860 research outputs found

    Data systems elements technology assessment and system specifications, issue no. 2

    Get PDF
    The ability to satisfy the objectives of future NASA Office of Applications programs is dependent on technology advances in a number of areas of data systems. The hardware and software technology of end-to-end systems (data processing elements through ground processing, dissemination, and presentation) are examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development

    Data display programming

    Get PDF
    Computer programming for control of complex data processing operations involved in analysis and interpretation of large volumes of sensor data from scientific satellite

    Earth resources technology satellite operations control center and data processing facility. Book 2 - Systems studies Final report

    Get PDF
    Systems analysis for ERTS NASA Data Processing Facility system and subsystem

    Structure determination of membrane proteins by electron crystallography

    Get PDF
    A fundamental principle of life is the separation of environments into different compartments. Prokaryotes shield their interior from the environment by a plasma membrane and in some cases also by a cell wall. Eukaryotes refine this compartmentalization by building different organelles for different parts of the cell metabolism. Nevertheless, these different compartments are dependent on each other and are interconnected by membrane proteins that transport specific nutrients, hormones, ions, water and waste products across the membrane and facilitate signal transmission between different compartments. Understanding the structure and function of membrane proteins can therefore allow an enormous insight into the regulation of different metabolic pathways. The electron microscope (EM) proved itself a great tool for studying membrane proteins, offering the unique opportunity to image membrane proteins within a lipid bilayer as close to the natural conditions as possible. Processing of images acquired by an electron microscope poses a challenging task for both scientist and processing hardware. Newly developed and optimized algorithms are needed to improve the image processing to a level that allows atomic resolution to be achieved regularly. Membrane proteins pose a difficult challenge for a structural biologist. To crystallize membrane proteins into well ordered two dimensional (2D) or three dimensional (3D) crystals is one of the most important prerequisites for structural analysis at the atomic level, yet membrane proteins are notoriously difficult to crystallize. One exception may be bacteriorhodopsin, which forms near-perfect crystals already in its native membrane. This may explain the fact that the first 2D electron crystallographic structure determined at 7 Å resolution by Henderson and Unwin[20][43] in 1975 was the structure of bacteriorhodopsin. In 1990 the structure of Br was determined to atomic resolution by Henderson et al.[19], being the first atomic structure of a membrane protein. The structure determination of Br was also the starting point for the mrc program suite, which is widely used at the moment in the, albeit small, 2D electron crystallography community. Using the mrc software Kühlbrandt et al.[26] solved the structure of the light-harvesting chlorophyll a/b-protein complex in 1994. For recording the images they used the spot scan technique developed by Downing in 1991[9]. The first aquaporin water channel determined was aquaporin 1, resolved by Walz et al. in 1997[45] at 6 Å resolution, and subsequently solved to atomic resolution by Murata et al. in 2000[29]. Recently, several more aquaporin structures were determined by 2D electron crystallographic methods, aquaporin-0 (AQP0) by Gonen et al. in 2004[14] at 3 Å and in 2005[13] at 1.9 Å and aquaporin-4 (AQP4) by Hiroaki et al. in 2006[22]. Interestingly, AQP4 shows exactly the same monomer arrangement as SoPIP2;1. The recent publications show that the trend goes from recording solely images to the recording of diffraction data in combination with images or even to recording diffraction data exclusively, and then using methods developed for x-ray crystallography to obtain the phase information. Given the fact that the software available for processing of 2D electron diffraction patterns is less evolved than the one for processing images, and given this new development of increased usage of diffraction patterns, it only makes sense to focus on implementing new and improved programs for 2D electron diffraction processing. In this work I would like to present the advances I achieved in the structural determination of aquaporin 2, as well as my contribution to other projects, in particular the structural investigations of SoPIP2;1 and KdgM. I will also explain the modified sample preparation methods which made data recording at high tilt angles more reliable and achieved an improvement in resolution of the measured data. A second, equally important and detailed part of my thesis is the work invested in improving and extending the image processing to a point where a user, not adept in programming in several languages, can use it and produce good results. For this I improved the functionality and performance at several points, including a strong emphasis on user friendliness and ease of maintenance

    Visual system of basal Chelicerata

    Get PDF

    Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    Get PDF
    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications

    Dual-layered and wavelength-multiplexed optical barcode for high data storage

    Get PDF
    A novel barcode system design to achieve high data storage using more than one layer is introduced theoretically and tested partially in the laboratory. Compared to other existing barcode systems, diffraction gratings are used as core elements in the barcode symbol. As any other barcode system, the novel model requires a source of light, the barcode symbol and photodiode detectors. Theoretical background from optics has been used to design the entire system along with all the positioning of its components. After part-testing the design in laboratory, the barcode system design has been changed to achieve better results. Experiments have showed that the initial proposed Light Emitting Diode (LED) source light cannot deliver 5mm spot light over a range of 50cm and therefore, white Light Amplification by Stimulated Emission of Radiation (LASER) light has been adopted as replacement. The diffractions from the barcode symbol are captured by detectors built with SI photo diodes, which are designed to detect this range of wavelengths. The barcode symbol is composed of small 5mm by 5mm grating modules and the largest possible symbol size defined is 80 modules (5cmx5cm). Experimental works have proved that intensity of the light can be used to uniquely identify each grating rather than the entire spectrum diffracted. A better design is proposed where the detectors are positioned under the barcode symbol and capture the light intensity of the first diffracted order. Theoretical investigations state that diffraction gratings with different lines per mm diffract different sets of wavelengths spectrum. This characteristic allows a set of unique gratings to be used in the barcode symbol which hence allow data to be represented or stored. Character (Char) sets are defined to help encode and decode data in the barcode symbol. High data storage has been achieved through the use of two layers. Multiple layers offer the possibility to increase the number of unique sets of gratings which in turn increase the data representation capacity. Using two layers with 16 unique sets of gratings has proved to be able to store around 100 bytes of data. The system has the potential to use more than two layers and using 4 layers with 16 unique gratings per layer will achieve 200 bytes. The thesis has proved through theoretical and experimental work that diffraction gratings can be used in barcode system to represent data and multiple layers adds the benefit of increasing data storage. Further work is also suggested

    Laser-induced forward transfer (LIFT) of water soluble polyvinyl alcohol (PVA) polymers for use as support material for 3D-printed structures

    Get PDF
    The additive microfabrication method of laser-induced forward transfer (LIFT) permits the creation of functional microstructures with feature sizes down to below a micrometre [1]. Compared to other additive manufacturing techniques, LIFT can be used to deposit a broad range of materials in a contactless fashion. LIFT features the possibility of building out of plane features, but is currently limited to 2D or 2½D structures [2–4]. That is because printing of 3D structures requires sophisticated printing strategies, such as mechanical support structures and post-processing, as the material to be printed is in the liquid phase. Therefore, we propose the use of water-soluble materials as a support (and sacrificial) material, which can be easily removed after printing, by submerging the printed structure in water, without exposing the sample to more aggressive solvents or sintering treatments. Here, we present studies on LIFT printing of polyvinyl alcohol (PVA) polymer thin films via a picosecond pulsed laser source. Glass carriers are coated with a solution of PVA (donor) and brought into proximity to a receiver substrate (glass, silicon) once dried. Focussing of a laser pulse with a beam radius of 2 µm at the interface of carrier and donor leads to the ejection of a small volume of PVA that is being deposited on a receiver substrate. The effect of laser pulse fluence , donor film thickness and receiver material on the morphology (shape and size) of the deposits are studied. Adhesion of the deposits on the receiver is verified via deposition on various receiver materials and via a tape test. The solubility of PVA after laser irradiation is confirmed via dissolution in de-ionised water. In our study, the feasibility of the concept of printing PVA with the help of LIFT is demonstrated. The transfer process maintains the ability of water solubility of the deposits allowing the use as support material in LIFT printing of complex 3D structures. Future studies will investigate the compatibility (i.e. adhesion) of PVA with relevant donor materials, such as metals and functional polymers. References: [1] A. Piqué and P. Serra (2018) Laser Printing of Functional Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. [2] R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué (2009) Laser decal transfer of freestanding microcantilevers and microbridges, Appl. Phys. A, vol. 97, no. 3, pp. 513–519. [3] C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ‘t Veld, and D. Lohse (2015) Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer, Adv. Mater., vol. 27, no. 27, pp. 4087–4092. [4] J. Luo et al. (2017) Printing Functional 3D Microdevices by Laser-Induced Forward Transfer, Small, vol. 13, no. 9, p. 1602553

    A Combinatorial Method for Discovery of BaTiO3-based Positive Temperature Coefficient Resistors

    Get PDF
    PhDThe conventional materials discovery is a kind of empirical (“trial and error”) science that of handling one sample at a time in the processes of synthesis and characterization. However, combinatorial methodologies present the possibility of a vastly increased rate of discovery of novel materials which will require a great deal of conventional laboratory work. The work presented in this thesis, involved the practice of a conceptual framework of combinatorial research on BaTiO3-based positive temperature coefficient resistor (PTCR) materials. Those including (i) fabrication of green BaTiO3 base discs via high-throughput dip-pen printing method. Preparation and formulation of BaTiO3 inks (selection of dispersant and binder/volume fraction) were studied. The shape of drying residues and the morphogenesis control of droplet drying were discussed. (ii) investigation of a fast droplet-doping method, which induced the dopant precursor solution infiltrating into the porous BT base disc. Various characterization methods were used to examine the dopant distribution in the body of disc. (iii) devising a high-throughput electrical measurement system including an integrated unit of temperature control and automatic measurement operation, and an arrayed multichannel jig. (iv) synthesis of donor-doped BaTiO3 libraries, which involved lanthanum, erbium, yttrium as donor elements and manganese as an acceptor dopant element respectively. Their temperature dependant resistivities were also explored. The work successfully developed an integrated tool including high-throughput synthesis of a large batch of libraries and high-throughput electrical property measurement for combinatorial research on BaTiO3-based PTCR ceramics. The Abstract ii combinatorial method, thus validated, has the potential to deliver dopant-doped BTbased PTCR libraries rapidly with a very wide range of dopant mixtures and concentrations for electrical property measurement and deserves to be applied to other low level dopant ceramic systems. These approaches are novel and paving the way for other new materials selection and materials research

    Digital imaging technology assessment: Digital document storage project

    Get PDF
    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes
    corecore