (6.21)

where Qi := A/Ai and A := LCM{A1, ..., AN}. These samples are equivalent to those

sampled at 1/A of the Nyquist rate. Next, by noting that Ωa
A((−π, π]) is disjoint with

Ωb
A((−π, π]) for a 6= b, we can define the following extended spectrum:

X̃(ejω) =
[
X
(
ejΩ

0
A(ω)

)>
. . . X

(
ejΩ

A−1
A (ω)

)>]
, (6.22)

where A := LCM{A1, ..., AN}; and the extended matrix:

H̃i(bi, e
jω) =

1

A

[
e−jbiΩ

0
A(ω) . . . e−jbiΩ

A−1
A (ω)

]
⊗Hi . (6.23)

Using Eq. (6.22) and (6.23), the observed spectrum in (6.20) can be simplified as:

Zqi (e
jω) = H̃i(bi − qQi, ejω)X̃(ejω) + Vq

i (e
jω), (6.24)

which is an affine function in X̃(ejω).

We discuss how the spectrum Zqi (e
jω) can be obtained from a finite number of measure-

ments. Here, we accrue QiT samples at sensor i and we can approximate Zqi (e
jω) by the

161

following F -point discrete Fourier transform (DFT) spectrum:

Zqi [f] =
T−1∑

m=0

ζqi [m]e−jωfm, f = 0, ..., F − 1 , (6.25)

where ωf , 2π(f − F + 1)/F and F ≥ T is required. In this way, the sequence {x[k]}AT−1
k=0

can be inferred from the collection of spectrum {Zqi [f]}i,f . Finally, from (6.24) we can derive

the following regression problem for estimating the desired sequence {x[k]}AT−1
k=0 :

min
{x[k]}AT−1

k=0 ,{bi}Ni=2

N∑

i=1

fi({x[k]}AT−1
k=0 , bi) s.t. bi ∈ Bi, ∀ i ∈ [N] , (6.26)

where

fi({x[k]}AT−1
k=0 , bi) :=

Qi−1∑

q=0

F−1∑

f=0

∥∥∥Zqi [f]− H̃i(bi − qQi, ejωf)X̃(ejωf)
∥∥∥

2

2
, (6.27)

and X̃(ejωf) is defined in (6.22), where X(ejωf) =
∑AT−1

m=0 x[m]e−jωfm is a linear function

of {x[k]}AT−1
k=0 . We thus observe that the regression problem (6.26) is a special case of the

problem (6.1) considered in this section, and we can apply Algorithm 6.1. Note, however,

that the model is exact only in the limit when F → ∞, thus there is a trade-off between

the complexity of solving (6.26) and the quality of the approximation, that improves when

the number of DFT points F is large.

6.3 EXTRA-AO Algorithm

The C-AOLS algorithm studied in the last chapter is specialized to the least square

problems with local nuisance parameters. This section considers a consensus-based AO

algorithm suitable for problems given in the general form of (6.1). Our main idea is to

tackle the ‘x-update’ using an iterative scheme similar to the DPG algorithm.

However, we observe that combining the plain DPG algorithm with AO may not lead

162

to a converging algorithm. To see this, let us consider the following algorithm:

xti =
N∑

j=1

Aijx
t−1
j − αt∇xfi

(∑N
j=1Aijx

t−1
j ,yt−1

i

)
, ∀ i ∈ [N] , (6.28)

yti = proxβthi(·)
(
yt−1
i − βt∇yfi(x

t
i,y

t−1
i)

)
, ∀ i ∈ [N] , (6.29)

where αt, βt > 0 are the step sizes to be specified later. In (6.29), the proximal operator is

defined as:

proxβthi(·)(y) := arg min
z

1

2
‖y − z‖22 + βthi(z) . (6.30)

A popular example is hi(yi) = ρ · ‖yi‖1 with ρ > 0. In this case, the proximal operator is

equivalent to the soft thresholding operator [Beck and Teboulle(2009)] which can be given

in closed form. Note that the algorithm is simply derived by combining the DPG algorithm

with a proximal gradient update for ‘y-update’. It is known in the literature as the (adapt-

then-combine) ‘ATC-AO’ algorithm and was studied in [Chainais and Richard(2013)].

However, the recursions (6.28) and (6.29) are not guaranteed to converge to a stationary

point of (6.1) in general. In particular, under a fixed step size rule, i.e., αt = α for all t, it can

be shown that the recursion (6.28) and (6.29) may converge to a solution such that xti 6= xtj ,

i.e., consensus is not reached; on the other hand, when the step size αt is diminishing, our

numerical experiments suggest that the algorithm may not converge to a stationary point

of (6.1) at all. An example of lack of convergence is the numerical simulations shown in

Figure 6.4 of Section 6.4.2, which illustrates that the ATC-AO with a fixed step size does

not lead to a solution that reaches consensus.

For this reason we leverage an alternative idea proposed in [Shi et al.(2015)], called the

exact first order algorithm (EXTRA). The algorithm is described by (6.31) together with

the pseudo code of EXTRA-AO in Algorithm 6.2. An important feature of the EXTRA

update is that a fixed step size is used throughout the algorithm, leading to a distributed

algorithm with linear convergence rate. As seen in [Shi et al.(2015)], this strategy achieves

consensus and optimality simultaneously when applied to convex optimization problems.

163

Algorithm 6.2 EXTRA-AO algorithm for (6.1).

1: Initialize: {x0
i }Ni=1, {y0

i }Ni=1;

2: for t = 1, 2, ... do

3: for i = 1, 2, ..., N do

4: Agent i computes the following EXTRA update for xi:

xti =





N∑

j=1

Aijx
t−1
j − α∇xfi(x

t−1
i ,yt−1

i), if t = 1 ,

xt−1
i +

N∑

j=1

Aijx
t−1
j − α∇xfi(x

t−1
i ,yt−1

i)

−
N∑

j=1

Ãijx
t−2
j + α∇xfi(x

t−2
i ,yt−2

i), if t > 1 ,

(6.31)

where α > 0 is a fixed step size and Ã = (I +A)/2. Notice that Ã can also take

a different form with more relaxed conditions, see [Shi et al.(2015)].

5: Agent i computes the following update for yi:

yti = proxβhi(·)
(
yt−1
i − β∇yfi(x

t
i,y

t−1
i)

)
. (6.32)

6: end for

7: end for

8: Return: approximate stationary solution to (6.1) — {xki }Ni=1, {yki }Ni=1.

Note that, in (6.31), Ã = (I +A)/2 has the same sparsity as A, therefore similar to the

ATC strategy described previously, the EXTRA update can also be computed via local

computations and information exchange with the neighboring agents.

We now discuss about the EXTRA update on the x’s side. The EXTRA step (6.31)

combines both consensus and gradient descent in a single step, where the optimization

variables from the previous two iterations are required. In fact, the latter features a similar

gradient tracking idea used in the consensus based DeFW algorithm [cf. (5.28)] of the

previous chapter; see [Nedić et al.(2016)] for details about the said interpretation.

164

6.3.1 Convergence Analysis

Next, we analyze the convergence of the EXTRA-AO algorithm. To facilitate our dis-

cussion, let us introduce the following variables/functions:

xt := [xt1 xt2 · · · xtN]>, yt := [yt1 yt2 · · · ytN]>, (6.33)

f(x,y) := [f1(x1,y1) · · · fN (xN ,yN)]> , (6.34)

∇xf(x,y) := [∇xf1(x1,y1) · · · ∇xfN (xN ,yN)]> , (6.35)

F (x,y) :=
∑N

i=1 fi(xi,yi) = 1>f(x,y) . (6.36)

Notice that both xi and yi are given as column vectors, therefore xt ∈ RN×m and yt ∈ RN×n

for all t. To this end, a sufficient condition for EXTRA-AO to reach a stationary point of

(6.1) is given as follows:

Proposition 6.2 Let null{I − A} = span{1}. Suppose that the sequence {(xt,yt)}t≥1

generated by EXTRA-AO converges to a point (x∞,y∞), then (x∞,y∞) is a stationary

point to problem (6.1), where xt := (1/N)1>xt, and limt→∞ xti = x∞ for all i ∈ [N].

Importantly, the proposition above shows that as long as the sequence, {(xt,yt)}∞t=1, pro-

duced by the EXTRA-AO algorithm is convergent, the limit point is both consensual and

a stationary point to (6.1). The proof can be found in Appendix 6.C.

However, verifying that the sequence converges to a unique limit is non-trivial as the

algorithm uses a constant step size. A partial analysis is presented below which provides

insights regarding the choice of step size required. We have:

Proposition 6.3 Suppose that each of the functions fi(xi,yi) has a Lipschitz continuous

gradient with constants Lx, Ly with respect to xi, yi, respectively, for all i ∈ [N]. If the

step sizes α, β in the EXTRA-AO algorithm satisfy

0 < α < (2λmin(Ã)/Lx), 0 < β < (1/Ly) , (6.37)

165

then the following inequalities hold at each iteration:

F (xt+1,yt)− F (xt,yt) ≤ −δ‖xt+1 − xt‖2F −
1

α

〈
(Ã−A)

t+1∑

`=0

x`,xt+1 − xt
〉
, (6.38)

F (xt+1,yt+1)− F (xt+1,yt) ≤ −1

2
‖yt − yt+1‖2F , (6.39)

where we have defined the constant δ := (λmin(Ã)/α− Lx/2) > 0.

Proposition 6.3 provides a guideline for choosing the step size for EXTRA-AO. Moreover,

suppose that we are in a situation where the inner product of (6.38) is non-negative or

vanishing. Then the objective values along the iterates of the EXTRA-AO algorithm are

non-increasing, i.e.,

· · · ≤ F (xt+1,yt+1) ≤ F (xt+1,yt) ≤ F (xt,yt) ≤ · · · (6.40)

Consequently, if the optimal objective value to (6.1) is bounded below, F (xt,yt) converges

to a unique value as t→∞ and we have

lim
t→∞
‖xt − xt+1‖ = lim

t→∞
‖yt − yt+1‖ = 0 , (6.41)

and the sufficient conditions required by Proposition 6.2 are satisfied. Verifying the require-

ment above that the latter inner product in (6.38) is non-negative or vanishing is an open

problem.

6.3.2 Decentralized Dictionary Learning

Our study on the EXTRA-AO algorithm is motivated by the dictionary learning (DL)

problem:

min
X,Y

1

2
‖S−XY‖2F + λ‖Y‖1 +

M∑

`=1

γ`‖X:,`‖22 , (6.42)

where [X]:,` denotes the `th column in matrix X. The regularization terms ‖Y‖1 and

‖X:,`‖22 are introduced respectively to promote sparsity and to ensure that the solution

166

X is bounded. In the data model underlying (6.42), the matrix S ∈ Rm×M contains M

columns of training data, in which each of them is assumed to be a linear combination of the

column vectors in the dictionary X ∈ Rm×n, with the coefficients contained in the columns

of Y ∈ Rn×M . It is assumed that S is sparse such that each column of Y is formed by

combining only a few columns from the dictionary X, i.e., we have S = XY.

As an application for the EXTRA-AO algorithm developed, we consider a decentralized

implementation of (6.42). In particular, each of the N agents collects training data Si

independently while all agents want to learn a common dictionary X. We write S =

[S1 S2 · · · SN] and Y = [Y1 Y2 · · · YN]. We can rewrite (6.42) as follows:

min
X,{Yi}Ni=1

1

2

N∑

i=1

(
‖Si −XYi‖2F + λ‖vec(Yi)‖1

)
+

n∑

`=1

γ`‖X:,`‖22. (6.43)

This is a special case of (6.1) with fi(X,Yi) = (1/2)‖Si −XYi‖2F + (1/N)
∑n

`=1 γ`‖X:,`‖22
and hi(Yi) = λ‖vec(Yi)‖1. In particular, the EXTRA-AO update for it can be implemented

by observing that:

∇Xfi(X
t
i,Y

t
i) = (Xt

iY
t
i − Si)(Y

t
i)
> + (γ/N)Xt

i , (6.44)

∇Yfi(X
t
i,Y

t
i) = (Xt

i)
>(Xt

iY
t
i − Si) . (6.45)

Moreover, Eq. (6.44) can be computed efficiently as Yi is sparse. As for the proximal

operation required in (6.32), since hi(Yi) = ‖vec(Yi)‖1, it can be replaced by the low

complexity soft shrinkage operator [Beck and Teboulle(2009)].

6.4 Numerical Experiments

We divide this section into two parts — the first part focuses on the consensus based

AO algorithm for least square problems, where we demonstrate its efficacy in handling a

decentralized state estimation problem with asynchronous measurements; the second part

focuses on the EXTRA-AO algorithm and we apply the algorithm to tackle a decentralized

167

50 100 150
Frame size (T)

10-3

10-2

10-1

M
SE

 p
er

 s
am

pl
e

Centralized AO
C-AOLS (S=5)
C-AOLS (S=10)
C-AOLS (S=15)
O(1/T) bound

50 100 150
Frame size (T)

10-4

10-3

10-2

10-1

Er
ro

r i
n

b

Centralized AO
C-AOLS (S=5)
C-AOLS (S=10)
C-AOLS (S=15)

Figure 6.1: Comparing the MSE performance against the frame size T . (Left) On estimating

{x[k]}k. (Right) On estimating {bi}i.

dictionary learning problem.

6.4.1 Decentralized State Estimation

In the following example, the network G is generated as an Erdos-Renyi (ER) graph

with connectivity 0.5 and N = 12 agents. The weights on the adjacency matrix A are

found with the Metropolis-Hastings rule in [Xiao and Boyd(2004)]. We consider tackling

the asynchronous state estimation problem (6.26) under ‘Rayleigh fading’ with synthetic

data. In particular, the states x[n] and measurement matrices Hi are generated as random

vectors/matrices with unit variance i.i.d. complex Gaussian random entries. The DFT size

is set as F = 192 and σ2
w = 10−2 is the noise variance. As a benchmark, we also compare

the performance of applying a centralized AO for the problem (6.26).

Our first example considers a system with sub-Nyquist and unknown asynchronous

sampling, i.e., we set Ai = 2 for all i. The system dimensions are set as m = 4, n = 8 and we

have N = 12 agents. The time offsets are uniformly drawn from B = [−0.5, 0.5]. Notice that

under sub-Nyquist sampling, without exploiting the time offsets between the sensors, it is

impossible to estimate the state vector x[k] for all k. Therefore, as a benchmark, we provide

the mean square error (MSE) evaluated by comparing {x[k]}Tk=1 with an interpolated state

168

10 20 30 40 50 60 70 80 90 100
Iteration number

10
-3

10
-2

10
-1

E
rr

o
r

p
e
r

s
a
m

p
le

Centralized AO

C-AOLS (S=5)

C-AOLS (S=10)

C-AOLS (S=15)

80 85 90 95 100
4.8

5

5.2

5.4

×10
-4

Figure 6.2: Comparing the state estimation error against iteration number of the C-AOLS

algorithm.

sequence estimated from the sub-Nyquist measurements. The simulation result is shown

in Figure 6.1, where we compare the MSE in state and in {bi}Ni=1 against the frame size

T . From the figure, we see that the error metrics of the proposed algorithm decrease as

T increases, which is due to the improved approximation to the true DTFT spectrum.

In fact, the MSE in state decays as O(T−1). On the other hand, the C-AOLS algorithm

achieves a similar performance to its centralized counterpart. Especially, as S increases, the

performance of the former approaches that of the latter. This observation is in line with

the results in Theorem 6.1.

The next example, shown in Figure 6.2, examines the convergence rate of the C-AOLS

algorithm, for which we track the state estimation error as C-AOLS algorithm proceeds. In

this example, we set m = 4, n = 8, T = 120 and consider having N = 12 agents. We consider

solving a randomly generated instance of (6.26) and compare the MSE against iteration

number. We observe that the error is gradually decreasing as the algorithm progresses

and converges in about 30-40 iterations. In particular, the converged MSE improves as S

increases, as predicted by Theorem 6.1.

Lastly, we describe an application of the C-AOLS algorithm to power system state

estimation (PSSE) utilizing asynchronous measurements from PMU devices. Note that the

power system’s states are complex voltages on buses and the PMU devices provide linear

169

10-4 10-3 10-2

Range of b (<b)

10-4

10-2

100

102

104

M
SE

 p
er

 s
am

pl
e

Offset-free
Offset-unaware
CRLB
Centralized AO
C-AOLS (S=5)
C-AOLS (S=10)
C-AOLS (S=15)

10-3 10-2
2.2

2.4
2.6
2.8

3
3.2

#10-5

Figure 6.3: Application of C-AOLS algorithm on PSSE. (Left) Set up of the IEEE 30 bus

system with N = 7 sensing sites (or agents), marked by the colored dashed lines. (Right)

MSE per sample with asynchronous PMUs against the variance in sampling offset in bi.

measurements of the states. To this end, we can formulate a regression problem similar to

(6.26) and apply the C-AOLS algorithm. The setup and the estimation performance for

performing PSSE on an IEEE-30 bus system is illustrated in Fig. 6.3; and the details are

provided in [J4 of Section 1.3]. We observe that the C-AOLS algorithm achieves performance

that is close to the Cramer-Rao Lower Bound (CRLB) and is comparable to the centralized

AO algorithm.

6.4.2 Decentralized Dictionary Learning

This subsection presents numerical results to demonstrate the efficacy of the proposed

EXTRA-AO algorithm for DL. To prepare the training data, we have randomly extracted

300 overlapping patches, each with size 16× 16, from the 512× 512 image of barbara.png,

as shown in Figure 6.7. Each of the extracted patch is vectorized, thereby giving S a size of

256 × 300. We assume that there are n = 64 atoms, thereby giving a compression ratio of

1/4. The size of the common dictionary X is 256×64. Notice that our algorithm is scalable

to handle problems of larger scale.

For the decentralized DL problem (6.43), we set λ = 0.03 and γ = γ` = 0.1 as the

regularization parameters. The columns of the training data matrix Y is divided into

170

Figure 6.4: Convergence behavior of the algorithms for decentralized DL (6.43). We com-

pare the ‘consensus error’, (1/N)
∑N

i=1 ‖xti − (1/N)
∑N

j=1 xtj‖22, and the ‘norm of gradient’

w.r.t. x, ‖∑N
i=1∇xfi(x

t
i,y

t
i)‖22, against the iteration number t. In addition, the ‘norm of

difference’ for EXTRA-AO denotes ‖xt − xt−1‖2F + ‖yt − yt−1‖2F .

N = 10 equally sized partitions Si ∈ R256×30. It corresponds to the scenario when 10

sensors are taking samples from the image for dictionary learning. In addition to learning the

dictionary X distributively, each agent is responsible for computing the sparse matrix Yi of

size 64×30 only. The network G is generated as an ER graph with N = 10 agents, together

with connection probability of 0.6. The matrix A is constructed using the Metropolis-

Hastings rule [Xiao and Boyd(2004)].

The performance of EXTRA-AO is compared to the ATC-AO method in [Chainais and

Richard(2013)] and the Method of Optimal Directions (MOD) in [Engan et al.(1999)], where

the latter is a centralized algorithm for DL. We initialized the algorithms with X set as

the 2D discrete cosine transform (DCT) matrix. For EXTRA-AO and ATC-AO with fixed

step size, we set α = 0.03 and β = 0.02, ATC-AO with diminishing step size is set with

αt = βt = 0.02 · 10
(t/100)+10 .

We first verify if the EXTRA-AO algorithm achieves convergence to a stationary point

of (6.43). As shown in Figure 6.4, the norm of difference between successive iterations

171

Figure 6.5: Objective value against the iteration number for the decentralized DL algo-

rithms. The same step size selection as in Figure 6.4 is used. Notice that the solution of

ATC-AO with fixed step size does not reach consensus and is infeasible to (6.43).

Figure 6.6: The dictionary learnt from the image babara: (Left) using the ATC-AO al-

gorithm after 2 × 104 iterations. (Right) using the EXTRA-AO algorithm after 2 × 104

iterations. Each 8× 8 patch represents an atom in the dictionary.

decreases to 0 as t → ∞, thereby satisfying the sufficient condition in Proposition 6.2.

We also note that the solution Xi obtained at ATC-AO (with fixed step size) does not

achieve consensus and is thus infeasible to (6.1). In Figure 6.5, we compare the objective

value against the number of iteration. As seen, EXTRA-AO achieves a comparable objective

value to the centralized MOD algorithm. The estimated dictionary is depicted in Figure 6.6,

which shows a combination of rotated tiles that correspond to the common features found

in barbara.png. Upon careful observation, we also found that some of the atoms (e.g., the

(3, 4)th atom) learnt by EXTRA-AO shows clearer edges than ATC-AO.

172

Figure 6.7: Image reconstruction result using the dictionaries learnt: (Left) the orig-

inal image with the 30 shaded masks representing the training samples taken by one

agent. (Right) by sparse coding using the dictionary learnt in EXTRA-AO after 2 × 104

iterations.

Lastly, Figure 6.7 shows the reconstruction result after sparse decoding using the dic-

tionary learnt before. To promote sparsity, the sparse decoding is performed with λ = 0.1,

the resulting sparse code contains only 32.12% of non-zero entries, i.e., there are about 21

non-zero coefficients out of 64 for every 16 × 16 patch. As seen, the image reconstructed

shows only a reasonable amount of artifacts compared to the original image.

6.5 Chapter Summary

This chapter focuses on using the alternating optimization (AO) technique in multi-

agent optimization. In particular, we focus on tackling non-convex optimization problems

with a common variable and a private variable, where it is easy to obtain solution that

optimizes one of them but not both. In many practical applications, the AO technique is

demonstrated to show superior performance compared to general optimization primitives

such as gradient method or the Frank-Wolfe method studied in the previous chapter.

Specifically, we proposed two consensus-based AO algorithms. The first algorithm,

named C-AOLS, is suitable for least square problems with nuisance parameters. Here,

we proposed a consensus-based algorithm to replace the closed form solution used in the

173

optimization of the common variable. The second algorithm, named EXTRA-AO, uses

an accelerated consensus-based gradient method to optimize the common variable. For

both algorithms, we provide conditions under which a stationary point of the optimization

problem can be found. Moreover, we provide numerical results to verify their efficacy in

applications such as signal estimation with asynchronous measurements and decentralized

dictionary learning.

174

Appendix

6.A Proof of Proposition 6.1

To facilitate our analysis, let us define that C0 := maxy ‖
∑N

i=1 Hi(yi)
>Hi(yi)‖ and

C1 := maxy ‖(
∑N

i=1 Hi(yi)
>Hi(yi))

−1‖. To begin our proof, we observe that we can rewrite

the variables as:

HS,t
i = H(yt) + δHS,t

i , θS,ti = θ̄(yt) + δθS,ti (6.46)

with the error terms satisfying

‖δHS,t
i ‖ ≤ C0 · σ2(A)S , ‖δθS,ti ‖ ≤ Cz · σ2(A)S , (6.47)

for some Cz < ∞. The bounds above are obtained as a consequence of the S rounds of

average consensus applied [cf. Fact 2.1]. Under assumption (6.12), the matrix inverse admits

a series expansion [Horn and Johnson(1986)]:

(HS,t
i)−1 =

(
H(yt) + δHS,t

i

)−1
=
∞∑

q=0

(−1)q
(
H(yt)−1δHS,t

i

)q
H(yt)−1 . (6.48)

Consequently, we observe the following chain of inequalities:

‖(HS,t
i)−1θS,ti − (H(yt))−1θ̄t(yt)‖

=
∥∥∥H(yt)−1δθS,ti +

∞∑

q=1

(−1)q
(
H(yt)−1δHS,t

i

)q
H(yt)−1(θ̄(yt) + δθS,ti)

∥∥∥

≤ ‖H(yt)−1‖ ·
(
Cz · σ2(A)S +

∞∑

q=1

∥∥∥
(
H(yt)−1δHS,t

i

)q∥∥∥ ‖θ̄(yt) + δθS,ti ‖
)

≤ C1 ·
(
Cz · σ2(A)S + CZ ·

∞∑

q=1

(
C0C1σ2(A)

)q)

≤ C1

(
Cz · σ2(A)S +

CZC0C1

1− C0C1σ2(A)S
· σ2(A)S

)
≤ 1

N
C̃0 · σ2(A)S .

(6.49)

175

In the above, we have assumed that ‖θ̄(yt) + δθS,ti ‖ ≤ CZ in the second last inequality.

Note that xt+1
i = (HS,t

i)−1θS,ti and x?(yt) = (H(yt))−1θ̄t(yt), we have

∑N
i=1 ‖xt+1

i − x?(yt)‖ ≤ C̃0σ2(A)S , (6.50)

i.e., the desired inequality (6.13). The remaining inequalities in the proposition, (6.14) and

(6.15), can be established in a similar fashion.

6.B Proof of Theorem 6.1

Under the assumptions made in Theorem 6.1, for all t, (xt,yt) stays in the neighborhood

NR?(x?,b?) where the function F (·, ·) is strongly convex with modulus mo. Our idea is to

study the dynamics of the following non-negative scalar:

∆t = F (xt,yt)− F (x?,y?) . (6.51)

With a slight abuse of the notations, we shall define F (xt,yt) :=
∑N

i=1 fi(x
t
i,y

t
i) such that

xt denotes the concatenation of (xti)
N
i=1. We observe that:

∆t −∆t−1 = F (xt,yt)− F (xt−1,yt−1)

= F (xt,yt)− F (xt,yt) + F (xt,yt)− F (xt−1,yt−1)

≤ LoC̃2σ2(A)S + F (xt,yt)− F (xt−1,yt−1)

≤ LoC̃2σ2(A)S + F (xt,yt)− F (xt−1,yt−1)

+ F (xt,yt−1)− F (xt,yt−1)

≤ Loψ(λ`t
W̄

) + F (xt,yt−1)− F (xt−1,yt−1)− Mo

2
‖yt − yt−1‖22 ,

(6.52)

where the first inequality is due to Lipschitz continuity of each of fi(·, ·) and Proposition 6.1;

the second inequality is due to the descent lemma [Bertsekas(1999)] applied on the difference

of function values F (xt,yt) − F (xt,yt−1) and the choice of our step size β. Moreover, we

176

have:

F (xt,yt−1) ≤ F (x?(yt−1),yt−1) + LoC̃0σ2(A)S

≤ F (xt−1,y(t−1)) + LoC̃0σ2(A)S ,

(6.53)

where the first inequality is again due to the Lipschitz continuity of fi and the second

inequality is due to the optimality of x?(yt−1) with yt−1 fixed [cf. (6.7)]. Therefore,

∆t −∆t−1 ≤ Lo
(
C̃0 + C̃2

)
· σ2(A)S − Mo

2
‖yt − yt−1‖22. (6.54)

Our next task is to provide a lower bound for ‖yt − yt−1‖22. To this end, we proceed by:

∆t = F (xt,yt)− F (x?,y?)

= F (x?(yt−1),yt)− F (x?(yt−1),yt) + F (xt,yt)− F (x?,y?)

≤ LoC̃1σ2(A)S + 〈∇yF (x?(yt−1),yt),yt − y?〉+BMo‖yt − yt−1‖2 ,

(6.55)

where in the last inequality, we have used i) f is Lipschitz continuous, ii) f is locally convex

and iii)

〈∇xF (x?(yt−1),yt),x?(yt−1)− x?〉

= 〈∇xF (x?(yt−1),yt)−∇xF (x?(yt−1),yt−1),x?(yt−1)− x?〉

≤ BMo‖yt − yt−1‖2.

(6.56)

The equality is due to ∇xF (x?(yt−1),yt−1) = 0.

Our next endeavor is to upper bound 〈∇yF (x?(yt−1),yt),yt − y?〉. To this end, we

observe

∇yF (x?(yt−1),yt) = ∇yF (x?(yt−1),yt)−∇yF (xt,yt−1)+

1

β

(
(yt−1 − yt) + yt − (yt−1 − β∇yF (xt,yt−1)

)
,

(6.57)

177

together with the following inequality:

〈∇yF (x?(yt−1),yt)−∇yF (xt,yt−1),yt − y?〉 ≤

BMo

(
C̃0 · σ2(A) + ‖yt − yt−1‖2

)
,

(6.58)

which is a consequence of Cauchy-Schwarz and Proposition 6.1. Moreover, we have

〈yt − (yt−1 − β∇yF (xt,yt−1),yt − y?〉 ≤ 0, (6.59)

since yt is the projection of yt−1−β∇yF (xt,yt−1) onto the set B := B1×· · · BN and y? ∈ B.

Consequently,

〈∇yF (x?(yt−1),yt),yt − y?〉 ≤ BMo

(
C̃0 · σ2(A) + ‖yt − yt−1‖2

)

+
B

β
· ‖yt − yt−1‖2

(6.60)

and we obtain a lower bound for ‖yt − yt−1‖2 as follows:

∆t ≤ LoC̃1σ2(A)S +BMoC̃0σ2(A)S + 3BMo‖yt − yt−1‖2 (6.61)

Plugging the above results back in (6.54) yields the following:

∆t −∆t−1 ≤ Lo(C̃0 + C̃2) · σ2(A)S−
1

18B2Mo

(
max{0,∆t − (LoC̃1σ2(A)S +BMoC̃0σ2(A)S)}

)2
.

(6.62)

Since ∆t is non-negative, we can simplify (6.62) by considering the upper bound ξt such

that ∆t ≤ ξt for all t:

ξt − ξt−1 = Lo
(
C̃0 + C̃2

)
· σ2(A)S−

1

18B2Mo

(
max{0, ξt − (LoC̃1σ2(A)S +BMoC̃0σ2(A)S)}

)2 (6.63)

178

A fixed point ξ̄ to the preceding dynamic system must satisfy:

Lo
(
C̃0 + C̃2

)
σ2(A)S =

1

18B2Mo

(
max{0, ξ̄ − (LoC̃1 +BMoC̃0) · σ2(A)S}

)2
, (6.64)

which implies

ξ̄ = (LoC̃1 +BMoC̃0) · σ2(A)S +
√

18B2MoLo
(
C̃0 + C̃2

)
σ2(A)S

=
mo

2
ρ
(
σ2(A)

)
=
√
O(σ2(A)S) .

(6.65)

It can be verified that the above fixed point is stable. In fact, it is the only fixed point for

the system (6.63). Finally, from (6.65) and the local strong convexity of F (·, ·), we have:

lim
t→∞
‖(x(t),yt)− (x?,y?)‖2 ≤ 2

mo
lim
t→∞

∆t =
√
O(σ2(A)S) , (6.66)

which completes the proof.

6.C Proof of Proposition 6.2

We observe that the update equation (6.31) can be rewritten as follows. For example,

at k = 2, we have

x2 = Ax1 − α∇xf(x1,y1) + x1 − (Ãx0 − α∇xf(x0,y0))

= Ax1 − α∇xf(x1,y1) + (A− Ã)x0,

(6.67)

where the second equality is due to (6.31) with t = 1. By induction on t = 3, 4, ..., we

obtain:

xt+1 = Axt − α∇xf(xt,yt) + (A− Ã)
t−1∑

`=0

x` . (6.68)

Since 1>(A− Ã) = 0, multiplying (1/N)1> from the left of both side in (6.68) yields

xt+1 = xt − (1/N)1>∇xf(xt,yt) , (6.69)

179

Note that (6.69) is similar to applying a centralized gradient method. Now, if the sequence

{xt,yt}t converges to a unique limit point (x∞,y∞) as t → ∞, at the limit the EXTRA

update in (6.31) yields:

(A− Ã)x∞ = 0 . (6.70)

As null{A− Ã} = null{A− I} = span{1}, the above implies x∞i = x∞ for all i, i.e., con-

sensus is achieved as k →∞.

To obtain the convergence to a stationary point, applying the above to (6.69) with

t→∞ gives:

0 = (1/N)1>∇xf(x∞,y∞) = (1/N)∇xF (x∞,y∞) , (6.71)

where we have used the fact that x∞i = x∞. This implies that x∞ is a stationary point of

(6.1), given y∞.

On the other hand, as yt is convergent, its limit y∞ is a fixed point to Eq. (6.32), given

x∞i , i.e.,

y∞i = proxβhi(·)
(
y∞i − β∇yfi(x

∞
i ,y

∞
i)
)
, ∀ i ∈ [N] . (6.72)

As β > 0, the above guarantees that y∞i is a stationary point of (6.1) given x∞i = x∞.

Combining this observation with (6.71) shows that (x∞,y∞) is a stationary point to (6.1).

6.D Proof of Proposition 6.3

We first prove the corresponding inequality pertaining to the ‘x-update’. In particu-

lar, Eq. (6.38) follows by considering the following inequality for functions with Lipschitz

continuous gradient:

F (xt+1,yt)− F (xt,yt) ≤ 〈∇xf(xt,yt),xt+1 − xt〉+
Lx
2
‖xt+1 − xt‖2F , (6.73)

where the Frobenius norm is taken as the inequality is obtained by summing up the function

differences fi(x
t+1
i ,yti)− fi(xti,yti) for all i ∈ [N].

180

Using the result from (6.68) and the fact that Ã = (I + A)/2. We can rewrite the

matrix ∇xf(xt,yt) as:

∇xf(xt,yt) =
1

α

(
Axt − xt+1 + (A− Ã)

t−1∑

`=0

x`
)

=
1

α

(
Ã(xt − xt+1)− Ã(xt − xt+1) +Axt − xt+1 + (A− Ã)

t−1∑

`=0

x`
)

=
1

α

(
Ã(xt − xt+1) + (A− Ã)

t+1∑

`=0

x`
))

(6.74)

Plugging this back into the equation (6.73) yields:

F (xt+1,yt)− F (xt,yt) ≤ 1

α

〈
(A− Ã)

t+1∑

`=0

x`,xt+1 − xt
〉

−
〈
xt+1 − xt,

(1

α
Ã− Lx

2
I
)

(xt+1 − xt)
〉

≤ −δ ‖xt+1 − xt‖2F +
1

α

〈
(A− Ã)

t+1∑

`=0

x`,xt+1 − xt
〉
,

(6.75)

where we have used the fact that:

1

α
Ã− Lx

2
I �

(λmin(Ã)

α
− Lx

2

)
I = δI , (6.76)

in the last inequality. On the other hand, for the ‘y-update’, the inequality follows from

the classical proximal gradient analysis in Lemma 2.1.

181

7 Conclusions and Research Plans

As networks continue to infiltrate our everyday life, it is necessary to further our under-

standing of the networks, such as social networks and biological networks, around us and

utilize them for our own good. Concentrated along this line of network science research, this

dissertation has presented new and provable results on the longstanding problem of network

identification and proposed new optimization algorithms to harvest the computation power

distributed across the network.

In this dissertation, we have presented new results on the modeling and identification

of network dynamics. Specifically, we have described some general models for opinion

dynamics in social networks and gene dynamics in gene regulatory networks. Utilizing

these dynamical system models, we proposed new formulations of network identification

for the social networks and gene regulatory networks. Given the size of these networks

and the limits in the amount of data one could collect, thus resulting in a set of low rank

observed data. We noticed that the network identification problem corresponds to solving

an undetermined linear system. Importantly, we analyzed a novel recovery conditions,

proven using mathematical tools from graph theories and sparse recovery. This gives the

theoretical guarantees that allow one to recover a large-scale networks using the proposed

identification problem formulations from a few observations.

We have also developed three new decentralized algorithms for solving optimization

problems over the network. In the first algorithm, we emphasize on the importance of

the projection-free paradigm as it can greatly reduce the per-iteration complexity of the

conventional projection-based algorithms. The new algorithm, named DeFW, was shown

analytically to exhibit low iteration complexities for both convex and non-convex optimiza-

tion problems. As the examples applications, we demonstrated how the new algorithm can

be used to efficiently tackle a robust matrix completion problem and the classical sparse

recovery problem, while requiring low communication complexity. We have also studied the

182

alternating optimization (AO) technique for structured problems in a decentralized setting.

We proposed two related algorithms. The first algorithm, called C-AOLS, is specialized

to least square problems with local nuisance parameters. The second algorithm, called

EXTRA-AO, is designed for tackling general non-convex optimization with a smooth ob-

jective function. We have shown the convergence of these algorithms and tested them on

applications of asynchronous signal estimation and decentralized dictionary learning.

7.1 Future Research

This dissertation has laid foundations for advancing a few important problems in network

science research. Future research that can be built upon these result and are listed below.

7.1.1 Network Dynamics Modeling and Identification

This dissertation has made advancements towards understanding the theoretical limits

of network identification based on network dynamics. An important challenge that we

have dealt with is the limitations with low-rank observation on the network, which has not

been considered in most of the network identification literature. However, such a feature

is observed in empirical data that may pertain to networks and have been exploited in

various machine learning formulations, e.g., the low rank matrix completion problem studied

in Chapter 5. In particular, general models for explaining the low rank behavior have

been studied in [Udell and Townsend(2017)] at the time of finishing the writing of this

dissertation. To this end, several directions on uncovering network structure from low rank

observed data will be of interest:

Network identifiability condition with laxer restrictions. The theoretical findings in this

dissertation, so far, are limited to the linear opinion dynamics and certain types of nonlinear

gene dynamics, both taking specific forms that are relevant to their respective applications.

There are two possible sub-directions — firstly and most obviously, we would like to relax

the assumptions on the dynamics such as extending the network identifiability result non-

linear opinion dynamics; secondly, the notion of network identifiability may also be relaxed,

183

i.e., in some applications, identifying some high-level description of the network will be

sufficient for the task, in lieu of identifying the entire network. The community detection

method suggested in Section 3.5 is an example towards this sub-direction.

Applications on empirical network data. Besides social networks and gene regulatory

networks, our method can also be applied to identifying networks where perturbation data

are prevalent. An interesting example for future exploration is the inter-bank loaning net-

work where the amount of total debts and loans of banks are dependent on the network

structure when shocks happen in the financial market; see the systematic risk model in [Ace-

moglu et al.(2015)].

7.1.2 Large-scale Optimization Utilizing Networks

On the computation aspects utilizing networks, this dissertation has proposed several

consensus-based algorithms for tackling large scale optimization problems. As our goal is

to develop better algorithms for the growing demand of solving optimization problems, e.g.,

those arising from machine learning applications, there are a number of open problems and

future research topics worth investigating.

Asynchronous DeFW algorithm. The first extension is to develop an asynchronous ver-

sion of the DeFW algorithm where the agents can communicate on a time varying graph.

This is an important step towards developing a fully decentralized algorithm where the

agents can operate at greater degree of autonomous. In particular, our preliminary nu-

merical result shows that we can employ an asynchronous scheme for choosing step size to

achieve faster convergence.

Projection-free Primal-dual Optimization. We are investigating if the projection-free

advantages of the Frank Wolfe algorithm can be incorporated into the class of primal-

dual algorithms, e.g. [Chambolle and Pock(2015)], which allows one to efficiently handle

constraints of complicated structures with a divide-and-conquer approach. To this end, we

notice that related research along this direction has appeared at the time of submitting the

dissertation [Udell and Townsend(2017)].

184

Convergence Analysis of Consensus-based AO Algorithms. Thus far, we have only pro-

vided a partial analysis on the convergence of the EXTRA-AO algorithm for general non-

convex problems. An obvious next step is to complete the analysis and preferably obtain

the convergence rate of the algorithm. We notice that a few provably convergent AO type

decentralized algorithms have been proposed [Hong(2016),Lorenzo and Scutari(2016),Zhao

et al.(2016)]. That said, it was found that EXTRA-AO still enjoys the fastest convergence

empirically.

Curvature-aided Decentralized Optimization. Utilizing the incremental method’s archi-

tecture for handling large-scale optimization, our recent result [cf. C6 in Section 1.3] have

shown that curvature information can effectively improve the convergence rate of big data

optimization. Here, the idea is to exploit the local Hessian to provide better approximation

of the erroneous gradient information. To this end, an interesting direction is to study the

impact of such technique in decentralized optimization.

7.2 Final Remarks

The problems addressed in this dissertation constitute only a small portion in the field of

network science research. As network science is an interdisciplinary field involving engineers,

mathematicians, physicists, computer scientists, biologists, sociologists, economists, etc.,

there are numerous gaps to be closed by combining the knowledge from different domains,

as well as defining new problems that can be leveraged to solve real life issues. These are

all exciting and impactful new problems to be tackled in the future.

185

BIBLIOGRAPHY

[Acemoglu et al.(2013)] Acemoglu, D., G. Como, F. Fagnani and A. Ozdaglar, “Opinion
Fluctuations and Disagreement in Social Networks”, Mathematics of Operations Re-
search 38, 1, 1–27 (2013).

[Acemoglu et al.(2010)] Acemoglu, D., A. Ozdaglar and A. ParandehGheibi, “Spread of
(mis) information in social networks”, Games and Economic Behavior 70, 2, 194–227
(2010).

[Acemoglu et al.(2015)] Acemoglu, D., A. Ozdaglar and A. Tahbaz-Salehi, “Systemic risk
and stability in financial networks”, The american economic review 105, 2, 564–608
(2015).

[Albert(2005)] Albert, R., “Scale-free networks in cell biology”, Journal of Cell Science 118,
21, 4947, URL http://jcs.biologists.org/content/118/21/4947.abstract (2005).

[Ansari et al.(2000)] Ansari, A., S. Essegaier and R. Kohli, “Internet recommendation sys-
tems”, Journal of Marketing research 37, 3, 363–375 (2000).

[Arora et al.(2015)] Arora, S., R. Ge, T. Ma and A. Moitra, “Simple, efficient, and neural
algorithms for sparse coding”, in “Conference on Learning Theory”, pp. 113–149
(2015).

[Asch(1955)] Asch, S. E., “Opinions and social pressure”, Readings about the social animal
pp. 17–26 (1955).

[Attiya and Welch(2004)] Attiya, H. and J. Welch, Distributed Computing: Fundamentals,
Simulations, and Advanced Topics (Wiley, 2004).

[Aybat and Hamedani(2016)] Aybat, N. S. and E. Y. Hamedani, “A primal-dual method
for conic constrained distributed optimization problems”, in “NIPS”, (2016).

[Aysal et al.(2009)] Aysal, T. C., M. E. Yildiz, A. D. Sarwate and A. Scaglione, “Broadcast
gossip algorithms for consensus”, IEEE Trans. Signal Process. 57, 7, 2748–2761 (2009).

[Bako(2011)] Bako, L., “Identification of switched linear systems via sparse optimization”,
Automatica 47, 4, 668 – 677 (2011).

[Banerjee et al.(2008)] Banerjee, O., L. E. Ghaoui and A. d’Aspremont, “Model selection
through sparse maximum likelihood estimation for multivariate gaussian or binary
data”, Journal of Machine learning research 9, Mar, 485–516 (2008).

[Barabasi and Oltvai(2004)] Barabasi, A.-L. and Z. N. Oltvai, “Network biology: under-
standing the cell’s functional organization”, Nat Rev Genet 5, 2, 101–113, URL
http://dx.doi.org/10.1038/nrg1272 (2004).

186

[Barzel and Barabasi(2013)] Barzel, B. and A.-L. Barabasi, “Universality in network dy-
namics”, Nat Physics 9, 673–681 (2013).

[Barzel and Biham(2009)] Barzel, B. and O. Biham, “Quantifying the connectivity of a
network: The network correlation function method”, Physical Review E 80, 4, 046104–
, URL http://link.aps.org/doi/10.1103/PhysRevE.80.046104 (2009).

[Bastian et al.(2009)] Bastian, M., S. Heymann and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks”, URL http://www.aaai.org/ocs/
index.php/ICWSM/09/paper/view/154 (2009).

[Beck and Teboulle(2009)] Beck, A. and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems”, SIAM journal on imaging sciences
2, 1, 183–202 (2009).

[Bellet et al.(2015)] Bellet, A., Y. Liang, A. B. Garakani, M.-F. Balcan and F. Sha, “A dis-
tributed frank-wolfe algorithm for communication-efficient sparse learning”, in “Pro-
ceedings of the 2015 SIAM International Conference on Data Mining”, pp. 478–486
(SIAM, 2015).

[Ben-Tal and Nemirovski(2001)] Ben-Tal, A. and A. Nemirovski, Lectures on modern con-
vex optimization: analysis, algorithms, and engineering applications (SIAM, 2001).

[Berg et al.(2007)] Berg, E. v., M. P. Friedlander, G. Hennenfent, F. Herrmann, R. Saab
and Ö. Yılmaz, “Sparco: A testing framework for sparse reconstruction”, Tech. Rep.
TR-2007-20, Dept. Computer Science, University of British Columbia, Vancouver
(2007).

[Berinde et al.(2008)] Berinde, R., A. C. Gilbert, P. Indyk, H. Karloff and M. J. Strauss,
“Combining geometry and combinatorics: A unified approach to sparse signal recov-
ery”, in “46th Annual Allerton Conference on Communication, Control, and Com-
puting”, pp. 798–805 (2008).

[Bertsekas(1999)] Bertsekas, D. P., Nonlinear programming (Athena Scientific, 1999).

[Bianchi and Jakubowicz(2013)] Bianchi, P. and J. Jakubowicz, “Convergence of a multi-
agent projected stochastic gradient algorithm for non-convex optimization”, IEEE
Trans. Autom. Control 58, 2, 391–405 (2013).

[Blondel et al.(2005)] Blondel, V. D., J. M. Hendrickx, A. Olshevsky and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking”, in “Proc CDC-
ECC ’05”, vol. 2005, pp. 2996–3000 (2005).

[Blumensath and Davies(2008)] Blumensath, T. and M. E. Davies, “Iterative hard thresh-
olding for compressed sensing”, CoRR abs/0805.0510 (2008).

[Bonacich(1987)] Bonacich, P., “Power and centrality: A family of measures”, American
journal of sociology 92, 5, 1170–1182 (1987).

[Bonneau et al.(2006)] Bonneau, R., D. J. Reiss, P. Shannon, M. Facciotti, L. Hood, N. S.

187

Baliga and V. Thorsson, “The inferelator: an algorithm for learning parsimonious
regulatory networks from systems-biology data sets de novo”, Genome Biology 7, 5,
R36, URL http://dx.doi.org/10.1186/gb-2006-7-5-r36 (2006).

[Boutsidis et al.(2015)] Boutsidis, C., P. Kambadur and A. Gittens, “Spectral clustering via
the power method-provably”, in “International Conference on Machine Learning”, pp.
40–48 (2015).

[Boyd et al.(2006)] Boyd, S., A. Ghosh, B. Prabhakar and D. Shah, “Randomized gossip
algorithms”, IEEE Trans. Inf. Theory 52, 6, 2508–2530 (2006).

[Bresler(2015)] Bresler, G., “Efficiently learning ising models on arbitrary graphs”, in
“Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting”, STOC ’15, pp. 771–782 (ACM, New York, NY, USA, 2015), URL http:
//doi.acm.org/10.1145/2746539.2746631.

[Brunet et al.(2004)] Brunet, J.-P., P. Tamayo, T. R. Golub and J. P. Mesirov, “Metagenes
and molecular pattern discovery using matrix factorization”, Proceedings of the na-
tional academy of sciences 101, 12, 4164–4169 (2004).

[Buchanan(2010)] Buchanan, M., Networks in Cell Biology (Cambridge University Press,
2010), URL https://books.google.com/books?id=ojMhR2pq7qIC.

[Burke et al.(2005)] Burke, R., B. Mobasher and R. Bhaumik, “Limited knowledge shilling
attacks in collaborative filtering systems”, in “Proceedings of 3rd International Work-
shop on Intelligent Techniques for Web Personalization (ITWP 2005), 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2005)”, pp. 17–24 (2005).

[Candes and Tao(2005)] Candes, E. and T. Tao, “Decoding by Linear Programming”, IEEE
Trans. Inf. Theory 51, 12, 4203–4215 (2005).

[Candès and Recht(2009)] Candès, E. J. and B. Recht, “Exact matrix completion via con-
vex optimization”, Found. Comput. Math. 9, 6, 717–772 (2009).

[Candogan et al.(2012)] Candogan, O., K. Bimpikis and A. Ozdaglar, “Optimal pricing in
networks with externalities”, Operations Research 60, 4, 883–905 (2012).

[Chainais and Richard(2013)] Chainais, P. and C. Richard, “Learning a common dictionary
over a sensor network”, in “Computational Advances in Multi-Sensor Adaptive Pro-
cessing (CAMSAP), 2013 IEEE 5th International Workshop on”, pp. 133–136 (IEEE,
2013).

[Chambolle and Pock(2015)] Chambolle, A. and T. Pock, “On the ergodic convergence
rates of a first-order primal–dual algorithm”, Mathematical Programming pp. 1–35
(2015).

[Chandrasekaran et al.(2011)] Chandrasekaran, V., S. Sanghavi, P. A. Parrilo and A. S.
Willsky, “Rank-sparsity incoherence for matrix decomposition”, SIAM Journal on
Optimization 21, 2, 572–596 (2011).

188

[Chang et al.(2014)] Chang, T.-H., A. Nedić and A. Scaglione, “Distributed constrained
optimization by consensus-based primal-dual perturbation method”, IEEE Trans. Au-
tom. Control 59, 6, 1524–1538 (2014).

[Chen(2012)] Chen, I.-A., Fast Distributed First-Order Methods, Master’s thesis, MIT
(2012).

[Ching et al.(2015)] Ching, E. S., P.-Y. Lai and C. Leung, “Reconstructing weighted net-
works from dynamics”, Physical Review E 91, 3, 030801 (2015).

[Das et al.(2014)] Das, A., S. Gollapudi and K. Munagala, “Modeling opinion dynamics in
social networks”, in “Proc WSDM”, pp. 403–412 (2014).

[d’Aspremont et al.(2008)] d’Aspremont, A., O. Banerjee and L. El Ghaoui, “First-order
methods for sparse covariance selection”, SIAM Journal on Matrix Analysis and Ap-
plications 30, 1, 56–66 (2008).

[Davis and Goadrich(2006)] Davis, J. and M. Goadrich, “The relationship between
precision-recall and roc curves”, in “Proceedings of the 23rd international conference
on Machine learning”, pp. 233–240 (ACM, 2006).

[De et al.(2014)] De, A., S. Bhattacharya, P. Bhattacharya, N. Ganguly and S. Chakrabarti,
“Learning a linear influence model from transient opinion dynamics”, Proc CIKM pp.
401–410 (2014).

[De Smet and Marchal(2010)] De Smet, R. and K. Marchal, “Advantages and limitations
of current network inference methods”, Nat Rev Micro 8, 10, 717–729, URL http:
//dx.doi.org/10.1038/nrmicro2419 (2010).

[Defazio et al.(2014)] Defazio, A., F. Bach and S. Lacoste-Julien, “SAGA: A fast incremen-
tal gradient method with support for non-strongly convex composite objectives”, in
“NIPS”, (2014).

[DeGroot(1974)] DeGroot, M., “Reaching a consensus”, in “Journal of American Statistcal
Association”, vol. 69, pp. 118–121 (1974).

[Dietz et al.(2007)] Dietz, L., S. Bickel and T. Scheffer, “Unsupervised prediction of citation
influences”, in “ICML”, (2007).

[DiMaggio et al.(1996)] DiMaggio, P., J. Evans and B. Bryson, “Have american’s social
attitudes become more polarized?”, American journal of Sociology 102, 3, 690–755
(1996).

[Dimakis et al.(2010)] Dimakis, A. G., S. Kar, J. M. F. Moura, M. G. Rabbat and
A. Scaglione, “Gossip Algorithms for Distributed Signal Processing”, Proc. IEEE
98, 11, 1847–1864 (2010).

[Duchi et al.(2012)] Duchi, J., A. Agarwal and M. J. Wainwright, “Dual averaging for dis-
tributed optimization: Convergence analysis and network scaling”, IEEE Trans. Au-
tom. Control 57, 3, 592–606 (2012).

189

[Duchi et al.(2008)] Duchi, J., S. Shalev-Shwartz, Y. Singer and T. Chandra, “Efficient
projections onto the `1-ball for learning in high dimensions”, in “ICML”, (2008).

[Eldar(2014)] Eldar, Y. C., Sampling Theory: Beyond Bandlimited Systems (Cambridge
University Press, New York, NY, USA, 2014).

[Engan et al.(1999)] Engan, K., S. O. Aase and J. H. Husoy, “Method of optimal directions
for frame design”, in “Acoustics, Speech, and Signal Processing, 1999. Proceedings.,
1999 IEEE International Conference on”, vol. 5, pp. 2443–2446 (IEEE, 1999).

[Etesami et al.(2016)] Etesami, J., N. Kiyavash, K. Zhang and K. Singhal, “Learning net-
work of multivariate hawkes processes: A time series approach”, arXiv preprint
arXiv:1603.04319 (2016).

[Faith et al.(2007)] Faith, J. J., B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski,
G. Cottarel, S. Kasif, J. J. Collins and T. S. Gardner, “Large-scale mapping and
validation of escherichia coli transcriptional regulation from a compendium of expres-
sion profiles”, PLOS Biology 5, 1, 1–13, URL http://dx.doi.org/10.1371%2Fjournal.
pbio.0050008 (2007).

[Figueiredo et al.(2007)] Figueiredo, M. A., R. D. Nowak and S. J. Wright, “Gradient pro-
jection for sparse reconstruction: Application to compressed sensing and other inverse
problems”, IEEE Journal of selected topics in signal processing 1, 4, 586–597 (2007).

[Fortunato(2010)] Fortunato, S., “Community detection in graphs”, Physics reports 486, 3,
75–174 (2010).

[Foucart and Rauhut(2013)] Foucart, S. and H. Rauhut, A mathematical introduction to
compressive sensing, vol. 1 (Birkhäuser Basel, 2013).

[Frank and Wolfe(1956)] Frank, M. and P. Wolfe, “An algorithm for quadratic program-
ming”, Naval Res. Logis. Quart. (1956).

[Friedkin and Johnsen(2011)] Friedkin, N. E. and E. C. Johnsen, Social Influence Network
Theory: A Sociological Examination of Small Group Dynamics (Cambridge University
Press, 2011).

[Friedman et al.(2008)] Friedman, J., T. Hastie and R. Tibshirani, “Sparse inverse covari-
ance estimation with the graphical lasso”, Biostatistics 9, 3, 432–441 (2008).

[Galton(1907)] Galton, F., “Vox populi (the wisdom of crowds)”, Nature 75, 7, 450–451
(1907).

[Ghosh and Lam(2015)] Ghosh, S. and H. Lam, “Computing worst-case input models in
stochastic simulation”, CoRR abs/1507.05609 (2015).

[Gilbert and Indyk(2010)] Gilbert, A. and P. Indyk, “Sparse recovery using sparse matri-
ces”, Proceedings of the IEEE 98, 6, 937–947 (2010).

[Golub and van Loan(1996)] Golub, G. H. and C. F. van Loan, Matrix computations (Johns
Hopkins University Press, Baltimore, MD, 1996), third edn.

190

[Golub and van Loan(2013)] Golub, G. H. and C. F. van Loan, Matrix computations (Johns
Hopkins University Press, Baltimore, MD, 2013), fourth edn.

[Grippo and Sciandrone(2000)] Grippo, L. and M. Sciandrone, “On the convergence of the
block nonlinear gauss–seidel method under convex constraints”, Operations research
letters 26, 3, 127–136 (2000).

[Han et al.(2015)] Han, X., Z. Shen, W.-X. Wang and Z. Di, “Robust reconstruction of
complex networks from sparse data”, Phys. Rev. Lett. 114, 028701, URL http://link.
aps.org/doi/10.1103/PhysRevLett.114.028701 (2015).

[Hardt and Price(2014)] Hardt, M. and E. Price, “The noisy power method: A meta algo-
rithm with applications”, in “NIPS”, (2014).

[Harper and Konstan(2015)] Harper, F. M. and J. A. Konstan, “The movielens datasets:
History and context”, ACM TiiS (2015).

[Hartigan and Wong(1979)] Hartigan, J. A. and M. A. Wong, “Algorithm AS 136: A k-
means clustering algorithm”, Journal of the Royal Statistical Society. Series C (Ap-
plied Statistics) 28, 1, 100–108 (1979).

[Haury et al.(2012)] Haury, A.-C., F. Mordelet, P. Vera-Licona and J.-P. Vert, “Tigress:
Trustful inference of gene regulation using stability selection”, BMC Systems Biology
6, 1, 1–17, URL http://dx.doi.org/10.1186/1752-0509-6-145 (2012).

[He et al.(2015)] He, X., T. Rekatsinas, J. Foulds, L. Getoor and Y. Liu, “Hawkestopic: A
joint model for network inference and topic modeling from text-based cascades”, in
“International Conference on Machine Learning”, (2015).

[Hegselmann and Krause(2002)] Hegselmann, R. and U. Krause, “Opinion dynamics and
bounded confidence models, analysis, and simulation”, Journal of Artificial Societies
and Social Simulation 5, 3 (2002).

[Holley and Liggett(1975)] Holley, R. A. and T. M. Liggett, “Ergodic theorems for weakly
interacting infinite systems and the voter model”, The annals of probability pp. 643–
663 (1975).

[Hong(2016)] Hong, M., “Decomposing linearly constrained nonconvex problems by a
proximal primal dual approach: Algorithms, convergence, and applications”, CoRR
abs/1604.00543 (2016).

[Hong et al.(2017)] Hong, M., X. Wang, M. Razaviyayn and Z.-Q. Luo, “Iteration complex-
ity analysis of block coordinate descent methods”, Mathematical Programming 163,
1-2, 85–114 (2017).

[Horn and Johnson(1986)] Horn, R. A. and C. R. Johnson, eds., Matrix Analysis (Cam-
bridge University Press, 1986).

[Horn and Johnson(1994)] Horn, R. A. and C. R. Johnson, Topics in matrix analysis (Cam-
bridge University Press, Cambridge, 1994), corrected reprint of the 1991 original.

191

[Hsieh et al.(2014)] Hsieh, C.-J., M. A. Sustik, I. S. Dhillon and P. Ravikumar, “Quic:
quadratic approximation for sparse inverse covariance estimation.”, Journal of Ma-
chine Learning Research 15, 1, 2911–2947 (2014).

[Huynh-Thu et al.(2010)] Huynh-Thu, V. A., A. Irrthum, L. Wehenkel and P. Geurts, “In-
ferring regulatory networks from expression data using tree-based methods”, PLoS
ONE 5, 9 (2010).

[Ideker and Sharan(2008)] Ideker, T. and R. Sharan, “Protein networks in disease”,
Genome Research 18, 4, 644–652 (2008).

[Jaggi(2013)] Jaggi, M., “Revisiting Frank-Wolfe: Projection-free sparse convex optimiza-
tion”, in “ICML”, (2013).

[Jaggi and Sulovsky(2010)] Jaggi, M. and M. Sulovsky, “A simple algorithm for nuclear
norm regularized problems”, in “ICML”, (2010).

[Jakovetic et al.(2014)] Jakovetic, D., J. Xavier and J. M. F. Moura, “Fast distributed
gradient methods”, IEEE Trans. Autom. Control 59, 5, 1131–1146 (2014).

[Johansson et al.(2008)] Johansson, B., T. Keviczky, M. Johansson and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex optimization prob-
lems”, in “Proc. CDC”, pp. 4185–4190 (2008).

[Kang et al.(2015)] Kang, T., R. Moore, Y. Li, E. Sontag and L. Bleris, “Discriminating
direct and indirect connectivities in biological networks”, Proceedings of the National
Academy of Sciences 112, 41, 12893–12898 (2015).

[Kempe et al.(2003)] Kempe, D., J. Kleinberg and É. Tardos, “Maximizing the spread of
influence through a social network”, in “Proceedings of the ninth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining”, pp. 137–146 (ACM,
2003).

[Khajehnejad et al.(2011)] Khajehnejad, M. A., A. G. Dimakis, W. Xu and B. Hassibi,
“Sparse recovery of nonnegative signals with minimal expansion”, IEEE Trans. Signal
Process. 59, 1, 196–208 (2011).

[Küffner et al.(2012)] Küffner, R., T. Petri, P. Tavakkolkhah, L. Windhager and R. Zimmer,
“Inferring gene regulatory networks by anova”, Bioinformatics (2012).

[Kuhlman et al.(2012)] Kuhlman, C. J., V. S. A. Kumar and S. S. Ravi, “Controlling opin-
ion bias in online social networks”, in “Proc. WebSci”, pp. 165–174 (2012).

[Lacoste-Julien(2016)] Lacoste-Julien, S., “Convergence rate of Frank-Wolfe for non-convex
objectives”, CoRR abs/1607.00345 (2016).

[Lacoste-Julien and Jaggi(2015)] Lacoste-Julien, S. and M. Jaggi, “On the global linear
convergence of Frank-Wolfe optimization variants”, in “NIPS”, (2015).

[Lam and Riedl(2004)] Lam, S. K. and J. Riedl, “Shilling recommender systems for fun and

192

profit”, in “Proceedings of the 13th international conference on World Wide Web”,
pp. 393–402 (ACM, 2004).

[LeCun et al.(2015)] LeCun, Y., Y. Bengio and G. Hinton, “Deep learning”, Nature 521,
7553, 436–444 (2015).

[Li et al.(2011a)] Li, L., A. Scaglione and J. H. Manton, “Distributed principal subspace
estimation in wireless sensor networks”, IEEE Journal of Sel. Topics in Signal Process.
5, 4, 725–738 (2011a).

[Li et al.(2011b)] Li, L., A. Scaglione, A. Swami and Q. Zhao, “Trust, opinion diffusion and
radicalization in social networks”, in “Signals, systems and computers (ASILOMAR),
2011 conference record of the forty fifth asilomar conference on”, pp. 691–695 (IEEE,
2011b).

[Li and Scaglione(2013)] Li, X. and A. Scaglione, “Convergence and Applications of a
Gossip-Based Gauss-Newton Algorithm”, IEEE Trans. Signal Process. 61, 21, 5231–
5246 (2013).

[Ling et al.(2012)] Ling, Q., Y. Xu, W. Yin and Z. Wen, “Decentralized low-rank matrix
completion”, in “Proc ICASSP”, (2012).

[Liu and Vandenberghe(2010)] Liu, Z. and L. Vandenberghe, “Interior-point method for nu-
clear norm approximation with application to system identification”, SIAM J. Matrix
Anal. Appl. 31, 3, 1235–1256 (2010).

[Lorenzo and Scutari(2016)] Lorenzo, P. D. and G. Scutari, “Next: In-network nonconvex
optimization”, IEEE Trans. on Signal and Info. Process. over Networks (2016).

[Mackey et al.(2015)] Mackey, L., A. Talwalkar and M. I. Jordan, “Distributed matrix com-
pletion and robust factorization”, Journal of Machine Learning Research 16, 913–960
(2015).

[Marbach et al.(2012)] Marbach, D., J. C. Costello, R. Kuffner, N. M. Vega, R. J. Prill,
D. M. Camacho, K. R. Allison, M. Kellis, J. J. Collins and G. Stolovitzky, “Wisdom
of crowds for robust gene network inference”, Nat Meth 9, 8, 796–804, URL http:
//dx.doi.org/10.1038/nmeth.2016 (2012).

[Massart(2003)] Massart, P., Concentration Inequalities and Model Selection (Springer,
2003).

[Menten and Michaelis(1913)] Menten, L. and M. Michaelis, “Die kinetik der invertin-
wirkung”, Biochem Z 49, 333–369 (1913).

[Mirollo and Strogatz(1990)] Mirollo, R. E. and S. H. Strogatz, “Synchronization of pulse-
coupled biological oscillators”, SIAM Journal on Applied Mathematics 50, 6, 1645–
1662 (1990).

[Mobilia(2003)] Mobilia, M., “Does a single zealot affect an infinite group of voters?”, Phys-
ical review letters 91, 2, 028701 (2003).

193

[Mobilia et al.(2007)] Mobilia, M., A. Petersen and S. Redner, “On the role of zealotry in
the voter model”, Journal of Statistical Mechanics: Theory and Experiment 2007, 08,
P08029 (2007).

[Mohimani et al.(2007)] Mohimani, G. H., M. Babaie-Zadeh and C. Jutten, “Fast Sparse
Representation Based on Smoothed L0 Norm”, in “ICA”, Lecture Notes in Computer
Science, pp. 389–396 (Springer, 2007).

[Moussäıd et al.(2013)] Moussäıd, M., J. E. Kämmer, P. P. Analytis and H. Neth, “Social
influence and the collective dynamics of opinion formation”, PloS one 8, 11, e78433
(2013).

[Moussad et al.(2013)] Moussad, M., J. E. Kammer, P. P. Analytis and H. Neth, “Social
influence and the collective dynamics of opinion formation”, PLoS ONE 8, 11 (2013).

[Nedić et al.(2016)] Nedić, A., A. Olshevsky and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs”, CoRR abs/1607.03218 (2016).

[Nedić et al.(2010)] Nedić, A., A. Ozdaglar and P. Parrilo, “Constrained Consensus and
Optimization in Multi-Agent Networks”, IEEE Trans. Autom. Control 55, 4, 922–938
(2010).

[Nesterov(2012)] Nesterov, Y., “Efficiency of coordinate descent methods on huge-scale
optimization problems”, SIAM Journal on Optimization 22, 2, 341–362 (2012).

[Ng et al.(2002)] Ng, A. Y., M. I. Jordan and Y. Weiss, “On spectral clustering: Analysis
and an algorithm”, in “Advances in neural information processing systems”, pp. 849–
856 (2002).

[Nurminskii(1972)] Nurminskii, E. A., “Convergence conditions for nonlinear programming
algorithms”, Cybernetics , 6, 79–81 (1972).

[Patterson et al.(2014)] Patterson, S., Y. C. Eldar and I. Keidar, “Distributed compressed
sensing for static and time-varying networks”, IEEE Trans. on Signal Process. 62, 19,
4931–4946 (2014).

[Petralia et al.(2015)] Petralia, F., P. Wang, J. Yang and Z. Tu, “Integrative random forest
for gene regulatory network inference”, Bioinformatics 31, 12, i197–i205 (2015).

[Polyak(1987)] Polyak, B. P., Introduction to Optimization (Optimization Software, Inc.,
1987).

[Pouget-Abadie and Horel(2015)] Pouget-Abadie, J. and T. Horel, “Inferring graphs from
cascades: A sparse recovery framework”, in “Proceedings of the 32nd International
Conference on Machine Learning, (ICML 2015)”, (2015), URL http://econcs.seas.
harvard.edu/files/econcs/files/pouget icml15.pdf.

[Qu and Li(2016)] Qu, G. and N. Li, “Harnessing smoothness to accelerate distributed
optimization”, CoRR abs/1605.07112 (2016).

194

[Ram et al.(2012)] Ram, S. S., A. Nedić and V. V. Veeravalli, “A new class of distributed
optimization algorithms : application to regression of distributed data”, Optimization
Methods and Software , 1, 37–41 (2012).

[Ramos et al.(2015)] Ramos, M., J. Shao, S. D. S. Reis, C. Anteneodo, J. S. A. Jr, S. Havlin
and H. A. Makse, “How does public opinion become extreme?”, Sci. Rep. , 10032
(2015).

[Ravazzi et al.(2016)] Ravazzi, C., S. M. Fosson and E. Magli, “Randomized algorithms for
distributed nonlinear optimization under sparsity constraints”, IEEE Trans. on Signal
Process. 64, 6, 1420–1434 (2016).

[Ravazzi et al.(2015)] Ravazzi, C., P. Frasca, R. Tempo and H. Ishii, “Ergodic randomized
algorithms and dynamics over networks”, IEEE transactions on control of network
systems 2, 1, 78–87 (2015).

[Razaviyayn et al.(2013)] Razaviyayn, M., M. Hong and Z.-Q. Luo, “A unified conver-
gence analysis of block successive minimization methods for nonsmooth optimization”,
SIAM Journal on Optimization 23, 2, 1126–1153 (2013).

[Recht and Ré(2013)] Recht, B. and C. Ré, “Parallel stochastic gradient algorithms for
large-scale matrix completion”, Mathematical Programming Computation 5, 2, 201–
226 (2013).

[Reddi et al.(2016)] Reddi, S. J., S. Sra, B. Póczos and A. Smola, “Stochastic frank-wolfe
methods for nonconvex optimization”, in “Communication, Control, and Computing
(Allerton), 2016 54th Annual Allerton Conference on”, pp. 1244–1251 (IEEE, 2016).

[Ronen et al.(2002)] Ronen, M., R. Rosenberg, B. I. Shraiman and U. Alon, “Assigning
numbers to the arrows: Parameterizing a gene regulation network by using accurate
expression kinetics”, Proceedings of the National Academy of Sciences 99, 16, 10555–
10560, URL http://www.pnas.org/content/99/16/10555.abstract (2002).

[Rosenbaum and Tsybakov(2010)] Rosenbaum, M. and A. Tsybakov, “Sparse recovery un-
der matrix uncertainty”, Annals of Statistics 38, 5, 2620–2651 (2010).

[Rudelson and Vershynin(2009)] Rudelson, M. and R. Vershynin, “Smallest singular value
of a random rectangular matrix”, Communications on Pure and Applied Mathematics
62, 12, 1707–1739 (2009).

[Sayed et al.(2013)] Sayed, A. H., S.-Y. Tu, J. Chen, X. Zhao and Z. J. Towfic, “Diffusion
strategies for adaptation and learning over networks: an examination of distributed
strategies and network behavior”, IEEE Signal Process. Mag. 30, 3, 155–171 (2013).

[Scaglione et al.(2008)] Scaglione, A., R. Pagliari and H. Krim, “The decentralized estima-
tion of the sample covariance”, in “Proc. Asilomar”, pp. 1722–1726 (2008).

[Scheinberg et al.(2010)] Scheinberg, K., S. Ma and D. Goldfarb, “Sparse inverse covariance
selection via alternating linearization methods”, in “Advances in neural information
processing systems”, pp. 2101–2109 (2010).

195

[Segarra et al.(2016)] Segarra, S., A. G. Marques, G. Mateos and A. Ribeiro, “Network
topology inference from spectral templates”, arXiv preprint arXiv:1608.03008 (2016).

[Shen et al.(2017)] Shen, Y., B. Baingana and G. B. Giannakis, “Kernel-based structural
equation models for topology identification of directed networks”, IEEE Transactions
on Signal Processing 65, 10, 2503–2516 (2017).

[Shen et al.(2014)] Shen, Z., W.-X. Wang, Y. Fan, Z. Di and Y.-C. Lai, “Reconstructing
propagation networks with natural diversity and identifying hidden sources”, Nature
communications 5 (2014).

[Shi et al.(2015)] Shi, W., Q. Ling, G. Wu and W. Yin, “A proximal gradient algorithm
for decentralized composite optimization”, IEEE Trans. on Signal Process. 63, 22,
6013–6023 (2015).

[Simonetto and Jamali-Rad(2016)] Simonetto, A. and H. Jamali-Rad, “Primal recovery
from consensus-based dual decomposition for distributed convex optimization”, JOTA
168, 1, 172–197 (2016).

[Singh and Vidyasagar(2016)] Singh, N. and M. Vidyasagar, “blars: An algorithm to infer
gene regulatory networks”, IEEE/ACM Transactions on Computational Biology and
Bioinformatics 13, 2, 301–314 (2016).

[Sontag(2008)] Sontag, E. D., “Network reconstruction based on steady-state data”, Essays
in Biochemistry 45, 161–176 (2008).

[Tang et al.(2012a)] Tang, J., H. Gao, H. Liu and A. Das Sarma, “etrust: Understanding
trust evolution in an online world”, in “Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining”, KDD ’12, pp. 253–
261 (ACM, New York, NY, USA, 2012a), URL http://doi.acm.org/10.1145/2339530.
2339574.

[Tang et al.(2012b)] Tang, J., T. Lou and J. Kleinberg, “Inferring social ties across hetero-
geneous networks”, in “In WSDM’12”, pp. 743–752 (2012b).

[Tatarenko and Touri(2017)] Tatarenko, T. and B. Touri, “Non-convex distributed opti-
mization”, IEEE Transactions on Automatic Control (2017).

[Timme(2007)] Timme, M., “Revealing network connectivity from response dynamics”,
Physical Review Letters 98, 22, 1–4 (2007).

[Traud et al.(2012)] Traud, A. L., P. J. Mucha and M. A. Porter, “Social structure of
Facebook networks”, Physica A: Statistical Mechanics and its Applications 391, 16,
4165–4180 (2012).

[Tremblay et al.(2016)] Tremblay, N., G. Puy, R. Gribonval and P. Vandergheynst, “Com-
pressive spectral clustering”, in “International Conference on Machine Learning”, pp.
1002–1011 (2016).

[Tsianos et al.(2012)] Tsianos, K. I., S. Lawlor and M. G. Rabbat, “Push-sum distributed

196

dual averaging for convex optimization”, in “Decision and Control (CDC), 2012 IEEE
51st Annual Conference on”, pp. 5453–5458 (IEEE, 2012).

[Tsitsiklis(1984)] Tsitsiklis, J., Problems in decentralized decision making and computation,
Ph.D. thesis, Dept. of Electrical Engineering and Computer Science, M.I.T., Boston,
MA (1984).

[Udell and Townsend(2017)] Udell, M. and A. Townsend, “Nice latent variable models have
log-rank”, arXiv preprint arXiv:1705.07474 (2017).

[Vaidyanathan(1993)] Vaidyanathan, P. P., Multirate systems and filter banks (Pearson Ed-
ucation India, 1993).

[Wainwright et al.(2008)] Wainwright, M. J., M. I. Jordan et al., “Graphical models, ex-
ponential families, and variational inference”, Foundations and Trends R© in Machine
Learning 1, 1–2, 1–305 (2008).

[Wang et al.(2011a)] Wang, M., W. Xu and A. Tang, “A unique ”nonnegative” solution to
an underdetermined system: From vectors to matrices”, IEEE Trans. Signal Process.
59, 3, 1007–1016 (2011a).

[Wang et al.(2011b)] Wang, W.-X., Y.-C. Lai, C. Grebogi and J. Ye, “Network Reconstruc-
tion Based on Evolutionary-Game Data via Compressive Sensing”, Physical Review
X 1, 2, 1–7 (2011b).

[Wei and Ozdaglar(2013)] Wei, E. and A. Ozdaglar, “On the o(1/k) convergence of
asynchronous distributed alternating direction method of multipliers”, CoRR
abs/1307.8254 (2013).

[West(2000)] West, D. B., Introduction to Graph Theory (Prentice Hall, 2000), 2 edn.

[Williams et al.(2007)] Williams, C. A., B. Mobasher and R. Burke, “Defending recom-
mender systems: detection of profile injection attacks”, Service Oriented Computing
and Applications 1, 3, 157–170 (2007).

[Wu et al.(2016)] Wu, J., X. Zhao, Z. Lin and Z. Shao, “Large scale gene regulatory network
inference with a multi-level strategy”, Molecular BioSystems 12, 2, 588–597, URL
http://dx.doi.org/10.1039/C5MB00560D (2016).

[Xiang et al.(2010)] Xiang, R., J. Neville and M. Rogati, “Modeling relationship strength
in online social networks”, in “NIPS”, (2010).

[Xiao and Boyd(2004)] Xiao, L. and S. Boyd, “Fast linear iterations for distributed averag-
ing”, Systems & Control Letters 53, 1, 65–78 (2004).

[Yang et al.(2014)] Yang, Y., G. Scutari, D. P. Palomar and M. Pesavento, “A parallel
stochastic approximation method for nonconvex multi-agent optimization problems”,
CoRR abs/1410.5076 (2014).

[Yildiz et al.(2013)] Yildiz, M. E., A. Ozdaglar, D. Acemoglu, A. Saberi and A. Scaglione,

197

“Binary opinion dynamics with stubborn agents”, ACM Trans. Econ. Comput. 1, 4,
19 (2013).

[Yildiz and Scaglione(2008)] Yildiz, M. E. and A. Scaglione, “Coding with side information
for rate-constrained consensus”, IEEE Trans. on Signal Process. 56, 8, 3753–3764
(2008).

[Yildiz and Scaglione(2010)] Yildiz, M. E. and A. Scaglione, “Computing along routes via
gossiping”, IEEE Trans. on Signal Process. 58, 6, 3313–3327 (2010).

[Yip et al.(2010)] Yip, K. Y., R. P. Alexander, K.-K. Yan and M. Gerstein, “Improved
reconstruction of in silico gene regulatory networks by integrating knockout and per-
turbation data”, PLoS ONE 5, 1, e8121–, URL http://dx.doi.org/10.1371%2Fjournal.
pone.0008121 (2010).

[Yu et al.(2012)] Yu, H.-F., C.-J. Hsieh, S. Si and I. Dhillon, “Scalable coordinate descent
approaches to parallel matrix factorization for recommender systems”, in “ICDM”,
pp. 765–774 (IEEE, 2012).

[Yu et al.(2014)] Yu, Y., X. Zhang and D. Schuurmans, “Generalized conditional gradient
for sparse estimation”, CoRR (2014).

[Yuan et al.(2012)] Yuan, G.-X., C.-H. Ho and C.-J. Lin, “An improved glmnet for l1-
regularized logistic regression”, Journal of Machine Learning Research 13, Jun, 1999–
2030 (2012).

[Yun et al.(2011)] Yun, S., P. Tseng and K.-C. Toh, “A block coordinate gradient de-
scent method for regularized convex separable optimization and covariance selection”,
Mathematical programming 129, 2, 331–355 (2011).

[Zhao et al.(2016)] Zhao, M.-M., Q. Shi and M. Hong, “A distributed algorithm for dic-
tionary learning over networks”, in “Signal and Information Processing (GlobalSIP),
2016 IEEE Global Conference on”, pp. 505–509 (IEEE, 2016).

198

