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Abstract 

 

The conventional materials discovery is a kind of empirical (“trial and error”) 

science that of handling one sample at a time in the processes of synthesis and 

characterization. However, combinatorial methodologies present the possibility of a 

vastly increased rate of discovery of novel materials which will require a great deal 

of conventional laboratory work.   

 

The work presented in this thesis, involved the practice of a conceptual framework of 

combinatorial research on BaTiO3-based positive temperature coefficient resistor 

(PTCR) materials. Those including (i) fabrication of green BaTiO3 base discs via 

high-throughput dip-pen printing method. Preparation and formulation of BaTiO3 

inks (selection of dispersant and binder/volume fraction) were studied. The shape of 

drying residues and the morphogenesis control of droplet drying were discussed. (ii) 

investigation of a fast droplet-doping method, which induced the dopant precursor 

solution infiltrating into the porous BT base disc. Various characterization methods 

were used to examine the dopant distribution in the body of disc. (iii) devising a 

high-throughput electrical measurement system including an integrated unit of 

temperature control and automatic measurement operation, and an arrayed multi-

channel jig. (iv) synthesis of donor-doped BaTiO3 libraries, which involved 

lanthanum, erbium, yttrium as donor elements and manganese as an acceptor dopant 

element respectively. Their temperature dependant resistivities were also explored. 

The work successfully developed an integrated tool including high-throughput 

synthesis of a large batch of libraries and high-throughput electrical property 

measurement for combinatorial research on BaTiO3-based PTCR ceramics. The 
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combinatorial method, thus validated, has the potential to deliver dopant-doped BT-

based PTCR libraries rapidly with a very wide range of dopant mixtures and 

concentrations for electrical property measurement and deserves to be applied to 

other low level dopant ceramic systems. These approaches are novel and paving the 

way for other new materials selection and materials research. 
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1 Introduction 

 

1.1 Aims and Objectives 

The aim of this project is to realize a protocol for combinatorial research for BaTiO3-

based positive temperature coefficient resistivity materials. This project is a 

pioneering combinatorial thick film approach to high-throughput donor-doped 

BaTiO3 fabrication and to fast parallel electrical screening. The target is set at donor-

doped BaTiO3 PTCR ceramics but once established, it can be used for the general 

construction of ceramic combinatorial libraries which involve low dopant levels. 

 

The objectives of the project are as follows: 

1. To produce a high-throughput library of BaTiO3 discs by the dip-pen printing 

method. Formulation of the ink suspension (selection of solid content and 

polymer additive volume fraction) and the control of the droplet drying pattern 

need to be investigated. 

2. To synthesize libraries of donor-doped BaTiO3 PTCR discs via a droplet-

doping method. The mechanism of dopant ion distribution by impregnating the 

porous base with a dopant precursor solution, followed by the drying and firing 

is to be discussed.  

3. To devise an high-throughput parallel testing platform for electrical 

measurements. The testing system is including a furnace control unit and a 

parallel conducting jig. A computer-operational-interface is also to be 

developed. 

4. To explore the PTCR properties of donor-doped BaTiO3 materials. 
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1.2 Combinatorial Research in Materials Science 

 

The development of functional materials has always played a key role in lifting the 

productivity and advancing the economics and development of mankind. In modern 

chemistry and materials science, the periodic table forms the basis of inorganic 

materials formulation. Although there are approximately 24,000 inorganic phases 

inclusive of 16,000 binary and pseudobinary compounds and 8,000 ternary and 

pseudoternary compounds known to mankind according to a review by J.C. Phillips 

at the end of the 1980s,1 these achievements so far have only discovered a small 

fraction in the whole scope of materials exploration. If 70 out of 117 elements2 in 

total are chosen from the periodic table to form ternary compounds, then there are 

around 54,700 possible ternary systems. Therefore, 6 out of 7 of them are still yet to 

be analyzed. If considering different stoichiometric compositions of each ternary 

system or increasing the number of components in a system, the number of samples 

that need to be examined is beyond imaginable capacity. Therefore, the conventional 

one-by-one trial-and-error method begins to fail to be competent in building the map 

of the structure-composition-property relationships of compounds. New strategies are 

needed to fulfil the ambition to achieve the capabilities of high-throughput synthesis 

and screening. Combinatorial methods were realized with a view to solving such 

problems. Combinatorial research was original invented to meet the demands of 

increasing the rate of mapping of phase diagrams as pioneered by Kennedy.3 It was 

adapted by Hanak4 for finding high-temperature superconductors. This method had 

been used in the field of biochemistry and the pharmaceutical industry for speeding 

up the drug discovery process. A variety of high-throughput synthesis and rapid 

screening schemes were invented to increase dramatically the efficiency of the 
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discovery process for organic compounds.5-8 Such techniques represent a new 

paradigm for the discovery of molecules and organic polymers. 

 

Similarly, developments and progress in combinatorial research in chemistry are 

inspiring and promoting systematic methodology in materials science research. In 

combinatorial materials science, the experimental techniques can be divided into 

three major interconnected activities: synthesis, rapid property characterization and 

data mining. All of these procedures are essential to perform a successful 

combinatorial investigation. The fast fabrication tool is able to guarantee the speed 

for creating a variety of combinatorial libraries and composition-spread samples. 

Suitable characterization tools in high-throughput screening processes can be used to 

measure multiple functionalities and multiple figures of merits for different 

applications. Furthermore, an integral part of any materials synthesis effort is 

materials diagnostics. There is always a need to check and confirm the formation and 

presence of intended phases at intended locations on libraries. Quickly obtaining 

accurate composition and phase mapping is of paramount importance in establishing 

the composition-structure-property relationships of materials. Figure 1.2.1 shows a 

flow chart of the combinatorial materials methods which indicate the massive 

advantages of spatiality and efficiency in exploring a large segment of a particular 

compositional landscape to help to find an optimum around lead compositions. 
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Figure 1.2.1 Combinatorial materials research: a diverse library containing large 

numbers of samples with discrete or continuous composition gradients is deposited 

by automated thin film synthesis methods. Each spatial location represents a different 

composition or processing history. Parallel high-throughput screening techniques are 

deployed to search for the lead materials or extract “knowledge” in the form of 

composition-structure-property relationships.9 
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1.2.1 High-speed Library Synthesis and High-throughput Screening 

It has long been desirable to increase the rate of new materials synthesis. The first 

report of the rapid, automated synthesis of diverse organic molecules appeared in the 

late 1960s.10 At that time, pioneers like Gutte and Merrifield10 used polypeptide-

synthesis machines to automate the rapid production of diverse amino acid sequences. 

Soon two methodologies including the mix-and-split technique and the parallel 

synthesis technique (their schematic structures are displayed in Figure 1.2.2) were 

developed in order to speed sample production in combinatorial research.11  

 

Figure 1.2.2(a) illustrates the mix-and-split method in which the carriers’ pool has 

been equivalently divided into several portions according to the amount of reaction 

groups within the same category. The overall products after reaction are mixed 

together and then evenly split into several groups again which is in accordance with 

the numbers of compounds for further reaction. This post-reaction mix-and-split 

procedure is repeated until all variable samples have been synthesized. The parallel 

synthesis strategy has the advantage of easier manipulation of samples since all 

reaction products are kept in separate reactors. At the first stage, compounds in the 

same family are added in corresponding rows of the samples’ array. Afterwards, 

compounds in another family are added in different columns of the same array. More 

components could be added by using additional arrays or duplicating rows and 

columns from the first stage. Both parallel and split-pool synthetic strategies 

explained above which were initially widely used in the pharmaceutical industry 

have also been well adopted in synthesis of functional inorganic materials.12 

Furthermore, vapour deposition and solution-dispensing are the most common 

methods for high-speed synthesis of inorganic materials libraries. 
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Figure 1.2.2 Principles of (a) the mix-and-split method and (b) the parallel synthesis 

method. (replotted from12) 

 

The number of samples in a library for combinatorial research can be in the range of 

thousands. A split-and-mix liquid-phase library might even include 105 or more 

different compounds. Therefore, parallel automated measurement setups are needed 

to achieve high throughput to meet the challenge of rapid characterization of a large 

number of samples with very small sample volumes (tens to hundreds of microlitre). 

The concept of automated and high-throughput chemical screening was first realized 

in the medical field decades ago since it was driven by the need to test thousands of 

clinical specimens each day in single-site facilities and relative simplicity in 

screening body-fluid samples.13 Nowadays various high-throughput characterization 

tools for inorganic materials applications have been developed. Generally speaking, 
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optical imaging and spectroscopic methods are relatively easy to deploy in studying 

luminescent materials.14, 15 Comparably, methods for high-throughput scanning mass 

spectrometry16 and parallel calorimetry17 have been successfully devised for quickly 

and automatically screening large numbers of catalytic materials. Furthermore, other 

nondestructive and high-throughput tools such as X-ray diffraction for structural 

characterization,18-20 scanning-tip microwave near-field microscopy for microwave 

dielectric properties,21 scanning evanescent microwave microscopy (SEMM) for 

mapping electrical impedance22 and scanning superconducting quantum interference 

devices (SQUID),23 the scanning hall probe24, 25 and magneto-optical techniques26 for 

mapping magnetic properties have also been developed recently in order to cope with 

the fast growing speed of sample fabrication. However, those characterization 

methodologies are still not keeping pace with the increase of library density due to 

limitations on testing speed or spatial resolution. Therefore, novel and powerful high-

throughput characterization tools are still in urgent and high demand. 

 

1.2.2 Applications of Combinatorial Materials 

1.2.2.1 Superconducting Materials 

One of the first implementations of combinatorial research in materials exploration 

involved preparing libraries of superconducting thin-film materials. Xiang et al.27 

first used sequential radio-frequency (RF) sputtering method through binary masks to 

build Ba-Cu-Y oxide systems and evaluated the superconductivity of each sample by 

measuring its resistance as a function of temperature with an array of small four-

point probes which analyzed 64 samples at a time. By their novel methods, films of 

BiSrCaCuOx, BiPbCaSrCuOx and YBa2Cu3Ox were successfully identified along 

with their superconducting characteristics which had critical temperatures in the 
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range of 80-90K. Although the profiles of resistance versus temperature of those film 

samples displayed distinct characteristics in terms of deposition sequences and 

annealing conditions which were hence different from those via conventional bulk 

synthesis methods,28 this methodology has been proven effective and efficient. 

Recently, a similar superconducting thin-film La2-xSrxCuO4 library was also 

developed.29  

 

1.2.2.2 Novel Magnetic Materials 

Magnetic semiconductors are important materials because of their spin-dependent 

electronic functionality and they are broadly used in the computing industry 

especially in memory and recording products. Discovering new systems of magnetic 

semiconductors including room-temperature ferromagnetic semiconductors and 

colossal magnetoresistance materials has been driven by combinatorial research since 

the mid-90s.30, 31 Dietl et al.32 first predicted room-temperature ferromagnetism in 

manganese doped GaAs and ZnTe, soon followed by the discovery of cobalt-doped 

TiO2 anatase by a laser molecular beam epitaxy method.31 Recently, Tsui et al.33 

discovered new Ge-based magnetic semiconductors by combinatorial methods. In 

particular, the compound Co0.1Mn0.02Ge0.88 was found to have a Curie temperature as 

high as 280K and large magnetoresistance effects. In addition, Takeuchi et al.34 

mapped a bifunctional diagram of the Ni-Mn-Ga system in a search of ferromagnetic 

shape-memory alloys by using the thin-film compositional spreads method.  

 

Colossal magnetoresistance materials were first found only in Mn-based perovskites, 

(La,R)1-xAxMnO3-d, where R = rare earth, and A = Ca, Sr, Ba. Briceno et al.30 have 

found via combinatorial methods a new family that are Co-containing, for example 
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Lax(Ba,Sr,Ca)yCoOδ, which has large magnetoresistance. The magnetoresistance of 

the Co-containing compounds increases as the size of the alkaline earth ion increases 

in sharp contrast to Mn-containing compounds, in which the magnetoresistance 

effect increases as the size of the alkaline earth ion decreases.  

 

1.2.2.3 Dielectric and Ferroelectric Materials 

Ferroelectric materials are being widely used in the development of new microwave 

devices such as frequency agile filters, phase shifters and tunable high-Q resonators. 

(BaxSr1-x)TiO3 (BST) compounds have been studied intensely for such applications 

owing to their low loss and high dielectric coefficients. Combinatorial approaches in 

such areas have been applied by Xiang from the Lawrence Berkeley Laboratory.35, 36 

Four libraries of 256 differently doped thin films of (BaxSr1-x)TiO3 where x = 1, 0.8, 

0.7 and 0.5 were generated on a 2.5cm x 2.5cm LaAlO3 substrate using multistep 

thin-film RF sputtering together with a quaternary masking strategy with four 

physical shadow masks. These four hosts were then doped with different 

combinations of up to three out of nine different metallic elements with each dopant 

added in excess of 1 mol% with respect of the BST host. Details are displayed in 

Figure 1.2.3a below. The maps with the values of the dielectric coefficient and loss 

tangent of the corresponding samples in the libraries are plotted in Figure 1.2.3b. 

 

Van Dover et al.37 used the composition-spread technique to discover new dielectric 

thin-film materials (Zr0.15Sn0.3Ti0.55O2-δ) which find their way into the node 

capacitors of prototype dynamic random-access memories. They found that the 

properties of ZrxSnyTizO2-δ thin-film depend strongly on the deposition conditions. 

Recently, they have investigated the Zr-Si-O dielectric compounds by using similar 
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tactic.38 

Figure 1.2.3a Dopant map for the BaSrTiO3 quadrant of a ferroelectric thin-film 

library; the same map applies to the other quadrants containing different host 

materials.39 

 
Figure 1.2.3b Dielectric coefficient and loss tangent images of doped BaSrTiO3 films 

with a dopant map as in Figure 1.2.3a.39 

 

Recently, Pullar et al.40 used an automated high-throughput ink-jet printer 

successfully produced the BaxSr1-xTiO3 libraries with varying compositions of x=0-1 

in steps of 0.1. Dielectric measurements showed the measured permittivity results 
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and Curie temperature values of the samples in the library corresponded well to 

previously published bulk BST data. 

 

1.2.2.4 Luminescent Materials 

Phosphor materials with high quantum efficiencies find applications in display 

technologies such as cathode ray tubes and are of great importance for developing 

improved plasma, field emission and electroluminescent flat panel displays as well as 

lighting. However, after many years of intensive research, fewer than 100 useful 

commercial phosphor materials have been discovered through conventional one-at-a-

time synthesis and testing. Phosphors are normally inorganic powders that consist of 

a polycrystalline host doped with ions of a rare earth and/or a transition metal. The 

combinatorial libraries were used to survey a wide range of oxide compositions 

under a variety of processing conditions. Danielson et al.14 found a new red phosphor, 

Y0.845Al0.07La0.06Eu0.025VO4, in a library of 25,000 different compositions produced 

by electron-beam evaporation to deposit thin-film on a silicon wafer. Also following 

his work, a novel luminescent oxide, Sr2CeO4, was discovered showing blue-white 

emission.15  New luminescent systems were also investigated by using combinatorial 

methods. For instantce, several 128-member libraries such as Gd-Zn, Gd-Ga oxide 

doped with rare earth activators have developed and evaluated the phosphorescence 

of all the specimens simultaneously by photographing the entire library under broad 

wavelength UV light.41, 42 Figure 1.2.4 displays the photographs of a luminescent 

materials library under ambient light and short wavelength UV light respectively. 

Furthermore, a scanning multi-inkjet printer can be used to fabricate a library of 

phosphors based on rare-earth-activated refractory metal oxides by a solution-phase 

synthesis technique. The results of samples generated in the ink-jet library are found 
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to be identical to those in the library deposited by RF sputtering.43 Recently, red 

phosphors which are in Gd-Al44 and Y-Eu45 oxide systems were fabricated by high-

throughput synthesis method.  

 

 
Figure 1.2.4 Photograph of a 1024 member combinatorial library of luminescent 

materials on a 1” x 1” Si chip following thin-film deposition. (a) under ambient light. 

(b) under short wavelength UV light.42 

 

1.2.2.5 Heterogeneous Catalysis 

The screening of catalytic materials via high-throughput techniques started in the 

1980s.46 Heterogeneous catalysts are multifunctional materials composed of several 

active components, promoters, and a high surface-area support material. The 

compositional parameter space associated with them is therefore very large. In 

addition, there is a wide variety of processing and reaction conditions to which 

catalysts may be subjected, which results in the total number of possible 

experimental combinations being even more.  

 



Introduction 

 13

Combinatorial searches for catalysis are often limited not by synthesis but by the lack 

of efficiency in simultaneously screening many compositions. High-throughput 

studies of heterogeneous catalysts consist of three components: rapid catalyst 

synthesis, high-throughput testing of catalyst materials, appropriate data processing 

and information mining techniques, which feedback into the synthesis. A good 

example for the application of statistical design for high-throughput experimentation 

is the work on the development for Pt/Ba/Fe-based nitrous oxide (NOx) storage and 

reduction (NSR) catalysts.47, 48 It is difficult to reduce NOx under the oxidizing 

conditions present in the exhaust of lean-burn gasoline and diesel engines. NSR 

catalysts are designed to store NOx during a fuel-lean cycle and reduce the stored 

NOx during a subsequent fuel-rich cycle. Furthermore, recently, Vijay et al.49 have 

disclosed a noble-metal-free system for NSR catalysts developed entirely using a 

high-throughput approach. They found that an Al2O3-supported catalyst containing 5 

wt.% Co and 15 wt.% Ba is just as effective as conventional NSR catalyst that 

contained platinum. 

  

1.2.2.6 Organic Materials 

The early adoption of combinatorial methods by the pharmaceutical industry resulted 

in a strong foundation of parallel organic synthetic routes and techniques for the 

rapid screening of organic molecules for drug activity. This has inspired researchers 

to develop new polymers and organic materials or rapidly optimize the reaction 

parameters (temperature, catalysts, etc) for specific products.50 Microfluidic 

technology for polymer library synthesis has been devised by Cabral et al.51 for 

automated control of radical polymerization. A continuous gradient control method 

has also demonstrated by Cygan et al.52 to produce arrays of polymer microdroplets 
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displayed in Figure 1.2.5. In addition such techniques can be used to synthesis 

libraries of surface-grafted polymers and graded polymer films. The combinatorial 

approach was recently also used for fast screening of organic light emitting diode 

(OLED) materials.53 

 

 

Figure 1.2.5 Benzene forming droplets in a flow gradient control device.52 

 

For organic electronic materials, ink-jet printers are widely used for combinatorial 

library creation,54 including spot or line arrays, multilayers and collection of device 

prototypes. Besides the applications that adopting combinatorial concepts described 

above, many other fields have also been widely used combinatorial methods for 

fabrications or characterizations, which among them are including solid-state battery 

materials,55-57 fuel-cell materials,58, 59 coating materials,60 and sensors61-63. 

 

1.2.3 Informatics in Combinatorial Materials Research 

Seeking structure-property relationships and optimizing the composition and 

processing parameters are paradigms in materials science. Driven by the 

development in high-throughput synthesis and characterization techniques, scientist 

to date have better understanding of the underlying science governing the behaviour 
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of many materials. However, there is a bigger challenge that requires scientists to 

find new materials property relationships and interpret patterns by sifting through 

huge databases efficiently. Because combinatorial experiments often represent 

exploration of colossal multidimensional data stream, data mining techniques can 

play a key role in isolating and identifying ‘hidden trends or variables’ in 

experiments. Thus the results may be able to uncover new materials behaviour as 

well as prediction of new compounds.64, 65 The scope of materials informatics is 

extensive but much remains to be developed and fully demonstrated. Therefore, full 

realization of the combinatorial methodology will require the integration of 

chemistry, physics, engineering and informatics, to enhance the probability of 

finding materials with desired properties. Scott et al.66 are pioneers in building an 

informatics system which integrated combinatorial experiments particularly in 

electroceramic materials discovery. 
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1.3 Ceramic Film Processing 

 

Products in the form of ceramic films and coatings are used for an enormous and 

diverse set of functional and structural applications. According to the thickness of 

ceramic samples, the film methods can be distinguished as thin film methods (≤ 1µm) 

and thick film methods (>1µm).67 

 

1.3.1 Thin Film Forming Methods 

There are many thin-film deposition technologies which form layers with thickness 

in the range of a few nanometers to about one micrometer. Solid ceramic thin films 

can be prepared by deposition from the gas, liquid or solid phase. 

 

Chemical vapour deposition (CVD) is a synthesis process in which a solid film is 

deposited from a vapour phase by chemical reaction on a substrate. The main 

advantages of CVD are its versatility for synthesizing both simple and complex 

compounds and its ability for tailoring the chemical composition and physical 

structure of the deposited film by changing the reaction chemistry and deposition 

conditions. For example, it generally creates amorphous structures when the 

temperature of the substrate is below 600 °C, grows single-crystal structures when 

above 1000 °C and produces polycrystalline films when the temperature is between 

600 and 1000 °C. Several kinds of CVD processes have been developed including 

plasma-enhanced CVD, laser-enhanced CVD and metal-organic chemical vapour 

deposition (MOCVD).68 The chemical reaction might involve pyrolysis, oxidation, 

reduction or compound formation. 
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In physical vapour deposition (PVD) processes, films are generated from a solid 

source by heat-induced vaporization or momentum transfer in which evaporation or 

sputtering directs vapour to a target substrate on which the film is grown in a vacuum 

chamber.69 

 

CVD and PVD are the most common vapour deposition techniques in thin film 

methods. In spite of their unique merits including capabilities for precise control of 

structure and composition of films, the low deposition rate (lower than 4 nm·s-1) and 

complicated devices required have restrained their applications. Apart from those 

vapour deposition techniques, other methods such as dip-coating,70 spin coating71 

and inkjet-based printing72, 73 can also be used to produce ceramic thin films.  

 

1.3.2 Thin Film Methods in Combinatorial Research 

Thin film methods have been widely used in combinatorial materials research and 

they can fabricate most libraries.74-76 The compositional landscape of a library made 

by thin film synthesis can be achieved by a masking scheme or photolithography 

techniques combined with various vapour deposition techniques such as 

cosputtering,77, 78 thermal evaporation,79, 80 electron-beam evaporation,9 pulsed-laser 

deposition,81, 82 ion-beam implantation,83, 84 molecular-beam epitaxy85, 86 and 

chemical vapour deposition.38  

 

In high-density thin film library synthesis, different tactics for making samples with 

various compositional spread schemes have been developed. The continuous 

composition-spread (CCS) method was pioneered by Hannak4 in 1970s to produce 

samples with a naturally continuous compositional gradient. The CCS technique 
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relies on the non-uniform deposition of materials formed by the geometric 

arrangement between the sources and the substrate. The relative concentration of 

each component at a specific location on the substrate decreases with the distance 

from the source. As materials spread from the sources in the vapour state, they mix 

and are deposited on the substrate creating atomic-level mixing that reduces or 

eliminates the need for high-temperature post-processing. A schematic diagram of 

using the CCS method by co-sputtering or co-deposition is shown in Figure 1.3.1. 

However, these techniques have limited scope for optimizing and exploring systems 

with more than three independent components due to the lack of precise 

stoichiometric control, limited compositional range and difficulty in spatial 

arrangement for sources of multiple elements.  

 

Masking strategies including physical shadow masks,87 movable shutters88 and 

photolithography76 were hence introduced in order to allow the precise control of the 

deposition of precursors at a given location on the substrate. Such techniques as the 

discrete sequential synthesis (DSS) method was first developed by Xiang et al.27 

Simple binary and quaternary masking methods are the most common strategies in 

the DSS technique and the process flow is indicated in Figure 1.3.2. In the binary 

masking strategy, only half of the substrate area is exposed to vapour deposition with 

different patterns in each step. The number of different compositions after N steps is 

2N, which includes all possible combinations of N elements. Moreover, the 

quaternary masking strategy has been developed that enables efficient generation of 

diverse libraries containing materials with very different compositions. In the 

quaternary masking scheme, deposition is carried out using a series of N different 

masks that subdivide the substrate into a series of nested quadrant patterns (shown in 
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Figure 1.3.2). Each mask is used for up to four depositions and each time the mask is 

rotated by 90º. This process can generate up to 4N different compositions in just 4N 

steps with N different masks. 

 
Figure 1.3.1 Schematic CCS method’s arrangement using co-sputtering of (a) two-

component system, (b) three-component system.4 

 
Figure 1.3.2 Binary and quaternary masking strategies for combinatorial materials 

libraries fabrications.27 

 

In the DSS method, the composition control in the library is determined by the 

a b 
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sequence of masking, time and rate of deposition. The design of masks and sequence 

is crucial since it dictates the arrangement of compositional landscape; however, the 

number of compounds that can be simultaneously synthesized by this technique is 

still limited by the spatial resolution of the masks and detectors and by the degree to 

which synthesis can be carried out on a microscale. Alternatively, photolithographic 

lift-off methods rather than physical shadow masks can be adopted to generate high 

density libraries because of their higher spatial resolution and alignment accuracy 

capabilities.42, 89 The advantage of the DSS technique is that a full phase diagram of 

multiple components could be prepared with a fixed interval (e.g. 10 at.%) on a 

single substrate58 compared with the CCS technique which is unable to yield a full 

phase diagram in a single run for cases of more than three components. Furthermore, 

by using movable shutters, multiple layers of precursor can be deposited onto a small 

substrate sequentially with a linear thickness gradient. The library in Figure 1.3.3 

was fabricated by using two movable masks with different geometrical parameters. 

Four columns were deposited first with constant thickness of SnO2, V, Al2O3 + V 

(15:8 molar ratio) and Al2O3. Four rows with linearly varying thickness of La2O3, 

Y2O3, MgO and SrCO3 were then layered on the columns to divide the substrate into 

16 host lattice sub-regions. Finally, within each sub-region, columns of rare earth 

Eu2O3, Tb4O7, Tm2O3 and CeO2 were deposited in linearly varying thickness on the 

top of the substrate.  

 

Having equilibrium crystallized structures, samples with either discrete or linearly 

continuous compositional gradients can be created by these masking techniques after 

subjecting the library to an appropriate annealing treatment.39, 88 This compares well 

with samples that have multiphase non-equilibrium crystallized structure or even 
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those in an amorphous state that are made from cosputtering or codepostion 

methods.38  

 
Figure 1.3.3 The deposition map of library contains multilayer precursors with 

diverse linear gradients.14 

 

For many materials like ceramics, polymers and polycrystalline phosphors, their 

syntheses are best accomplished by using solution-phase methods which can 

fabricate a large number of libraries at a significantly lower capital investment 

compares with using automated vapour deposition equipment. One significant 

complication associated with materials discovery in thin-film format is the 

occasional lack of correlation with bulk properties owing to differences caused by 

film microstructure, strain and so on. Physical and chemical properties of compounds 

prepared using solution techniques generally show excellent correlation with bulk 

properties regardless of the volume of material prepared. Thus, library-based data 

may be easily confirmed in bulk. 
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Solution techniques allow mixing at the molecular level, reducing the need for high-

temperature interdiffusion and also facilitating the isolation of metastable phases. 

Ink-jet printing technology has been adapted for combinatorial materials research 

since 1997. New luminescent materials were prepared by a scanning multi-head 

inkjet delivery system by Sun et al.43 Having accurate and precise aspiration and the 

capability of delivering nanolitre volumes of reagents, ink-jet printers, particularly 

drop-on-demand printers, have been deployed for fast automated titration guided by 

laser-induced fluorescence detection for indicator end points.90 In addition, ink-jet 

printing techniques are still improving for the preparation of thick-film combinatorial 

libraries for the high-throughput screening of many ceramic compositions.91, 92 

 

1.3.3 Thick Film Forming Methods 

Slip casting and tape casting are conventional thick film techniques which have been 

commonly used to produce ceramic components with mass production capability. In 

slip casting, a slip or slurry of ceramic is poured into a porous gypsum mould. The 

liquid in the slurry is absorbed into the mould and particles are compacted on the 

mould surfaces producing parts with uniform thickness by capillary suction. 

Subsequently, pressure may be applied to the slurry and/or a vacuum may apply to 

the mould, or centrifuging may be used in order to increase the casting rate. The 

procedures of slip casting technique are outline below in Figure 1.3.4. 
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Figure 1.3.4 Processing flow diagram for basic slip casting process: (a) a porous 

mould is (b) filled with slurry; (c) superfluous slip is poured out when the desired 

wall thickness has been achieved and (d) shows the final dried product ready to 

remove from the mould. 

 

The consolidated layer of particles formed on the mould surface occurs by the 

process of filtration. For uniaxial filtration, the cast thickness L as a function of 

casting time t is93 

)/(])/()/2[( '5.02'
cmcmc RRRRRPtJL −+∆= η        Equation 1.3.1 

where J is the rate equal to volume of cast/volume of liquid removed, Rc the 

resistivity of liquid transport in the cast, ∆P the apparent mould suction, η the 

viscosity of the liquid transported and R’
m the liquid transport resistance in the mould. 

Equation 1.3.1 is derived based on the assumption that the parameters other than time 

on the right-hand side of the equation are constant during casting.  

 

According to Equation 1.3.1, the casting rate of the partially coagulated slip is 

relatively high because the ratio of J/Rc is relatively high. The differential liquid 

content between the slip and the cast is small. In contrast, the casting rate of well-

deflocculated slurry is relatively low because J/Rc is low. However, the completely 

deflocculated slip is able to produce dense and brittle cast rather than porous, soft 
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product which is deposited from coagulated slip. Slip casting processes are used to 

make dense refractories that are of a complex shape, thin-wall products such as 

crucibles and closed-end tubes, and products having large cross sections. However, 

the low production rate due to the requirement of long drying period and insufficient 

dimensional precision of the final product can constrain its applications. 

 

Tape casting is another powerful technique to make ceramic components especially 

having flat and thin layered structure such as laminated capacitors, varistors, ceramic 

fuel cell and multilayered piezoelectrics.94 The tape casting method is also known as 

doctor blading or knife coating which was first reported by Glenn Howatt to form 

ceramic products in 1947.95 The process uses a scraping blade, known as the 

“doctor” for the removal of excess substances from a moving surface being coated. A 

schematic diagram of tape casting is displayed in Figure 1.3.5. The slip or slurry is 

poured into a puddle or reservoir behind the doctor blade and the carrier to be cast 

upon is set in motion. The doctor blade gap between the blade and the carrier defines 

the wet thickness of the cast tape. The thickness of the slip can be monitored 

continuously by a gamma-ray back-scatter or X-ray transmission instrument. Thus 

the gap between the doctor blade and carrier film is adjusted accordingly. 

Furthermore, thicknesses as low as 5 µm have been reported.96 Other important 

variables that may affect the casting layer properties include reservoir depth, speed of 

carrier movement, viscosity of the slip and shape of the doctor blade. Drying of the 

film after being cast is accelerated by induced forced air flow or applied heat. 

 

In tape casting, the dispersion step in the early stage is essential because it 

determines the homogeneity of the tape which must be very high to obtain 
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consistently flaw-free laminates. It is also essential to obtain uniform shrinkage in 

order to maintain the original shape after drying. Tape casting usually adopts non-

aqueous solvents to facilitate the drying process which depends on evaporation rather 

than absorption into a plaster of Paris mould. However, water based tape casting 

systems are being successfully developed.97 Drying is critical because most defects 

appear during this stage and may lead to the failure. 

 

Figure 1.3.5 Schematic diagram of the tape casting processing 

 

Other various methods that can be used for thick film fabrication also include 

injection moulding, extrusion, printing and novel solid freeforming of which detailed 

review will be given in the next section. 

 

1.3.4 Thick Film Methods in Combinatorial Research 

Libraries of ceramic thick film can be constructed by ink-jet printing method,91 other 

solid freeforming (SFF) techniques such as 3-D printing98, 99 and dry powder 

mixing100, 101. 

 

Cellulose acetate sheet 

X-ray scanner 
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The ink-jet printing method has been employed in ceramic thick film combinatorial 

library synthesis for a decade but has still not reached a mature stage. The London 

University Search Instrument (LUSI) was built91 and modified102 to print thick film 

combinatorial libraries of ceramic compositions by mixing ceramic suspensions 

using stepper-driven syringes to control ink-jet-printing nozzles. The structure of the 

whole device is shown in Figure 1.3.6. It contains an aspirating-dispensing ink-jet 

printing station, a gantry robot, a four-zone furnace and a measurement table. LUSI 

has a potential capability to produce thousands of different ceramic samples in a day. 

It has synthesized many libraries in searching for novel ionic conductors103 and 

dielectrics.40, 104, 105 However, it is less effective in producing compositional 

uniformity in libraries with trace dopant additives (e.g. < 1 mol.%) by powder 

mixing. The barriers that constrain the use of ink-jet printing in synthesizing ceramic 

products are the avoidance of compositional segregation during drying and the 

structural control of the drying pattern which can severely affect the properties after 

sintering. The shapes of the drying residue have been studied recently and will be 

discussed in Section 1.5. 

 

 
Figure 1.3.6 General view of the LUSI system. 1: printer table, 2: measurement table, 

3: furnace, 1a: slides space, 1b: syringe pumps and controllers, 1c: print head.102  



Introduction 

 27

1.4 Advanced Solid Freeform Fabrication of Ceramics  

 

While the traditional ceramic processing techniques are effective for making 

products with simple patterns, none of them are feasible for fabrication of samples 

with complex shapes. Therefore, new manufacturing concepts to fabricate ceramic, 

metal and polymer components with very high design flexibilities for novel 

structures and with the possibility of rapid prototyping are needed. Solid Freeform 

Fabrication (SFF) techniques that provide integrated ways of manufacturing 3-

dimensional components from computer aided design (CAD) files have been 

developed for industrial and engineering purposes. Compared with traditional 

processing, SFF techniques build parts by additive procedures, rather than by 

subtractive approaches. Thus, these fabrication technologies are unconstrained by the 

limitations or costs of conventional tools such as dies, molds and machining 

operations. Furthermore, any geometrical shape can be built up in a high degree of 

accuracy. In SFF, three-dimensional objects are created by point, line or planar 

addition of material without confining surfaces other than a base. Second-generation 

SFF aims not only to deliver shape but also composition gradients. Hence, 

functionally graded materials (FGM) can be assembled with effectively stepless 

gradients by SFF. Current commercial SFF techniques applied to ceramics include 

stereolithography (SL), fused deposition of ceramics (FDC), laminated object 

manufacturing (LOM), selective laser sintering (SLS), three dimensional printing 

(3DP) and direct ink-jet printing including continuous and drop-on-demand printing. 

 

1.4.1 Three-Dimensional Printing (3DP) 

Three-Dimensional Printing (3DP) is a process that creates porous objects with 
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complex-shaped by selectively binding loose powder in a sequential fashion 

controlled by a CAD file. Any starting materials in the form of powder including 

ceramic, metals and polymers can be used to form a green body by 3DP. A schematic 

diagram for a typical 3DP machine is shown in Figure 1.4.1. A thin layer of the 

powder is spread or roll-compacted evenly in a box where the floor is an adjustable 

platform moving along the z direction. The organic binder droplets are deposited on 

selected regions from a printhead which scans the powder bed. To avoid excessive 

disturbance of the powder when subjected to the impact from the binder drops, it is 

essential to stabilize the ceramic powder layer by moistening with water 

beforehand.106 When one layer is finished, the floor of the powder box steps down by 

motor control so that a new layer of powder can be spread. These procedures are 

repeated until all the layers are printed and thereafter heat is introduced in order to 

set the binder. Loose powder is then removed to reveal the printed green body. 

Furthermore, the green body is subjected to post-printing processes that are designed 

to strengthen and densify the components. The resolution of the printed parts 

depends on the size of the binder droplets and the powder particles, the motion 

accuracy of the printhead and the mechanism that the binder spreading.107 
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Figure 1.4.1 Schematic structure of the three-dimensional printing process. 

 

1.4.2 Direct Ceramic Ink-Jet Printing (DCIJP) 

Direct ceramic ink-jet printing (DCIJP) is a forming process in which droplets of 

ceramic ink are printed through an array of contactless nozzles onto previous layers. 

The ceramic ink drops can be deflected or deposited on pre-determined positions on 

the platform. This technique has been implemented in many different fields and has a 

wide range of potential applications. Fundamentally, DCIJP is divided into 

continuous and drop-on-demand ink-jet technologies. Both methods have been used 

successfully to build ceramic objects of submillimeter-scaled components and 

multimaterial devices.108-112 

 

For direct ceramic jet printing techniques, their feasibility is dependent on the 

availability of suitable inks. Ink chemistry and formulations not only dictate the 

quality of the printed image, but also determine the drop ejection characteristics and 
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the reliability of the printing system. The dispersibility of the ceramic powder in the 

liquid carrier is essential and critical. The powder in the ink must be free from 

agglomerates or have low agglomerate strength and the ink must resist flocculation. 

Solvents for the ink are also limited; they must be non-toxic, contain minimal health 

hazard for prolonged exposure and evaporate fast in order to allow overprinting 

ceramic components.113 The best ink should also have low viscosity while 

maximizing the solids content defined as the volume fraction of ceramic. In order to 

minimize dimensional shrinkage between the printed part and the final sintered 

product, it is desirable to use inks with the highest possible solids loading. However, 

the viscosity of such inks increases rapidly with increasing solids content. Thus the 

ink viscosity needs to be reduced to a compatible level to let the inks flow at high 

speed through small nozzles, which are typically 30-120 µm in diameter. The right 

dispersant, surfactant and other additives are added to improve the performance of 

the ink. Furthermore, the ink sedimentation stability has to be considered. However, 

Teng114 suggested that the sediment packing efficiency, rather than the rate of 

sedimentation,115 indicated the degree of dispersion. 

 

1.4.2.1 Continuous Ink-Jet Printing  

The continuous ink-jet printing technique was originally developed for commercial 

applications such as the date labelling in food packaging etc. A continuous stream of 

ink is forced under the pressure through a small orifice in the print-head. A 

piezoelectric vibration is imposed on the nozzle causing the stream of fluid to break 

into small individual droplets. Subsequently, the strings of ink drops acquire an 

imparted electric charge while falling through the charging sector that consists of 

electrodes at a high electric field just beneath the piezoelectric nozzle. Printing is 
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achieved by deflecting charged drops of ink by subjecting them to high voltage 

deflector plates. The greater the charge on a drop, the greater the deflection; hence 

the ceramic ink must be sufficiently conductive for the charge to flow to the jet tip at 

a rate that allows each drop to be charged fully in the duration of the charging pulse. 

Ammonium nitrate has been added in the ink to increase the charging ability 

particularly for ceramic inks. Teng et al.116 found that a conductivity of 100 mS/m is 

sufficient for conventional continuous jet printing. Therefore, the designed pattern is 

formed by the combined motion of one axis movement of the print table and 

adjustment of the deflection rate of the inks; furthermore, multiple layers can be built 

up by over-printing by introducing an optical sensor to guarantee the accurate 

relocation of the print-table.117 Those drops not required for printing are collected 

and recycled. A schematic diagram of continuous ink-jet printing device is displayed 

below in Figure 1.4.2. 

 

The resolution and quality of the printed products are highly dependent on the ink 

viscosity and surface tension. The key factor in obtaining the stable stream of fluid is 

determined by whether the ink flow is laminar or turbulent in the nozzle tube. Herein 

the Reynolds number of the fluid, Re, needs to be considered, which is defined as: 

η
ρvL

=Re  Equation 1.4.1  

where ρ is the density, v is the fluid velocity, η is the dynamic viscosity and L is the 

characteristic length. For Re < 2100, flow in a circular pipe is considered to be 

laminar and for Re > 4000 to be turbulent. According to Blazdell’s118 work, the drop 

diameter and its kinetic energy ejected from the nozzle have considerable effect on 

the resolution of the printed object. Higher kinetic energy of each drop and hence 

larger drop sizes have resulted in coalescence with ink relics on the substrate.  



Introduction 

 32

Figure1.4.2 Schematic diagram of the continuous ink-jet printing system. 
 

Compared with the drop-on-demand printing technique, continuous ink-jet printing 

has higher ceramic deposition rate owing to faster droplet formation rate which is 

determined by the high frequency of the piezoelectric actuator driving the vibration. 

However, its application is constrained by ink selection particularly the requirement 

for electrical conductivity and this technique has the drawback that changing the ink 

composition is difficult during printing unless additional print heads and separate ink 

reservoirs are used.  

 

1.4.2.2 Drop-On-Demand Printing (DOD) 

In drop-on-demand printing technology, the ink droplets are ejected from the nozzle 
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only when required to form the pattern on the substrate. The technique was invented 

and developed by Zoltan119 and Kyser et al.120 in the 1970’s. The printed drops are 

generated by a pressure pulse acting on a fluid-filled reservoir immediately behind 

the nozzle with defined diameter normally in the range of 20-100 µm with a small 

opening time. There are several principles of ink ejection to produce a drop from the 

orifice. They include thermal, piezoelectric, electrostatic, acoustic and 

electromagnetic which are classified according to the drop formation mechanisms. 

Fromm121 found an analytical model for the case of the droplet ejection in a DOD 

ink-jet printer. He used a velocity independent dimensionless ratio containing a 

group of physical constants shown below which was a representative of the influence 

of the viscous, inertial and surface-tension forces on fluid flow: 

( )
η

γρ 2/1Re s
We

Z ==  Equation 1.4.2  

where Re is Reynolds number, We is the Weber number, γ is the surface tension, ρ is 

the density, η is the viscosity of the fluid and s is a characteristic length, taken as the 

diameter of the printer orifice. This ratio, Z, was found in the range of 1 to 10 in 

commercial drop-on-demand ink-jet printing applications.122 When Z<1, the viscous 

term turns out to have priority in preventing drop ejection unless the pressure pulse is 

increased. When Z>10, multiple drops form rather than a single defined drop and it 

also leads to satellite drop formation behind the main drop. A range of aqueous-

based122 and phase change123 ink systems have been tested and supports these 

limiting range values of Z. 

 

The drawback of the drop-on-demand printing technique is occurrence of 

inconsistent fluid flow or nozzle clogging during printing ceramic suspensions. Thus 

phase-change or hot-melt printing methods have been adapted to eliminate such 
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flaws. The ceramic ink uses low melting point polymer as a carrier vehicle and the 

printing process begins at a temperature above its melting point. The molten liquid 

drops solidify when touching the cooler substrate. Very little spreading and 

absorption occur during impact on the substrate so that high resolution of the image 

can be realized and the print quality is almost independent of the substrate properties 

when comparing aqueous based inks.124 Furthermore, this approach eliminates a 

drying cycle thereby improving the rate when printing samples with multiple layers. 

It also has greater resistance to printhead clogging.  

 

Compared with the continuous ink-jet printing technique, the drop-on-demand 

method has the advantage that complex components such as drop charging and 

deflection hardware as well as the inherent unreliable ink recirculation systems are 

not required. 

 

A. Thermal Ink-Jet Printer 

Most of the DOD printers in the market today use either the thermal or piezoelectric 

principle. A thermal ink-jet printhead consists of an ink chamber having a small 

heating device near the nozzle. During the printing action, a bubble in the ink 

reservoir is created due to superheating the ink above the boiling point by the heater 

when a short current pulse is applied. For water-based ink, this temperature is around 

300°C; hence a water vapour bubble instantaneously expands to force the ink out of 

the orifice. Once the droplet is ejected, the bubble collapses. The whole process of 

bubble formation and collapse takes place in less than 10 µs. The ink then refills by 

capillarity from the reservoir and the process is ready to start again. Depending on 

the channel geometry and ink’s physical properties, the ink refill time can be varied 
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from 80 to 200 µs.125 The main problem that needs to be tackled in this technique is 

to avoid clogging of the nozzle by dried ink. This process is illustrated in Figure 

1.4.3. Depending on its configuration, a thermal ink-jet print head can be either a 

roof-shooter where the heater located just behind the orifice or a side-shooter with an 

orifice on a side located closed to the heater. 

 

Figure 1.4.3 Drop formation process of a thermal ink-jet printer.125 

 

B. Piezoelectric Ink-Jet Printer 

In piezoelectric DOD ink-jet printing, the ink is expelled by piezoceramic 

deformation which is schematically displayed in Figure 1.4.4. Due to the motion 

driven by the piezoelectric ceramic rod, the volume of the ink chamber behind the 

orifice is reduced generating a pressure wave that propagates toward the nozzle. The 

ink drop is formed and ejected from the nozzle when the pressure waves are 

sufficient to exceed the resistance of the summation of viscous pressure loss in a 

small nozzle and the surface tension force from ink meniscus. This kind of 

Heater 
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technology can be classified into four main types in terms of the way of the 

mechanical pulse generated by piezoelectric actuation: squeeze, bend, push and shear 

mode.  

 
Figure 1.4.4 The basic configuration of the piezoelectric printhead.125 

 

C. Electrostatic Ink-Jet Printer 

In the electrostatic ink-jet printer, ink drops are generated by the balance between the 

surface tension force and the electrostatic attractive force at the tip of the nozzle. The 

drop formation is a very complicated phenomenon of flow dynamics which is a 

function of applied voltage, nozzle diameter, surface tension of the ink, electrode 

geometry and position.126 When high voltage is applied between the nozzle and the 

metal electrode, the ink meniscus at the printhead tip is distorted from a spherical 

shape into an inverted cone-like shape. The tip of the cone is broken subsequently to 

form very small droplets that are dispersed at wide angle due to the Coulomb 

repulsive force of charged drops.127, 128 The ink-drop frequency increases with 

applied voltage so that ultra-fine droplets are able to be formed for the potential use 

of high resolution printing; furthermore, the drops can be synchronized with the 
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electrical pulse as well by adjusting the pulse voltage to an appropriate range. 

 

D. Acoustic Ink-Jet Printing 

Acoustic ink-jet printing is a nozzleless, heatless ink ejection technique. Droplet 

formation is generated by a high intensity focused acoustic beam. Figure 1.4.5 shows 

the structure and mechanism that demonstrates how this system works. A series of 

parallel acoustic waves are generated by the transducer and electrode which are 

underneath the ink reservoir. The liquid surface level is adjusted to be at the same 

level of the focal point of the acoustic beam where the maximum acoustic energy 

burst is most likely to occur. Subsequently, it can drive a water mount that rises up 

from the liquid surface and a droplet is formed and expelled at a velocity of several 

meters per second. Elrod and Huang found that they can make the ejected droplets be 

as small as a few micrometers in diameter as well as stable in size and 

directionality.129, 130  

Figure 1.4.5 Schematic diagram of acoustic ink-jet printing and time evolution of 

droplets formation.129 
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1.4.3 Other Solid Freeform Fabrication Methods  

1.4.3.1 Stereolithography (SL) 

Stereolithography is one of the earliest SFF technologies. It creates a solid body by 

scanning an ultraviolet-laser beam over a photo-curable monomer layer, including 

acrylates and epoxies, curing it in a line-by-line, layer-by-layer process.131, 132 SL 

was invented by Chuck Hull, and was developed by 3D Systems of Valencia, 

California, USA, founded in 1986. Figure 1.4.6 illustrates a SL machine for 

fabrication of a 3-dimensional part in a layer-by-layer sequence. It works by taking a 

computer model and slicing it into many thin layers each 150-200 µm thick. Using 

the information for each layer, a computer-controlled laser beam scans across the 

surface of the liquid monomer which contains a highly concentrated suspension of 

ceramic particles, solidifying the liquid at each point, where the depth of the 

solidified layer is controlled by the radiation exposure and set to the layer thickness. 

When the layer is finished, the support platform and the work piece move down by 

the height of the next layer. A sweeper moves liquid polymer across surface to 

prepare the next layer. The process is repeated until the whole part is finished. When 

building is completed, the platform is raised and the solid polymer part emerges from 

the ceramic suspension pool. After post-curing treatment, the pre-fired part can be 

given a conventional binder burnout and sintering process. 

 

There is another technique which is very similar to stereolithography called direct 

photoshaping. The ceramic slurry is photocured layer by layer accomplished by 

exposing an entire layer to visible light covered by a photomask. A liquid-crystal 

display or a digital light-processing projection system is induced to irradiate the 

subsequent layers of slurry to build the three-dimensional green part.133  
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The advantage of stereolithography, in comparison with other layered manufacturing 

technologies, is the ability to produce highly complex 3D objects with high surface 

finish. However, some disadvantages accompanying it such as the following: 

i. The first few cured layers are readily curled due to polymerization 

shrinkage. Recently this behaviour has been minimized by the control of 

scanning sequence or space filling routines. 

ii. The ultraviolet-curable materials are normally costly, odorous, toxic and 

must be shielded from light to prevent premature polymerization. 

Figure 1.4.6 Schematic diagram of the stereolithography apparatus for fabrication 

of three-dimensional parts. 

 

1.4.3.2 Fused Deposition of Ceramics (FDC) 

Fused Deposition of Ceramics is one of the commercially available SFF techniques 

that build a 3D object by the process of depositing melted ceramic slurries layer by 

layer controlled by a CAD file. FDC was developed by StratasysTM Inc. (Eden Prairie, 

MN) based on the technique Fused Deposition Modeling (FDM).134 The filament of 

the ceramic-loaded thermoplastic polymer passes through a heated liquefier where 
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the temperature is kept above the melting point of the polymer. A continuous rod or 

other sections of paste material is extruded through a nozzle from the liquefier and 

deposited on a fixtureless platform. The movement of the nozzle and liquefier along 

the X and Y directions is controlled by computer, based on the building strategy 

designed by the manufacturer. When construction of the first layer has been 

completed, the platform steps down by the height of the next layer and the second 

layer is built on the top of the first layer. This process continues until the whole part 

is completed. Figure 1.4.7 shows the schematic structure of a FDC filament head.  

 

The quality of the feed filament is one of the most important parameters for making 

successful final products. The critical properties of the feed filaments include the 

viscosity, flexibility and strength. In order to make the FDC technique feasible, the 

melt viscosity of the filament in the liquefier must be low enough that the cold feed 

material can force the molten filament out of the nozzle; otherwise, high external 

pressure or higher operating temperature or both are required. Other parameters such 

as the feeding rate and the nozzle diameter also determine the quality of the final 

products. FDC allows control of both the design of a component macrostructure and 

the size and phase periodicity of the architecture.135 Furthermore, the technique of 

fused deposition of multiple materials (FDMM) that is able to fabricate components 

up to four different materials rather than one has also been developed.136 However, 

the application of FDC is restricted by the nozzle size for building fine work, for 

instance less than 76 µm in diameter, because the filament solidifies too quickly in 

ambient air after extrusion.137 Hence, the solvent-based systems138, 139 which can 

offer more scope for control the fine filament work in such extrusion freeforming 

processing than the solid-liquid phase change systems are needed. 
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Figure 1.4.7 Schematic diagram showing the layer-by-layer fabrication in fused 

deposition of ceramics. 

 

1.4.3.3 Laminated Object Manufacturing (LOM) 

Laminated Object Manufacturing is a process that uses sheet material such as paper 

as the laminating material. A sheet coated with a thin layer of thermoplastic adhesive 

upon its lower side is laminated to the previously laid and bonded layers by a hot 

roller. The roller applies heat and pressure when it is rolling over the sheet. After a 

new layer is bonded, a focused laser beam cuts the bonded layer based on a contour 

instructed by a CAD file. The power of the laser is adjusted to cut through just one 

layer of the lamination. The unused material is left in place; however, it is diced with 

crosshatching into tiles for the purpose of easy removal afterwards. The iterative 

processes of bonding and cutting are repeated until the construction of the final layer 
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is completed. Then excess material is removed to expose the finished part. A diagram 

of LOM is showed in Figure 1.4.8. 

Figure 1.4.8 Schematic diagram of the commercial LOM process. 

 

1.4.3.4 Selective Laser Sintering (SLS) 

Selective Laser Sintering is a process invented by Beaman and Deckard140 where a 

laser beam scans powders along pre-planned tracks according to a CAD model. 

Under the heating action of the laser beam, the powders added with bonding agents 

are softened and melted. After solidification, the whole powder mixture constitutes a 

solid state bonded skeleton. When one layer is finished, the platform is moved down 

by a distance determined by the design of the layer thickness. Then the preset amount 

of powder is placed over the previous sintered layer by the powder layering roller 

and another selected area on the new slice is scanning by the laser beam. Hence, the 

parts are built layer by layer. Furthermore, for specific powder mixture systems, to 

prevent oxidation, the construction cylinder is purged with inert gas. For energy 

z
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efficiency considerations, a radiant heater has also been introduced. The schematic 

structure of the SLS process is showed in Figure 1.4.9. The most important process 

parameter for SLS is the laser energy density but other parameters like part build 

orientation, layer thickness, laser beam diameter, powder mixture ratio and post 

processing also play important roles in influencing not only the mechanical 

properties but dimensional accuracy of the final sintered products.141, 142 

 

SLS can be used not only in industrial product manufacturing from computer aided 

design but also in medicine to build models of human anatomy from high resolution 

multiplanar image data such as computed tomography (CT). Moreover, SLS is 

chosen by surgeons to fabricate bone models because the sintered products look and 

feel more like real bone than the products made by other RP techniques.143 The 

feasibilities of fabricating bone models made from polyamide/nylon142 and porous 

polycaprolactone scaffolds144 by SLS have been investigated.  

Figure 1.4.9 Schematic diagram of the selective laser sintering process. 

z
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1.5 Droplet Drying Effects and Patterns 

 

1.5.1 The Evaporation of a Sessile Droplet of Colloidal Dispersion 

The evaporation of a sessile droplet of colloidal suspension is a complex, multiphase 

transport process. Better understanding of this field is able to help not only 

controlling the pattern of the drying ink, but also avoiding the occurrence of defects 

during drying due to residue stresses produced by differential shrinkage or gas 

pressure.  

 

The rate of evaporation of liquid is dependent on the specifications of ink and 

substrate and the environment. Three stages have been noted in the drying of ceramic 

dispersion on a non-porous substrate in open ambient environment (seen in Figure 

1.5.1).145-147 The drying rate, expressed as a weight loss per unit time, keeps constant 

in the initial part of the drying cycle, which is relatively short. At this stage of drying, 

liquid is transported via capillary forces from the body to the surface where it 

evaporates to the atmosphere at a constant rate. There is a non-linear falling rate 

period following the constant drying rate period, where the evaporation from the 

menisci of liquid in pores at a stage where there is incomplete coverage of liquid on 

the external surface. Water vapour diffuses through increasingly longer pore length 

driven by decreasing concentration gradients hence the mass-loss rate decreases as 

the time increases. The final drying stage is approximately linear with a very low 

drying rate arising from the difficulty of the remaining moisture to diffuse through 

small interparticle voids. 
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Figure 1.5.1 Drying profile for a gelcast part, showing the three stages of drying.147 

 

For large objects derived from colloidal suspensions produced by gelcasting or tape 

casting methods etc, previous studies have focused on the mechanism of occurrence 

of drying defects including cracks or body deformation which are due to differential 

shrinkage by stresses inducing during drying.148-153 However, the mechanism of 

aggregation during drying of aqueous particle suspensions for the purpose of drying 

pattern control still remains poorly understood. There are various capillary-induced 

flows occurring inside a sessile drop of colloidal suspension which can result in non-

uniformity of solute particles during drying. 

 

1.5.1.1 Lateral Flow 

Denkov and Adachi found that when drying a thin liquid layer of particulate 

suspension on a solid substrate, the particles assembled to form particle-arrays at the 

droplet contact line.154, 155 In 1994, Fitzgerald and Woods156 first observed that the 

motion of particles in a suspension droplet is from the inside to the boundary during 

drying. Later Winnik and Feng inferred lateral transport of water from the centre to 

the edge of the layer by observing nonuniform films after drying a convex layer of a 

latex dispersion.157 This so-called “coffee-stain” effect with different corresponding 
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models has been investigated by many scientists.157-165 

 

In Deegan et al.’s model158 in Figure 1.5.2, the phenomenon of the “coffee-stain” is 

due to capillary flow within a sessile droplet of a suspension caused by a pinned 

contact line of the droplet while drying. Hence, the liquid evaporated from the edge 

is replenished by liquid from the interior. The resulting outward and radial fluid flow 

can carry solute to the edge. The spatio-temporal particle motion in a suspension 

during drying was successfully tracked by the three-dimensional particle tracking 

velocimetry devised by Ueno et al.166 which dynamically proved the mechanism of 

lateral flow. 

 
Figure 1.5.2 Mechanism of lateral flow during evaporation. Vapour leaves at a rate 

per unit area (J) and the liquid flow (F) outward to compensate for the deficit 

volume.158 

 

1.5.1.2 Marangoni Flow 

Another source of microflow within an evaporating sessile droplet is Marangoni flow 

named after the Italian physicist who first described the movement of a liquid surface 

induced by a surface tension gradient along the droplet free surface. The Marangoni 

effect was first observed as “tears of wine” in the early 19th century.167 Marangoni 

flow near the free liquid surface of a droplet is inward toward the top of the droplet 
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and then plunging downward where the transported particles can be either adsorbed 

onto the substrate near the centre of the droplet or be carried to the edge where they 

are recirculated along the free surface back towards the top of the droplet indicated in 

Figure 1.5.3. 

 
Figure 1.5.3 Streamline plot of the flow field for the Marangoni flow.168 

 

The flow field driven by Maragoni stresses was successfully traced experimentally 

by Hu and Larson in 2006 by using PMMA fluorescent particles in an octane droplet 

shown in Figure 1.5.4.169 

 
Figure 1.5.4 Flow field in a drying octane droplet.169 

 

In concentrated suspensions, the field of particles is the result of the competition of 
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evaporation, particle diffusion and convection which was noted by Yiantsios and 

Higgins.170 They studied the film structure formed after the liquid was driven off by 

evaporation. They used the Peclet number (Pe) which is the rate of particle 

convection divided by the rate of diffusion in their numerical solution for 

characterizing the process. 

D
LEPe =                                                                          Equation 1.5.1 

where L is the film thickness, E is the rate of evaporation, D the Stokes-Einstein 

diffusion coefficient which is given by D=kT/6πηa, where kT is the thermal energy, η 

is the solvent viscosity and a is the particle radius. When Pe <<1, diffusion is strong 

and particles are accumulated at the periphery of the droplet, resulting in the 

formation of a pinhole. When Pe >>1, convection induced by Marrangoni stresses 

makes vertical concentration gradients exist. A closed packed skin is formed, with 

low concentration fluid remaining underneath; thereafter, capillary pressure pulls 

particles in the underlying fluid toward the skin, thus creating voids under the 

seemingly uniform coating.  

 

However, the Marangoni flow in a single solvent system is readily suppressed by the 

surface-active contaminants that collected on the free surface of particles particularly 

in aqueous dispersion. Even a small amount, as little as 300 molecules/µm2,168 of 

contaminated surfactant in a water droplet, can significantly reduce the recirculating 

flow induced by the Marangoni stresses. 

 

1.5.2 The Control of Sessile Drop Drying Patterns 

The understanding of the drying behaviour of a droplet or film on a solid substrate is 

important for many applications including coating and painting, ink-jet printing171 
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and the deposition of DNA/RNA microarrays.172, 173 The drying pattern of samples in 

thick film combinatorial research determines not only their dimensional quality but 

also the feasibility and convenience of property measurement or spectroscopy. 

Drying patterns of droplets with uniform thickness and homogeneous structure or 

convex dome shape are preferable in thick film methods.  

 

Drying of a droplet of particle dispersion on a solid substrate is affected by various 

factors including capillary stress, Marangoni stress and gravity. For fine particles in a 

stable dispersion, the sedimentation effect due to gravity can be neglected. 

Deposition of particles occurs preferentially at the centre of the organic fluid droplet 

due to recirculatory flow driven by Marangoni stress indicated in Figure 1.5.5(b). 

However, Marangoni flow is readily suppressed by surfactant contamination 

especially in water. Therefore, a ring-like pattern is often observed after evaporation 

of an aqueous droplet with solute/particle constituents as displayed in Figure 1.5.5(a). 

In addition, the coffee-ring pattern can be observed on various substrates (glass, 

metal, roughened Teflon, polyethylene, ceramic and mica), various solvents (aqueous 

and non-aqueous), various particle sizes (sugar molecule to 10 µm polystyrene 

microsphere) and with various solids concentrations (10-6 to 10-1 in volume 

fraction).165 Moreover, other factors such as gravitational effect (comparing pendant 

and sessile drop), electric field (applying charge needle at various position of droplet) 

and environmental conditions such as temperature, humidity and pressure could also 

be varied without affecting the ring pattern. However, Deegan165 found that the ring 

pattern can be overcome when drying the droplet on smooth Teflon where the contact 

line pinning is eliminated. Likewise, the final deposit becomes uniform when 

evaporation is restricted by covering the drop with a lid that had only a small hole 
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above the centre of the droplet through which the vapour can escape.  

 

Haw et al.174 found that the inhomogeneity in composition of a drying droplet might 

be caused not only by flow driven effects, but also rapid phase separation effects 

according to the studies on the effects of phase behaviour and rheological properties 

on the evaporative drying of a sessile colloidal droplet. They classified the drying 

behaviour of a sessile droplet of concentrated colloidal suspension into three regions 

including gelation, fluid and aggregation in terms of the initial composition of the 

colloid and polymer in suspension. Homogeneous structure of the final dried residue 

can be achieved when the drying stage of the droplet is staying in the gelation region. 

   
Figure 1.5.5 (a) Ring deposition pattern from a droplet of water with fluorescent 

polystyrene particles. (b) Drying pattern from a droplet of octane containing PMMA 

particles.169 

 

Recently, a new method has been explored to tackle such problems of obtaining 

uniform residue of drying droplet by the use of solvent mixtures. Gans et al.175 used 

an ethyl acetate/acetophenone system and Park and Moon176 used the system of 

water/formamide. These are low and high boiling point solvent mixtures as well as 
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having substantial difference in surface tension between them. Both of them 

successfully obtained homogeneous dome-like patterns from the evaporation of a 

droplet of colloidal suspension (as seen in Figure 1.5.6). They both believed that the 

origin of this phenomenon was due to Marangoni flow induced by the use of 

combined solvents. During the evaporation of a droplet, the local solvent 

composition near the contact line shifts toward a higher fraction of a high-boiling-

point solvent due to increased rate of drying at the periphery. The edge evaporation 

then slows down, and outward convective flow diminishes. Furthermore, a surface 

tension gradient is established which can induce Marangoni stress within the droplet. 

The magnitude of the Marangoni flow is determined by the Marangoni number:176 

ABDLM ηγ /∆=                                                         Equation 1.5.2 

where ∆γ is the surface tension difference, L is the length scale involved, η is the 

viscosity and DAB is the diffusion coefficient in binary solution. If using typical 

values for L, η and D, hence M is of the order 107∆γ. It shows that even a very small 

surface tension gradient will trigger a Marangoni flow. Schubert and Park also 

showed that occurrence of recirculation flow caused by Marangoni stresses within a 

droplet despite directions (inward towards the top of the droplet or inward towards 

the bottom of the droplet) can both obtain final uniform drying pattern.  
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(a) (b) 

Figure 1.5.6 Drying pattern of (a) polystyrene in an 80/20 wt.% ethyl 

acetate/acetophenone mixture on perfluorinated glass175; (b) silica particle in water/ 

formamide based ink on a hydrophobic Si wafer.176 
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1.6 Temperature Dependent Resistors: Thermistors  

 

There are wide ranging applications in the electronics industry for temperature- 

dependent resistors for which their resistances are either negative temperature 

coefficient (NTC) or positive temperature coefficient (PTC). Both NTC and PTC 

thermistors can be used as indicators for temperature measurement. PTC units have 

the advantage that they are unlikely to overheat since an increase in temperature cuts 

down the power that they need to dissipate because of exponential increase in 

resistivity. Nevertheless, precautions must be taken with NTC units to ensure that 

runaway conditions cannot occur; because the internal power increases with 

temperature resulted from significantly reducing resistivity.  

 

1.6.1 Negative Temperature Coefficient Resistivity (NTCR) Materials: 

Compositions and Applications 

There is a large choice of materials for NTC thermistors but those most used in 

industry are based on solid solutions of transition metal oxides that exhibit the spinel-

type crystal structure with the general formula AB2O4.177, 178 Therefore oxides of 

manganese, nickel and cobalt are preferred for the preparation of a NTC thermistor 

because their electrical resistivity decreases progressively with increasing 

temperature. Moreover, some compounds such as LaCoO3-based materials having 

perovskite structure can also display the NTCR effect and their working temperature 

can reach 500 °C.179 The mechanism of electrical semiconducting properties of those 

oxides is explained by a phonon-assisted jump of carriers among localized states, the 

so-called polaron hopping effect.180 For example, in the nickel manganite systems, 

the substitution of Ni2+ occupies octahedral B sites of the spinel structure and causes 
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a conversion of Mn3+ to Mn4+ in order to maintain the charge balance, thus providing 

a basis for electron hopping and resulting in increase of conductivity.181 Furthermore, 

their conductivity reaches a maximum when the number of Mn3+ ions equals that of 

Mn4+ ions.182 

 

    
                                    (a)                                                                    (b) 

Figure 1.6.1 Electrical characteristics of NTCR effect for Ni-Mn-Co oxides (TA1 

represents Ni1.4Mn0.6CoO4, TA2 represents Ni1.2Mn0.8CoO4, TA3 represents 

NiMnCoO4) (a) relationship between resistivity (r) and temperature (T); (b) log r 

versus 1/T.183 

 

Typical electrical characteristics of a NTCR material are displayed in Figure 1.6.1. 

Figure 1.6.1(a) shows the direct relationship between the electrical resistivity and 

temperature for (Ni2-xMnxCo1.0)O4 (0.6<= x <=0.8)183 and 1.6.1(b) shows their 

conversion curve using the logarithms of the resistivity, log r, against the reciprocal 

of the absolute temperature, 1/T, which has a linear relationship. Furthermore, the 

slope of the log r versus 1/T curve is taken as a measure of temperature sensitivity, 
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so-called B constant. The resistivity r can be expressed by the following Arrhenius 

equation: 

⎟
⎠
⎞

⎜
⎝
⎛=

T
Brr exp0                                                                  Equation 1.6.1 

where r0 is the resistivity of the material at infinite temperature, T the absolute 

temperature and B constant which has the dimensions of temperature in Kelvin is 

also given by 

Bk
qB =                                                                             Equation 1.6.2 

where q is the activation energy for electrical conduction and kB is the Boltzmann 

constant. The activation energy is the energy primarily for the hopping process from 

a cation Mn+ to M(n+1)+ on the octahedral sites and hence for the mobility of the 

cations.184 Sufficiently high value of the B constant is essential for useful 

applications because they are more sensitive to the change of temperature, leading to 

more accurate and smaller variation in temperature measurements. 

 

NTCR ceramics are sintered generally in air at 1000-1300 °C depending on the 

composition. The NTC thermistors are widely used in a variety of industrial and 

domestic applications such as elements for the suppression of in-rush current, for 

temperature measurements and control, for compensation for other circuit elements 

e.g. in television receivers because the resistance of the beam-focusing coil increases 

as temperature rises in the cabinet. The electrical properties of NTCR materials 

strongly depend on the composition and sintering temperature. There are extensive 

studies on the electrical features of compounds containing multiple transition metals 

from the oxide pool of Fe, Mg, Cr, Co, Al, Mn, Ni, Cu183, 185-189 in order to screen 

their electrical characteristics in a wide temperature range along with a favourable 
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combination of resistivity and the coefficient of temperature sensitivity B. New 

composition systems with novel elements are still attractive to many scientists as a 

great challenge. 

 

1.6.2 Positive Temperature Coefficient Resistivity (PTCR) Materials: 

Compositions, Microstructures and Properties 

Positive temperature coefficient of resistivity (PTCR) materials are widely used in 

the electronics industry for, inter alia, applications including temperature sensors, 

time delay circuits and current limiters for overvoltage or overcurrent protection, 

overheat protection and current stabilizers. There are four main materials groups in 

the PTCR family: BaTiO3-based or quasi-BaTiO3-based ternary perovskite 

compounds,190-198 ceramic composites,199, 200 polymer composites,201, 202 and V2O3-

based compounds.203, 204  

 

BaTiO3 is an insulator at room temperature but donor-doped BaTiO3 with ions such 

as La3+, Y3+, Sb3+, Nb5+ presents semi-conducting behaviour at room temperature and 

an anomalous increase in resistivity near the ferroelectric-paraelectric Curie 

transition temperature Tc.180 This PTCR effect (shown schematically in Figure 1.6.2) 

in barium titanate was first developed in the early 1950s in the Philips Research 

Laboratories in the Netherlands.205 Over the past 50 years, diverse applications have 

triggered research efforts directed toward understanding compositional and structural 

issues that govern the electrical properties. The screening of dopant candidates from 

the periodic table has been well scrutinized206-208 and several models to explain the 

temperature-resistivity relation have been derived.209-213  
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Figure 1.6.2 Typical resistivity-temperature characteristic of a BaTiO3-type PTCR 

material. 

 

1.6.2.1 Models of Explanation of PTCR Effect   

There is a general agreement that the anomaly in the change of electrical resistivity 

of donor-doped BaTiO3 around Tc is due to the grain boundary effect. No PTCR 

effect has been observed in BaTiO3 single crystal.214 Furthermore, it is clear from 

impedance-plane analysis that the semiconducting characteristics of bulk grains is 

independent of either temperature or donor concentration.215-217 

 

A. The Heywang-Jonker model 

The most accepted model to explain the PTCR behaviour in donor-doped BaTiO3 

materials is the Heywang-Jonker model proposed by Heywang210 and extended by 



Introduction 

 58

Jonker.212 This model is a fundamental guideline for the understanding of PTC effect 

in BaTiO3-based materials. There is a bi-dimensional layer of electron traps, i.e. 

acceptor states, along the grain boundaries of BaTiO3 (shown in Figure 1.6.3) 

exhibiting different electrical properties from those of the bulk phase. The potential 

barrier 0φ  is caused by a two-dimensional electron trap along the grain boundary 

where acceptor states attract electrons from the bulk resulting in an electron 

depletion layer with thickness of b. The relation between the density of trapped 

electrons at the grain boundaries and the thickness of the depletion layer can be 

expressed as: 

d

s

N
N

b
2

=                                                                          Equation 1.6.3 

where Ns is the concentration of trapped electrons and Nd is the charge carrier 

concentration. This depletion layer results in a grain boundary barrier, 0φ  
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0 8
=                                                                Equation 1.6.4 

where e is the electron charge, ε0 the permittivity of free space and εgb the relative 

permittivity of the grain boundary region. 

 

The overall resistivity, r, is related to the height of the potential barrier by 

⎟
⎠
⎞

⎜
⎝
⎛=

kT
Ar 0exp

φ
                                                               Equation 1.6.5 

where A is a geometrical factor and k the Boltzmann constant. Because BaTiO3 is 

ferroelectric, the dielectric constant, ε, obeys the Curie-Weiss law above its Curie 

temperature and is given by 

cTT
C
−

=ε                                                                        Equation 1.6.6 

where C is the Curie constant and T the absolute temperature. Incorporating equation 

1.6.4 and 1.6.6 into 1.6.5 and rearranging yields:   
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Above the Curie point when doped BaTiO3 is in the paraelectric phase, the grain-

boundary permittivity which follows the Curie-Weiss law decreases with increasing 

temperature. The corresponding potential barrier increases proportionally and results 

in steeply increasing resistivity which depends exponentially on the potential barrier 

as denoted by equation 1.6.5. The energy of the trapped electrons in the grain 

boundary rises with temperature together with the potential barrier. When the energy 

of the electron traps reaches the Fermi level, trapped electrons start to jump to the 

conduction band, which can depress the increase in 0φ  and r, thus ultimately enhance 

the conductivity. This also explains the negative temperature coefficient resistivity 

(NTCR) effect when passing the point rmax (Figure 1.6.2) in the high temperature 

range. 

 

 
Figure 1.6.3 Electrical double layer at a grain boundary. Es is the electron-trap energy, 

Ef the Fermi level, Ns the concentration of trapped electrons and b the width of 

electron depletion layer. 
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However, Heywang’s model was not able to explain accurately the PTCR behaviour 

below Tc. Hence Jonker’s model212 was developed as a refinement. Below the Curie 

point, BaTiO3 is ferroelectric with its polarization along the tetragonal crystal axis. 

The polarization direction is different from grain to grain because each adjacent grain 

has a different crystal orientation. Therefore, it creates a net polarization vector (PN) 

normal to the grain boundaries, producing surface charges at the grain boundaries 

which are illustrated in Figure 1.6.4. In the areas with negative surface charges, 

which are around 50% of the grain-boundary area depending on the nature of the 

ferroelectric material, potential barrier height diminishes or even disappears resulting 

in the disappearance of the grain boundary resistance. For the other half of the 

domains containing positive charges, the potential barrier is, of course, getting higher. 

However, this does not matter as the conducting electrons always follow the path 

with the lowest barriers so that the material as a whole has low resistivity. This 

theory is experimentally supported by Huybrechts’ work.218 Furthermore, according 

to the Heywang-Jonker’s model, the electrical resistivity profile r(T) above the 

ferroelectric Curie point of donor-doped barium titanate ceramics can be modelled 

and was verified successfully using experimentally determined permittivity data 

reported by Brzozowski et al.197 and Zubair et al.219. 
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Figure 1.6.4 Ferroelectric domains at the grain boundaries. P is the vector of 

spontaneous polarization and PN the normal component of P. 

 

B. Other Theories 

In donor-doped BaTiO3 PTCR ceramics, Heywang-Jonker’s model has effectively 

elucidated the change of resistivity with temperature in PTCR characteristics. Based 

on this model, the PTCR effect increases with increase of potential barrier by which 

is affected the trapping of electrons (from ionized donors) by acceptor-type species 

such as some 3-d elements,220 chemisorbed gases221-223 or cation vacancies224, 225 at 

the grain boundary. Those barriers make the grain boundary more resistive than the 

bulk grain. However, the model does not fully explain the mechanisms by which 

electrical properties are influenced adding different amounts or kinds of donor 

dopants or changing the processing parameters. 



Introduction 

 62

 It is believed that, for donor-doped BaTiO3, the initial drop in resistivity with 

increasing donor concentration is generally attributed to an electronic compensation 

mechanism that induces n-type semiconductor characteristics.224 Choosing a trivalent 

ion (R3+) as a donor dopant, free electrons in the BaTiO3 lattice can be generated 

according to equations (written in Kröger-Vink notation): 

eVOO oo ′++↑⇒ ⋅⋅× 422 2                                                     Equation 1.6.8 
and/or 

↑++′+⇒+ ⋅×
232 2

12222 OBaOeRBaOR BaBa                      Equation 1.6.9 

Based on equation 1.6.8, the free electrons are generated by oxygen deficiency as 

occurs when sintering at high temperature and/or in reducing atmospheres.221 Based 

on equation 1.6.9, the electrons are associated with the replacement of barium ion by 

R trivalent ion. However, if there is a shift to an ionic compensation mechanism 

(cation vacancy compensation) at high donor contents, this would result in increasing 

resistivity at room temperature due to the immobility of cation vacancies. It was first 

suggested by Jonker and Havinga225 and the corresponding equations are: 

BaOTiOVRTiBaOR TiBaTiBa 4442 2
''''

32 +++⇒++ ⋅××            Equation 1.6.10 

and/or 

BaOVRBaOR BaBaBa 323 ''
32 ++⇒+ ⋅×                                      Equation 1.6.11 

According to equations 1.6.10 and 11, barium vacancies and/or titanium vacancies 

can be produced at the grain boundaries and diffuse from the grain boundaries into 

the grains during sintering. Because the diffusion speed of cation vacancies is very 

slow in grains at high temperature, this results in a sample with heterogeneous 

electric profiles in grains as the cation vacancies act as electron traps and there is an 

increase in the potential barrier at the grain boundaries. Chan et at.226 inferred that 

titanium vacancies were favoured defects compared with barium vacancies in the 
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ionic compensation scheme according to a microstructural investigation of highly 

donor-doped BaTiO3 by TEM. The preference for titanium vacancies is also 

supported by atomistic simulations which show lower energy of formation than that 

of barium vacancies.227 

 

Smyth228 believed that equations 1.6.9 and 10 can be connected by an exchange 

reaction: 

eOTiVTiO x
TiTi ′+↑+⇔+ 42

''''
2                                      Equation 1.6.12 

where the donor centres are charged-compensated by electrons if the extra oxygen is 

expelled. Clearly, electron compensation is preferred in reducing conditions during 

sintering resulting from the tendency for oxygen loss, while ionic compensation by 

generated Ti vacancies is favoured by an oxidation environment. This theory explains 

well the observation that for light donor-doped BaTiO3 material processed in air by 

slow cooling or annealing at a lower temperature may be superficially or completely 

oxidized to an insulating state but have low resistance at room temperature if cooled 

rapidly from the sintering temperature because of the ‘frozen-in’ composition, 

avoiding reoxidation that occurs at lower temperature. For higher donor 

concentrations, materials can become electrical semi-conducting only if sufficiently 

reduced. The quantitative analysis229 of the oxygen exchange of donor-doped BaTiO3 

both under equilibrium and non-equilibrium conditions by the oxygen coulometry 

method230 has directly proved that the carrier concentration is equal to the net donor 

content which is in agreement with the conclusion that the equilibrium conductivity 

is dependent on the electronic compensation that is proportional to the donor 

concentration. Furthermore, evidence for precipitation of secondary phases in donor-

doped BaTiO3 when alternated between the oxidizing and reducing environments 
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during firing support the validity of this charge compensation mechanism.231, 232 

 

There are still some controversies in the well-accepted ideas of charge compensation 

mechanisms affecting the conductivity of donor-doped BaTiO3. According to the 

charge compensation theory, the donor-doped BaTiO3 should contain an electrically 

heterogeneous structure regardless of both the composition and subjecting processing 

parameters because of the cation-stoichiometric difference between the grain core 

and grain boundary as compared with the electrically homogeneous structure of 

undoped BT. However, Morrison et al.233, 234 observed by impedance spectroscopy 

that there is no semiconducting grain interior in lightly donor-doped BaTiO3 after 

sintered in O2, which suggested that the material was electrically homogeneous. They 

also announced that there was no finding of change in cation stoichiometry or 

precipitation of secondary phase in donor-doped BaTiO3 samples with varied donor 

concentrations which were sintered in air or argon. Yet it is generally believed that, 

according to the conventional charge compensation schemes, the appearance of a 

change in cation stoichiometry is required in donor-doped BaTiO3 when a switch 

from insulating to semiconducting and vice versa occurs. They235 hence proposed an 

alternative explanation: the oxygen nonstoichiometry, which is dependent on the 

oxidized/reduced state at the grain boundary is the main reason for the 

semiconducting behaviour of donor-doped BaTiO3. Furthermore, the production of 

semiconducting undoped cation-stoichiometric BaTiO3 which exhibits a modest 

PTCR effect by losing a small amount of oxygen236 supports their view.   
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Figure 1.6.5 Schematic model of the microstructure of the donor-doped BaTiO3 and 

its equivalent electric circuit. (replotted from 237) 

 

In spite of these discrepancies, there is one common theme that the overall origin of 

the electrical properties of BaTiO3-based thermistors is a grain boundary effect and 

greatly influenced by the defect structure on the perovskite crystal lattice.238, 239 The 

results from the remote electron beam induced current (REBIC) microscopy as a 

local investigative technique can well support such a view.240 The proposed grain and 

grain boundary structure of donor-doped BaTiO3 is schematically displayed in Figure 

1.6.5.237 According to the results of measurements of complex-impedance spectra 

and microstructural analysis by TEM,237, 241 the grain system’s structure is postulated 

Qox 

(a) 

(b) 
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as having three distinct regions (Figure 1.6.5(b)) and its equivalent electric circuit 

model is shown in Figure 1.6.5(a). The outer layer is an oxidised, insulating grain 

boundary region; the intermediate layer is reoxidized, semiconducting outer grain 

region and the inner layer is an oxygen deficient grain interior, again, a 

semiconducting inner grain region. This heterogeneous structure in the grain system 

is supported by both the phenomenon of heterogeneous electric structure of donor-

doped BaTiO3 and direct imaging from conductive atomic force microscopy 

technique.242, 243  

 

1.6.2.2 Effect of Composition of BaTiO3-based Materials on the PTCR 

Properties  

Pure BaTiO3 sintered in air is an insulating material at room temperature and no 

PTCR effect can be observed; however, it turns to a semiconductor at room 

temperature by doping with various donor dopants such as trivalent ions (e.g. La3+, 

Sb3+, Y3+) which substitute for the Ba2+ site or pentavalent ions (e.g. Sb5+, Nb5+, Ta5+) 

which substitute for Ti4+ site at relatively low doping levels. It can revert back to 

behaving as an insulator when the donor content exceeds the critical concentration 

(normally less than 1 mol.%) as illustrated in Figure 1.6.6,235 noting that the 

solubility limits of most of the dopant elements in BaTiO3 perovskite lattices are far 

higher than this critical concentration.244 Moreover, the resistivity versus temperature 

characteristic is very sensitive to the composition of dopants especially for some 3-d 

elements acting as acceptors. For example, very small additions ranging between 

0.01-0.04 mol.% of Mn can increase the PTCR jump of donor-doped BaTiO3 as 

much as nine orders of magnitude in comparison with three to five orders of 

magnitudes for donor-doped only BaTiO3.245 In addition, the additives which play a 
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crucial role in the fabrication of BaTiO3-based PTC thermistors can be mainly 

distinguished as two kinds: aliovalent dopants and isovalent dopants. 

Figure 1.6.6 Schematic representation of the room-temperature dc resistivity as a 

function of La-dopant concentration for BaTiO3 ceramics sintered in air. (replotted 

from 235) 

 

A. Aliovalent Dopants 

The effect of the aliovalent dopant on the bulk electrical conductivity is strongly 

dependent on its substitution site in the BaTiO3 perovskite structure. The type of 

incorporated dopant is determined by the difference in valence charge between the 

dopant and the replaced host ion. Site replacement in the crystal lattice mainly 

depends on the dopant’s ionic radius.206 Many (3d, 4d and 5d) elements in Table 

1.6.1 which could act as aliovalent dopants in BaTiO3-based PTC thermistors have 

been extensively investigated. Among them, the group of rare-earth elements is a rich 

resource for providing donor dopants.207, 208, 246, 247  
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Table 1.6.1 Summary of aliovalent dopants in BaTiO3 (ionic radii data from 248). 
 

Ions Ionic radius (Å) Main type of dopant when Ba/Ti=1 Reference 

Ba2+ 1.35   

Ti4+ 0.68   

Sb3+ 2.45 Donor 249-251 

Bi3+ 1.20 Donor 252 

La3+ 1.15 Donor 235, 237, 253 

Ce3+ 1.11 Donor 254, 255 

Nd3+ 1.08 Donor 256 

Sm3+ 1.04 Donor 257 

Gd3+ 1.02 Donor 258 

Dy3+ 0.99 Donor 259, 260 

Ho3+ 0.97 Amphoteric dopant 261-264 

Er3+ 0.96 Amphoteric dopant 265, 266 

Y3+ 0.93 Amphoteric dopant 267-269 

Yb3+ 0.86 Acceptor 191, 206, 270 

Ni2+ 0.78 Acceptor 271 

Cu2+ 0.69 Acceptor 272 

Cr3+ 0.69 Acceptor 245 

Mg2+ 0.65 Acceptor 273 

Fe3+ 0.64 Acceptor 274 

Co3+ 0.63 Acceptor 275 

Mn2+ 0.80 Acceptor 220, 276, 277 

Ta5+ 0.73 Donor 252, 278 

Nb5+ 0.70 Donor 220, 273, 279-281 

W6+ 0.67 Donor 278 

Sb5+ 0.62 Donor 193 

Mo6+ 0.62 Donor 278 

 

Three regimes of element (expressed in Table 1.6.1) can be identified in terms of site 

occupancy in BaTiO3 and are summarized as: 
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i.) For small ions, with ionic radii r ≤ 0.09 nm, dopants preferentially occupy the 

Ti-site.  

ii.) For intermediate ions, with ionic radii 0.09 nm < r < 0.099 nm, dopants can 

substitute for either Ti or Ba site depending on dopant concentration, sintering 

conditions and Ba/Ti molar ratio.206, 246, 282, 283 

iii.) For larger ions, with ionic radii r ≥ 0.099 nm, dopants preferentially occupy 

the Ba-site. 

 

The Ba/Ti ratio of the starting materials seems to play a crucial role in affecting the 

incorporation of dopant elements into the BaTiO3 lattice. It was observed by electron 

paramagnetic resonance spectra that Ce3+ partially occupied the Ti4+ sites when 

Ba/Ti>1.284 Electrical conductivity measurement has shown that Er-doped BaTiO3 is 

weakly semiconducting at room temperature when Ba/Ti =1. It behaves as an 

acceptor (preferential substitution at Ti4+ sites) when Ba/Ti >1 but as a donor 

(preferential substitution at Ba2+ sites) when Ba/Ti <1.206 The recent study of Zhi269 

on BaTiO3 with heavily doped Y3+  leads to a similar conclusion. Moreover, dopant 

substitution at the Ti4+ site can also be enhanced by high dopant concentration partly 

because the solubility at Ti4+ sites is higher than that at Ba2+ sites.244 For transition 

metals, like Mn, Co, Fe and Ni, it is well established that they preferentially 

substitute for the Ti4+ sites regardless the Ba/Ti ratio. Sintering atmosphere likewise 

has an effect on the preference of the incorporation site of some donor elements such 

as holmium.285  Significant substitution of Ho onto Ba sites as a donor occurred in a 

reducing atmosphere while Ti replacement as an acceptor was preferred when 

sintered in air. 
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It is generally observed that the room-temperature resistivity of donor-doped BaTiO3 

rapidly increases beyond the critical donor concentration because donor ions are 

preferentially segregated at the grain boundaries.216, 286 Desu et al.256, 287 found that at 

low donor concentration, the donors are compensated electronically, giving a high 

conductivity. When the donor concentration increases, the donor concentration at the 

grain boundaries increases even faster due to the segregation until it exceeds a 

critical level; the compensation mechanism thereafter shifts from electronic 

compensation to ionic compensation of the donor centre in the grain-boundary region. 

Hence it creates an insulating layer at the grain boundaries. The total resistivity of the 

sample can be represented by the grain bulk resistivity and the resistivity from the 

dopant-segregation-induced insulating region in the grain boundary. The greater the 

difference in ionic radius between the substitutional dopant and the host ion, the 

higher is the tendency for such interfacial segregation to occur. Therefore, the 

difficulty in preparing semiconducting donor-doped BaTiO3 increases with the radius 

misfit between the donor and the host ion.256 Furthermore, it was found that when 

acceptors were added into donor over-doped BaTiO3 insulating material, in which the 

concentration of donor had exceeded the critical level, the specimen was able to 

recover some of its semiconducting property.288, 289 This phenomenon might be 

explained by assuming that those acceptors inhibit donor segregation at grain 

boundaries.273 Nevertheless, the nature of the acceptor states is still little known. 

 

B. Isovalent Dopants 

Divalent ions such as Pb2+, Ca2+ and Sr2+ are extensively used as additives to 

substitute the Ba ions in the BaTiO3 lattice.290-294 The replacement by lead can 

increase the Tc by 4.3°C per percentage atomic replacement, whilst replacement by 
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strontium reduces the Tc by 3.5°C per percentage atomic replacement (shown in 

Figure 1.6.7). Since the Curie temperature for BaTiO3 is 120-130°C, this offers the 

potential to prepare thermistors with PTCR regions anywhere between -100°C and 

250°C. Calcium is frequently used in moderate amount but does not shift the Tc by 

much, alternatively influencing the grain size of the product.295 On the other hand, 

tetravalent ions such as Zr4+, Hf4+ and Sn4+ have been used as substitutes for Ti ions 

in the BaTiO3 lattice.296-298 All those tetravalent dopants substitutions can 

significantly reduce Tc and readily make the phase transformation of tetragonal-cubic 

occur at room temperature. Zirconium added to BaTiO3 results in lowering the 

dielectric loss and broadening the dielectric peak near Tc.299 Similarly, Hf and Sn 

exhibit strong ferroelectric-relaxor behaviour at high contents.300  

 

Figure 1.6.7 The effect of isovalent dopant doping on Tc. (replotted from 
253) 

Sn4+ 

Zr4+ 

Sr2+ 

Ca2+

Pb2+



Introduction 

 72

1.6.2.3 Effect of Processing on the PTCR Properties 

It is well known that the impurities and lattice imperfections play an important role 

in the exhibition of the PTCR effect in doped-BaTiO3 materials.301 Their 

conductivities are considerably influenced by both the intrinsic defects such as 

oxygen vacancies as well as cation vacancies and the extrinsic defects produced by 

adding dopants.288 Furthermore, not only can the equilibrium behaviour of these 

defects but also the way of defect formation affected by varying sample preparation 

methods play a crucial role with respect to the semiconducting properties. 

 

A. Effect of Doping Methods 

Electrical performance in donor-doped BaTiO3 ceramics is strongly related to the 

grain structure. Significant differences in microstructure were observed in samples 

with the same nominal composition prepared by different doping methods even with 

the same sintering procedures and hereby different PTCR characteristics were 

exhibited.302 Hydrothermal synthesis or sol-gel methods can be used to produce 

donor-doped BaTiO3 systems contained nano-size grains, with high crystallinity and 

well-dispersed dopants. However, very high room-temperature resistivities and poor 

PTCR jumps (rmax/rmin ratio) were observed in materials prepared by such method 

compared with the conventional solid state reaction route.303-306  A similar 

phenomenon was observed for donor-doped BaTiO3 prepared by mixing the donor 

dopant into BaTiO3 powder via solution coating method;250 in addition, PTCR 

ceramics prepared by this doping method has lower critical concentration of donor 

compared with the same compositional system prepared by the solid state route.250  

 

Besides the different doping methods which cause disparities in PTCR behaviour as 



Introduction 

 73

described above, a variety of unique mixing techniques have been investigated in 

order to obtain a controllable, microstructurally stable, PTCR material. Mukherjee et 

al.307 made a donor-doped BaTiO3 system by blending Ba-excess BaTiO3 powder 

with Ti-excess BaTiO3 powder in different ratios, finding that these blended systems 

had homogeneous grain size distribution but lower PTCR jumps than those from 

stoichiometric non-blended batches. Furthermore, Park et al.308 used a seeding 

technique to produce a heavily niobium-doped BaTiO3 PTCR material by adding 

BaTiO3 seed particles which contained double twins produced via preceding heat 

treatment. Semiconducting and PTCR characteristics were achieved by this seeding 

method compared with fine grained and insulating material for Nb-doped BaTiO3 at 

the same doping level produced by a conventional, unseeded route. 

 

Some dopants which are commonly used in making PTC thermistors have high 

vapour pressure particularly at high temperature so that the possibility of 

incorporating these dopant ions into the barium titanate crystal lattice by vapour 

phase diffusion exists. A variety of dopants such as Sb3+, Mn2+, Cd2+, Bi3+ and Pb2+ 

have been tested using such methods309-312 and this resulted in more enhancement of 

the PTCR jump than doping from conventional solid sources. This is partly because, 

in diffusion doping from a dopant vapour phase, dopant ions can be more effectively 

distributed at grain boundaries resulting in increasing the potential barrier at grain 

boundaries and hence increase of resistivity. In addition, diffusion in polycrystalline 

BaTiO3 depends on not only the vaporisation rate or vapour pressure of dopants, but 

also other factors including the sample’s porosity, sample’s thickness, the nature of 

grain boundary and grain size.  

 



Introduction 

 74

B. Effect of Fabrication Methods 

Not only the various doping techniques, but also the fabrication methods for 

producing donor-doped BaTiO3 can alter its PTCR performance. In thin-film forming, 

the electrical properties of the films are significantly different from the bulk, 

regardless of the techniques of preparation. For Y-doped BaTiO3 thin film (≈2 µm in 

thickness) deposited by RF-magnetron sputtering as a example,313 the film has a 

significant change of PTCR characteristics including a shift to lower Tc and smaller 

PTCR jump in comparison with the same composition prepared by a solid-state route. 

Large fluctuations in doping concentration dependent resistivity were also observed 

among those films themselves with the same composition. Nb-doped BaTiO3 films 

prepared by laser molecular beam epitaxy (LMBE) show extremely low resistivity 

(≈10-4-10 Ωcm);314 films grown by metal-organic chemical vapour deposition 

(MOCVD) exhibit intermediate resistivity (≈10-1-107 Ωcm);315, 316 similarly, the 

resistivity is around 102-104 Ωcm for films deposited by pulse laser deposition317. 

This phenomenon may be due to the significant change in microstructure and phase 

content of the deposited thin film compared with its target material. In addition, the 

evidence that donor element segregates to the surface and the amount of dopant is 

drastically reduced below the near-surface region of the thin film sample indicates 

that the ineffective doping is the cause of the contrasted resistivity values for thin 

film form and bulk sample.318 BaTiO3-based PTCR ceramics fabricated by thick film 

methods such as tape-casting,319 slip-casting and roll forming320 have similar 

microstructure and PTCR characteristics compared with those made by conventional 

die-pressing methods; nevertheless samples produced by these thick film techniques 

have higher room-temperature resistivity which is partly due to the high porosity 

caused by the burning of larger amount of organic additives which were added to 
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facilitate the forming processing.  

 

C. Effect of Heat-Treatment 

The PTCR effect in donor-doped BaTiO3 is very sensitive to firing conditions.321-323 

Pure stoichiometric BaTiO3 which is an electrically insulating material at room 

temperature after sintering in air can become semiconducting and exhibit a PTCR 

effect when sintered at 1450°C in nitrogen and subsequently quenched.236 Unlike the 

segregation of extrinsic defects introduced from foreign dopant elements 

accommodating in grains and grain boundaries which change the PTCR profiles 

directly, changing the sintering parameters can change the PTCR characteristics by 

introducing intrinsic defects such as oxygen vacancies or cation vacancies. Oxygen 

from the BaTiO3 lattice is gradually lost at high sintering temperature resulted in 

increasing electrical conductivity; however, the oxygen-deficient material rapidly 

reoxidizes either on reheating at lower temperatures or on cooling slowly in high 

oxygen partial pressures. Hence applying reducing atmosphere during sintering can 

facilitate the conductivity of donor-doped BaTiO3 and enhance the critical donor 

concentration significantly.324,325 

 

The room-temperature resistivity of donor-doped BaTiO3 increases with sintering 

temperature and dwell time which is attributed to an increase in the amount of 

acceptor-states along grain boundaries.326, 327 Kahn328 and Zubair et al.329, 330 found 

that the resistivity of donor-doped BaTiO3 increases as the rate of cooling is reduced 

as seen in Figure 1.6.8. The authors claimed that this is due to an increase of the 

activated surface state density in grain boundaries caused by the oxidation during the 

cooling cycle. However, LaCourse et al.323 observed that when quenched the Y-
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doped BT from the sintering temperature, the resistivity below Tc was analogous with 

that of the sample subjected normal cooling rate as 5°C/min in comparison with the 

significant lower resistivity exhibited from the sample quenched from 200 °C below 

the sintering temperature. This is due to the immediately solidified liquid phase 

staying in the grain boundary increases the thickness of insulating grain boundary 

layer and hence increases the room-temperature resistivity. The heating rate can also 

have an influence but has a minor impact on the PTCR characteristics.331 

 

 

Figure 1.6.8 r/T curves as a function of cooling rate for donor-doped BaTiO3 samples. 

(replotted from 329) 
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Liu et al.332 also observed that an improvement of room-temperature conductivity of 

lightly donor-doped BaTiO3 can occur when a secondary thermal treatment is used 

by reheated the sample to 400~650 °C for 20~40 minutes after firing. This results 

from the relief of internal stress in the crystal lattice through more directional domain 

alignment thereby reducing the electrical potential barrier. Furthermore, lower room-

temperature resistivity of Nb-doped BaTiO3 is obtained by employing a microwave 

heating technique compared with ordinary sintering in an electric furnace.333 The 

mechanism of improvement of PTCR characteristics caused by microwave sintering 

is still under active investigation.  

 

1.6.2.4 Microstructure-PTCR Property Relationships in Donor-doped BaTiO3 

The PTCR behaviour of donor-doped polycrystalline BaTiO3 ceramics is known to 

be dependent on microstructural aspects such as grain size, domain orientation, phase 

profile and porosity. It has been generally observed that the room-temperature 

resistivities (rRT) are low for donor-doped BaTiO3 having large grains and the rRT of a 

doped-BaTiO3 sample with fine grains is large (>105 Ω·cm).334 Furthermore, a donor-

doped BaTiO3 sample sintered in a non-reducing environment with very fine grains 

(less than 1 µm) becomes an insulating material and exhibits no PTCR characteristics. 

The hypotheses that account for large grains in donor-doped BaTiO3 facilitating 

electric conductivity below Tc are: 

i.) As grain boundaries act as insulating layers compared with the internal region 

of grains, a system with large grains has a lower area fraction of grain 

boundaries;335 this suggests that large grain systems contain relatively lower 

portions of insulating component on the conducting path in the presence of an 

applied electric field.  



Introduction 

 78

ii.) Based on Daniels’ model,336 the thickness of cation vacancy-rich insulating 

layers in as-sintered donor-doped BaTiO3 grains can be up to 3 µm. For 

BaTiO3 samples with fine grains, such cation-vacancy layers which act as 

acceptor-state dominate the electric structures in grains, resulting in overall 

insulating profile. 

iii.) The high room-temperature resistivity of donor-doped BaTiO3 with small 

grains can be also accounted for by the strain effect at grain boundaries. The 

strain which is caused by interfacial segregation of dopants and formation of 

cation vacancies at grain boundaries increases the potential barrier and hence 

increases the resistivity.287 This strain effect becomes more significant for 

small grain systems and alters its electric properties significantly. 

iv.) The mechanism that causes the electrical insulating behaviour of donor-doped 

BaTiO3 with nano-sized grains is more complex. There may be a shift of 

tetragonal-cubic phase transition temperature due to the size effect. Begg et 

al.337 reported that when the size of BaTiO3 particles is below about 190 nm, 

the cubic rather than the tetragonal phase is thermodynamically preferred at 

room temperature. Further investigation by Yashima et al.338 confirmed that 

the Tc of nano-grained BaTiO3 is suppressed with decreasing particle size and 

a ferroelectric-paraelectric transition occurs below room temperature leading 

to disappearance of the PTCR effect above room temperature. Park et al.339 

also verified that the crystal phase of the nano-grained BaTiO3 ceramics is a 

mixed state of the tetragonal and cubic phases. This may well explain the 

insulating phenomenon at room temperature for donor-doped BaTiO3 made by 

thin-film processing340-342 or some sol-gel methods because the BaTiO3 grains 

are nano-size.  
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There is a common observation that the grain size of donor-doped BaTiO3 decreases 

rapidly with increasing donor concentration after exceeding the critical concentration 

and leading to a rapid increase of resistivity. Desu et al. believed, based on Auger 

electron spectroscopy (AES) results, that this phenomenon is due to the impediment 

of the boundary mobility caused by interfacial segregation of dopants, including 

donors and acceptors, at the grain boundaries.256, 286 As the average donor 

concentration increases, the excess local concentration of donor at the grain 

boundary resulting from interfacial segregation would not only retard grain growth 

but also shift from electronic to ionic compensation, resulting in the formation of 

highly resistive layers.  

 

Within the same composition, higher PTCR jump is generally achieved in donor-

doped BaTiO3 samples with a heterogeneous grain size distribution and having an 

optimum porosity, in comparison with materials with large dense grain structures. 

Kuwabara343 found that the magnitude of the PTCR jump reaches a maximum at an 

optimum sintered density (≈75-85% of theoretical density) and then decreases with 

increasing density. Those results were partially interpreted that the samples with very 

dense grain structures, i.e. low porosity indicating containing high level of 

conducting-grain to conducting-grain contacts, thus have poor PTCR resistivity jump 

at Tc.344 In addition, the enhancement of the PTCR jump by increase of porosity345, 

346 from very dense structure may also be due to the assistance for oxygen transport 

into the ceramic bulk hence facilitating the oxidation of grain boundaries,347 which 

increases the potential barrier and hence the electrical resistivity. However, it is 

difficult to specify the optimum combination of the grain size and the porosity of as-

sintered donor-doped BT sample in order to satisfy both the need for lowering the 
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room-temperature resistivity and increasing PTCR jump.  

 

The domain structure within grains of a donor-doped BaTiO3 can reveal the level of 

doping. Roseman et al.344 claimed that an optimal amount of donor can produce 

unidirectional domain microstructure and domain randomness is only observed in the 

near grain boundary regions; nevertheless for under-doped and over-doped cases, the 

domain orientations and widths are random. This phenomenon is suggested to be 

associated with the Jahn-Teller effect. The spherically asymmetric defect field of 

optimally donor-doped BaTiO3 can be aligned spontaneously by internal stress 

generated from Jahn-Teller distortion and this type of defect can, therefore, act as 

nucleation sites for the ferroelectric phase upon cooling through the Curie point. 

However, for under-doped samples, the distorted defect field does not dominate the 

domain nucleation sources; in case of over-doped BaTiO3 samples, the defect 

compensation mechanism switches to cation vacancy compensation hence the Jahn-

Teller distortion no longer exists. As the electron mobility is anisotropic in the 

tetragonal unit cell in donor-doped BaTiO3, the aligned domains can facilitate 

conducting electrons and thus enhance conduction. This can explain why optimal 

donor-doped BaTiO3 exhibits the lowest resistivity at room temperature.344  

 

The PTCR properties are strongly controlled by the microstructural aspects of donor-

doped BaTiO3 which is highly sensitive to the cation stoichiometry307, 334, 348, 349 and 

processing parameters.231 Understanding the relationship between microstructure and 

the PTCR effect and the ways in which microstructure can be changed by chemistry 

and processing conditions not only help to optimize the performance of PTCR 

materials but also master potentially the capability for tailoring the PTCR properties 
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by targetedly adjusting composition and processing parameters.  

 

1.6.2.5 Emerging Trend of Research on BaTiO3-based PTCR Materials 

After half a century’s development, the technologies for fabrication of advanced 

PTCR thermistors have vastly expanded and improved. The requirements for new 

PTCR sensors are miniaturization, environmental acceptability and optimizing the 

PTCR effect by reducing rmin, increasing the PTCR jump, decreasing the response 

time near Tc, increasing Tc and obtaining voltage independence. The single-donor 

doping system may be inadequate to satisfy all these needs. Multiple-donor systems 

are considered as potential solutions. Currently double-donor doping systems 

including Y2O3+Nb2O5
350 and Sb2O3+Nb2O5

351 have been investigated leading to 

lower room-temperature resistivity. However, the co-influence of the multiple-donor 

system still remains poorly understood. 

 

Fabrication of multilayer structures of semiconducting BaTiO3 ceramics provides 

another way to decrease the room-temperature resistivity.352 This method has the 

advantage in substantially reducing the room-temperature resistivity over those that 

rely on change of composition or heat-treatment parameters because it creates a 

parallel electric system. However, it is very difficult to co-fire BaTiO3 having PTCR 

characteristics with an internal electrode system because the need for an oxidizing 

atmosphere oxidizes base metal electrodes causing severe deterioration to the ohmic 

contact with the n-type semiconducting BaTiO3.353 On the other hand, if sintered in a 

reduced atmosphere, the PTCR effect would be substantially compromised.223 

Therefore, a procedure that prevents oxidation of the internal electrodes without 

sacrificing the PTCR characteristics during firing is required. 
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So far, commercially available PTCR thermistors with Tc > 130°C are mainly based 

on Pb-doped BaTiO3 ceramics. Because of the toxicity of lead oxide and detrimental 

influence on the environment during the preparation of Pb-containing products, 

considerately effort is devoted to compositional developments of lead-free PTCR 

ceramics. Recently, an excellent PTCR effect at 170°C has been reported in the La-

doped 95BaTiO3-5(Bi0.5Na0.5)TiO3 (BT-BNT) ceramics.354 Furthermore, without 

adding any foreign donor dopant, a PTCR effect was found in pure BT-BNT solid 

solution ceramics with low BNT contents.194, 355 The BT-BNT system shows PTCR 

properties comparable to those of lead-containing BT ceramics. However the 

noncompetitive PTCR jump and strong sensitivity to the oxygen atmosphere during 

sintering lag its applications. Research is ongoing to tackle those disadvantages.356-358 

In addition, similar systems like BaTiO3-(Bi0.5K0.5)TiO3 also attract interest.359, 360 

Other new systems of lead-free, high Curie temperature PTCR ceramics are also in 

demand. 

 

The PTCR effect in nanograined BaTiO3 ceramics is not fully realized regardless of 

composition or processing parameters. This barrier has limited the application of 

modern nanotechnologies such as using nanoparticles or thin-film fabrication. 

Recently, a few articles have reported that PTCR characteristics could be found in 

nanograined BaTiO3 ceramics synthesized from surface-coated nanopowders.339, 361 

More work is needed to explore new methods that are able to make very fine grained 

(≈1 µm) BaTiO3 ceramics exhibiting good PTCR effects which would be a 

significant step towards creating the next generation miniaturized PTCR devices. 

 

The conventional fabrication methods of PTCR materials are time consuming 
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especially for making different batches having different dopant concentrations. 

Hence high-throughput fabrication of PTCR products in applications for both 

industrial and academic research is desirable. Currently, a freeforming method of 

making thick-film PTC thermistors by paste extrusion technology combined with 

laser sintering is reported.362 This technique does not require any high temperature 

post processing as required for PTC ceramics produced by other methods. This can 

inspire new applications of PTCR products in rapid-prototyping which has never 

been reported before. The development of PTCR materials is still very often an 

empirical (“trial and error”) science. Therefore the high-throughput combinatorial 

methods are important to speed-up the production of optimized materials. The 

London University Search Instrument (LUSI) has proved the feasibility of 

automation for producing and measuring combinatorial libraries of microwave 

dielectric ceramics including BST40 and BCT105 families. A new study for using such 

techniques on BaTiO3-based PTCR ceramics is reported and discussed here. 
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1.7 Liquid Infiltration in Porous Substrate 

 

Liquid infiltration processing is of great interest for a wide range of applications 

including soil science,363-366 oil recovery,367-369 building materials370, 371 and ink-jet 

printing engineering.372-374 In the engineering ceramics application, using liquid 

infiltration as a processing method has been applied on the purpose of surface 

modification and mechanical properties improvement.375-378 Therefore, the dynamics 

of capillary spreading of liquids coupling with their infiltration into the underlying 

porous substrate has received considerable attention in literature. 

 

Figure 1.7.1 The flow geometry for a porous medium (reproduced from379 ) 

 

Figure 1.7.1 shows a droplet infiltrating into a porous substrate which has a 

simplified cylindrical pore structure. The liquid is assumed with constant density ρ, 

dynamic viscosity η and surface tension γ. The liquid surface spreading and 

imbibition processes are determined by the associated surface energy change. 

Capillary force is the main driving force causes a wetting liquid to flow into the 

porous medium. From analysis of the wetting of an ideal cylindrical pore of radius a, 

the capillary pressure is: 

a
P θγ cos2
=∆         Equation 1.7.1 
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where θ is the contact angle. For a given liquid, it is found that the smaller the pore 

size and the contact angle, the larger the capillary pressure. In addition, the liquid 

imbibition into the porous system can be modelled using Washburn’s equation: 

η
γ
2

2 atd =          Equation 1.7.2 

where d is the distance of the liquid absorption into the porous substrate and t is the 

time. 

 

In hydrology and oil recovery field, scientists are more interested in the intrusion and 

flow of liquid through granular beds. It is generally agreed that some structural 

features including fractures and crevices within a porous medium can cause the onset 

of fingering and unstable flows during liquid infiltration. However, even in 

homogeneous porous system, the liquid displacement proceeding may exhibit a wide 

range of fluid front morphologies ranging from stable to fingering regime.368 This 

shows the sensitivity of liquid infiltration front in porous medium to the interactions 

among driving forces (gravity, capillary and viscous), flow rate and medium 

properties. The capillary number (Ca) which is a dimensionless ratio of viscous 

forces to capillary forces at pore level is induced to assess the level of stabilization of 

fluid displacement front.364  

γκ
ηυ 24 aCa =          Equation 1.7.3 

where ν is the filtering flux or Darcy velocity in the medium, κ is the permeability of 

the porous medium. At very low flow rate, the liquid infiltrating into a porous 

medium with a large capillary number (>10-4) performs in a more stable way in terms 

of the liquid displacement pattern than one with a small value of Ca (<10-6) because 

capillary-driven finger-like flow is less likely to occur.380, 381 However, at high flow 
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rate, viscous forces dominate capillary and gravitational effect. In immiscible two 

phase flows, e.g. infiltrating water into porous rock sand containing oil, the 

displacement of water is unstable due to the occurrence of viscous fingering 

pattern.382 In the opposite case in which the invading fluid is the more viscous one, 

viscous effects stabilize the front.369 Furthermore, at slow flow rate system, the 

gravity force can contribute a stabilizing force by reducing the height differences 

induced by viscous instability or capillary fluctuations hence flattening the wetting 

front.383 All the discussion above was based on the modelling of uniform cylindrical 

pore structure; however, if considered the pore structure effect, the liquid 

displacement mechanism would be more complicated.384  

 

In ink-jet printing engineering, not only the mechanism of ink imbibition into the 

underlying porous substrate, but also the simultaneously ink spreading is a 

fundamental aspect of the study because it determines the resolution of the process. It 

is generally agreed that the shape of infiltrating droplet on surface can be simplified 

as a spherical cap, which is considered as starting point for theoretical modelling.385 

Starov and co-workers observed that the deposited drop initially spread with the 

region directly beneath the porous substrate where is immediately saturated. At 

longer times, the region of saturation extends beyond the edge of the drop and 

eventually the ‘wicking’ overpower spreading and causes the droplet to retract.386 

They also found that the features of time evolution of the radii of both the drop base 

and the wetted region on the surface of the porous substrate fell onto universal curves 

when the spreading of given ink droplet on porous substrates of similar pore size and 

porosity regardless the materials characters.387  
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Liquid precursor infiltration and pyrolysis can be useful for processing ceramics and 

their composites. Lange found that the damage-tolerance of Si3N4 sample can be 

improved when incorporation of second phase by infiltration with Zr-nitrate plus Y-

nitrate solution and subsequent pyrolysis.388 In their study, the Si3N4 powder compact 

which was made by pressure-filtering the dispersed aqueous ceramic slurry was 

immersed in the concentrated Zr-nitrate and Y-nitrate mixed solution. The in-situ 

concentration of incorporated additive was monitored and controlled according to the 

weight change during the infiltration. They also found that the precursor molecules 

were enriched near the surface of the powder compact as the precursor solvent was 

removed during evaporation. However, such heterogeneous distribution of precursor 

salt can be effectively prevented by gelling prior to drying, viz., by soaking the 

infiltrated bodies in an aqueous NH4OH solution.375 Similar attempt was performed 

by Pratapa et at.378 in order to infiltration-process a functionally graded aluminium 

titanate/zirconia-alumina composite.  

 

In structural ceramics, the process that allows modifying its external surface plays an 

important role in improving reliability and performance. There are three major 

approaches used to modify the surface: solid-state diffusion, ion implantation and 

liquid infiltration.376 In the liquid infiltration technique, it is possible to intervene 

earlier in the processing and hence allowing greater control over the depth and 

composition of the modified surface than that applying the first two techniques. Duh 

et at.376 and Glass et at.377 used this infiltration method successfully improve the 

fracture toughness and thermal stability of ZrO2 ceramics.  

 
The principle of liquid infiltration in ceramic processing particularly of functional 

ceramics which is involving low dopant concentration can produce a range of 
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different dopant levels in ceramics for various functions and properties. This has the 

potential of significantly increase the speed and efficiency of fabrication of ceramic 

samples with a broad range of doping concentration in comparison with using 

conventional ceramic mixing methods. However, there are very few reports on 

adopting the infiltration technique in functional ceramics processing. The main 

reasons that block the application of liquid infiltration technique in fabricating 

ceramics with minor dopant additions might be due to the difficulties in controlling 

the amount of effective absorption of infiltrant and distributing the precursor solution 

homogeneously in the body. However, soil researchers have reported that the liquid 

distribution can be reached uniformly when under the right circumstances, and if the 

identical individual ceramic green samples as porous substrates can be made, such 

liquid infiltration method can be used to homogeneously dope porous ceramics. 

Recently, Darby et at.389 successfully produced a calcium-doped yttria stabilised 

zirconia using an infiltration technique. The resulting dopant distribution showed 

equivalent homogeneity to the popular ball milling approach for dopant contents 

below 3 mol.% of Ca2+. 

 

 

 

 

 

 



Experimental Procedures 

 89

2 Experimental Procedures 

 

2.1 Diagrammatic Representation of the Overall Experimental 

Design 
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2.2 Preparation of Ceramic Inks 

 

2.2.1 Characterizing Materials 

The commercial BaTiO3 powder with density of 5.85 g·cm-3 and purity of 99.95% 

(provided by the supplier) was supplied by Inframat Advanced Materials, LLC 

(Farmington, USA) and it was studied by scanning electron microscope (SEM; JEOL, 

JSM 6300, Tokyo, Japan) as received. To prepare the SEM samples, a small amount 

of powder was sprayed over one side of a double sided adhesive tape where the other 

side was attached to an aluminium stub. Vibration and air blowing should be 

carefully avoided for the purpose of removing loose powders from sample holder 

because the remaining particle size is selectively left and is not representative of the 

original powder. The sample powders in the holder were subsequently coated by 

carbon before SEM studies.  

 

Barium titanate powder was subjected to high energy Dyno-milling (type: KDLA, 

Glen Creston ltd., Middx, England) (Figure 2.2.1) and ultra-fine grinding using a 

Vibro mill (Willian Boulton, Vibro Energy, Burslem, Stoke-on-trent, England) 

respectively in order to reduce the size and amount of the aggregates and 

agglomerates in as-received powder. 

 

A large batch of BaTiO3 powder was adding to distilled water to prepare a suspension. 

For Dyno-milling, the suspension was slowly pumping using a peristaltic pump 

(Type 34-505, Glen Creston ltd., UK) through the rotating Dyno mill chamber where 

three quarters of the volume was filled with 0.5 mm zirconia grinding media (Y-PSZ, 

Tosoh Corporation, Tokyo, Japan). The milling processing stopped after the ink 
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passed thirteen cycles of circulation in the milling chamber which gave a total 

milling time of ~1 hour. 

 

For the Vibro-milling procedure, the BT suspension was poured into the annular 

shaped grinding chamber where a vibratory generator was mounted at the base. The 

chamber was then sealed by a vulcanized rubber gasket underneath the inlet cover 

and with coil springs mounted around the periphery of the chamber. The Vibro 

Energy mill employed 10mm cylindrical shaped zirconia grinding media and BaTiO3 

powder was milled for 9 hours. Both of the Dyno milled and Vibro milled BaTiO3 

suspensions were put in an oven in 80 °C for one week and thereafter the dried 

powders was stored in different plastic bottles. 

 

Various instruments were employed to examine the dried particles of BaTiO3 

powders after Dyno and Vibro milling respectively in order to study and compare the 

effect of both milling techniques.  

 

i) The morphologies of the agglomerates in the BaTiO3 suspensions after 

Vibro-milling and Dyno-milling processing respectively were examined by 

SEM. Two specimens of each batch of powder were examined to make sure 

that the samples were representative. First of all, much diluted inks (< 0.5 

g/L) were prepared to ensure the formation of only one layer of dried 

particles after drying on the sample holder. A few drops of each of those inks 

which had been subjected to 60 seconds of ultrasonic treatment were placed 

on different aluminium stubs and the samples were kept desiccated until 

fully dried before coating by gold for SEM studies.   
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ii) The average size and size distributions of powders were analyzed by 

Zetasizer (Malvern Instruments, Malvern, U.K.). The powder was diluted in 

distilled water to < 2g/L and treated ultrasonically before analysis. Each 

analysis was performed three times. 

iii) The specific surface area of powders including raw BT powder as-received, 

dried powders after Dyno-milling and Vibro-milling were inspected 

respectively by a B.E.T. surface area analyzer (model: Micromeritics Gemini 

2370, Norcross, Georgia, USA). Samples were first degassed at 200°C for 1 

hour. The dried and degassed samples were then analyzed using a five-point 

nitrogen adsorption method for surface area. 

 

2.2.2 Sedimentation Tests 

A variety of dispersants were tested including: EFKA 4540, EFKA 4580, EFKA 5010, 

EFKA 5071, EFKA 6220, (Ciba Specialty Chemicals, Heerenveen, Netherlands), 

Dispex A40 (Allied Colloids, Bradford, UK), Solsperse 27000, Solsperse 44000, 

Solsperse 47000 (Lubrizol, Manchester, England), Darvan 821A (R. T. Vanderbilt 

Industrial Minerals and Chemicals, Norwalk, Canada). Table 2.2.1 contains the 

chemical and physical characteristics of dispersants as provided by the suppliers. All 

those dispersants are water-based. 

 

BaTiO3 powder after Vibro-milling was prepared for sedimentation tests in order to 

screen the dispersants. The concentration of BaTiO3 powder was 0.5 vol.% for every 

specimen in order to prevent particle-particle interaction during free fall based on the 

suggestion by Parfitt.390 3 wt.% of dispersant based on ceramic powder was added in 

all BaTiO3 suspensions and the details regarding such sample preparation procedures 
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are followed below:  

i) The dried BaTiO3 powder and water were weighed out to obtain 0.5 vol. % 

of BT suspension in total volume of around 20 mL. 

ii) A high-energy ultrasonic probe (type U-200S-Control, IKA Labortechnik 

Staufen, Germany) was immersed into the sample suspension just 10 mm 

above the bottom of the dispersion at 50% of its maximum amplitude and in 

a continuous mode for 5 minutes. 

iii) The dispersants were weighed and mixed respectively with the previously 

prepared inks followed by another 5 minutes ultrasonic dispersion with ice 

surrounding outside the container to prevent heating up. 

 

Those well dispersions were then placed on a roller mixer for 24 hours providing 

continuous agitation to eliminate bubbles trapped in suspensions before pouring into 

calibrated glass tubes and left in a tube rack undisturbed for around 300 ks (≈80 

hours). Those test tubes were sealed in the upper part to minimize the liquid lost by 

water evaporation while in the sedimentation test. 

 

After the best candidates were found from the dispersant screening studies, further 

sedimentation tests were carried out to discover the optimum amount of the 

dispersant for BaTiO3 powder. 
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Table 2.2.1 Chemical and physical characteristics of dispersants 

Dispersant 
Chemical 

Composition 
Source 

Active 

Ingredient /% 

Density 

/(g·cm-3) 

EFKA 4540 Modified 
polyacrylate Ciba 46-48 1.03-1.07 

EFKA 4580 Acrylic polymer 
emulsion Ciba 39-41 1.03-1.07 

EFKA 5010 Acidic polyester 
polyamide Ciba 48-52 1-1.04 

EFKA 5071 Alkylol ammonium 
salt Ciba 51-55 1.08-1.1 

EFKA 6220 Fatty acid modified 
polyester Ciba 100 1 

Dispex A40 Ammonium salt of 
an acrylic polymer Ciba 43 1.16 

Solsperse 27000 N/A Lubrizol 100 1.13 
Solsperse 47000 N/A Lubrizol 40 0.9 
Solsperse 44000 N/A Lubrizol 50 1.01 

Darvan 821A Ammonium 
polyacrylate 

R. T. 
Vanderbilt 40 1.16 

 
 
 
 

 
                                            (a)                                                                    (b)   

Figure 2.2.1 Milling equipments: (a) Dyno mill and (b) Vibro mill. 
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2.3 Control of Shape of Droplet Drying Pattern 

 

2.3.1 Drying-induced Forming Agent Selection 

Two polymers including polyvinyl alcohol (PVA) (Mw = 31000, degree of hydrolysis 

= 87%) (Fluka, UK) and methyl cellulose (VWR, UK) used as binders were added 

into BaTiO3 dispersion respectively. Both of them were pre-dissolved in distilled 

water for subsequent fast mixing. To prepare PVA binder solution, 17.6 g PVA 

polymer resin was dissolved in 100 mL distilled water at 80 °C in a water bath 

environment. The mixture which contained 15 wt.% of PVA was then stored in a 

plastic bottle after cool down by keeping stirring in ambient air. Methyl cellulose 

(MC) binder solution (4 wt.%) was prepared by mixing the powder with hot water at 

85 °C to make a well dispersed system first, then cooled down the solution while 

stirring and repeated above procedures until the binder fully dissolved in water. 

 

In addition, a thixotropy agent Acrysol RM12W (ROHM and HAAS, UK) was also 

used to investigate the enhancement of the drying pattern of BaTiO3 inks. All those 

above polymers’ chemical and physical characteristics are listed in Table 2.3.1 as 

provided by their suppliers. 

 

BaTiO3 slurries with varying forming agents in different compositions as shown in 

Table 2.3.2 were prepared in a multi-steps processing: 

i) Added an appropriate amount of BaTiO3 (40 wt.%) to distilled water 

following an ultrasonic actuation for 5 minutes using an ultrasonic probe.  

ii) The dispersant (Darvan 821A) (3 wt.% in the weight of BaTiO3 powder) and 

an appropriate amount of forming agent solution (following the composition 
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suggestion in Table 2.3.2) were subsequently added to the as-mixed BT 

suspension. The overall dispersion was subjected to another 5 minutes’ 

ultrasonic treatment to ensure the well mixture.  

iii) Well-mixed BaTiO3 dispersion was stored in a capped glass bottle and placed 

on a rolling table for 48 hours to stabilize the dispersion and remove the 

trapped air bubbles. 

 

Droplets of the BaTiO3 inks as described in Table 2.3.2 were deposited respectively 

in the volume of 30 µL using a digital transfer pipette (Transferpette Brand, 

Wertheim, Germany) on silicone release paper (Grade SPT50/11, Cotek Papers Ltd., 

Glos., UK) to which they were non-adherent. All drying experiments were carried 

out in an ambient environment (298 K and 30-50% RH). The morphologies of the as-

dried green samples were visually examined by binocular microscopy.  

 

Various volumes of droplets of the BaTiO3 dispersion with PVA and Acrysol 

RM12W as detailed in Table 2.3.3 were printed and the morphologies of their drying 

residues were examined by the same procedures described above. Furthermore, the 

drying patterns of BaTiO3 inks contained Acrysol RM12W with different solid 

contents from the evaporation of a dip-pen printing droplet with a volume of 100 µL 

were also investigated (listed in Table 2.3.4). The drying procedure for the last series 

(inks in Table 2.3.4) was carried out in a covered container with saturated moisture at 

room temperature. 
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Table 2.3.1 Chemical and physical characteristics of forming agents 

Name Chemical Composition Source 
Active 

ingredient /% 

Density 

/(g·cm-3) 

PVA 

 

Fluka 100 1.27 

Methyl 

Cellulose 
 

VWR 100 1.26-1.30 

Acrysol 

RM12W 
 Rohm 19 1.04 

 

 

Table 2.3.2 Composition of BaTiO3 inks used for forming agent selection. 

Forming Agent 
/vol.% (wt.%) Ink 

No. 

BT Powder 
/vol.% 
(wt.%) 

Dispersant 
/vol.% 
(wt.%) Ia IIb IIIc 

Distilled Water 
/vol.% (wt.%) 

1 10 (40) 1.2 (1.2) 87.8 (58) 

2 10 (40) 1.2 (1.2) 86.8 (57.1) 

3 10 (40) 1.2 (1.2) 85.8 (56.3) 

4 10 (40) 1.2 (1.2) 84.8 (55.4) 

5 10 (40) 1.2 (1.2) 87.8 (58) 

6 10 (40) 1.2 (1.2) 87.3 (57.6) 

7 10 (40) 1.2 (1.2) 87.8 (58) 

8 10 (40) 1.2 (1.2) 87.3 (57.6) 

9 10 (40) 1.2 (1.2) 

1.0 (0.8) 

2.0 (1.7) 

3.0 (2.5) 

4.0 (3.4) 

 

 

 

 

 

 

 

 

1.0 (0.8) 

1.5 (1.2) 

 

 

 

 

 

 

 

 

1.0 (0.8) 

1.5 (1.2) 

2.0 (1.6) 86.8 (57.2) 
a PVA 
b Methyl Cellulose 
c Acrysol RM12W 
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Table 2.3.3 Inks for investigation on drying pattern effects of changing volumes. 

Forming Agent 
/vol.% (wt.%) Ink 

No. 

Ink 
Volume 

/µL 

BT Powder 
/vol.% (wt.%)

Dispersant 
/vol.% 
(wt.%) Ia IIb 

Distilled Water 
/vol.% (wt.%) 

10 50 10 (40) 1.2 (1.2) 87.8 (58) 

11 100 10 (40) 1.2 (1.2) 87.8 (58) 

12 200 10 (40) 1.2 (1.2) 87.8 (58) 

13 50 10 (40) 1.2 (1.2) 87.3 (57.6) 

14 100 10 (40) 1.2 (1.2) 87.3 (57.6) 

15 200 10 (40) 1.2 (1.2) 

1.0 (0.8) 

1.0 (0.8) 

1.0 (0.8) 

 

 

 

 

 

 

1.5 (1.2) 

1.5 (1.2) 

1.5 (1.2) 87.3 (57.6) 
a PVA 
b Acrysol RM12W 

 

Table 2.3.4 Inks for investigation on drying pattern effects of varying solid contents. 

Ink 
No. 

Ink 
Volume 

/µL 

BT Powder 
/vol.% (wt.%) 

Dispersant 
/vol.% 
(wt.%) 

Acrysol RM12W 
/vol.% (wt.%) 

Distilled Water 
/vol.% (wt.%) 

16 100 12.1 (45) 1.4 (1.4) 84.5 (52) 

17 100 14.5 (50) 1.7 (1.5) 81.4 (46.7) 

18 100 17.2 (55) 2.0 (1.7) 77.9 (41.4) 

19 100 20.4 (60) 2.4 (1.8) 

2.0 (1.6) 

2.4 (1.8) 

2.9 (1.9) 

3.4 (2.1) 73.8 (36.1) 

 

 

2.3.2 Characterization of Green BaTiO3 Disc after Polymer-burnout 

The bulk density of as-dried BaTiO3 disc after polymer burnout by heating at 600 °C 

for 2 hours was measured by buoyancy method based on Archimedes’ principle.391 

The green BaTiO3 sample is a porous and fragile material, thus its outer surface was 

coated with a thin layer of water-resistance wax before measuring its density by 

buoyancy method in order to prevent it absorbing water. The details of procedures 

are listed below: 
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i) Green dry ceramic sample was first weighed in air (W1). 

ii) Sample then was covered by a thin paraffin wax coating and weighted again 

in air (W2). 

iii) Sample after coating with a thin wax layer was then weighed while fully 

submerged in water (W3). 

Therefore, the bulk density of the BT disc is determined by the following expression: 

waxw

s WWWW
W

ρρ

ρ
1232

1

−
−

−
=                                        Equation 2.3.1 

where ρs is the density of the sample, ρw is the density of water, ρwax is the density of 

paraffin wax.  

 

The percentage porosity of green BaTiO3 sample is then found using the following 

expression: 

%100×
−

=
th

sthP
ρ

ρρ
                                              Equation 2.3.2 

where P is the percentage porosity of the sample and ρth equal to 6020 kg·m-3 is the 

theoretical density of the BaTiO3. 

 

In order to obtain the density results and accurate information about the pore profile 

within the green BaTiO3 base body, gas pycnometry (Micromeritics AccuPyc 1330 

Pycnometer, Norcross, USA) and mercury porosimetry (Micromeritics AutoPore IV, 

Norcross, USA) methods were also used. 
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2.4 Investigation of Dopant Distribution in Porous BT Base via a 

Droplet-doping Method  

 

The group of rare-earth elements is a rich resource for providing donor dopants for 

BT-based PTCR materials. Among them, Erbium is the only element as a donor 

candidate that can hold the PTC effect of doped-BT sintered in air in a range up to 8 

mol.% in the literature.265 Moreover, in order to investigate the dopant distribution by 

using EDS/WDS techniques for samples under low doping level, considering the 

characteristic X-ray energy and associated wavelength of erbium (Lα: 6.95 keV and 

0.18 nm) along with other elements in the lanthanum (Lα: 4.65 keV and 0.27 nm) 

group is close to that of Ba (Lα: 4.47 keV and 0.28 nm) and Ti (Kα: 4.51 keV and 

0.27 nm) as base elements resulting in the difficulty of quantitative analysis of 

dopant element especially a trace amount; however, yttrium (Kα: 14.93 keV and 0.08 

nm)392 which is also a widely used donor element has better distinguishable X-ray 

energy and associated wavelength compared with that of base elements such as Ba 

and Ti. Hence Er-doped BT and Y-doped BT were selected for investigation of donor 

distribution via droplet-doping method. 

 

2.4.1 Preparation and Characterization of Er-doped BT Using a Droplet 

Infiltrating Doping Method 

Droplet-doping was performed by infiltrating the dopant precursor solution into the 

green BaTiO3 porous base disc. To achieve the homogeneous dopant distribution in 

the body of BT disc, the volume of the infiltrating solution must equal to the total 

pore volume in the disc. For example, to apply droplet-doping for a BT disc with the 

volume of ≈3.3×10-8 m3 (with radius as 4×10-3 m and thickness as 6.5×10-4 m) with 
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55% porosity, the ideal infiltrating volume of dopant solution should be ≈18 µL.  

 

Er(NO3)3·5H2O (99% purity, Sigma-Aldrich) was weighed and dissolved into 

deionised water to prepare solutions at various concentrations according to the 

required doping level. In preliminary work, different amount of dopant solution with 

corresponding concentration was printed using a digital transfer pipette on the 

surface of the green BaTiO3 porous base. For example, to incorporate 8 mol.% Er 

into a BT disc with the volume of 3.3×10-8 m3, the weight of 90 mg and 55% porosity, 

the concentration of erbium nitrate solution should be prepared as 1.72 M/L to reach 

the planned doping concentration (8 mol.%) by printing the ‘ideal’ 18 µL solution on 

the base. For lower level of doping, the dopant solution was diluted accordingly.  

 

Erbium doped BT discs with various doping concentrations as detailed in Table 2.4.1 

were fabricated by this droplet-doping method. The green BT base was dried from a 

100 µL sessile droplet of ink 18 by dip-pen printing method as described in section 

2.3. The erbium nitrate solution was printed on the central-top surface as illustrated 

in Figure 2.4.1(a). As-doped samples with various doping levels were dried in an 

ambient atmosphere (298 K and 30-50% RH) before sintering in air under different 

firing programmes with heating/cooling rate as 5 °C/min (in Table 2.4.1). Samples 

with the erbium concentration of 0.1 mol%, 1 mol% and 8 mol% were examined 

respectively by simultaneous thermal analyzer (STA) (model: PL-STA1500, 

Rheometric Scientific Inc, NJ, United States). Among them, samples with erbium 

content of 0.1 mol.% and 8 mol.% were heated up to 1100°C by a rate of 10°C/min 

and dwelled for 1 h. Sample contained 1 mol.% erbium was heated up to 1150°C by 

5°C/min and dwelled for 1 h. All STA measurements were carried out in air. The 
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morphologies of as-sintered Er-doped BT tablets were examined and photographed 

by a digital camera (Fuji S5600). The microstructures of the fracture surface of as-

sintered Er-doped BT ceramics were examined using SEM. 

 
Figure 2.4.1 Schematic diagram of printing the dopant precursor ink on the surface of 

green BT disc base: solution was printed by (a) a single drop on the central-top 

surface of the disc; (b) multi-drops evenly on the bottom flat surface of the base. 

 

Table 2.4.1 Sintering program of erbium-doped BT. 

Sample 
No. 

Erbium concentration 
/ mol % 

Sintering temperature  
/ °C 

Dwelling period 
/ h 

A0 0 1350 2 
A1 0.10 1350 2 
A2 0.25 1350 2 
A3 0.5 1350 2 
A4 1 1350 2 
A5 2 1350 2 
A6 5 1350 2 
A7 8 1350 2 
B0 0 1350 4 
B1 5 1350 4 
C0 0 1450 4 
C1 5 1450 4 
D0 0 1500 4 
D1 5 1500 4 

 

 

 

 



Experimental Procedures 

 103

2.4.2 Investigation of Erbium Distribution 

Energy dispersive spectroscopy (EDS; Oxford Instruments. UK) was used to analyze 

the elemental composition of samples after coating the examining surface by carbon. 

For EDS measurements, cobalt was used as a standard for calibration of the analyzer. 

Acceleration voltage was chosen as 20 kV. The working distance was adjusted as 

10mm and all data were corrected using INCA software (Oxford Instruments). For 

EDS analyses of as-sintered Er-doped BT, the upper and lower surface of the disc 

and the cross section of the fracture surface were examined separately. Five 

measurements were taken on the upper and lower surface and each measurement 

covered an area approximately 300 µm × 300 µm. 12 measurements were taken 

throughout the cross section and each covered an area approximately 80 µm × 80 µm 

(seen in Figure 2.4.2). Furthermore, the cross-section of the as-sintered disc was 

mechanically polished to a 1 µm diamond finish before EDS line-scan and area 

mapping. In addition, an as-dried Er-doped BT sample (T1) at 20 mol.% erbium 

content was examined by EDS area mapping for comparison.  

 

Figure 2.4.2 Schematic positions for EDS analyses of as-sintered Er-doped BT: (a) 

upper and lower surfaces; (b) cross section. 

 

 

 



Experimental Procedures 

 104

2.4.3 Investigation of Yttrium Distribution in Y-doped BT via Droplet-doping 

Method 

For Y-doped BT disc, the green BT base was produced by dip-pen printing of 20 µL 

of concentrated suspension with 50 wt.% using synthesized BT powder. 

Y(NO3)3·6H2O (99% purity, Sigma-Aldrich) was used to prepare the yttrium dopant 

solution as detailed in section 2.4.1. Only 0.5 and 1 mol.% Y-doped BT samples were 

prepared respectively via droplet-doping method by printing the corresponding 

solution on the bottom flat surface of BT base as illustrated in Figure 2.4.1(b). The 

as-doped samples were dried first in ambient atmosphere overnight then in a 

desiccator for two days. The 0.5 mol.% Y-doped discs were rapidly heated to convert 

the nitrate donor salts to oxide before sintered at 1380 °C for 1 hour in N2 flow with 

a sintering/cooling rate as 5 °C /min.  

 

The microstructure of as-doped discs with 1 mol.% Y3+ content prior to sintering was 

investigated by SEM (FEI, InspectF, Hillsboro, OR, USA) by surveying their fracture 

surfaces. The microstructures of as-doped samples after rapidly and slowly pyrolyzed 

respectively to decompose the nitrate salt to oxide were also compared. The yttrium 

ion distribution in the as-sintered 0.5 mol.% Y-doped BT was examined by 

wavelength dispersive spectroscopy (WDS; Oxford Instruments. UK). The cross-

section of the dense disc was mechanically polished to a 1 µm diamond finish before 

subjected to WDS scan. In addition, the droplet-doping volume effect on dopant 

distribution across the porous body was investigated by WDS. For WDS 

measurements, cobalt was used as a standard for calibration of the analyzer. The 

accelerating voltage was set as 20 kV. The slit size for element Ba, Ti and O was 2.5 

mm with slit position as 0; while it was 0.63 mm for element Y with slit position as 
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15. Elements Ba, Ti and O were calibrated using a BaTiO3 standard compound 

(Micro-analysis Consultants Ltd, Cambridgeshire, U.K.) before the WDS 

measurements while element Y was calibrated using a Y2O3 standard compound 

(Micro-analysis Consultants Ltd, Cambridgeshire, U.K.). All data were corrected 

using INCA software using these calibrations. 

 

The contact angle of water on sintered barium titanate was measured using the 

goniometer method of Holman et. al.372 The as-sintered undoped BT disc was 

mechanically polished on one side to a 1 µm diamond finish. The polished side was 

then washed by deionised water and acetone separately. The processed disc was 

subsequently heated to 600 °C for 2 hours to remove any organic residue that might 

be carried over from the solvent wash. The contact angle measurement was 

performed optically using a digital CCD camera (model: STC-C83USB, Sentech, 

Texas, USA). A 3 µL droplet was deposited onto the surface of the polished side of 

BT disc using a micropipette. The contact angle was measured on each side of the 

droplet using MB-Ruler (Freeware, http://www.markus-bader.de/MB-Ruler/) and the 

two numbers were averaged. The results from three different droplets on a disc on a 

total of three discs were then averaged. The droplet spreading and imbibition on the 

green porous BT base was investigated by printing a single drop of water with a 

volume of around 3.6 µL on the flat surface of a BT base. A high-speed video camera 

(Kodak Z981) was used to capture the resultant images. 
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2.5 Heating Control Unit Construction and Furnace Calibration 

 

2.5.1. Temperature Control Unit  

A modified furnace (Type: HRF 7/22, Carbolite, Sheffield, England) (in Figure 2.5.1) 

for which the original temperature control module had been disengaged was used. A 

new furnace temperature control unit was assembled and photographed in Figure 

2.5.2. The temperature control box consists a temperature controller (model 3216, 

Eurotherm, Eurotherm ltd, UK), a solid state relay (SSR) (model D2475, Crydom, 

Crydom International ltd, UK) with two fast reaction fuses (Ferraz Shawmut, RS, 

UK). All components were enclosed in an aluminium box (25cm×25cm×10cm). A 

RS232 communication module was added to create a connection between this control 

unit with a computer. A K-type thermocouple with ceramic sheath (model 409-016, 

TC direct, UK) was used as a control thermocouple with its “hot junction” placed in 

the central position in furnace chamber.  

 

 

Figure 2.5.1 The Carbolite furnace 
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1  Temperature controller (Eurotherm) 6  Thermocouple connector 

2  Solid state relay (SSR) 7  Power input 

3  Fast reaction fuse (20 A) 8  Power output 

4  Fast reaction fuse (750 mA) 9  Power switch 

5  RS 232 connector (DB9)  

Figure 2.5.2 The temperature control box. 

 

2.5.2. Virtual Control Interface  

A real-time temperature control system was required to satisfy the need for 

controlling a heat treatment process which contained more than 50 heating segments 

within a single run. This exceeded the capacity of the self-defined programmer built 

in most of the existing products in the low-cost temperature controller range.  

 

1
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Figure 2.5.3 and Figure 2.5.4 show the flow chart and core modules of the virtual 

temperature control operation system respectively. The system was implemented on 

LabVIEW (Version 7.1, Laboratory Virtual Instrument Engineering Workbench) 

platform which can use a graphic programming protocol to create an interface 

between user and machine. The programme contains two phases: 

1. The Front Panel which is used for operations and to specify the inputs 

(controls) and outputs (indicators) of the program. 

2. The Block Diagram which defines the actual data flow between the inputs 

and outputs. It is the actual executable program which is constructed in G 

(graphical) language. 

It is better to construct functional modules as the forms of subVI in LabVIEW 

program to improve the running efficiency, clear the structure layout and allow easy 

updating facilities. Furthermore, each subVI can be encapsulated with a well-defined 

interface. A few subVI were created in terms of different sub-functional modules 

(seen appendix B). 

 

The temperature control interface consists of two tab sheets including the 

communication setup page and the temperature control panel respectively. The 

network between the temperature controller and a computer is created by setting up 

appropriate communication parameters (as seen in Figure 2.5.5(a)). The digital 

communication of the temperature controller (Eurotherm 3216) uses the Industry 

Standard Modbus RTU protocol based on the RS232 standards provided by the 

supplier. Modbus is an application layer messaging protocol for client/server 

communication between devices connected on a network. Every operated function in 

a device (client) that is intended to be communicated with the user (server) by using 
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Modbus protocol is given a unique address so-called Modbus address. Hence 

information can be passed between master and slave devices by reading and writing 

to those addresses registered on the slave devices. Some important Modbus addresses 

for the temperature controller (Eurotherm 3216) used here are listed in Table 2.5.1 

provided by its supplier. 

 

The main temperature control interface is shown in Figure 2.5.5(b). Two rockers 

were used as switches to activate alarm and heating processes. A toggle-switch was 

used to select the manual/program mode of the heating process. When manual mode 

is selected, an individual setpoint can be input in the box below the ‘mode select’ 

switch with the dwell timer changed by the pointer slide on the left of the window. If 

program mode is selected, applying setpoint which is determined by the preset 

heating program will be loaded and display in the thermometer indicator on the right 

of the panel. When heating is active, a real-time curve of the temperature as a 

function of time is recorded and displayed in the chart in the centre of the panel and 

the corresponding data can be acquired and saved as a file in text document format 

by pressing the “Record graph” button. In addition, the readings of CJC (cold 

junction compensation) temperature and furnace live temperature measured by the 

controlled thermocouple can be shown synchronously in the boxes above the chart. 

Meanwhile, a column indicator beside the chart can illustrate the output utilization 

rate of the heating capacity. Moreover, a key lock switch is introduced to freeze the 

operational buttons on the temperature controller in order to prevent changing 

parameters by incorrect entries particularly while a heating program in progress. The 

heating process can be manually terminated by pressing the “STOP” button on the 

top-left of window and the light beside the “STOP” button will turn red as long as the 
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heating program is stopped.  

 

The overall and partially magnified block diagrams of the temperature control system 

are shown in Figure 2.5.6. The communication and file creation modules are 

presented in Figure 2.5.6(b). Figure 2.5.6(c) shows the rest of the modules including 

PID control, keylock, furnace alarm, data input and output, error report, data 

displaying and store. 
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Figure 2.5.3 Flow chart of the operational temperature control and monitor system. 
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Figure 2.5.4 Modules of temperature control system. 

 

Table 2.5.1. Modbus addresses for Eurotherm 3216* 

Number Parameter Name 
Modbus 

Address

1 Working output 4 

2 Setpoint low limit 11 

3 Setpoint high limit 12 

4 Setpoint 1 24 

5 Home display (standard temperature and setpoint display) 106 

6 Instrument mode 199 

7 CJC temperature 215 

8 Alarm status 260 

9 Set controller mode 273 

10 Acknowledge alarm 274 

11 Heat control type 512 

12 Allow instrument to be locked via a key input 1104 

13 Ramp rate 1282 

14 Dwell duration  1280 

15 Input sensor type 12290 
* provides by supplier 
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Figure 2.5.5 A screenshot of the user interface of the temperature control program: (a) 

the communication setup page and (b) the temperature control page. 

 

 

(a)

(b)
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(c) 

(b) 

(a) 

Figure 2.5.6 Block Diagram of program of the temperature control system: (a) 

overall structure; (b) magnified area in dashed square in (a); (c) the rest of the 

structure in (a). 

 



Experimental Procedures 

 115

2.5.3 Furnace Calibration 

The heat treatment furnace is a non-linear, pure-delay system with great inertia, 

which makes its temperature hard to control. However, the heating process here 

requires the furnace temperature to rise rapidly and then hold to a specific 

temperature steadily and accurately. Therefore, the furnace heating parameters need 

to be calibrated; the actual furnace temperature need to be tracked and compared 

with the setpoint; as well as the temperature uniformity in both the sample’s body 

and in the furnace need to be investigated. In addition, there are three goals to be 

achieved: 

1. Temperature in furnace should be precisely controlled and monitored. 

2. Temperature should not severely fluctuate when it reaches the target setpoint. 

3. Period of “heat-up and hold” should be minimized to increase the efficiency 

of subsequent electrical measurements in a range of temperature. 

 

The temperatures in the heating furnace applying a preloaded heating programme 

were measured as a function of time. The modified furnace was subjected to tuning 

at 100 and 200 ºC respectively and its heating profiles before/after tuning were 

recorded and compared. Effects of different ramp rate (1 ºC/min or no preset rate) on 

the heating profile of the furnace were investigated. A dense disc-like barium titanate 

sample was placed on an alumina substrate and positioned in the central bottom 

surface in the furnace and a second K-type thermocouple with glass fibre insulation 

(model KA02, TME, UK) was introduced to measure the surface temperature of the 

BT sample while furnace heating. The surface temperature readings were obtained 

via a temperature-to-voltage (T/V) converter (model 80T-150U, Fluke, UK) and a 

bench-type multimeter (model 1705, TTi, UK) used as a thermocouple indicator for 
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which the tip of the thermocouple was firmly in contact with the BT disc’s top 

surface (as seen in Figure 2.5.7). Furthermore, the heating profiles of the sample’s 

surface while furnace heating at different ramp rates were measured and compared 

with those of the furnace. In addition, the temperature gradients between the furnace 

and the surface of the sample across the heating range of 20 to 250 ºC were also 

investigated.  

 

Before the furnace calibration, both of the thermocouples and their V/T converters 

were cross-examined by measuring the temperature in a water bath which the 

reference temperature was measured by a mercury thermometer. 

 

 

Figure 2.5.7 Schematic diagram of the furnace showing: (1) furnace chamber, (2) 

heating elements, (3) substrate base, (4) sample, (5) thermocouple and (6) control 

thermocouple.  
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2.6 Devising the Arrayed Testing Platform and the Auto-operational 

System 

 

2.6.1 Device for an Arrayed Testing Kit 

The initial objectives in this work were to construct a multi-channel circuit platform 

to accommodate the array of donor-doped BT samples and to measure electrical 

performance simultaneously and automatically of the sample array. 

 

A multi-channel measurement jig with a capacity of 16 samples for arrayed testing 

was designed and assembled for high throughput resistance-temperature 

measurement. The jig is mainly made of stainless steel as shown in Figure 2.6.1. 

Electroded samples were mounted between the base plate and copper heads and 

uniaxial loads were then applied on each sample tablet by the combined forces of 

gravity of copper heads and stainless steel springs. In order to avoid the short circuit 

across these parallel circuits during the testing, ceramic tubes were introduced 

between the copper wires and the stainless steel tubes which provided insulation 

layers. This arrayed platform was designed to be part of the complete high-

throughput parallel testing system as seen in Figure 2.6.2(b). A switch (16-channel 

relay card, model: PCI2307, Aitai, China) was built in the system by connecting with 

all parallel circuits. A small DC voltage was applied in the circuit from a triple output 

power supply (ISO-Tech IPS2250, RS Component Ltd, Northants, UK). The 

resistances of doped-BT tablets were measured by a digital multimeter (Model 1705, 

TTi, Huntingdon, England) via voltammetry method as the equivalent circuit 

diagram is illustrated in Figure 2.6.2(a). 
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Figure 2.6.1 Arrayed testing platform views: (a) schematic diagram; (b) assembled 

platform.  
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Figure 2.6.2 (a) Equivalent circuit of voltammetry arrayed testing. (b) Schematic 

layout of the automated high-throughput parallel electrical testing.  
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2.6.2 Operational Interface of the Parallel Electrical Measurements System 

The entire work of testing was controlled automatically by an in-house computing 

program for which the flow chart of this multi-channel parallel R/T (resistance/ 

temperature) measurement processing is presented in Figure 2.6.3. To obtain the R/T 

characteristics of a donor-doped BT sample, the values of voltage and current 

through the sample were measured respectively after the furnace reached thermal 

equilibrium at the targeted setpoint which was increasing from 20 to 300 ºC, at 5 °C 

intervals.  

 

Figure 2.6.4 displays the operational interface of parallel R-T testing. The capacity of 

this high-throughput testing system is sixteen channels which are constrained by the 

size of the arrayed platform and the capacity of the circuit switch (channels in the 

relay card) installed in the system. Sixteen indicators corresponding to the sequence 

of samples are arrayed in the centre of the operational panel (in Figure 2.6.4). The 

individual would turn red when the corresponding electric circuit was switched on by 

the relay card and the sample’s current and voltage results would be displayed 

respectively in the dialog boxes above those indicators. Three pilot lamps which 

were located at the right corner of the panel were used to monitor the origin of any 

likely errors from the reading of the dual measurement multimeter. Once the PTC 

testing is active by pressing the ON/OFF switch button on the top left of this panel 

page, an Excel document is created and all measured voltage-current data are placed 

in the corresponding cells in the Excel sheet. The dial control button on the left of the 

panel can be used to define the amount of parallel circuit paths (equivalent to the 

number of testing samples) in the system. Furthermore, the termination indicator 

light in the bottom of the panel is red when the testing stops. 
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The block diagram of the parallel R-T testing system is displayed in Figure 2.6.5. 

Parts A-D in Figure 2.6.5 are the main functions in this operational interface for 

which the details are shown in Figure 2.6.6-2.6.9. When the furnace starts to heat up 

(Figure 2.6.6), the assessment of thermal stability in the furnace works reiteratively 

in comparison with the target setpoint (Figure 2.6.7). When the furnace reaches 

thermal equilibrium at the target setpoint, the electrical measurement processing 

activates by opening and switching different electric circuits (Figure 2.6.9) as well as 

starting data acquisition and saving (Figure 2.6.8). In this high-throughput parallel 

electrical measurement, only one channel is selected each time thus only one sample 

is connected into the electric circuit (as seen in Figure 2.6.2). Furthermore, the values 

of current and voltage were measured 5 times in each measurement step in order to 

eliminate the influence of data fluctuation. Once all arrayed samples finish testing at 

a specific temperature, a new target setpoint is applied and the whole process is 

repeated until samples have been measured over the required temperature range.  
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Figure 2.6.3 Flow chart of the high-throughput parallel R(resistance)-T(temperature) 

measurement processing. 
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Figure 2.6.4 Parallel R-T measurement test panel. 
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Figure 2.6.5 Block diagram of the parallel R-T test operational system. 
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Figure 2.6.6 The magnified part (furnace heating) of the block diagram as part A in 

Figure 2.6.5. 

 

 
Figure 2.6.7 The magnified part (assessment of the reaching thermal equilibrium in 

furnace) of the block diagram as part B in Figure 2.6.5. 
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Figure 2.6.8 The magnified part (measuring data processing) of the block diagram as 

part C in Figure 2.6.5. 

 

 
Figure 2.6.9 The magnified part (channel switch) of the block diagram as part D in 

Figure 2.6.5. 
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2.6.3 Validity Check of the Parallel Testing System 

A commercial PTC thermistor (mode: B59985C0120A070, EPCOS, Munich, 

Germany) was tested via this parallel high-throughput electrical measurement system 

and the R/T results were compared with the reference curve provided by the supplier. 

  

The testing disc was loaded in the measurement jig after trimming off the metal wires 

and flattening both surfaces as displayed in Figure 2.6.1. Low-field resistance 

measurements were carried out in the temperature range of 20-300 °C, at 5 °C 

intervals, via a two-probe dc technique. The temperature of the furnace was 

controlled using a temperature/process controller (model 3216, Eurotherm, UK) and 

RS232 board interfaced to computer. A steady DC voltage (≈0.8V) was applied in the 

circuit from a triple output power supply (ISO-Tech IPS2250, RS Component Ltd, 

Northants, UK). The current passing through the circuit and the voltage applied on 

the testing sample were measured using a digital bi-channel multimeter (Model 1705, 

TTi, Huntingdon, England). Resistances at each temperature were calculated by 

averaging over five measurements. The whole testing system was controlled using an 

in-house LabVIEW® programme (Figure 2.6.4).  
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2.7 Fabrication and Characterization of La-doped BT Ceramics with 

PTCR Effect  

 

2.7.1 Preparation of La-doped BT PTCR Ceramics by Solid-state Reaction (SSR) 

Method 

La-doped BT samples were prepared by conventional solid-state reaction technology. 

Various types of BT including as-received BT powders from different suppliers and 

synthesized BT from the reaction of BaCO3 (99+% pure, Sigma-Aldrich Gmbh, 

Schnelldorf, Germany) and TiO2 (99+% pure, Tioxide Europe SA) were used as a 

starting material. Furthermore, TiO2 and SiO2 (99.9% pure, Sigma-Aldrich Gmbh, 

Schnelldorf, Germany) were also used as sintering aids. All reagents were dried for 2 

or 3 hours prior to weighing; the barium titanate and carbonate were dried at 150 °C 

to remove moisture, the titanium dioxide was heated at 800 °C to convert anatase to 

rutile phase266 and the lanthana (99.9% pure, Sigma-Aldrich Gmbh, Schnelldorf, 

Germany) was heating to 1000°C to decarbonate the La2(CO3)3 and quickly 

measured to avoid recarbonation.393 Samples with two different donor (La3+) 

concentrations (0.3 and 0.5 mol.%) were prepared for every batches. Appropriate 

amounts of those chemicals according to Table 2.7.1 were mixed in ethanol and ball 

milled with zirconia media in a plastic jar for 8 hours. The mixed powders were then 

dried and pulverized before calcined in air at 1100 °C for 4 hours. The calcined 

powder was reground and admixed with about 1.5 wt.% PVA as a binder for 30 

minutes with an agate mortar and pestle before being sieved (~350 mesh) to under 40 

µm. The powder obtained was then uniaxially pressed into discs with 5 mm diameter 

in a stainless-steel die at about 200 MPa. The pellets were sintered in air on coarse 

ZrO2 sugar bed in an alumina crucible at temperatures ranging from 1350 to 1450 °C 
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as listed in Table 2.6.1, with a heating rate of 5 °C/min. Pellets sintered at 1450 °C 

were rapidly cooled (cooling rate ≈1200 °C/h) and the rest of the samples were 

cooled at a rate of 5 °C/min. 

 

Table 2.7.1 La-doped BaTiO3 prepared using SSR route sintered in air. 

Sample 
ref. BaTiO3 

Ti/Ba 
(molar ratio)

SiO2 
/ mol.% 

La content 
/mol.% Sintering conditions 

A3 Ia 1.02 - 0.3 1350 °C in air for 2 h 
A5 I 1.02 - 0.5 1350 °C in air for 2 h 
B3 IIb 1.02 - 0.3 1400 °C in air for 2 h 
B5 II 1.02 - 0.5 1400 °C in air for 2 h 
C3 II 1.02 2.5 0.3 1400 °C in air for 2 h 
C5 II 1.02 2.5 0.5 1400 °C in air for 2 h 
D3 I 1.02 - 0.3 1450 °C in air for 9 h 
D5 I 1.02 - 0.5 1450 °C in air for 9 h 
E3 II 1.02 - 0.3 1450 °C in air for 9 h 
E5 II 1.02 - 0.5 1450 °C in air for 9 h 
F3 IIIc 1.01 2.5 0.3 1380 °C in air for 1 h 
F5 III 1.01 2.5 0.5 1380 °C in air for 1 h 

a BaTiO3 (as-received, 99.95% pure, Inframat Advanced Materials) after vibro-milling treatment 
b BaTiO3 (as-received, 99.8% pure, PI-KEM) 
c BaCO3 (99+% pure, Sigma-Aldrich Gmbh, Schnelldorf, Germany) + TiO2  

 

Samples in batches A, C and F were also sintered at 1380 °C for 1 h in a reducing 

atmosphere environment by providing consistent flow of N2 with a heating/cooling 

rate of 5 °C /min (Table 2.7.2). Among them, reoxidation effect was investigated by 

annealing the BT samples with 0.3 mol.% of La3+ in various batches in Table 2.7.2 at 

1100 °C for 4 hours after sintering. Sample NA3 was also reoxidized at 1000 °C for 

30 minutes for comparison.  

 

Aluminium was deposited by evaporative coating (High vacuum evaporator, model 

E306A, Edwards Ltd, Crawley, U.K.) on both the surfaces of all sintered SSR sample 

discs to form electrodes for electrical measurements.307 The room-temperature 
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resistance was measured by a digital multimeter (Model 1705, TTi, Huntingdon, 

England). The resistivity as a function of temperature from room temperature to 300 

°C was measured using a two-probe method via an in-house parallel high-throughput 

testing system as detailed in section 2.6.3. The microstructures of the La-doped BT 

samples in different batches via SSR route were analyzed using SEM by scanning its 

fracture surface. The electrical profiles of samples with and without annealing after 

reduced sintering were also compared. 

 

Table 2.7.2 La-doped BaTiO3 prepared using SSR route sintered in N2 flow. 

Sample 
ref. BaTiO3 

Ti/Ba 
(molar ratio)

SiO2 
/ mol.% 

La content 
/mol.% Sintering conditions 

NA3 I 1.02 - 0.3 1380 °C in N2 flow for 1 h 
NA5 I 1.02 - 0.5 1380 °C in N2 flow for 1 h 
NC3 II 1.02 2.5 0.3 1380 °C in N2 flow for 1 h 
NC5 II 1.02 2.5 0.5 1380 °C in N2 flow for 1 h 
NF3 III 1.01 2.5 0.3 1380 °C in N2 flow for 1 h 
NF5 III 1.01 2.5 0.5 1380 °C in N2 flow for 1 h 

 

2.7.2 Selection of Electrode Materials 

The electrode of a commercial PTC thermistor (mode: B59985C0120A070, EPCOS, 

Munich, Germany) was examined by SEM/EDS after polishing its cross section to a 

1 µm diamond finish. Various electrode materials were tested as presented in Table 

2.7.3 to form electrode layers on both sides of the PTC thermistor after eliminating 

the preceding electrode layer by grinding away using sandpaper. ‘Edwards’ high 

vacuum evaporator (Edwards Ltd., Crawley, U.K.) was used for evaporative coating 

of the electrode layers on samples surfaces. The details regarding the coating 

thickness and annealing parameters for different electrode materials are listed in 

Table 2.7.3. The heat treatments for the electrode layers after evaporative coating are 

required to enable the consolidation of the deposited electrode films and provide 
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strong electrodes with Ohmic contact. In-Ga amalgam (45:55 wt.%; In, ex BDH 

Chemicals, England and Ga, ex MCP group, Northants, England) was also used to 

form electrodes by rubbing it on opposite samples’ surfaces.  

 

Table 2.7.3 Selection of electrode materials 

No. Electrode 
materials Deposition method Thickness / 

nm Annealing 

1 Silver paste brushing -- 600 °C for 30 
min 

2 Al evaporative coating 120 180 °C for 30 
min 

3 Ni-Fe alloy 
(30:70 wt.%) evaporative coating 100 240 °C for 30 

min 
4 Cr/Au evaporative coating 30/120 -- 
5 In-Ga amalgam rubbing -- -- 

 

Room-temperature resistance of the thermistor with different electrodes was 

measured by a multimeter. The characteristics of R-T curves were also measured for 

the thermistor with Al and In-Ga electrodes respectively using the in-house test 

station with temperature control as detailed in chapter 2.6.3. Data were corrected for 

overall disc geometry so as to relate to a geometric factor of unity. 

 

2.7.3 Investigation of La-doped BT PTCR Materials Fabricated by High-

throughput (HT) Method 

The synthesized TiO2-excess non-stoichiometric BaTiO3 powder formed by solid 

state reaction using BaCO3 and TiO2 with molar ratio 1:1.01 was used as the starting 

material. The mixed powder was calcined at 1100°C for 2 hours in air after ball-

milling for 8 hours with ethanol. The calcined powder was easily dispersed by 

vigorously stirring in deionized water using magnetic stirrers. A suspension with 

solids content of 50 wt.% was prepared by adding 1.5 wt.% of dispersant (Darvan 
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821A) and 2 wt.% of thixotropic agent (Acrysol RM12W), as described in section 

2.3.1. Droplets of dispersed BT ink with a volume of 20 µL were printed on to 

silicone release paper by a digital transfer pipette. The as-printed samples were dried 

under ambient conditions and then heated in air at 600 °C for 2 hours to burn out all 

organic polymers. These green BT discs were used as base materials for subsequent 

doping.  

 

Lanthanum dopant was mixed into BT powders by infiltrating the lanthanum salt 

solution into the porous BT base by a droplet-doping technique, as detailed in section 

2.4. BT discs doped with a variety of La donor concentrations between 0.1 to 0.8 

mol.%, at 0.1 mol.% as a increment, were produced. Solutions of La(NO3)3·6H2O 

(99% purity, Sigma-Aldrich) were prepared with deionised water at various 

concentrations according to the required doping level. In preliminary work, the 

amounts of dopant solution with corresponding concentrations were printed on the 

flat surface of green BT base discs using a digital transfer pipette. As-doped samples 

were dried in an ambient atmosphere overnight then in a desiccator for two days. 

Then the samples were rapidly heated to convert the nitrate donor salts to oxide 

before sintered at 1380 °C for 1 hour in nitrogen with a heating/cooling rate of 5 °C 

/min. The reoxidation effect on PTCR properties of samples with 0.3 mol.% of La3+ 

content was investigated by annealing the as-sintered samples in air at 1100°C for 0.5, 

4 and 24 hours respectively.394 

  

Phase analysis of the as-sintered La-doped BT specimens via this HT method 

combined with the dip-pen printing for the base and droplet-doping for the dopant 

distribution was performed by X-ray diffraction (XRD): samples were crushed in an 
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agate mortar and measurements were conducted on a Siemens D5000 (Karlsruhe, 

Germany) using Cu Kα radiation (40 mA filament current, 45 kV accelerating 

voltage) and a step size of 0.0334° 2θ. The microstructures of the samples’ fracture 

surfaces were examined using SEM.  

 

Electrodes for electrical property measurements were prepared by rubbing a thin 

layer of In-Ga amalgam to provide Ohmic contacts at room temperature on both 

surfaces of as-sintered La-doped BaTiO3 samples via HT method. An in-house 

multiple sample measurement system was used to measure their r-T characteristics 

using a two-probe method in the temperature range of 20 to 300 °C as described in 

section 2.6.3. 
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2.8 Investigation of Er-Mn and Y-Mn Donor-acceptor-codoped BT 

PTCR Ceramics via HT Method  

The donor-acceptor-codoped BT PTCR libraries were prepared via a high-throughput 

fabrication method in which the BT base was made by dip-pen printing as detailed in 

section 2.6.3 and the dopant was doping into BT by the droplet-doping method as 

described in section 2.4. Y(NO3)3·6H2O(99% purity, Sigma-Aldrich), Er(NO3)3·5H2O 

(99.9% purity, Sigma-Aldrich) and Mn(NO3)2·4H2O (98% purity, Alfa-Aesar) were 

used to prepare dopant precursor solutions with deionised water at various 

concentrations according to the required doping level. Libraries of yttrium-

manganese-codoped and erbium-manganese-codoped BT in a donor doping range 

between 0.1 to 0.8 mol.%, at 0.1 mol.% as increment and with a fixed 0.02 mol.% 

Mn2+ content as an acceptor concentration were produced. As-doped samples were 

dried in ambient atmosphere overnight then in a desiccator for two days. Then the 

samples were rapidly heated to convert the nitrate dopant salts to oxide before 

sintered at 1380 °C for 1 h in nitrogen gas flow atmosphere with a heating/cooling 

rate as 5 °C/min. Samples were subsequently annealed in air at 1100 °C for 0.5 hours.  

 

The opposite sides of as-sintered samples were rubbed with a layer of In-Ga alloy to 

form Ohmic contact electrodes. The characteristics of r-T were measured using a 

two-probe method from room temperature up to 300 °C with an in-house multiple 

sample measurement system, as described in section 2.6.3. The microstructure of 0.5 

mol.% Y + 0.02 mol.% Mn doped BT disc was observed by SEM. Measurement was 

conducted after thermal etching the polished cross section for 20 minutes at 1250 °C. 
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3 Results and Discussion 

 

3.1 Ceramic Ink Preparation 

One of the main objectives for this project is to fabricate libraries of donor-doped 

BaTiO3-based positive temperature coefficient resistivity (PTCR) materials via a 

high-throughput method which is combined with the dip-pen printing and droplet-

doping techniques. BaTiO3 tablets used as a base material were produced by a dip-

pen printing method and this was followed by rapid droplet-doping by printing the 

dopant precursor solution on the surface of the porous base prepared previously. In 

order to satisfy the requirement of high-throughput screening for PTCR features, a 

disc-like or dome-shape of sample is required initially. As is the case for a drop-on-

demand ink-jet printer for printing green BaTiO3 discs, the quality of the ink 

dispersion is critical in determining not only the stabilization of the ink while 

printing but also the shape of the drying residue after printing. Therefore, the primary 

task was focused on finding the optimum dispersion of barium titanate powder.  

 

3.1.1 Characterization of Materials 

Both the as-received BT powder and as-dried powder from a diluted aqueous BT 

dispersion after the powder had been subjected to a fine milling processing contained 

powder agglomerates and aggregates as seen by SEM. The morphology and the size 

of the as-received BaTiO3 powder were revealed in Figure 3.1.1. The mean primary 

particle size is 320 nm with a standard deviation of 50 nm by measuring around 100 

individual particles using a line intercept method. Uniformity of size grading of the 

primary particles is acceptable; however, large numbers of big aggregates and 
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agglomerates were spotted as shown in Figure 3.1.1. The size of the agglomerates 

and aggregates of the as-received BaTiO3 powder varied in a broad range as observed 

by SEM study. Furthermore, the chemical analysis of the as-received BaTiO3 powder 

examined by energy dispersive X-ray spectroscopy (EDS) revealed that it may 

contain excess Ba content, as a result of which the average Ba/Ti ratio is 1.2. 

However, considering the peaks of characteristic EDS energies for elements Ba (Lα 

= 4.4663) and Ti (Kα = 4.5089) are strongly overlapping, the quantitative 

measurement by EDS cannot be considered to be accurate enough and so other 

characterization techniques such as X-ray photoelectron spectroscopy (XPS) or X-

ray fluorescence (XRF) for compositional characterization might be needed. 

Figure 3.1.1 SEM image of the as-received BaTiO3 powder. Arrows indicate the 

particle aggregates. 

 

It was found that the unbroken agglomerates which can cause severe heterogeneous 
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particles size distribution in a ceramic dispersion can not only significantly influence 

the stability of inks prepared for ink-jet printing but also cause a gradient structure 

during ink settlement after printing.395 In order to disperse the aggregates and 

agglomerates whose strength is dependent upon the mechanism of interparticle 

bonding, different milling processes were used and their outcomes were also 

compared. As-received BaTiO3 powder was prepared with distilled water by Dyno 

Milling after thirteen passes and by Vibro-milling for 9 hours respectively. Both 

slurries separately prepared by Dyno-milling and Vibro-milling were dried in an 

oven. The morphologies of the as-dried BaTiO3 powders from the diluted 

suspensions after different milling processes were examined by SEM again. To 

obtain an ideal sample for SEM, much diluted suspension (<0.01 vol.%) was 

prepared in order to reduce the possibility of particle contacts; furthermore, 60 

second ultrasonication was used to break the weak agglomerates which might reform 

after milling. If these conditions are not achieved, unbroken and reformed 

agglomerates may not be distinguishable under the microscope. 

 

It was observed that most of the agglomerates were broken by the physical external 

forces generating from milling but the average size of the remaining particles was 

still in the micrometer scale rather than a few hundred nanometre as is the ultimate 

primary particle size scale. The size of BaTiO3 particles after Dyno-milling varied up 

to 10 µm as displayed in Figure 3.1.2 while the size of BaTiO3 particles reground by 

the Vibro-mill was reasonably even with the diameter around 1 µm as shown in 

Figure 3.1.3. Therefore, the Dyno-milling is not powerful enough to be employed 

here for regrinding the as-received BaTiO3 powder; the Vibro-milling processing is 

preferable.  
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Figure 3.1.2 (a) SEM image of the agglomerates remaining in BaTiO3 ink after 

Dyno-milling, (b) magnified image for the agglomerate arrowed in (a). 

 

 

Figure 3.1.3 SEM image of the particle distribution in BT ink after Vibro-milling. 

(b) 

(a) 
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The results of BET specific surface area of various BaTiO3 powders are shown in 

Table 3.1.1. The mean value of BET for as-received BaTiO3 powder was 3.3 m2/g; 

for BaTiO3 powders after Dyno-milling and Vibro-milling were 7.2 m2/g and 9.6 

m2/g respectively. According to the BET results, the particle size of as-received BT 

powder was significantly reduced after milling; however, the effective particle size 

scale was still under the submicron level rather than the level of nanometres 

according to the BET values and SEM images (Figure 3.1.2-3). Further investigation 

on particle size distributions in dispersions was thus needed. 

 

Table 3.1.1. The results of BET specific surface area. 

Powder 
No. Origin BET 

Specific Surface Area /m2g-1 
Correlation 
Coefficient 

1 As-received BaTiO3 powder 3.3±0.2 9.9980 
2 After Dyno-milling 7.2±0.1 9.9992 
3 After Vibro-milling 9.6±0.1 9.9994 

 

The diluted suspensions using BaTiO3 powders after Dyno-milling and Vibro-milling 

respectively were examined by the Zetasizer. The volume-distribution particle size 

results of BT powder after different milling processes are illustrated in Figure 3.1.4. 

Both particle size distributions were bimodal, indicating there were agglomerates in 

processed BT powders (also seen in SEM image in Figure 3.1.2-3). However, the 

powder after Vibro-milling showed smaller average size and narrower size 

distribution (also proved in SEM and BET results above). The particle size values 

corresponding to the main peaks in Figure 3.1.4 are around 380 nm for Vibro-milled 

BT powder and 600 nm for Dyno-milled powder. Whereas the values of the Z-

average particle size of the BT powders after Dyno-milling and Vibro-milling were 

707 nm and 510 nm respectively. The Z-average diameter is the mean diameter 

calculated from the Brownian motion of the particles as measured by the intensity of 
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scattered light. Those measurements are very sensitive to the presence of 

agglomerates, flocculates and large particles in suspension. Moreover, the values of 

the polydispersity index (PDI) for powders after Dyno-milling and Vibro-milling 

were 0.24 and 0.21 respectively. Low PDI value (<0.1) represents relatively narrow 

size distribution; however, large agglomerates or flocculates dominate the 

measurement when PDI exceeds 0.5. Both the PDI results of powders after different 

millings are close. The results above suggested that the Vibro mill is an effective 

milling processing to break the agglomerates and aggregates in the as-received 

powder. In conclusion, BaTiO3 ceramic powder after Vibro-milling was chosen for 

further experiments due to their finer particle size characteristics.  

 

Table 3.1.2. Particle size distribution of BT powders after various milling processing. 

No. Milling process Z-average size PDI index 

1 Dyno-mill 707 nm 0.24 

2 Vibro-mill 510 nm 0.21 
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Figure 3.1.4 Particle size distribution by volume of BT powders after Dyno-milling 

and Vibro-milling respectively. 
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3.1.2 Assessment of Dispersion of BaTiO3 Ceramic Powder 

In this work, preparing relatively stabilized and long-standing ceramic ink is 

important because of the desire of high-throughput fabrication of the green sample 

by ink-jet printing method. In ceramic ink-jet printing, the nature of the ink 

especially its stabilization against sedimentation determines the quality of the 

products since the ink is left in a reservoir undisturbed for a relatively long time 

before being ejected. In a combinatorial printer, the importance of stabilized ink is 

much greater because inaccuracy in the composition of the mixtures may occur due 

to the concentration gradient in the ink caused by the different sedimentation speed 

of agglomerates. Badly dispersed ink also leads to loosely packed flocs after drying 

and low pre-fired density; thereafter, affecting the sintered quality. Moreover, it was 

observed that strongly flocculated suspensions resulted in inhomogeneous structure 

of the dried residue while colloidally stable and weakly flocculated suspensions can 

lead to relatively homogeneous green body microstructure.396 Hence to prepare well 

dispersed ink is an essential requirement here. 

 

Barium titanate is a major electroceramic material for many applications. BaTiO3 

dispersion in either aqueous or non-aqueous systems has been investigated for many 

years.396-404 The dispersibility of BaTiO3 particles is achieved by selecting fine 

grades of powder and compatible dispersant. Water as a liquid carrier was chosen as 

it is more environmentally acceptable and low residues are left during the burn-out 

stage which can impact the PTCR properties of the donor-doped BaTiO3 samples.  

 

EFKA and Solsperse series are the two most common series of dispersants in 

industrial applications. In the shortlist, EFKA 4540, EFKA 4580, EFKA 5071, 
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EFKA5010, EFKA 5207, EFKA 6220, EFKA6230, Solsperse 27000, Solsperse 

44000, Solsperse 47000, Darvan 821A and Dispex A40 were chosen for the trial as 

they are all water based dispersants. The concentration of dispersant normally used is 

based on either the weight or specific surface area of the ceramic powder from the 

suppliers’ recommendation. 

 

 
Figure 3.1.5 Schematic diagram shows the high energy zone at the tip of the 

ultrasonic probe during dispersion of ceramic powders. 

 

All the inks were subjected to ultrasonic treatment which is a very efficient tool for 

preparation of ceramic dispersions particularly for ink-jet printing.405 The ultrasonic 

energy is able to not only break down the agglomerates but also stir the suspension. 

However, the particles are only effectively subjected to ultrasonic treatment when 

they are adjacent to the ultrasonic probe tip with a diameter of ~8 mm which in the 
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region of which the energy is propagating into the dispersion. A schematic diagram 

of the ultrasonic probe energy distribution in ceramic suspension is displayed in 

Figure 3.1.5. The ultrasonic energy has to be sufficient to overcome the bond 

strength of the agglomerates in order to break them. The working time must also be 

long enough to eliminate the chance of agglomerates escaping from the high 

ultrasonic energy field. 

 

When the sedimentation of the powder in suspension started, an interface as a cloudy 

region between a clear water layer and sedimentation layer appeared. Thus, the 

criterion for selecting dispersants achieving the best stability is the combination of 

slow sedimentation and late appearance of supernatant fluid. Since the solid loading 

of barium titanate was very low (0.5 vol.%) and there is no substantial contrast of the 

colour between the sedimentation of BT with the cloudy region of its own suspension 

(both in light-gray colour), the sedimentation speed is very difficult to measure 

accurately. The height of the cloudy region is then defined as the distance between 

the dispersion/supernatant interface and the bottom of the tube, including the height 

of any sedimentation. The cloudy volume fractions of all dispersions during these 

sedimentation tests were recorded and are displayed in Figures 3.1.6 and 3.1.7. 

Furthermore, the BT powder reground by Vibro-milling with no addition of 

dispersant was also examined and the corresponding results are shown in Figure 

3.1.6. 

 

The concentration of all the testing dispersants was 3% based on the weight of BT 

ceramic powder. EFKA 5010, EFKA 6220, Solsperse 27000 were eliminated from 

the candidate list of dispersants because of rapid formation of supernatant in the ink. 
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The Vibro-milled ink without dispersant showed quite prolonged stabilization 

compared with those with dispersants. This proved that the ultrasonic treatment is 

effective for breaking the agglomerates which helps to stabilize the ink. Furthermore, 

because the zeta potential of BaTiO3 powder in the pH ≥ 7.0 region is high at 40 

mV,406 there is already moderate electrostatic repulsion between particles. However, 

the repulsion may not be great enough to stabilize the dispersion without dispersant 

at increasing solid contents. EFKA 4580, EFKA 5071, Solsperse 44000, Solsperse 

47000, Dispex A40 were not considered because they are not as good as EFKA 4540 

and Darvan 821A and their performances are not even better than that of the ink with 

no dispersant addition. Based on this discussion, both Darvan 821A containing 

ammonium polyacrylate polymer and EFKA 4540 containing modified polyacrylate 

polymer showed the best capability to stabilize the suspension of barium titanate 

among all dispersant candidates. 

 

Polyacrylate dispersant which is known to stabilize slurries by electrosteric means 

and polyelectrolyte-bridging flocculation407 shows high performance in applications 

involving BaTiO3 aqueous suspension. However, for steric type stabilization, 

insufficient dispersant with only partial powder surface coverage cannot provide a 

full barrier to prevent flocculation; on the other hand, too much dispersant tends to 

entangle and increase viscosity. Seeking an optimum amount of dispersant was 

therefore the goal of the second test round. Various concentrations of EFKA 4540 

and Darvan 821A were added to barium titanate suspension using the same 

procedure. Supernatants appeared after 4 hours for dispersions having 0.03 vol.% 

EFKA 4540 and 0.02 vol.% Darvan 821A dispersant (both equivalent to 1 wt.% of 

ceramic powder). However, when increasing the concentration of both the 
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dispersants in suspensions up to 4 wt.% of BT powder, there was no significant effect 

on the stabilization of inks as shown in Figures 3.1.8 and 3.1.9. Furthermore, the 

sedimentation rate slightly decreased as the concentration of dispersant increased and 

reached a minimum and then slightly increased again when the concentration of 

dispersant exceeded 3 wt.% of solid loading. This is presumably caused by complex 

flocculation mechanisms generated by high molecular weight polymer chains 

surrounding the particles. The optimum amount of dispersant in this case was chosen 

as 3 wt.% of BT powder which was also around 3 mg/m2 related to the BT powder 

with a specific surface area of 9.6 m2/g based on the BET result. The dispersion with 

Darvan 821A showed more stabilization than that of EFKA 4540 from the results in 

Figures 3.1.8 and 3.1.9. The temperature of thermal decomposition by 

depolymerization of Darvan 821A is below 400 ºC by performing a burnout test, 

which is allowing clean burnout with little residual carbon. Therefore, Darvan 821A 

at 0.06 vol.% (3 wt.% of ceramic powder) was selected as the best dispersant for use 

in subsequent barium titanate ink preparation. 
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Figure 3.1.6 Cloudy volume fraction of test samples of BaTiO3 powder dispersed 

using ultrasonication and using EFKA series dispersants. They are compared with a 

Vibro-milled suspension with no dispersant added. 
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Figure 3.1.7 Cloudy volume fraction of test samples of BaTiO3 powder dispersed 

using ultrasonication and using non EFKA type dispersants. 
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Figure 3.1.8 Stability of BaTiO3 suspensions with different concentrations of EFKA 

4540. 
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Figure 3.1.9 Stability of BaTiO3 suspensions with different concentrations of Darvan 

821A. 
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3.2 Control of Shape of Droplet Drying Pattern 

Drying is a key step in colloidal processes that have been used to produce ceramic 

films and coatings. In the employment of ink-jet printing to fabricate the thick film 

ceramic combinatorial libraries, drying control is a more challenging topic because it 

not only can affect the induction of surface defects such as cracks, voids and pinholes 

etc93; but also alter the figure of the drying residue in a printed sample. Various 

figures of drying pattern after drying the printed sessile droplet of ceramic ink have 

been reported. They form as doughnut shape,158 well plate,408 arched pellet409 and 

dome-shape disc176 etc. In this project, the distribution of dopant salt via subsequent 

infiltration doping is dependent upon the homogeneity of the structure of the green 

base; furthermore, the structure of the sample can also determine the accuracy of 

subsequent electrical characterization for the purpose of screening the PTCR effect 

of as-sintered samples. Therefore, disc-like or dome-shaped structures of the green 

body of ceramic samples with high green density are required.  

 

3.2.1 Drying-induced Forming Agent Selection 

Organic binder which is so-called a ‘film-forming’ additive is necessary for use with 

ceramic materials to assure sample integrity after drying and to attain adequate levels 

of handling strength. Polyvinyl alcohol (PVA) and methyl cellulose (MC) are widely 

used as the aqueous-based binder in ceramic casting processing. Hence they were 

tested to investigate the effect on drying residue of BT dispersion droplet by dip-pen 

printing.  

 

It was reported that up to 10 wt.% of the binder based on ceramic powder is used in 

tape casting.410 Various concentrations of binder were tested here to investigate the 
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effect on controlling the drying pattern. Figure 3.2.1 shows the morphology of an as-

dried BT green disc from a printed droplet (ink 1) with a volume of 30 µL. This 

tablet was examined by a binocular microscope. There was a big crater in the centre 

of the sample and a peripheral ring. The configurations of the drying patterns with 

varying compositions are also described in Table 3.2.1.  

 

 

Figure 3.2.1 Binocular microscope image of the as-dried BaTiO3 tablet sample. 

 

The drying patterns of the printed droplets with different forming agents were 

various. Inks with PVA had generally smooth surface but a shallow sink in the centre. 

The depth of the sink was increased with the content of PVA in the ink. Inks with 

MC had macroscopic cracks on the top as-dried surface and deep crater in the middle; 

furthermore, when increasing the content of MC, a ‘well plate’ shape which having a 

through hole in the centre was formed. BT dispersions using Acrysol RM12W 

generally showed more homogeneous structure than those using other binders. There 

were relatively flat disc-like drying patterns formed by samples with Acrysol 

RM12W. 
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Table 3.2.1. The configurations of the drying residue of the ink with varying 

compositions. 

Ink 
No. 

 
Forming agent 

 

Agent 
concentrationa Configuration of the as-dried sample 

1 PVA 2 wt.% Big and shallow sink 

2 PVA 4 wt.% Big and shallow sink 

3 PVA 6 wt.% Big and deep sink 

4 PVA 8 wt.% Big and deep sink 

5 Methyl cellulose 2 wt.% Deep crater and macroscopic cracks 

6 Methyl cellulose 3 wt.% Well plate shape 

7 Acrysol RM12W 2 wt.% Shallow crater 

8 Acrysol RM12W 3 wt.% Insignificant crater 

9 Acrysol RM12W 4 wt.% Insignificant crater 
a In the weight of BaTiO3 powder 

 

Inks using PVA (2 wt.% based on BaTiO3 powder) and Acrysol RM12W (3 wt.% 

based on BaTiO3 powder) were then printed in various volumes and the 

configurations of their drying residues are described in Table 3.2.2. The drying 

pattern of the BT ink with PVA was independent upon the printing volume based on 

the observation. However, for the ink contained Acrysol RM12W, there was a 

deteriorative effect on the surface quality after drying when increasing the printed 

volume of the ink. Macroscopic cracks were formed on the top surface of the dried 

ink with Acrysol RM12W from the printed volume larger than 100 µL. 
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Table 3.2.2. The configurations of the drying residue of the ink with different volume. 

Ink 
No. 

Ink volume 
/ µL 

 
Forming agent 

 
Configuration of the as-dried sample 

10 50 PVA Big crater 

11 100 PVA Big crater 

12 200 PVA Big crater 

13 50 Acrysol RM12W Little crater 

14 100 Acrysol RM12W Small crater and macroscopic cracks 

15 200 Acrysol RM12W Small crater and centre cracking 

 

As the drying proceeds, in-plane tensile stresses develop within the printed droplet 

because of the constrained volume shrinkage. The solid network of the BaTiO3 

droplet is subjected to two forces: one is the compressive stress contributed by the 

capillary pressure induced from pore water evaporation to contract the body, while 

the other is the tensile stress generated by the substrate to resist the in-plane 

shrinkage due to the self pinning effect.161 Hence, the onset of cracking along with 

other surface defects such as curling and warping caused by the volume shrinkage 

during drying are dependent upon the magnitude of the misfit in-plane strain and the 

time at which it occurs. The possible solutions to cracking are reducing solvent 

content (thereby reducing volumetric shrinkage), increasing polymer binder content 

(thereby increasing matrix strength) and slowing the drying rate to allow more 

solvent to leave the matrix prior to gelation which can reduce the heterogeneous 

volumetric shrinkage during drying. Therefore, a covered container with saturated 

moisture was used to store the printed droplets contained Acrysol RM12W during 

drying. In addition, the crater-structure of drying residue is due to lateral particle 

motion while drying for which the details are discussed in the next section. 

 

BaTiO3 dispersions containing different solid contents using Acrysol RM12W as a 
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thixotropic agent were dip-pen printed in a volume of 100 µL on silicone release 

paper. The photographs of their corresponding drying residue are presented in Figure 

3.2.2. The function of the thixotropic agent was to change the flow processes 

occurring during droplet drying to inhibit the radial flow to the periphery of the 

droplet which causes a bowl shape to result after drying.411 It was observed that the 

higher the solid content, the less sagging behaviour of the droplet drying pattern. The 

drying residue of ink with solid content of 40 wt.% had a crater in the centre 

compared with the wavelike drained surface of as-dried disc from the ink contained 

45 wt.% of BaTiO3. A surface with minor wrinkling was observed for discs drying 

from the ink with solid content of 50 wt.%. The green sample having a top flat 

surface as a drying pattern was obtained when increasing the ink solid content above 

50 wt.%. Ink contained 55 wt.% BT powder presented the best surface quality and 

homogeneous structure as seen in Figure 3.2.2(h). However, when the solid content 

was increased to 60 wt.% in dispersion, many pinholes and orange peel features 

appeared on the surface. Therefore, BT dispersion with solid content around 55 wt.% 

using Acrysol RM12W and Darvan 821A as polymer additive as ink 18 in Table 

2.2.4 was used for the fabrication of porous BaTiO3 base disc using the dip-pen 

printing method in subsequent experiments. 
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                                (a)                                                                               (b) 

  
                                (c)                                                                               (d) 

  
                                       (e)                                                                               (f) 

  
                                 (g)                                                                               (h) 

1mm

1mm

1mm

1mm
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                                       (i)                                                                               (j) 

Figure 3.2.2 Photograph of as-dried BaTiO3 droplet with different solid contents of (a) 

40 wt.%, (c) 45 wt.%, (e) 50 wt.%, (g) 55 wt.% and (i) 60 wt.%. The details of their 

corresponding magnified top surfaces are displayed respectively in image (b), (d), (f), 

(h) and (j).  

 

3.2.2 Discussion 

Similar “doughnut” shapes of drying residue from colloidal ceramic film with PVA 

or MC as forming agent were reported in previously studies.153, 412, 413 Chiu414 

observed that three regions (supersaturated, saturated and semi-dry) can be identified 

during drying of ceramic dispersion, as illustrated schematically in Figure 3.2.3. The 

supersaturated region is defined as Φ < Φsat, where the volume fraction of solids (Φ) 

in the supersaturated region is lower than that at 100% saturation area. At this stage, 

the particles network has either not formed or yet been fully consolidated. The 

saturated region is defined as Φ = Φsat. In this case, consolidation of the particle 

network ceases and the remaining pore channels are filled with solvent. As drying 

proceeded, the semi-dry region (>100% saturation) emerged, which is accompanied 

by the retreat of the liquid/vapour meniscus into the body. In this case, the largest 

pores connected to the film surface drained preferentially as liquid is drawn to 

smaller pores of higher suction potential. For a printed sessile drop here, which 

1mm
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contains a circular-arc edge as displayed in Figure 3.2.3, the BT particles become 

semi-dry at the peripheral ring while the disc centre is still in a supersaturated state 

during drying because of the differential evaporation rate.415 Lateral flow is then 

induced from the central region to the peripheral edge caused by the capillary force 

during evaporation; therefore, free particles entrained in the liquid phase migrate to 

and, ultimately, deposit at the edge leading to a non-uniformity in the spatial 

distribution of colloidal particles after drying. 

 

Figure 3.2.3. Schematic illustration of a drying disc outlining regions of varying 

saturation: (a) cross-section and (b) top view.412 

 

There are four types of particle motion in a colloidal droplet sample during drying. 

The first is sedimentation as particles aggregate on the bottom of the droplet due to 

the gravity effect. The second is Brownian motion which is a random movement of 

particles suspended in a colloidal fluid. It is caused by the bombardment of solvent 

molecules on particles and the effect of their own electromagnetic forces applied on 

each other. The third is lateral flow of liquid containing particles to the periphery of 

the droplet driven by capillary force to produce “doughnut” shape.158, 175, 408 The 

fourth is recirculation flow that takes place in the supersaturated region driven by 

Marangoni flow.168, 169 
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According to the Stokes-Einstein equation,416 the diffusion coefficient of Brownian 

motion of spherical particles, D, can be defined as  

a
Tk

D aB

πη6
=                                                               Equation 3.2.1 

where kB is the Boltzmann constant (J·K-1), Ta is the absolute temperature (K), η is 

the dynamic viscosity (Pa·s) and a is the particle radius (m). Moreover, with the 

notification that the particle motion in x, y and z direction is independent, the mean 

square route of a particle migration by random Brownian diffusion during a time t 

can be defined as417 

Dtrrr zyx === 222
                                            Equation 3.2.2 

 

The slow sedimentation of suspensions of solid particles in a fluid is a complex 

phenomenon. The sedimentation velocity can be estimated by a simplified model 

which the gravitational potential energy gained as the particle moving up or down 

relative to the background suspension medium is equivalent to the energy lost to 

viscous dissipation caused by the particle motion due to shear.418 Therefore, in a 

steady state system, the rate of energy gain, vVgdtdEg ρ∆= , equals with the rate of 

energy dissipation, 26 vadtdE πηη = , where ∆ρ is the density difference between 

the particles and solvent, v  is the average velocity of particle, V is the particle 

volume and g is the gravitational acceleration. This leads to: 

a
Vgv

πη
ρ

6
∆

=                                                                Equation 3.2.3 

Assuming the barium titanate particle is a sphere shape, hence the volume V = 4πa3/3 

and the velocity v  in Equation 3.2.3 can be rearranged: 
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η
ρ
9

2 2gav ∆
=                                                             Equation 3.2.4 

Given the radius of BT particle is 0.25 µm (from Z-average size value in Table 3.1.2), 

the density of BT powder is 6020 kg·m-3, T is around 300 K, dynamic viscosity of a 

dispersion containing 45 wt.% BT powder is 60 mPa·s410, 419 and the height (rz) of a 

30 µL droplet is ≈2 mm; the value of diffusion coefficient D in this case is 1.46×10-12 

m2/s (calculated from Equation 3.2.1). Thus the time scale for a BT particle travelling 

from the top of the droplet to the bottom substrate by Brownian motion only is to 

take about 760 hours (calculated from Equation 3.2.2). However, the average 

velocity for particle sedimentation in this dispersion is around 1.2×10-8 m/s 

(Equation 3.2.4); hence it would allow 47 hours to let a particle travel from the top 

region of suspension to the bottom under the gravity effect. Therefore, it is confirmed 

that the thermally induced Brownian motion is negligible compared to gravitational 

settling in this case. Furthermore, noting that when the particle size in dispersion 

doubles (which is readily occurred due to the agglomerate reforming), the time scale 

related to Brownian motion would be double whereas the sedimentation settling 

would last only a quarter according to the equations above, which shows more 

insignificancy of the Brownian effect of particle motion on the drying pattern.  

 

The structure of the drying residue of ceramic suspensions results from the particle 

migration during drying which is driven by multiple forces such as gravity, capillary 

stresses and Marrangoni stresses. The recirculating flow in a sessile droplet can be 

active when Marrangoni stresses are created by establishing a surface tension 

gradient during drying. The magnitude of such Marrangoni flow is determined by the 

Marangoni number:  
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D
LM

η
γ∆

=                                                                Equation 3.2.5 

where ∆γ is the surface tension difference, L is the length scale involved (2 mm), η is 

the viscosity and D is the Stokes-Einstein diffusion coefficient. Using the values 

given above for L, η and D, M is of the order 1010∆γ. It shows that even a very small 

surface tension gradient will trigger a Marangoni flow. Surface tension gradient in an 

aqueous sessile droplet during drying is established caused by the temperature 

gradient throughout the droplet due to differential evaporation rate. According to 

Eötvös rule:420 

)(32 TTkV c −=γ                                                 Equation 3.2.6 

where γ is the surface tension, V is the molar volume of the liquid given by the molar 

mass M divided by the density ρ (V = M/ρ), k is the Eötvös constant with a value of 

2.1 ×10−7 (JK-1mol −2/3) for all liquid and Tc is the critical temperature. Hence,  

T
V

k
∆=∆ 32γ                                                           Equation 3.2.7 

where ∆T is the temperature gradient within an aqueous droplet during evaporative 

drying and depends on the contact angle and external environment.168 Therefore, 

even a very tiny temperature difference such as 0.001K which is very likely to occur 

across the drying droplet surface can generate a significant Marangoni effect with 

very big Marangoni number (M≈3×103) far beyond a critical value Mc which is 

typically less than 100 and recirculating flow can be propelled.421  

 

However, the Marangoni flow is readily suppressed by a very little amount of 

surfactant particularly in aqueous dispersion.168 Thus lateral flow from centre to the 

periphery of droplet due to capillary forces is dominated during drying. This can well 

explain the phenomenon that nonuniform structures of drying residues particularly 
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from well-dispersed ceramic dispersion are formed.408  

 

Various methods attempting to obtain dome-like patterns after drying from ceramic 

suspension have been tested by many workers. Wang and Evans422 used a porous 

substrate, Fair and Lange423 added electrolyte salt, Wang and Evans424 used excess 

dispersant in order to enhance the speed of particle sedimentation by inducing extra 

flocculation leading to the similar outcome which had a spherical geometry and 

uniform structure after droplet drying. However its low green density does not sound 

ideal for the further doping and sintering processes. Park176 and Schubert175 used bi-

solvent systems which have different surface tension values in different solvents and 

successfully obtained a dome-like structure pattern. However, this is not applicable 

to all ceramic powders, and besides, the carbon residues after polymer burn-out 

treatment generated from the non-aqueous solvent such as formamide among them 

may deteriorate the electrical properties of final ceramic products. Moreover, Haw174 

found that a homogeneous structure of the final drying residue can be achieved when 

the whole drying period stayed in the gelation region of the sessile droplet. The 

mobility of free particles in suspension is strongly restricted by a highly viscous gel 

network and hence impedes the capillary-driven structural rearrangement during 

drying. According to this theory, a ceramic dispersion which has high viscosity or 

promptly turns to gel state can be used to retain a homogeneous structure after drying 

without compromising the stability of ink by adding flocculation accelerators or 

manoeuvring the Marrangoni flow by adding foreign solvent to purposely create 

surface tension gradients. However, the printability feature of the viscous ink must be 

taken into account. Hence, a polymer like Acrysol RM12W which also acts as a 

thixotropy agent is an ideal choice here. 
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3.2.3 Characterization of Green BaTiO3 Disc after Polymer-burnout 

The densities of the green BT discs drying from the printed droplet of ink 18 in 

different volumes were measured. The corresponding porosity results are presented 

in Table 3.2.3. It was found that the porosity of the green BT base slightly increased 

with the increase of the printed droplet’s volume and it had an average value of 55%. 

The porosity results showed minor dependence on the printed ink volume whereas 

the standard deviation increased with the printed droplet’s volumes. There is an 

important source of inaccuracy in performing this buoyancy method: the external 

water-resistant wax film. When there was wax infiltrated into some pores in the BT 

tablet body, the calculated density would be higher than the actual value leading to an 

underestimated porosity value. On the other hand, if the wax incompleted covered 

the entire outer surface of porous base, water may be sucked in to fill pores also 

leading to a higher-than-actual value of measured density; in other words, 

underestimating the porosity in the system. Noting that such buoyancy method is 

only ideal for measuring the density of solid dense sample, other technique such as 

helium pycnometry may be needed for further investigation. 

 

Table 3.2.3. The porosity of green BT samples by buoyancy method 

Sample ref. Ink 
No. 

Ink volume 
/µL 

Standard 
Deviation Pmean 

S1 18 50 2% 54% 

S2 18 100 4% 55% 

S3 18 200 4% 57% 

 

The pore size distribution of green BT samples (S1 in Table 3.2.3) was determined 

by mercury intrusion porosimetry. The total open porosity of the sample was 

obtained from the cumulative porosity curve corresponds to the point of highest 
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pressure and the smallest equivalent pore size. The total Hg intrusion volume density 

(Vd) within green BT sample was 0.17 mL/g (as seen in Figure 3.2.4) which is 

approximately equivalent to the open pore volume density within the tested samples. 

The porosity can be calculated from the equation 3.2.8. Thus the average open pores 

volume ratio (Vpores) is 51%.  

%100
/1

%100
/

% ×
+

=×
+

=
thd

d

thd

d
pores V

V
mmV

mV
V

ρρ
    Equation 3.2.8 

where m is the weight of the tested samples. The value of the porosity examined by 

Hg porosimetry is close to the results from the buoyancy method. Hence the porosity 

of the BT base dried from ink 18 as 55% was accepted for further studies. Figure 

3.2.4 also displays the pore size distribution of the green BT base examined by 

mercury intrusion porosimetry. The critical pores size corresponds to the steepest 

slope of the cumulative porosity curve(B) shown in Figure 3.2.4, in which the 

corresponding logarithm differential intrusion curve(A) versus the pore diameters 

was replotted in Figure 3.2.4. There is a bimodal distribution of pore sizes in the 

porous system. The first is at ~ 0.12 µm determined by the main peak in curve A and 

corresponds to inter-cluster pore between small (1 µm) clusters of particles. A second 

very small peak can just be seen at ~60 µm, which from SEM observation can be 

attributed to near-spherical voids possibly originating from bubbles in the ink. 

Moreover, the pores with diameter around 0.12 µm contribute about 80% of the total 

pore volume. 
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Figure 3.2.4. The pore size distribution of as-dried BaTiO3 disc-shaped sample: log 

differential pore size distribution (A) and cumulative pore size distribution (B).  
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3.3 Investigation of Dopant Distribution in Porous BT Base via a 

Droplet-doping Method 

The conventional doping techniques in fabrication of doped-BT PTCR ceramics 

include oxide mixing, sol-gel processing etc., which all need consistently strong 

external forces e.g. milling, stirring etc. during the preparation. Furthermore, such 

conventional methods have a common drawback that only one composition can be 

made at a time. In combinatorial donor-doped BT PTCR materials research, it is 

beneficial to be able to produce samples with a range of doping levels quickly and 

efficiently. The aim of this work is therefore to establish a high-throughput synthesis 

method suitable for low doping levels and directed to construction of libraries of 

donor-doped BaTiO3 ceramics in order to discover new BaTiO3-based PTCR 

materials. Infiltration doping which under the right circumstances can produce a 

range of different dopant levels in ceramics for various functions and properties were 

used. The nitrate salt of dopant cations was chosen here to prepare the liquid dopant 

precursor because it is well soluble in water and readily pyrolyzed to its oxide during 

subsequent heat treatment leaving minimum residues. Pure BaTiO3 is an insulating 

material at room temperature, whereas it can turn to be a semiconducting material by 

doping with various donor dopants at relatively low doping levels and it can revert 

back to behaving as an insulator when the donor content exceeds the critical 

concentration which normally is only 0.5 mol.% for most of the donor candidates. 

Such low doping level makes it difficult to be characterized by common 

compositional characterization techniques such as SEM/EDS.  

 

3.3.1 Droplet-doping Method 

The uniformity of dopant salt distribution in the porous BT disc using droplet-doping 
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method is partly determined by the distribution of the infiltrating fluid into the base. 

In order to achieve a uniform distribution of dopant solution throughout the body of 

the porous base, the volume of the infiltrating solution must be equal to the total 

volume of the pores in the base which is determined by its porosity. If the dopant 

solution is less than this ideal volume, insufficient liquid is available to fully infiltrate 

the body of the porous disc and this adversely affects the homogeneity of distribution 

of dopant. If the volume of dopant solution exceeds this level, excess liquid remains 

on the outer surface of the disc. This dries and leaves a thin film of solute on the 

surface which reduces the effective dopant concentration compared with the planned 

concentration and places an excess in the surface region. A preliminary infiltration 

experiment was conducted using an aqueous red ink by dissolving red food colouring 

in distilled water. Different amounts of the ink were printed on the green BT porous 

disc. This provided a distinct colour contrast such that saturated and unfilled regions 

could be visually distinguished. Observations of the outside surface and fracture 

surface revealed that the saturated red ink quickly percolates into the body to form a 

uniform colour. If less than the total pore volume was added, there was a darker 

colour at the bottom and lighter colour at the top which witnesses non-uniform 

distribution of ‘dopant’ in the case of insufficient doping as shown schematically in 

Figure 3.3.1(c). Over-doping resulted in a large amount of coloured dye on the upper 

surface displayed as a darker colour (Figure 3.3.1(d)). Moreover, the ideal volume of 

dopant solution can dispensed onto the disc in one drop at the centre (Figure 

3.3.1(b)), or by printing multiple small drops at various locations (Figure 3.3.1(a)) on 

the surface. In the latter method, the coverage of ink over the surface of the porous 

base provides more uniform distribution than that of the single droplet due to the 

spreading effect as discussed in a subsequent section.  
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Figure 3.3.1 Schematic diagram of the BT porous base infiltration with saturated ink of dopant liquid precursor: (a) ideal condition; (b) single 

drop printing; (c) insufficient ink printing; (d) over saturated ink printing.
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3.3.2 Characterization of Erbium-doped BaTiO3 Ceramics  

 

3.3.2.1 STA Measurements 

Figures 3.3.2-4 present the differential thermal analysis (DTA) and 

thermogravimetric analysis (TGA) data as a function of temperature for samples with 

various erbium concentrations. Both DTA and TGA curves for each sample were 

recorded simultaneously. Several stages in the decomposition can be seen. The 

hydrated Er(NO3)3 is very hygroscopic, thus as-dried doped-BT porous sample 

readily adsorbed moisture from atmosphere which can explain the initial weight loss 

occurring below 100 °C in Figures 3.3.2-4. The erbium nitrate pentahydrate is 

gradually losing the hydrates during heating and the whole thermal decomposition 

procedure ends at around 550 °C confirmed by both the DTA and TGA results shown 

in Figures 3.3.2-4 and this is also in line with the values in literature.425 There were 

exothermic peaks at around 1100 °C detected by DTA on samples regardless the 

doping level which might be due to the occurrence of the diffusion of dopant ion into 

the BT lattice.426 Thus it indicated the onset of calcination of Er-doped BT which is 

analogous with the results in literature.265 Note that XRD method may be needed to 

confirm the validity of such calcination temperature by examining the purity of phase 

of the powders after being fired at 1100 °C. There was a slight difference in 

temperature according to the exothermic peaks between the samples of 0.1 and 8 

mol.% Er-doped BT (1060 °C) and the BT sample doped with 1 mol.% Er (1110 °C). 

This might be due to the differences in experiment settings. The heating rate of DTA 

test for BT discs doped with 0.1 and 8 mol.% Er was 10 °C/min compared with 5 

°C/min for which the samples contained 1 mol.% Er.  
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Figure 3.3.2 The DTA curve and thermogravimetry for 0.1 mol.% Er-doped BT via 

droplet doping method. 

 
 

 
Figure 3.3.3 The DTA curve and thermogravimetry for 1 mol.% Er-doped BT via 

droplet doping method. 
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Figure 3.3.4 The DTA curve and thermogravimetry for 8 mol.% Er-doped BT via 

droplet doping method. 

 

3.3.2.2 Structures and Microstructures  

Er-doped BT samples under both light doping and high doping levels can maintain a 

disc structure after sintering, whereas samples with intermediate dopant 

concentration (1-2 mol.%) were deformed substantially as seen in Figure 3.3.5. 

Figure 3.3.5(a) shows the morphologies of Er-doped BT with erbium content of 0, 1, 

2 and 5 mol.% respectively sintered at 1350 °C for 2 hours. Highly-doped BT (5 

mol.%) was not fully sintered at this temperature as it still maintained a loose 

structure after firing. However, samples with lower Er3+ concentration can be well 

sintered at 1350 °C. According to the appearance, there was little difference for 

samples with low doping level (≤2 mol.%) sintered at various temperatures. 

Furthermore, the BT disc with 5 mol.% Er3+ content can reach dense structure when 

increasing the sintering temperature to above 1450 °C. The warping effect of erbium-

doped BT with intermediate erbium content was caused by the inhomogeneous 

volume shrinkage over the curved surface of the specimen during densification. The 
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span ratio (diameter over thickness) of these erbium-doped BT samples produced by 

dip-pen printing was around 13 (diameter ~8mm and thickness ~0.6mm). The discs 

with such a large span ratio may deteriorate the strength against the geometric 

distortion caused by the strains generated during sintering. Reducing the size of BT 

disc by printing less ink can significantly reduce the span ratio thereafter and this 

may improve the heterogeneous deformation during sintering. The heterogeneous 

volume shrinkage across the body of doped-BT disc during sintering may be caused 

by non-uniform compositional distribution throughout the body in the droplet-doping 

method; however, this assumption can hardly explain the sustainable flat structure of 

samples containing even heavier doping levels (5 mol.% Er-doped BT sample in 

Figure 3.3.5). 

 

Figure 3.3.6 displays the microstructures on the fracture surface of erbium-doped BT 

samples with various doping concentrations sintered at 1350 °C for 2 hours. A high 

density of pores was observed on the fracture surface of BT samples with a variety of 

erbium contents. The pore size generally increased with the erbium concentration. 

Figure 3.3.7 shows the morphologies of fracture surfaces of undoped BT samples 

sintered at various temperatures. It was observed that the pore size and pore density 

were significantly reduced when increasing the sintering temperature and dwell time. 

The highly doped BT sample (5 mol.% Er3+) which was not fully sintered at 1350 °C 

was then sintered at 1450 and 1500 °C respectively. It finally reached a dense 

structure when sintered at 1500 °C for 4 hours and the corresponding microstructures 

are displayed in Figure 3.3.8.  
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(a)  

(b)   

(c)     

Fig 3.3.5 The shape of as-sintered Er-doped BT with various concentrations: (a) 

sintered at 1350 °C for 2h, (b) sintered at 1450 °C for 4h, (c) sintered at 1500 °C for 

4h. 
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                                (a)                                                               (b) 

  
                                (c)                                                               (d) 

  
                                (e)                                                               (f) 

Figure 3.3.6 The microstructure of fracture surfaces of erbium-doped BT sintered at 

1350 °C for 2h with dopant concentrations of: (a) undoped (A0), (b) 0.1 mol% (A1), 

(c) 0.25 mol% (A2), (d) 0.5 mol% (A3), (e) 1 mol% (A4), (f) 2 mol% (A5). 
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                               (a)                                                                (b) 

  
                                (c)                                                               (d) 

Figure 3.3.7 The SEM images of fracture surfaces of undoped BT sintered at (a) 

1350 °C for 2h (A0), (b) 1350 °C for 4h (B0), (c) 1450 °C for 4h (C0), (d) 1500 °C 

for 4h (D0). 
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(a) 

  
                                   (b)                                                             (c) 

Figure 3.3.8 5 mol% Er3+ doped BT samples sintered at (a) 1350°C for 4h (B1), (b) 

1450°C for 4h (C1) and (c) 1500°C for 4h (D1). 

 

3.3.3 Investigation of Erbium Distribution in BT Disc Sample 

The cross section, upper and lower surfaces of Er-doped BT with various erbium 

concentrations were examined by EDS analysis as illustrated in Figure 2.4.2. The 

corresponding results are presented in Table 3.3.1. It was observed that the EDS 

values for erbium concentration on the cross sections were generally smaller than 

those on either upper or lower surfaces of the disc, and they all were lower than the 

planned concentration. This phenomenon may be due to the existence of pores in the 

EDS scanning area and the unpolished surface for EDS used for measurement. 

Furthermore, throughout the cross-sectional surface, the EDS scanning results 
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showed that there was higher erbium content in the top centre area (Point 10) than in 

the top periphery (Point 6); whereas the erbium content in the bottom centre (Point 

13) was less than that at the bottom periphery (Point 7). The erbium concentration 

was relatively consistent in the central body area of the disc regardless of position 

(Point 8, 9, 11 and12). Moreover, it was found that the erbium content on the upper 

surface centre (Point 3) is higher than that at the periphery (Point 1 and 5); whereas 

the erbium on the lower surface centre is lower than that at the periphery. Such 

differences in erbium distribution along surfaces may result from the geometric 

effect of the disc sample. Since the dopant salt solution was printed on the centre of 

the upper surface where there was often a crater formed after drying, unsaturated ink 

spreaded to the periphery area. Therefore, to print the dopant precursor solution on 

the flat bottom surface by turning the green porous BT base upside-down prior to 

droplet-doping might eliminate such geometric distribution differences. Furthermore, 

multi-drops should be printed at various locations rather than a single drop printed in 

the centre of the surface in order to distribute the infiltrating liquid more 

homogeneously.  

 

EDS line-scan investigation on cross sections of sintered BT doped with 5 mol.% 

erbium content was employed and the corresponding semi-quantitative 

compositional analysis results are shown in Figure 3.3.9. The sample was scanned 

across its fracture surface as illustrated by the bottom yellow line in Figure 3.3.9. The 

amplitude of the scanning curves represents the detected amount of the 

corresponding elements. There was no significant heterogeneous erbium distribution 

observed along the scanning line across the sample body as seen in Figure 3.3.9. 

Furthermore, the barium distribution behaves synchronously as that of titanium. Area 
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mapping study was thus needed because an image of the compositional distribution 

in 2-D scale is better than that in 1-D.  

 

Table 3.3.1 EDS analyses for the as-sintered erbium doped BT samples 

 

 
 
 
Scanning position 
 

0.5 

(A3) 

2.0 

(A5) 

5.0 

(D1) 

Point 1 upper/lower (mol.%) 0.4/0.5 1.5 /2.0 4.0/4.9 

Point 2 upper/lower (mol.%) 0.4/0.4 1.7/1.7 4.9/4.1 

Point 3 upper/lower (mol.%) 0.7/0.3 2.6/1.4 5.7/4.4 

Point 4 upper/lower (mol.%) 0.5/0.4 1.9/1.7 5.1/4.6 

Point 5 upper/lower (mol.%) 0.3/0.6 1.4/2.3 4.4/5.3 

Point 6 (mol.%) 0.4 1.0 3.6 

Point 7 (mol.%) 0.6 2.0 5.4 

Point 8 (mol.%) 0.4 1.7 4.5 

Point 9 (mol.%) 0.5 1.6 4.4 

Point 10 (mol.%) 0.6 2.2 5.5 

Point 11 (mol.%) 0.5 1.6 4.4 

Point 12 (mol.%) 0.4 1.8 3.7 

Point 13 (mol.%) 0.2 1.2 3.8 

 

The cross sections of samples as listed in Table 3.3.1 were polished prior to 

performing EDS area mapping. In the mapping image for a specific scanned element, 

the magnitude of contrast across the scanning area is determined by the amount of 

the scanned element at the corresponding place in the area of the image. Figure 

3.3.10 shows the microstructure and corresponding compositional (barium, titanium, 

erbium and oxygen) distribution results for BT sample with 0.5 mol.% erbium 

content. There was no sign of erbium enrichment spotted by EDS mapping under 

/mol.% 

Planned doping  
concentration /mol.%
            (Sample No.) 
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such low doping level which might be indicated that the erbium ion distribution is 

homogeneous in the body of BT disc. Considering the limitation on the accuracy of 

EDS for the trace dopant concentration, further investigation on ion distribution in 

doped-BT sample may be needed. Furthermore, the elemental distributions of oxygen, 

barium and titanium were coincident with each other and they were independent on 

the dopant concentration (as shown in Figure 3.3.10-13). However, erbium 

enrichment was clearly detected in doped-BT discs when the Er3+ concentration 

exceeded 2 mol.% as seen in Figure 3.3.11(e), 12(e). The erbium enrichment in both 

images were then emphasized in green colour in order to increase the contrast against 

the background; furthermore, the Erbium mapping results were lapped over the 

corresponding titanium mapping image in order to assess the erbium enrichment 

spatial distribution. It was found that most of the erbium enrichment was located 

closed to the pores as seen in Figure 3.3.11(c) and 12(c). Nevertheless, no evidence 

of erbium enrichment was detected by EDS area mapping for as-dried ultra-highly 

doped BT sample (20 mol.%) before firing as displayed in Figure 3.3.13(e), which 

implied that the appearance of erbium enrichment might occur during the heat 

treatment rather than the infiltration stage. According to the X-ray spectrum (in 

Figure 3.3.14) and composition (in Table 3.3.2) results by EDS, the concentration of 

erbium in enriched areas can reach up to 12 times the planned concentration. This 

heterogeneous erbium distribution throughout the body of highly doped BT disc may 

be due to the melting effect of erbium nitrate hydrate salt before decomposition to 

oxide during the early stage of heating. Normally the dopant nitrate hydrate salts 

have low melting temperature (40-130 °C) compared with the pyrolysis temperature 

(550-750 °C). Moreover, not only could the low viscosity molten erbium nitrate 

hydrate trigger re-infiltration within the porous framework of the green BT base, but 
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also the likely explosive boiling of water of crystallization can lead to the 

redistribution of erbium ion during firing. In addition, the appearance of erbium 

enrichment in BT samples with high erbium content (≥2 mol.%) also probably 

contributed to the presence of second phase by the formation of Er2Ti2O7.266  

 

 

 
  Barium;        Titanium;         Oxygen;       Erbium 

 
Figure 3.3.9 EDS line-scan image of fracture surface of sample D1. The yellow line 

at the bottom is scanning path. 
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Figure 3.3.10 SEM/EDS mapping results for specimen A3: (a) microstructure of 

cross section, the corresponding element mapping image of O (b), Ti (c), Ba (d) and 

Er (e). 
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Figure 3.3.11 SEM/EDS mapping results for specimen A5: (a) microstructure of 

cross section, the corresponding element mapping image of O (b), Ti (c), Ba (d) and 

Er (e). 
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Figure 3.3.12 SEM/EDS mapping results for specimen D1: (a) microstructure of 

cross section, the corresponding element mapping image of O (b), Ti (c), Ba (d) and 

Er (e).  



Results and Discussion 

 181

 
Figure 3.3.13 SEM/EDS mapping results for as-dried BT sample with Er content of 

20 mol.%: (a) microstructure, the corresponding element mapping image of O (b), Ti 

(c), Ba (d) and Er (e). 
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Figure 3.3.14 EDS spectrum results for sample D1 under the scanning the plain area 

(a) and the Er-enrichment (b). 

 

Table 3.3.2 EDS analysis for erbium doped BT. 

EDS analysisa /mol.% Sample 
I.D. Element 

Planned 
composition 

/at.% Er-enrichment area Plain area  

A5 
 

Ba 
Ti 
Er 

19.6 
20.0 
0.4 

10.3±4.3 
17.7±1.1 
3.4±2.4 

19.9±0.1 
19.7±0.1 
0.37±0.2 

D1 
 

Ba 
Ti 
Er 

19.0 
20.0 
1.0 

4.1±3.4 
16.2±1.8 
12.9±2.6 

17.8±0.5 
18.3±0.5 
0.78±0.2 

T1 
Ba 
Ti 
Er 

16.0 
20.0 
4.0 

Null 
15.6±3.4 
16.2±3.2 
2.7±1.2 

aAverage for five analysis at different positions with 95% confidence limit. 
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3.3.4 Investigation of Yttrium Distribution  

The upper limit on doping is set by the maximum concentration of nitrate salt 

solution and hence by the aqueous solubility of dopant nitrates which are 58.75 wt.% 

for Y(NO3)3 at 20 °C.427 For example, to print 3.6 µL of saturated concentrated 

Y(NO3)3 solution (58.75 wt.% of Y(NO3)3) into a green BT disc with a volume of 

≈6.5 mm3 with 55% porosity, the upper limit of the incorporated concentration of 

yttrium dopant can be up to 16 mol.%, which is far larger than the critical 

concentration of donor content in BT based PTCR materials. For lower levels of 

doping, the salt solution was diluted accordingly.  

 

After infiltration of dopant precursor solution into porous BT base, the solute ions are 

attached to BT particle surfaces because a liquid film is formed along the surface of 

the particle caused by the fluid fluxes during both the stages of the liquid imbibition 

and subsequent evaporation.365 Hence the morphology of particle structures after 

doping can be examined to assess the extent of the dopant distribution. Figure 3.3.15 

shows the morphology of BT particles before doping: particles had sharp and clear 

surfaces. Figure 3.3.16 shows the morphology of particles in the cross section of as-

dried BT disc doped with 1 mol.% Y3+ content examined by SEM. The observation 

under SEM by browsing the entire cross section of as-doped BT disc showed similar 

images: all particles throughout the base were coated by a thin film with a thickness 

of around 30 nm which is displayed as a ‘halo’ surrounding the BT particle seen in 

Figure 3.3.16. This indicated that the droplet-doping method was able to effectively 

deposit the dopant salt on to the BT particle surface and thoroughly distribute them 

throughout the porous base. 
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Although the preliminary check of as-doped particle morphology after drying did not 

show significant heterogeneous dopant salt distribution in terms of the presence of 

particles coating, another factor potentially affecting uniformity is the remelting and 

flow of the hydrated nitrate salt before pyrolysis. In conducting the slow pyrolysis, 

the samples were put into the furnace at room temperature. In fast pyrolysis, the 

samples were put into a furnace preheated to 650 °C. A microstructural survey across 

the sections of 1 mol.% Y-doped discs subjected to slow and fast decomposition prior 

to sintering was performed by SEM. Examples of the particle morphologies are 

shown in Figure 3.3.17 (slow rate) and 3.3.18 (fast rate) which are representative of 

the many areas viewed. The particle arrangement is similar for both samples after 

heat-treatment on these different pyrolysis schedules but the structure of the dopant 

film is not. Smooth uniform particle coating results from fast decomposition whereas 

irregular structures such as bridges of pyrolysis product were found between BT 

particles in the sample subjected to slow decomposition. No such non-uniformity 

was observed in samples subjected to fast decomposition. This is likely to be due to 

the melting and movement of yttrium nitrate hydrated salt before pyrolysis during the 

thermal processing. Therefore, the fast pyrolysis path before sintering was then 

adopted.  

 

Figure 3.3.19 shows the optical image of the 0.5 mol.% Y-doped BT disc sintered in 

N2 at 1380 °C. It was observed that the sample presented a uniform blue colour 

across the outer surface. Quantitative analyses of the spatial distribution of yttrium 

on the cross section of the samples doped with 0.5 mol.% yttrium content were then 

performed by EDS and WDS. Neither spatial non-uniformity nor enrichment of 

yttrium was detected by EDS line-scan and mapping mode throughout the cross 



Results and Discussion 

 185

section of the sample. It could well be argued that the resolution of EDS may not 

detect the variation of dopant element in such low level of doping. So WDS was used 

to further analyse the uniformity.  

 

Dopant distributions on the cross sections of BT discs with 0.5 mol.% yttrium 

content by printing different volumes of yttrium nitrate solutions during droplet-

doping were investigated and compared using WDS. The as-sintered sample obtained 

by printing an unsaturated volume of dopant salt solution (60% of the total pore 

volume) displayed a central bright region with dark blue periphery pattern on the 

cross section as seen in Figure 3.3.20 (photo was taken by a digital CCD camera); 

however, the samples that were subjected to saturated dopant salt liquid volume 

doping showed homogeneous blue colour on the cross section (in Figure 3.3.21, 

picture was taken using a DELL scanner). Nevertheless, both types of samples 

presented the same uniform dark blue colour on their outer surfaces. The WDS 

results (in both Figures 3.3.20 and 21) also confirmed that heterogeneous yttrium 

distribution occurred in samples subjected to unsaturated volume doping by 

examining the polished cross section vertically (from top down bottom) and 

horizontally (from edge to centre). Samples subjected to saturated volume doping 

presented relatively even distribution of yttrium throughout the BT base according to 

the WDS results. These results also supported the observation in Figure 3.3.1 (a) and 

(c) noting that the yttrium nitrate solution was printed on the bottom flat surface of 

the BT base. Furthermore, it was found that overall; the outer surface of the sintered 

pellet contained slightly more yttrium content than the body.  
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Figure 3.3.15 SEM picture of facture surface of undoped BT base disk. 

 

 

 
Figure 3.3.16 As-dried 1 mol.% Y-doped BT. 
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Figure 3.3.17 BT doped with 1 mol.% yttrium subjected to slow decomposition (5°C 

/min, from room-temperature to 650 °C). Arrows show the decomposed yttrium 

oxide from the molten nitrate salt during thermal treatment. 
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Figure 3.3.18 BT doped with 1 mol.% yttrium subjected to fast decomposition 

(placed in furnace preheated at 650 °C). 

 

 
Figure 3.3.19 Optical image of the top surface of the 0.5 mol.% Y-doped BT sample 

via droplet-doping method sintered at 1380 °C in N2 flow. 
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Figure 3.3.20 Distribution of yttrium for sample printed with unsaturated volume of yttrium nitrate solution measured by WDS vertically and 

horizontally across the cross-section of Y-doped BT via drop doping, broken lines in both Cartesian coordinates indicate the expected dopant 

level.  
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Figure 3.3.21 Distribution of yttrium dopant measured by WDS vertically and horizontally across the cross-section of Y-doped BT via droplet-

doping, broken line indicates expected dopant level.  
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3.3.5 Discussion 

The important criterion to be met here is the uniformity of donor distribution inside 

the BT base disk. At any stage of sample preparation, the factors that could affect the 

uniformity of dopant in the final samples are: 

a) The infiltrating flow profile of the dopant salt solution from the surface into the 

body of the base disc during droplet deposition. 

b) The redistribution of the dopant salt inside the base disc during the evaporation of 

solvent due to capillary flow. 

c) The melting and flow of molten nitrate salt before decomposition to oxide during 

early stages of heating. The nitrate hydrated salts used here have low melting 

temperatures (<130 °C) compared with the pyrolysis temperature (550-750 °C). 

To restrict the flow of molten salt inside the porous disk, the furnace was 

preheated to 650 °C before the samples were loaded. 

d) Diffusion during sintering which is expected to redistribute the additive but only 

over small diffusion distances. 

e) The evaporation of volatile dopants during sintering. 

The dopant distribution within porous BT is discussed below in terms of the different 

time scales associated with the infiltration process. All theoretical calculations are 

based on a simplified model of porous BT with a uniform cylindrical pore structure. 

The contact angle of water on dense BT disc was measured as 40°. Considering the 

dopant precursor solution used here for producing lightly doped BT PTCR samples 

has closed physical properties such as density, viscosity and surface tension etc. to 

water, thus the corresponding water values were used for the calculations below.  
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3.3.5.1. Effect of Drop Spreading and Imbibition  

As soon as a drop is printed on the surface of the porous base, there are two different 

motions of liquid: droplet spreading across the surface and infiltration into the 

underlying substrate. The dynamics of the spreading and imbibition of a liquid drop 

on the flat surface of a green BT porous base was recorded and is shown in Figure 

3.3.22. The term imbibition here is defined as the absorption of one fluid by a solid 

or gel. 
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Figure 3.3.22 Sequence of water spreading and imbibition into green BT porous base. 

Pictures were captured using high speed camera at 1200 frames per second. 

 

Figure 3.3.23 displays the dependence of the diameter of the drop base on the time 

by measuring from the images in Figure 3.3.22 using line intercept method. It was 

observed that the drop spread quickly and reached a maximum value in less than 0.03 

second after placing on the porous surface. After that the drop base started to shrink 

slowly due to the imbibition proceeding. The time evolution of the diameter of drop 

base is in line with the results in literature387 and well supporting the theory that the 

spreading flow generally ceases before significant infiltration occurs.428 In order to 

effectively wet the whole surface of the BT porous base disc with precursor solution, 

3 or 4 multiple drops were dispensed over the surface, each being an equi-fraction of 

the calculated volume of dopant solution.  
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Figure 3.3.23 The spreading diameter as a function of time for a water drop on the 

BT base as in Figure 3.3.22. The pink dash line represents for the diameter of the BT 

base. 

 

If V is the volume of the droplet placed on the surface and θ is the contact angle just 

before intrusion has started, then aw, the radius of the wetting footprint is given by 

equation 3.3.1:372 

3/1
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)
)cos2()cos1(
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θθπ

θ
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⋅⋅
=

Vaw                                        Equation 3.3.1 

Given the total pore volume of this porous substrate as 3.6 µL and the volume of a 

single printed droplet as 0.9 µL and contact angle 38° (as measured by high-speed 

camera), the spreading radius can reach 1.15 mm, which means four separated 

droplets are able to cover the whole surface which has a diameter of 4.3 mm. 

Alternatively, if a single droplet with a volume of 3.6 µL is printed, the maximum 

diameter of the spreading drop is only 3.6 mm, which is less than that of the base 

disc. This may increase the chances that a small amount of the infiltrating dopant 
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precursor solution will migrate to the open space between the central base of the 

porous disc and the impermeable silicone release paper used as a substrate (Figure 

3.3.1(b)). 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1
Time /second

Vo
lu

m
e 

/µ
L

Measured volume
Fitting data

 

Figure 3.3.24 Comparison between modelled and experimentally obtained V(t), the 

imbibition volume of water as a function of time into the green BT porous base. 

 

Figure 3.3.24 presents the imbibition volume of a liquid drop on the porous BT base 

as in Figure 3.3.22 as a function of time. The imbibition drop volume was calculated 

by the subtraction of the remaining volume of drop on the surface from the initial 

printed drop volume (3.6 µL). Since the shape of the remaining drop on the porous 

surface can be approximated a spherical cap,385, 386 thus its volume can be estimated 

using equation: V=πh(3a2+h2)/6 where a is the droplet base radius and h is the 

droplet height. A model was developed using the Washburn equation to determine the 

volume of the wetted region inside the porous material which was assumed in the 

form of a truncated paraboloid:373  
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where ap is the initial drop base radius, dmax is the maximum wet spot depth in the 

porous base equal to the initial droplet height (h) divided by the porosity (P) and the 

depth of the liquid infiltrating d(t) is a function as a square root of time: 

tatd
η

θγ
2
cos)( =                                                                 Equation 3.3.3 

where η is the liquid viscosity, γ is the surface tension, a is the average pore radius. 

Hence, the absorbed liquid volume V(t) =V’(t)*P. The dotted line in Figure 3.3.24 is 

the fitting data derived from V(t) by using the typical values η ≈10-3 Pa·s and γ 

≈72.75 mN/m,429 θ = 38°, a= 0.06 µm, h=0.93 mm and ap=1.45 mm (measured from 

image results in Figure 3.3.22 using line intercept method ). 

 

It was observed that the experimental measurement of volume is well fitted to the 

modelled curve in the beginning short period of time as seen in Figure 3.3.24. 

However, the deviation between them became significant when the droplet began to 

retract after placing on the surface for 0.2 second (in Figure 3.3.23). The probable 

reasons that caused such deviation between the measured and modelled volumes are: 

1. During drop imbibition, the shape of the remaining drop on the porous 

surface may not be in the form of a perfect spherical cap. Thus the 

corresponding in-situ volume measurement calculated from the related drop 

height and drop contact radius may not be accurate any more. 

2. The errors generated from the droplet geometry measurement using line 

intercept method may significantly increase due to poor contrast of the 

boundary in images where only a small amount of droplet remained on 

surface. 
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3. The modelled equation was based on the assumption that the wet spot inside 

the porous base has the shape of a truncated paraboloid, which might not 

exactly fit the geometry here. 

4. The thickness effect of porous substrate needs to be considered here. The 

equation 3.3.2 was based on a thick porous system which the thickness is 

much larger than the droplet height. However, the BT porous base used here 

was as thin as 0.45 mm, in comparison with the initial droplet height with 

0.93 mm. According to Daniel’s theory,430 the droplet imbibition in a thin 

porous substrate (the thickness of substrate far less than the droplet height) 

can be described as unidirectional radial wicking during the spreading event 

rather than a soft rounded edges of wicking profile for thicker porous systems. 

Because it only takes 0.12 second for water infiltrating through the entire BT 

base with a thickness of 0.45 mm according to equation 3.3.3, this may 

explain the phenomenon that the deviation between the measured and 

modelled volume results occurred at the time of ≈0.12 second in Figure 

3.3.24, after which unidirectional radial wicking began rather than 

permeating in both normal and tangential directions387.  

 

In soil science, it is believed that the degree of homogeneity of fluid infiltration of a 

porous medium is determined by the degree of stabilization of the fluid displacement 

front, which is dependent on the combined effect of gravity, viscous and capillary 

forces if the pore geometry effect is ignored.364 The capillary number (Ca) is a 

dimensionless parameter defined below that can be introduced to measure the 

features of infiltrating fluid distribution.364 
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Capillary number is the ratio of viscous forces to capillary forces at pore level: 

γκ
ηυ 24 aCa =                                                                 Equation 3.3.4 

where ν is the filtering flux or Darcy velocity in the medium, κ is the permeability of 

the porous medium. Furthermore, according to Darcy’s Law and the Young-Laplace 

equation: 

L
P

η
κυ ∆

=                                                                       Equation 3.3.5 

and      
a

P θγ cos2
=∆                                                                 Equation 3.3.6 

where ∆P is the capillary pressure and L is the thickness of the medium. Rearranging 

equations 3.3.4-6, 
L

aCa
θcos8

= . Given the thickness of porous BT samples of 0.45 

mm, the dominant pore radius of 0.06 µm, the density of water 1000 kg m-3 and the 

contact angle of water on BT 38°, the capillary number (Ca) can be estimated about 

8×10-4.  

 

What is required here is to achieve a near-uniform flow front to prevent finger-like 

flow which can cause air pockets. In liquid imbibition, a porous system with a large 

capillary number (>10-4) performs in a more stable way in terms of the liquid 

displacement pattern than one with a small value of Ca (<10-6) because capillary-

driven finger-like flow is less likely to occur.380, 381 Furthermore, gravity contributes 

a stabilizing force by reducing the height differences induced by viscous instability 

or capillary fluctuations hence flattening the wetting front.383 These analyses support 

the rationality of this droplet-doping method especially on the uniform distribution of 

the precursor liquid during infiltration. From the equations given above, it can be 

seen that a large pore radius (a), a small contact angle (θ) and small sample thickness 
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(L) favour a large value of Ca and hence stable infiltration. In this high throughput 

method, sample discs have low thickness which also favours uniform infiltration. 

Furthermore, observation under SEM by surveying the cross section of the whole 

disc after infiltration doping demonstrates that the donor precursor has the capability 

of infiltrating throughout the porous body (as seen in Figure 3.3.16).  

 

Taking the effect of pore geometry into account, the pore network structure can be 

simplified as an array of wide granular pores interconnected by narrower regions 

which are so-called throats as displayed in Figure 3.3.25.384 According to the 

research by Blunt,384 there are two different kinds of water advances in infiltraton 

into a porous system. The first is piston-like, where the fluid advances in a connected 

front occupying the pore spaces. Different modes of this piston-like advance are 

schematically displayed in Figure 3.3.26. The second type is the wetting fluid 

flowing along crevices in the pore space, filling pores in advance of the connected 

wetting front. This filling mechanism is also called a snap-off event in which the 

water film that covers the surface of the throat may swell and eventually choke off 

the throat and hence may separate connected empty pores into two regions or clusters 

that are no longer connected.431 Therefore, the water displacement pattern in porous 

media is determined by the competition between the fluid piston-like advance and 

the snap-off event in throats. According to the Young-Laplace equation (equation 

3.3.6), capillary pressure is higher at the pore having smaller radius. Hence the 

invading solution tempts to get into the small pores before entering the large pores or 

into throats of a pore with a large aspect ratio rather than into the pore. The uniform 

water frontal advance in porous media only occurs when assuming there is no flow in 

crevices, pore size distribution is narrow and pores are only slightly larger than their 
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throats.380 Furthermore, for pore-network systems with a large aspect ratio, ramified 

structure of the water displacment front was observed because of the invasion 

percolation effect.432, 433 

 
Figure 3.3.25 Schematic diagram of a porous system. 

 

The green BT disc which was used here as a porous base for doping had a generally 

narrow pore size distribution according to the porosimetry results (in Figure 3.2.4). 

The dominant pore size was ≈0.12 µm which contributed around 83% of the total 

pore volume. Although there were about 3 vol.% of the pores with the size as 60 µm 

and the rest of 14 vol.% of pores’ sizes were varied, a flat frontal advance of 

infiltrating liquid in the BT porous base is still expected. Nuclear magnetic resonance 

(NMR) imaging434, 435 can be used to examine the water front for investigating the 

possible existence of discrete flow and fragmentations. Moreover, in order to avoid 

any potential trapped air pockets in the porous system during infiltration doping, 

vacuum condition might need to be deployed. 
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Figure 3.3.26 Different types of piston-like advance. (a) I0, all neighbouring throats 

are filled with water. This did not occur here since the air is not trapped. (b) I1, one 

neighbouring throat is empty. (c) I2a, two adjacent throats are filled with water. (d) I2o, 

two filled throats are opposite each other. (e) I3, only one throat is filled with water. 

The capillary pressures for each mode are ranked: P(I0) > P(I1) > P(I2a) = P(I2o) > 

P(I3).384 
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Zevi365 observed that the flow of water in a porous media not only fills the cavities 

and crevices in the bulk of the body but also forms films along the surface of the 

particles especially for liquid with strong wettability and with very low flow rate. 

Considering the diameter of Er3+ ion is 89×10-3 nm436 which is far less than the water 

film thickness (20-40 nm calculated by Wan437 or 5-25 µm measured by Zevi365), 

thus the transport of erbium ion participating in the water films covering the BT 

particles and agglomerates is efficient. It was observed that the area adjacent to the 

back of the wetting front contains more liquid content during imbibition than the 

inlet area when the gravity effect is accounted for.438, 439 Moreover, the saline front in 

a porous media was found tailing the water front and exhibiting more heterogeneous 

displacement than the water front because of the binding of the ions to the particle 

surface.366, 440 Nevertheless, given printing saturated volume of dopant precursor 

solution and allowing sufficient time to settle, as well as considering the thickness of 

the porous BT base is less than 1mm used here, the concerns of the uniformity of 

dopant salt distribution in the BT disc body during imbibition can be eliminated.  

 

3.3.5.2 Effect of Evaporative Drying 

The distribution of dopant salt in the as-dried BT disc after droplet-doping is 

dependant not only upon the liquid infiltration into the porous material but also the 

subsequent motion of solute during evaporative drying which is closely related to the 

transport behaviour during ‘wick action’.441 In saturated porous systems, there are 

liquid flows in the direction of the evaporating surface, which also involve solute 

ions in the liquid. Hence the salt transport during drying is influenced by the mixed 

effects of convection-diffusion of liquid fluxes induced by evaporation. The 

evaporative drying rate of a BT disc subjected to over-saturated liquid infiltration 
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was measured by a microbalance and the corresponding results are displayed in 

Figure 3.3.27.  

 

Figure 3.3.27 (a) the normalized weight compared with the initial value of an over-

saturated disc as a function of time measured by a microbalance with sensitivity as 

0.1 µg; (b) the calculated drying rate as a function of time based on (a). 

 

It was observed that there were approximately four regimes during the drying of the 

porous disc which is analogous to previous studies.442 After the initial surface 

evaporation regime, the drying rate became almost constant. During this constant rate 
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period, capillarity controls the liquid flow from inside the pore space to the product 

surface, where the liquid evaporates. This is followed by a falling rate period, during 

which the recovery rate decreases rapidly. During this period, drying is controlled by 

mass transfer through the dry pore space due to disconnected liquid clusters formed 

near the surface. The last drying regime is the so-called ‘receding front’ regime in 

which the liquid phase in the porous medium completely disconnects from the 

surface and a fully dry zone with increasing thickness develops.442 The Peclet 

number (Pe), the transport parameter which shows the balance between convection 

and diffusion, can be used to assess the ion re-distribution during drying.443 Equation 

3.3.7 defines the Peclet number: 

DP
hLPe =                                  Equation 3.3.7 

where h is the evaporation rate, L the thickness of pellet, D the diffusion constant and 

P the porosity. Typical values are D≈10-9 m2/s,443 P≈0.55, L≈0.45mm and h as 

measured from the weight loss results in Figure 3.3.27, which is around 0.15 mg/min. 

Given the diameter of the pellet as 4.3 mm, the rate of evaporation is 1.72 x 10-4 

mm/s and hence Pe in this system is estimated to be 0.14 (Pe<1). This implies that 

donor ions can remain uniformly distributed in the porous medium due to the 

dominance of diffusive transport according to Huinink’s theory.443  
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3.4 Furnace Calibration 

 

Both K-type thermocouples plus different voltage-to-temperature converters were 

cross-examined (as listed in Table 3.4.1) respectively by comparing the temperature 

measurements in a water bath with the reference temperatures measured 

simultaneously from a mercury thermometer. Several readings in the range of 15 ºC 

to 100 ºC are presented in Figure 3.4.1. All results, regardless of the sensor type were 

close to the reference values which were determined by the mercury thermometer. 

The difference of temperature readings from different thermocouples when 

connected to the same converter was less than 0.2 ºC over the whole testing range. 

The temperature measurements using Eurotherm were close to the reference value; 

however, there were discernable gradients for the readings from Fluke as seen in 

Figure 3.4.1. Considering there is 1-2% in error for the temperature readings from 

the Fluke indicator, such difference in reading is within the expected accuracy range 

of the equipment. 

 

Table 3.4.1. A combination of components of thermocouple and V/T converter 

Thermocouple 

Temperature controller 

(Eurotherm) 

Voltage-to-temp converter 

plus an indicator (Fluke) 

K-type thermocouple with 

ceramic sheath (A) 
Eurotherm + thermocouple A Fluke + thermocouple A 

K-type thermocouple with 

glass-fibre insulation (B) 
Eurotherm + thermocouple B Fluke + thermocouple B 

 

V/T converter 
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Figure 3.4.1 Cross-calibration the combination of thermocouples and voltage-to-

temperature converters. 

 

The heating profile of the modified pre-tuned furnace was examined under a pre-

loaded programme in which the targeted setpoints were increased 5 ºC every 10 

minutes with no presetting ramp rate over a range of 20 to 300 ºC (seen as a 

reference signal curve in Figure 3.4.2). The whole heating process lasted about 10 

hours and the temperatures in the furnace measured as a function of time are 

presented in Figure 3.4.2. There were significant overshoots at each heating segment 

in this pre-tuning furnace. It was observed that the temperature in the furnace could 

not attain stabilization at the setpoint within a short scale of time.  
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Figure 3.4.2 Heating profile of the modified pre-tuning furnace as a function of time. 

 

The ideal heating curve should have a stable, ‘straight line’ of temperature rise to the 

setpoint without fluctuation and quick response to deviations from the setpoint 

caused by external disturbances, thereby rapidly restoring the temperature to the 

setpoint value. The heating control for the furnace is PID (proportional-integral-

derivative) conducted by the Eurotherm temperature controller. The furnace was first 

tuned using the “I-Tools” software provided by the manufacturer and PID constants 

were adjusted accordingly in order to restrict the amount of overshoot or undershoot 
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while heating up to the setpoint.  

 

Because the furnace is required to deliver accurate temperature rises to various 

setpoints in the range 20 to 300 ºC, the results of tuning at different temperatures 

such as 100 and 200 ºC were investigated. The heating profiles of the tuned furnace 

operating on the same heating program as in Figure 3.4.2, apart from using a ramp 

rate of 1 ºC/min were monitored and the corresponding partial heating curves are 

presented in Figure 3.4.3. The heating program is displayed as the reference signal in 

Figure 3.4.3. For the furnace tuned at 100 ºC, the heating temperature offsets at each 

setpoint after 10 minutes of heating were 0.2 ºC which was smaller than that in the 

furnace tuned at 200 ºC. Therefore, the modified furnace tuned at 100 ºC was used 

for the further electrical tests. 

 

The effect of applying different ramp rates during heating on the temperature profile 

was also investigated. The furnace was heated from 145 to 150 ºC by a ramp rate of  

1 ºC/min and no preset ramp rate with sufficient dwell time (50 minutes). The 

corresponding heating profiles as a function of time are shown in Figure 3.4.4. The 

curve in blue (as seen in Figure 3.4.4) displays a heating profile using a ramp rate of 

1 ºC/min and the red curve represents the heating profile with no preset ramp rate. 

Both heating paths can reach thermal equilibrium in a period of 40 minutes during 

heating. It was observed that the maximum temperature offset during a setpoint 

increase of 5 ºC was 0.2 ºC and independent of the ramp rate. Furthermore, the 

furnace with a ramp rate of 1 ºC/min during heating showed more steady increase of 

temperature and a less volatile state as a function of time than that with heating under 

no preset rate. Hence, the ramp rate of 1 ºC/min was chosen for subsequent electrical 
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measurements. Moreover, 10 minutes as the period for each heating segment was 

adopted because it offers the best compromise between reaching thermal equilibrium 

and satisfying the efficiency of the test.  

 

Figure 3.4.3 Heating profiles of the modified furnace after tuning at 100 ºC and 200 

ºC respectively at a ramp rate of 1 ºC/min. 

Reference signal 
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Figure 3.4.4 Temperature profiles of furnace heating at different ramp rates. 

 

The surface temperatures of BT discs in the furnace were measured synchronously 

with the furnace temperature obtained from the controlled thermocouple located in 

the centre of the furnace. The heating profiles of the sample surfaces were compared 

with that in the furnace under different ramp rates. Figure 3.4.5(a) shows the 

measured temperature as a function of time on the sample surface and in the furnace 

during an increase of furnace temperature from 145 to 150 ºC under no preset ramp 

rate and a dwell of 50 minutes. There was a significant difference in temperature 

between on the sample surface and the furnace during heating at around 150 ºC: the 

temperature on the sample surface were around 3 ºC lower and more volatile than the 

external environment (furnace) during heating at around 150 ºC. A similar 

phenomenon was also observed for the BT sample in the furnace when heated at a 

ramp rate of 1 ºC /min (in Figure 3.4.5(b)). However, temperature profile on the 

sample surface during heating showed quicker stabilization and less fluctuation when 

subjected a ramp rate of 1 ºC /min.  
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Figure 3.4.5 Furnace temperature and sample surface temperature respectively as a 

function of time during heating by a ramp rate as: (a) no preset ramp rate, (b) 1 

ºC/min. 

 

The temperature gradients between furnace and sample surface during heating across 

Reference signal 

Reference signal 

(a)

(b)
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the range of 20 to 250 ºC were measured in order to gain better understanding of the 

temperature uncertainty when undertaking subsequent electrical tests. The 

temperature gradients increased with the setpoint as displayed in Figure 3.4.6. These 

gradients in temperature are attributed to heat abstracted by the thermocouple due to 

thermal conduction.444 This effect can be significant if the sample is small enough. 

The temperature gradients along the furnace chamber are complex and affected by 

many factors including the size and the shape of the heating chamber, the type and 

location of the heating elements, conditions of insulation and circulation of the 

furnace, the power input and the furnace material, etc. Temperature variation 

between the distances of a few centimetres away at the corner of the furnace can be 

as much as 10% at very high temperature.445, 446 It is also reported that in a horizontal 

electric furnace, the radial temperature gradient is much smaller than the longitudinal 

temperature gradient447 because of the non-uniformly heat lost within the furnace 

chamber.448 For the range of test temperatures below 300 ºC with all the sample 

tablets arrayed closely in a small area in the centre of the furnace, the temperature 

gradient between testing samples can be neglected. 

 
Figure 3.4.6 The temperature gradients between furnace and sample surface while 

heating the furnace from 20 to 250 ºC. 
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3.5 Parallel R-T Screening System 

A commercially produced PTC thermistor was loaded on the testing platform and its 

PTC characteristics were examined by the in-house testing programme. The 

reference R/T characteristic of this PTC thermistor as provided by the supplier was 

replotted (curve B in Figure 3.5.1) and compared with the values measured by the in-

house testing system (curve A in Figure 3.5.1).  

 

Figure 3.5.1 R/T characteristics of a commercial PTC thermistor: experimental 

results using in-house system (curve A) and reference values from the supplier (curve 

B).  
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The measured curve A was well fitted with the reference values in curve B below the 

Curie temperature (Tc); however, there was deviation occurring above Tc. Some key 

parameters of the PTC thermistor from the reference and the measured curves 

respectively are listed in Table 3.5.1. The temperature at which the start of the steep 

rise in resistance, also defined as the temeperature at which the resistance is equal to 

the value R = 2·Rmin, corresponds approximately to the ferroelectric Curie point 

according to the handbook from EPCOS.449 Hence its corresponding value is 

estimated as the value of Tc here. Note that the more accurate methods to determine 

the Tc of doped BT materials are the differential thermal analysis326 and permittivity 

measurement etc. which they can more accuratly measure the process of the 

tetragonal to cubic phase change of the BT during the heat treatment. The room-

temperature resistance of this PTC thermistor was measured as 4.8 Ω which was very 

close to the reference value of 4.6 Ω. Moreover, because the blank resistance of the 

parallel conducting jig was very small (≈0.1 Ω) compared with the measured value of 

Rmin, the correction for the jig effect was unnecessary and similarly, the effect on 

resistance from the measuring leads and multimeter could also be neglected. The 

temperature coefficient α is defined as the relative change in resistance referred to the 

change in temperature and can be calculated for each point on the R/T curve by:449  

     
dT

Rd
dT
dR

R
ln1

=⋅=α            Equation 3.5.1        

In the range of the steep rise in resistance above Tc, α can be regarded as being 

approximately constant. Therefore, 
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−
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=α                                                          Equation 3.5.2 

In the temperature range of 130-180 ºC, the measured value of α for this PTC 

thermistor was 0.103 K-1 which is close to the reference value of 0.105 K-1. 
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Considering the associated tolerance of the resistance value of the thermistor is 25% 

provided by the supplier, this in-house testing system is proved to be reliable for 

subsequent R/T measurements for the libraries of donor-doped BT samples produced 

by HT method. Note that the values of the maximum resistance, Rmax, and the 

temperature at which Rmax occurs, Tmax, were substantially different between that in 

the curve A and B. The mechanism of such difference is unclear.  

 

Table 3.5.1 Parameters of the PTC thermistor. 

 Tc 
/ ºC 

RRT 
/Ω 

Rmin 
/Ω 

Rmax 
/Ω 

Tmax 
/ ºC 

α 
/ K-1 

Reference value 120 4.6 4.1 2×105 270 0.105 

Measured value 130 4.8 4.3 5×104 235 0.103 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results and Discussion 

 216

3.6 Fabrication and Characterization of La-doped BT Ceramics with 

PTCR Effect  

 

All Er-doped BT thick film samples regardless the doping levels in chapter 2.4.1 

made by the combinatorial method using the dip-pen printing and droplet-doping and 

sintered in air were electrically insulating materials at room temperature (R25 > 1×107 

Ω). It was reported that erbium can behave as a amphoteric dopant in BaTiO3 in 

which its character is highly dependent on the cation stoichiometry in BT along with 

other factors.206 Thus, it was found that Er-doped BaTiO3 is weakly semi-conducting 

at room temperature when Ba/Ti =1; erbium dopant even behaves as an acceptor 

(preferential substitution at Ti4+ sites) when Ba/Ti >1 but as a donor (preferential 

substitution at Ba2+ sites) when Ba/Ti <1.206 Although the Ba:Ti molar ratio is equal 

to 1 as provided by the supplier for the as-received BaTiO3 powder (Inframat 

Advanced Materials), the EDS result showed molar ratio Ba:Ti ≈ 1.2 by scanning the 

powder particles. Noting that there is significant overlapping of characteristic EDS 

energies between the elements barium and titanium, as well as errors generated from 

the quantitative EDS analysis by scanning the unpolished particle surface, the true 

molar ratio of Ba and Ti of the as-received BT powder is still uncertain. Lanthanum, 

as a donor dopant candidate for BT-based PTCR materials which has been 

extensively claimed, involves less sensitivity of electrical conductivity to the cation 

stoichiometry of BT in comparison with the amphoteric dopant like erbium.235, 237, 253 

It was therefore selected for initial investigation for preparing donor-doped BT 

material exhibiting PTCR behaviour. It was necessary to fabricate reference La-

doped BT PTCR samples by a conventional solid-state reaction route first in order to 

compare the PTCR performance with that produced by HT method. Moreover, TiO2-
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excess BT and additional SiO2 were both employed here to enhance grain growth 

during sintering by providing extra liquid phase. 

 

3.6.1 Preparation of La-doped BT PTCR Ceramics by Solid-state Reaction (SSR) 

Method 

The critical concentration of La3+ for doped BT sintered in air was found to be 0.6 

mol.%, above which the sample would revert back to behaving as an insulator.235 

Thus samples of BT doped with 0.3 and 0.5 mol.% La3+ as donor dopant were 

prepared in order to investigate the PTCR profiles. BT powders from different 

sources were used and compared as a starting material and the details of different 

batches of samples in terms of composition and firing parameters are listed in Table 

2.6.1.  

 

Figure 3.6.1 shows the morphologies of the powders used as the starting materials in 

Table 2.6.1. The particle sizes of as-received (from PI-KEM) and synthesized BT 

powders are similar and are all in the submicron scale (dBT(PI)≈0.5 µm, dBT(syn) ≈0.3 

µm) measured by a line intercept method. The size of TiO2 particle is very fine at 

around 0.1 µm, whereas the size of La2O3 particle is around 1 µm.  

 

The room-temperature resistance of samples in batches A3, 5 and B3, 5 were all >20 

MΩ (2×107Ω) which indicated that they were electrically insulating materials. The 

microstructures of 0.3 mol.% La3+-doped BT in batches A3 and B3 were examined 

by SEM and the low magnification images of fracture surfaces are presented in 

Figures 3.6.2a and c. The details of their grain structure are shown in Figures 3.6.3a 

and c respectively. Sample A3 had high porosity and contained heterogeneous large 
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grains after sintering, whereas a homogeneous fine-grained (1-2 µm) and denser 

microstructure was observed in sample B3.  

  
                              (a)                                                                  (b)  

    
                              (c)                                                                  (d) 
Figure 3.6.1 SEM images of the starting materials: (a) as-received BaTiO3 powder 

from PI-KEM, (b) synthesized BT (Ti:Ba=1.01), (c) as-received TiO2 powder and (d) 

as-received La2O3 powder. 

 

It has been generally observed that the room-temperature resistivity (rRT) is low for 

donor-doped BaTiO3 having large grains and the rRT of a doped-BaTiO3 sample with 

fine grains is large (>105 Ω·cm).334 Under the same composition of doped-BaTiO3, 

the fine grain structure that reduces the electrical conductivity may be due to a strain 
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effect which increases the potential barrier and hence the resistivity at the grain 

boundaries.287 Furthermore, the small grain system contains a larger fraction of 

insulating grain boundaries compared with the sample having large grains and thus 

presents higher resistivity.335, 336 Therefore, higher sintering temperature which is up 

to 1450 °C,265 longer dwelling time (9 hours)234 and adding a sintering aid (SiO2)348 

were used in order to enhance grain growth during sintering. There were no signs of 

over-sintering phenomena on samples in batches C-E. The fracture surfaces and 

microstructures of sample C3, D3 and E3 were also examined by SEM and the 

corresponding images are displayed in Figures 3.6.2(b),(d),(e) and 3.6.3(b),(d),(e). 

The grain size increased with increasing sintering temperature and dwell time. 

However, sample E3 has significant bimodal grain size distribution (Figure 3.6.3(d)). 

The large grain (≈20 µm) was found embedded in a fine-grained (≈2 µm) matrix of 

BT. Sample C3 (Figure 3.6.3(e)) contained larger grains (≈4 µm) in comparison with 

sample B3 (Figure 3.6.3(c)) attributed to the SiO2 additive which facilitates grain 

growth by creating a liquid phase during firing. Samples in batches C-E were all 

electrically insulating materials at room temperature apart from C3 for which 

resistance at room temperature was around 8 ×105 Ω. The as-sintered samples using 

BT (I) contained relatively large grains (Figure 3.6.3(a,b)) in comparison with 

samples using BT (II); however, they both exhibited no PTCR effect. The probable 

reason for this insulating behaviour of samples using BT (I) is explained as follows.  

 

The PTCR donor-doped BT is a composition-sensitive material especially to some 

3d-elements as acceptor dopants,245 and the solubility range for semiconductivity of 

acceptors such as Fe and Cu in BT can be as little as 0.04 mol.%.450 The BT powder 

(I) used as a starting material might be already contaminated by the Vibro milling 
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processing because incomplete cleaning of the mill chamber and the grinding media 

which had been used for grinding many inorganic compounds previously is 

unavoidable. In addition, Vibro milling has the risk of contamination from the lining. 

Although the SEM/EDS examination had been performed for the powder after Vibro 

milling, no detectable impurities were found in the powder because it may be below 

the detection limit of the equipment. Hence impurities may result in electrical 

insulation using BT (I) regardless of whereas the system contained a large grained 

microstructure. The high resistivity and fine grain structure of samples using BT 

powder from PI-KEM may be due to the high crystallinity of the original BT powder. 

It has been observed that an increase of crystallinity of the starting BT powder 

suppresses recrystallization leading to fine-grained microstructure and growth in 

resistivity.306 The SEM images of samples in batches B, C&E support this view. 

Again, the fine grain structures in those batches of samples might be also caused by a 

Ba/Ti ratio of  larger than 1 for as-received BT powder (II).334  
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                                (a)                                                                  (b) 

  
                                (c)                                                                  (d) 

  
                               (e)                                                                   (f) 

Figure 3.6.2 Microstructures of the fracture surface of (a) A3, (b) D3 (c) B3, (d) E3, 

(e) C3 and (f) F3 samples under 500x magnification. 

100 µm 
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                                (a)                                                                (b) 

  
                                (c)                                                                (d) 

  
                                (e)                                                                 (f) 

Figure 3.6.3 Microstructures of La-doped BT specimens synthesized by SSR route 

sintered in air under conditions: (a) A3, (b) D3 (c) B3, (d) E3, (e) C3 and (f) F3. 

10 µm 

10 µm 

20 µm

20 µm

20 µm

10 µm
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Figure 3.6.4 Temperature dependence of the electrical resistivity for (a) F3 and (b) 

F5 sintered at 1380 °C in air. 

 

Therefore, BaCO3 and TiO2 were used as the starting powders to synthesize BaTiO3 

for which the Ti/Ba molar ratio can be precisely managed and lanthanum ions as 

donor dopant can be incorporated into the BT lattice during the reaction-calcination 

process. Furthermore, because the observation that the room-temperature resistivity 

of donor-doped BaTiO3 can increase with sintering temperature and dwell time which 

is attributed to an increase in the amount of acceptor-states along the grain 

boundaries,322, 326, 327 the samples in batch F were sintered at 1380 °C for 1 hour.237 
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The resistance at room temperature of sample F3 and F5 were about 30 and 500 kΩ 

respectively. The grains of sample F3 were of intermediate size as seen in Figure 

3.6.3(f).  

 

A 2-probe measurement was applied to measure the voltage (U) and current (I). The 

resistance is thus calculated as IUR /= and the corresponding resistivity (r) is 

obtained from the equation:  

L
aR

L
RSr

2π
⋅==                                                         Equation 3.6.1 

where a is the disc radius and L is the thickness. The r-T curves of batch F samples 

sintered in air are shown in Figure 3.6.4. The samples using synthesized BT 

exhibited obvious PTCR profiles. The room-temperature resistivity of sample F3 was 

around 105 Ω·cm and increased abruptly when the temperature passed the Curie point 

(≈131 °C) as curve a in Figure 3.6.4. The sample also presented a strong negative 

temperature coefficient resistivity (NTCR) effect at both temperatures below Tc and 

in the high temperature range (T > Tc). The initial drop of resistivity with temperature 

below Tc is due to the increase of spontaneously polarization in ferroelectric BT 

according to Jonker’s model.212 The NTCR effect of sample F3 when passing the 

point of maximum resistivity (rmax, not shown here because the current was below 

the minimum measurement limit of the multimeter) results from the increase of 

energy of trapped elections surpassing the increased potential barrier in the grain 

boundary.210 For a sample containing 0.5 mol.% of La3+ content (F5), the room-

temperature resistivity was much higher than that with lower donor concentration 

(F3). This is due to the shift of electronic compensation at low donor concentration 

level to ionic compensation when increasing the donor concentration. As a 
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consequence, the potential barrier in the grain-boundary region was increased 

significantly because of the dopant segregation effect leading to the increase of 

resistivity.256, 286, 287 The r-T curve of F5 in the high temperature range and part of F3 

was not obtained because of the measuring limit of the multimeter. 

 

There is general agreement that the PTCR feature of doped-BT is defect sensitive. 

The low temperature (T<Tc) conductivity of donor-doped BT is influenced by a 

broad variety of factors including impurities in the starting powders, stoichiometric 

difference, attributes of dopant additives, firing parameters and nature of the 

external/internal defects etc. The origin of the room-temperature conductivity of 

doped-BT is very complex and still under dispute.235 Although it is reported that the 

room-temperature resistivity of La-doped BT with similar composition of sample F3 

sintered in air can be as low as 300 Ω·cm334, 394 in comparison with 105 Ω·cm of the 

sample made by the SSR route here, to explore the reasons what makes a La-doped 

BT PTCR sample sintered in air exhibited such low resistivity at the same doping 

level is beyond the scope of this project. Nevertheless the ultra high resistivity of the 

air-sintered samples can reduce the accuracy of subsequent PTCR property screening 

because of the limitation of the measurement scale of the multimeter. It was believed 

that electron compensation is preferred in reducing conditions during sintering 

resulting from the tendency for oxygen loss, while ionic compensation by generated 

Ti vacancies is favoured by an oxidative environment.228 Furthermore, the 

quantitative analysis of the oxygen deficiency of donor-doped BT has proved that the 

carrier concentration is still dependent on the donor concentration.229 Hence, 

consistent nitrogen flow was employed during sintering in order to increase the 

room-temperature conductivity of donor-doped BaTiO3, as well as increase the 
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critical donor concentration.324,325 

 

Figure 3.6.5 shows resistivity vs. temperature behaviour in La-doped BaTiO3 

fabricated by the SSR route in various batches as listed in Table 2.6.2 sintered in 

nitrogen gas flow at 1380 °C. Unlike those samples sintered in air which had high rRT, 

they presented good electrical semiconduction at room temperature with strong 

PTCR profiles. Samples in the batch NC showed the lowest rRT (100-300 Ω·cm) with 

significant magnitude of PTCR rise among all batches in Table 2.6.2 because they 

contained a larger total amount of TiO2 and SiO2 as a sintering aid, which can 

facilitate grain growth by providing more liquid phase during sintering compared 

with that in other batches. Furthermore, the temperature at the maximum resistivity 

of the sample was increased from ≈270 °C (batch NA with no SiO2 content) to 300 

°C (both batches NC&NF with SiO2 content). This phenomenon agrees with the 

findings that SiO2 addition has some effect on electrical performance such as 

decreasing the room-temperature resistivity and increasing the temperature of 

maximum resistivity.330 Batch NF showed moderate PTCR jump (1.4-2.1 order of 

magnitude), indicating that the samples prepared from mixing BaCO3, TiO2 and 

La2O3 by a one-step calcination contained less density of surface acceptor-state than 

that of using commercial crystalline BT powder as starting materials. Sample NA3 

exhibited the highest PTCR effect with 2.8 order of the magnitude.  
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Figure 3.6.5 r-T characteristics of La-doped BT in Table 2.7.2 using SSR method 

sintered at 1380 °C for 1 hour in N2. 
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                                 (a)                                                               (b) 

  
                                 (c)                                                                (d) 

  
                                 (e)                                                                (f) 

Figure 3.6.6 Microstructures of La-doped BT specimens synthesized by SSR route 

sintered in N2: (a),(b) NA3; (c),(d) NC3; (e),(f) NF3. 
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There was obviously abnormal grain growth observed for samples sintered in N2 

(Figure 3.6.6) in comparison with those sintered in air (Figure 3.6.3). Particularly, 

grains as large as 30 µm were found in sample NC3 (Figure 3.6.6(d)) which was 1-2 

µm in sample C3 (Figure 3.6.3(e)). The increase of the grain size when sintering 

under low oxygen partial pressure is in good agreement with observations in the 

literature.263 According to the thermodynamic model for donor-doped BT,451 the 

solid-state grain growth is strongly limited by the suppression of the oxygen-ion 

diffusion. Consequently, the lower the oxygen partial pressure in the sintering 

atmosphere, the greater is the driving force for exaggerated grain growth.   

 

Figure 3.6.7 displays the r-T characteristics of samples NA3, NC3 and NF3 annealed 

in air at 1000 °C for 0.5 h and 1100 °C for 4 h respectively. rRT of all the annealed 

samples were dramatically increased compared with the results for those without 

post-sintering reoxidation (Figure 3.6.5). It was observed that samples NA3 and NC3 

after annealing 1100 °C for 4 h exhibited no more PTCR characters; alternatively, 

they behaved like NTCR materials. However, sample NF3 which was a 

semiconducting material when sintered in air with the same composition still retained 

a PTCR profile after heavily reoxidized at 1100 °C as seen in Figure 3.6.7. It was 

also noted that with lower annealing temperature (1000 °C) and shorter time (0.5 h), 

the PTCR behaviour of samples using commercial crystalline BT as a starting 

material e.g. sample NA3 was sustained.  

 

It is believed that the semiconductivity observed in donor-doped BaTiO3 ceramics is 

generally attributed to an electronic compensation mechanism that induces n-type 

semiconductor characteristics.224 Using lanthanum ion (La3+) as a donor dopant, free 
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electrons in the BaTiO3 lattice can be generated according to equations (written in 

Kröger-Vink notation): 

eVOO oo ′++↑⇒ ⋅⋅× 422 2                                               Equation 3.6.2 

and/or 

↑++′+⇒+ ⋅×
232 2

12222 OBaOeLaBaOLa BaBa          Equation 3.6.3 

Based on equation 3.6.2, the free electrons are generated by oxygen deficiency as 

occurs when sintering at high temperature and/or in reducing atmospheres.221 Based 

on equation 3.6.3, the electrons are associated with the replacement of barium ion by 

La3+. This model can explain the semiconductivity profiles observed for batches NA 

& NC by the occurrence of oxygen loss in the reducing sintering atmosphere. On 

reheating in air at lower temperatures than the sintering temperature, the samples 

absorb oxygen at surfaces and grain boundaries. The O2 molecules dissociate and 

capture electrons from adjacent regions of the sample (equation 3.6.3), thereby create 

depletion layers leading to increasing resistivity.452 

 −− ⇒+ 2
2 24)( OegO                                                   Equation 3.6.4 

 

Considering the ink prepared for dip-pen printing should ideally be a single-

component ceramic suspension,424 a synthesized TiO2-excess non-stoichiometric 

BaTiO3 powder as described in section 2.7.3 was needed as a starting material. The 

reducing atmosphere in sintering was also needed for further HT production. 
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Figure 3.6.7 r-T characteristics of La-doped BT using SSR method subjected to 

different annealing processing after sintering in N2. The NF3 curve (no annealing) 

was plotted here for comparison. 

 

3.6.2 Selection of Electrode Materials 

Electrode contacts to semiconducting BT-based PTCR materials are required to have 

a high conductivity and to form an Ohmic contact to the semiconductor.453 A vast 

number of metal materials such as Ni,345 Ag,331 Al,307 Pt,236 Au361 and In-Ga454 have 
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been used for making electrodes of semiconducting BT-based PTCR ceramics. 

Among them, the electrode effects vary widely depending on surface and processing 

conditions.  

 
         1- Pb0.73Sn0.07Ag0.1, 2-Fe, 3- Cu and 4-Ni enrichment interface 

Figure 3.6.8 Commercial PTC product with its original electrode. The compositional 

label above was determined by the EDS results. 

 

The original electrode on a commercial PTC thermistor was examined by SEM/EDS 

on the polished cross-sectional surface in Figure 3.6.8. A thin nickel-rich layer as an 

interface between the opposite sides of thermistor body and the outer solder layer 

was detected by EDS analysis. In addition, the copper-steel wires were attached on 

both sides by soldering.  

 

 1 

 2 

 3 

 4 
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The room-temperature resistance of PTC thermistors with different electrodes are 

listed in Table 3.6.1. All measured results were corrected to their equivalent values in 

terms of unifying the geometry. The electrode effects on R/T characteristics of the 

commercial PTC thermistor were investigated and shown in Figure 3.6.9. The R/T 

curves of the samples using In-Ga and Al electrodes (respectively curves C&D) were 

analogous to the reference values (curve B) except that they had higher room-

temperature resistivities. There was no NTCR effect in the high temperature region 

(T> Tc) observed for using either In-Ga or Al electrodes (curve C&D) in comparison 

with the strong NTCR feature measured from the sample with original electrodes 

(curve A). This might be due to the absence of the oxidized outer layer of the 

thermistor caused by the electrode recoating process after grinding away the 

preceding one. This is also likely to cause a decrease of temperature coefficient (in 

Table 3.6.2). The values of Tc in Table 3.6.2 were determined by the way as decribed 

in section 3.5. Since In-Ga alloy presented lower contact resistance than Al for 

making electrodes, it was selected as an electrode material for subsequent testing of 

the doped-BT disc via the high-throughput method.  

 

Table 3.6.1 Room-temperature resistance of the PTC thermistor with different 

electrodes 

No. Electrodes  R /Ω 
1 Original electrodes  4.8 (measured) 
2 Silver paste  20000 
3 Aluminium  53 
4 Ni-Fe(30:70 wt.%)  20000 
5 Cr/Au  5000 
6 In-Ga amalgam 25 
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Table 3.6.2 Measured properties of PTC product with different electrodes 

Electrodes Tc 
/ ºC

R25ºC
/Ω 

Rmin
/Ω

Rmax 
/Ω 

Tmax
/ ºC 

α 
/K-1 

Original electrodes (ref.) 120 4.6 4.2 2×105 270 0.105 
Original electrodes (meas.) 130 4.8 4.4 5×104 235 0.103 

Aluminium 145 53 43 1.6×105 300 0.075 
In-Ga amalgam 137 25 25 1.6×105 300 0.073 

 

 
Figure 3.6.9 Electrode effects on R/T characteristics of a commercial PTC thermistor: 

retested results using original electrode (curve A), aluminium electrode by 

evaporative coating (curve C) and In-Ga alloy electrode (curve D); curve B was 

replotted from the reference values provided by the supplier. 
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3.6.3 Investigation of La-doped BT PTCR Materials Fabricated by the High-

throughput (HT) Method 

Figure 3.6.10 shows the shapes of drops containing synthesized BT powder produced 

with and without the thixotropic agent. A flat, slightly dome-like shape developed in 

the drying residue from the BT suspension containing the thixotropic agent. On the 

other hand, a concave shape was produced from a BT dispersion with organic 

dispersant only. The inks with synthesized BT powder here showed similar 

characters in the drying residue to that of commercial BT powder studied in section 

3.2.1. 

  

Figure 3.6.10 The drying of droplets of BT suspension containing: (a) Acrysol 12W; 

(b) dispersant only. It is thought the thixotropic agent restricts the radial flow of 

powder during drying. In the insert, schematic drawings were shown for the 

morphologies of the cross section of as-dried discs. 

 

An array of BT tablets prepared by manual printing using a digital transfer pipette is 

shown in Figure 3.6.11. The discs that result from drying of a 20 µL BT ink droplet 

have diameter ~4.3 mm and thickness ~0.45 mm. The disc in the array has an 

average weight of 17.5 mg with a standard deviation of 1.1 mg. This error is due to 
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the pendant liquid residue on the pipette tip and can be significantly reduced by using 

LUSI printer for automatic production.102 

 

Figure3.6.11. An array of unfired as-dried BaTiO3 discs.  

 

Abnormal grain growth was found for the doped-BT ceramics with 0.1-0.7 mol.% of 

La3+ content made by the HT method and sintered in N2 at 1380 °C as seen in Figure 

3.6.12(b-e). There were more intergranular pores observed in HT-made samples than 

in those fabricated by the SSR route sintered in N2 (comparing Figure 3.6.12 with 

Figure 3.6.6, respectively). Figure 3.6.12(a) shows the surface of an undoped BT disc 

via HT method, grains as large as 50 µm were observed. At a La donor level above 

0.7 mol.%, the exaggerated grain growth was blocked (Figure 3.6.12(f)); the 

microstructure consists of equi-sized uniform grains with grain sizes between 1 to 2 

µm. 
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                                 (a)                                                                (b) 

  
                                 (c)                                                               (d) 

  
                                  (e)                                                               (f) 

Figure 3.6.12 Microstructures of La-doped BT specimens synthesized by HT method 

sintered at 1380 °C in N2: (a) undoped, (b) 0.2 mol.%, (c) 0.3 mol.%, (d) 0.4 mol.%, 

(e) 0.6 mol.% and (f) 0.8 mol.% La3+. 

50 µm 

50 µm 

50 µm 

10 µm 

30 µm 

50 µm 
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Figure 3.6.13 XRD peaks between 2θ = 35 and 55° for La-doped BaTiO3 library 

under the doping concentration of x mol.% sintered at 1380 °C in nitrogen flow. 
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Figure 3.6.14 Tetragonality parameter (c/a) vs. La donor concentration produced by 

HT method and sintered in N2 at 1380°C for 1 hour. 

 

XRD measurements showed no secondary phase in La-doped BT via HT method. 

Figure 3.6.13 shows the (002) and (200) diffraction lines in the XRD patterns of La-

doped BT with various donor concentrations in the range of 0.1-0.8 mol.% in steps of 

0.1mol.% The evolution of the peak from a tetragonal structure split into two peaks 

in undoped material to a pseudo-cubic structure with a single peak merging at around 

2θ=45.5° for the highest donor concentration (0.8 mol.%) can be seen. This is due to 

the effect of tetragonal distortion caused by the dopant incorporation into the 

perovskite lattice.250 The lattice parameters (c/a) as a function of La concentration 

were plotted in Figure 3.6.14, which shows a continuous decrease in c/a on donor 

addition. This is consistent with the results in the literature,253 which indicated that 

the way of infiltrating the dopant salt solution into porous BT base as a doping 

method used here was effective. 

Considering the shape of as-sintered La-doped BT disc via HT method approximated 
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to a solid frustum, hence the equation 3.6.1 which is used for uniform structure 

sample may not be suitable here for resistivity calculation. Figure 3.6.15 shows the 

side view of cross section of disc. Because the opposite sides have different size, the 

whole chunk of disc could be equivalent to a series of an infinite number of circular 

discs of infinitesimal thickness stacked centred side by side along the x axis from 

x=0 where the disc has radius a1 to x=L where the disc has radius a2. Therefore, 

assuming the r is a uniform value throughout the sample disc, the resistance between 

the opposite sides of the whole BT disc is equal to the resistance integration to sum 

all the incremental discs which are in shapes of uniform cylinders.  

Figure 3.6.15 The side view of cross section of a BT disc. 

At any given x, the incremental disc resistance (dR) is given by the equation: 

2a
rdxdR
π

=                                                                       Equation 3.6.5 

And the length of a is associated with the size effect which is dependent on a1, a2 and 

L:  

L
xaaLaa )( 121 −+

=                                                       Equation 3.6.6 

Thus, substituting a with a function of x in Figure 3.6.5 and integration gives: 

a1 

L 

a a2

dx

x
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This can be evaluated: 

21012121

2

)(
1

)( aa
rL

xaaLaaa
rLR

Lx

x ππ
=⎥

⎦

⎤
⎢
⎣

⎡
−+−

=
=

=

             Equation 3.6.8 

Therefore, LaaRr /21π= is the equation for estimating the resistivity of disc 

sample made by HT method. 

 

Reoxidation for 0.3 mol.%-La-doped BT discs by the HT method after sintering in 

N2 was carried out at 1100 °C in air. The changes of the PTCR properties 

corresponding to the duration (0.5, 4 and 24 hours) of the reoxidation which was 

varied to change the surface acceptor state density394 were investigated. Their 

temperature dependence of electrical resistivity is presented in Figure 3.6.16. The 

resistivity profile change after reoxidation for samples made by the HT method was 

not as drastic as for the samples made by the SSR method when compared the results 

in Figure 3.6.7 with Figure 3.6.16. There were two types of dependence of resistivity 

profile found here. At short periods, the magnitude of the PTCR jump decreased; at 

long times, the magnitude of the PTCR jump increased and Tmax shifted to lower 

temperature. These findings are similar to those in the literature.452 However, drastic 

changes of rRT were noted for highly doped samples e.g. 0.8 mol.% after annealing in 

air for more than 4 hours where it turned to a insulating material. This may be 

because the highly doped samples in which the anomalous grain growth was not 

developed during sintering are prone to reoxidation leading to the dramatically 

increasing resistivity.455 Therefore, annealing at 1100 °C for 0.5 hour was used for 

subsequent sample preparation. 
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As shown in Figure 3.6.17, the resistivity of the La-doped BT ceramics made by this 

high-throughput fabrication method was measured as a function of temperature. All 

samples in the doping range 0.1-0.8 mol.% exhibited the expected PTCR 

performance with an increase in resistivity up to several orders of magnitude 

occurring at a Curie temperature of around 120 °C. The room-temperature resistivity 

of La-doped BT samples initially reduced with increasing La doping level from 0.1 

to 0.4 mol.% and then increased with the donor concentration; furthermore, the 

PTCR jump generally decreased with the increase of donor contents as displayed in 

Figure 3.6.18, which is in good agreement on the previous studies.191 It was observed 

that the Tc generally decreased with an increase of La content by around 20°C per 

mole percent due to the incorporation of La into BaTiO3 lattice at the Ba sites which 

is also in line with the results from previous studies.237, 456, 457  

 

As can be seen in Figure 3.6.19, these results showed good agreement with 

previously published r-T curves for the BT samples contained around 0.2 mol.% La 

donor dopant via conventional oxide-mixing routes.319, 322, 361 Analogous PTCR 

characteristics are displaying between the tested sample and literature values in 

Figure 3.6.19. The rRT (620 Ω·cm) of the sample (0.2 mol.%) produced by the HT 

method is at the mid-range of the literature results. Furthermore, it contains a 

moderate PTCR jump compared with the published values in Figure 3.6.19. Hence, 

the results above confirm that the BT-based PTCR samples made by this HT method 

have similar PTCR properties compared with those made by the conventional 

fabrication methods.  

 

 



Results and Discussion 

 243

 
Figure 3.6.16 r-T characteristics of 0.3 mol.% La-doped BT using HT method 

annealed at 1100 °C for various periods after sintering at 1380 °C in N2.  
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Figure 3.6.17 r-T characteristics of La-doped BT via HT method reoxidized at 1100 

°C for 0.5 hour after sintering at 1380 °C in N2. 
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Figure 3.6.18 Relationship between room-temperature resistivity and PTCR jump of 

La-doped BT with various donor concentrations via HT method sintered at 1380 °C 

in N2. 
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Figure 3.6.19 Comparison of resistivity-temperature curve for combinatorial 0.2 

mol.% La-doped BT (fired at 1380 °C) to previously published r-T curve for similar 

composition. Curves are from ref.: 361, 319, 322. 
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3.7 Investigation of Er-Mn and Y-Mn Donor-acceptor co-doped BT 

PTCR Ceramics via HT method 

 

Yttrium ion as a donor dopant has been widely used to tailor the positive temperature 

coefficient resistivity effect in semiconducting BaTiO3.458, 459 Er3+ is also a very 

important dopant for fabrication of doped-BT PTCR ceramics. The incorporation of 

3d transition metals such as V, Cr, Mg or Mn allows surface traps to form within the 

grain boundary regions, leading to an increase in the magnitude of the PTCR jump. 

Among them, doping with Mn forms the deepest traps and has the greatest effect.460 

Furthermore, all those elements (Er, Y and Mn) have easy-access via soluble nitrate 

salts. This makes the materials ideal for proof-of-concept investigation using the HT 

method.  

 

The incorporation of Er3+ into BT perovskite lattice has a solubility at the Ba site that 

does not exceed 1 mol.%, whereas solubility at the Ti site is above 10 mol.%.266 

Similar results were also observed for Y3+, with a slight solubility (~1.5 mol.%) of Y 

content at the Ba sites but a high solubility (~12.2 mol.%) of Y at the Ti sites.269 The 

samples fabricated here via the HT method were all less than the corresponding level 

of solubility of dopant substitution for the Ba sublattice. 

 

Figure 3.7.1 presents the resistivity-temperature curves of BT discs co-doped with a 

fixed 0.02 mol.% Mn2+ as an acceptor dopant and different Er3+ donor concentrations 

in the range of 0.1-0.8 mol.% in a step of 0.1. All samples exhibited PTCR behaviour 

above the Curie temperature. The room-temperature resistivity decreased with the 

erbium content and reached a lowest value of 450 Ω·cm and two orders of magnitude 
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of resistivity jump passing Tc at 0.3 mol.% Er3+ doping level (seen in Figure 3.7.3) 

and reverted to high electrical resistivity material when doping with higher content, 

which is similar to values observed for erbium-doped BT prepared by the 

conventional SSR route.265 The results in Figure 3.7.3 also show a clear trend of 

decrease in rmax/rmin ratio with increasing erbium donor concentration.  

 

In comparison with yttrium-manganese co-doped BT library, the corresponding 

electrical resistivity as a function of temperature was measured and displayed in 

Figure 3.7.2. The minimum resistivity at room temperature of around 40 Ω·cm can 

be achieved when the yttrium concentration is 0.6 mol.%, which is in line with the 

value (the minimum value of rRT equals to16 Ω·cm at 0.7 mol.% of Y3+ content) in 

the literature.458 Furthermore, similar with BT samples doped with other donor ions 

such as La3+ and Er3+ previously, the room-temperature resistivity of BT disc 

containing Y3+ changes as a V-type curve with the increase of yttrium content (Figure 

3.7.4). According to the data from r/T curves in Figure 3.7.1-2, the relationships 

between the room-temperature resistivity, PTCR jump and the donor content are 

illustrated in Figure 3.7.3-4. BT discs co-doped with Y3+ and Mn2+ generally showed 

higher PTCR jumps than those of BT samples co-doped with Er3+ and Mn2+; however, 

the latter one presented relatively stronger NTC effects (particularly at T<Tc) than 

that of BT disc containing with Y3+. Figure 3.7.5 displays the microstructure of a 

polished cross section of 0.5 mol.% Y and 0.02 mol.% Mn co-doped BT disc after 

thermal etching. Coarse grains with some intragranular porosity and voids were 

observed; in addition, the acicular crystals in the image probably were accounted for 

a Ti rich-phase (Ba6Ti17O40).461 The average grain size is around 30 µm which is 

similar with the La-doped BT samples as displayed in Figure 3.6.12. 
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Mn2+ that used here is an acceptor dopant in comparison with donor dopants such as 

Er3+, Y3+ and La3+. The addition of the acceptor Mn in co-doped BT PTCR materials 

is known to improve the both steepness and jump order of the resistivity-temperature 

curve.458 The co-doped BT systems (in Figure 3.7.1 and 2) exhibited similar PTCR 

features compared with the single doped BT materials (in Figure 3.6.17). The room-

temperature resistivity changes as a V-type curve with the increase of the donor 

content. However, there are significant differences in the patterns in terms of the 

relationship between the PTCR jump and the donor concentration in single donor 

system compared with donor-acceptor co-doped system. For La-doped BT materials, 

the PTCR jump begins to reduce abruptly at low doping level at which the minimum 

value of rRT does not occur as seen in Figure 3.6.18. For Er-Mn co-doped BT system, 

the PTCR jump ratio stays relatively consistence at low doping concentration and it 

decreases significantly after passing the minimum rRT level (in Figure 3.7.3). There is 

even an inverse-V-shape of the PTCR jump pattern corresponding to the donor 

content for Y-Mn co-doped BT materials (in Figure 3.7.4).  

 

Erbium and yttrium, as aliovalent dopant elements for BT-based PTCR ceramics, 

have similar attributes in terms of incorporation in the BT lattice because both of 

their ions have the same valence charge and close ionic radius (Er3+, 0.96 Å; Y3+, 

0.93 Å). The analogous amphoteric behaviour of Er3+ and Y3+ has been investigated 

and confirmed by the room-temperature electrical conductivity measurements and 

microstructure observations.206, 246, 269 It has long been known that the 

semiconducting at T (T<Tc) of BT doped with a small amount of donor dopant is due 

to the electronic compensation scheme according to226 

↑++′+⇒+ ⋅×
232 2

12222 OBaOeRBaOR BaBa                  Equation 3.7.1 
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where R represents Er and Y. The R3+ acted as donor on replacing Ba2+ ions. 

Maximum conductivity of Er-doped and Y-doped BT is due to more effective 

incorporation of dopant through equation 3.7.1 with the free electrons increasing. 

When the donor concentration further increases, the charge compensation takes place 

by formation of barium ( ''
BaV ) or titanium ( ''''

TiV ) vacancies, according to225 

BaOTiOVRTiBaOR TiBaTiBa 4442 2
''''

32 +++⇒++ ⋅××        Equation 3.7.2 

BaOVRBaOR BaBaBa 323 ''
32 ++⇒+ ⋅×                                  Equation 3.7.3 

Barium vacancies and/or titanium vacancies can be produced at the grain boundaries 

and diffuse from the grain boundaries into the grains during sintering. The cation 

vacancies act as electron traps and there is an increase in the potential barrier at the 

grain boundaries therefore increasing the resistivity. Although it was observed that 

R3+ (Er3+ and Y3+) substitutes for Ba site when Ba/Ti molar ratio smaller than 1, the 

possibility of these dopant ion substituting for Ti site cannot be ruled out. This 

phenomenon yields to a formation of double-ionised oxygen vacancies or/and self-

compensation as follows:266  

2
'

32 222 TiOVROTiOR OTi
x
o

x
Ti ++⇒++ ⋅⋅                 Equation 3.7.4 

3
'

32 BaTiORRTiBaOR TiBa
x
TiBa ++⇒++ ⋅×                        Equation 3.7.5 

where the oxygen vacancies can trap electrons according to 

⋅⋅⋅ ⇒+ OO VeV '1                                                                     Equation 3.7.6 

x
oO OOeV ⇒++⋅⋅ 2

'

2
12                                                        Equation 3.7.7 

Furthermore, the transition series ion such as Mn2+ (0.8 Å) gives exclusive 

substitution on the Ti site because of their small size. It was observed that the 

positive excess charge of the Mn2+ as an acceptor ion at the Ti site is mainly 
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compensated by creation of oxygen vacancies as in equation 3.7.4.462  Equations 

3.7.4-7 all lead to high-resistivity behaviour. The underlying mechanism that caused 

the differences in PTCR properties associated with the change of donor species and 

with/without acceptor is however beyond the scope of this project. 

 

The biggest single resource for error in sample preparation and measurements here is 

the green porous BT base disc via dip-pen printing method. The dopant precursor 

solution was prepared based on the assumption that all as-dried green BT discs 

within the same batch are identical. However, because there was 6% in standard 

deviation of the average value of weight from measuring more than 50 discs, 

equivalent error would be generated in terms of doping concentration. This may have 

a substantial impact when compares the PTCR performance for samples doped with 

insignificantly different donor concentrations (e.g. samples doping with 0.7 and 0.8 

mol.% respectively). However, using robotic LUSI system, such error in the weight 

of printed disc can be reduced effectively.102 The possibly difference in pore density 

and structure of individual green disc may also affect the dopant distribution during 

the droplet-doping processing; however, this would have relatively little influence on 

the actual dopant composition. Based on error propagation from resistance and 

dimension measurements, the estimated errors in resistivity are 13%. The 

measurement error in a combinatorial process that uses very small samples is clearly 

expected to be higher than that from measurements on conventional samples, a 

compromise associated with high throughput methods in general but interestingly 

one that does not impinge on the intensive property of Curie temperature, relevant in 

this case. 
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It must be stressed that the principle of combinatorial searching is to identify novel 

compounds which can then be optimized and characterized with more precision, and 

as such it is a tool to discover trends, rather than a technique intended for precise 

fabrication and characterization. 

 

The HT procedures used to produce dopant-doped BT PTCR disc has been validated 

by testing the single donor doped and co-doped BT materials and compared with the 

literature values from samples that made by conventional methods. This HT method 

eliminates the multiple steps in traditional sample preparation: mixing, drying, 

calcination, regrinding, drying, pressing and sintering but as with all high-throughput 

operations there is a compromise between compositional exactitude and sample 

processing speed. It has the potential to deliver dopant-doped BT-based PTCR 

libraries rapidly with a very wide range of dopant mixtures and concentrations for 

electrical property measurement and deserves to be applied to other low level dopant 

ceramic systems. It also promises the great potential of realizing full robotic control 

on the production of libraries of lightly doped functional ceramics. 
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Figure 3.7.1 r-T characteristics of Er-Mn co-doped BT sintered at 1380 °C in N2. 
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Figure 3.7.2 r-T characteristics of Y-Mn co-doped BT sintered at 1380 °C in N2. 
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Figure 3.7.3 Relationship between room-temperature resistivity and PTCR jump of 

Er, Mn co-doped BT with various donor concentrations via HT method sintered at 

1380°C in N2. 
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Figure 3.7.4 Relationship between room-temperature resistivity and PTCR jump of Y, 

Mn co-doped BT with various donor concentrations via HT method sintered at 

1380°C in N2. 
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Figure 3.7.5 Microstructure of doped BT sample containing 0.5 mol.% Y3+ and 0.02 

mol.% Mn2+ sintered at 1380 °C for 1 hour in N2 (after thermal etching). 
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4. Conclusions 

 

4.1 Ceramic Ink Preparation 

An approach to the preparation of BaTiO3 inks for making a thick film base for 

subsequent combinatorial library fabrication was developed. Both Vibro and Dyno 

mills were found effective in powder regrinding processing however Vibro milling 

can reach finer particle size characteristics. The performance of ten candidate 

dispersants was evaluated using sedimentation tests and Darvan 821A at 3 wt.% of 

ceramic powder was determined as the prime dispersant for preparing the stable 

aqueous based BT dispersion. 

 

4.2 Control of Shape of Droplet Drying Pattern  

Drying of sessile droplets of concentrated suspension is of great complexity, 

involving Brownian motion, sedimentation, capillary flow, Marangoni flow, phase 

transitions, interaction between particles and flocculation. However, the capillary 

flow is a dominant force in determining the drying pattern of aqueous dispersions 

among all other factors. Uniform structure with well-finished surface was obtained 

by adding a thixotropic agent to the printing BT inks. The thixotropic agent is 

probably effective in stopping or weakening the lateral flows inside drops because it 

helps to form the sessile drops into a viscous gel state during evaporation. The 

porous structures of the drying residues from BT concentrated dispersion were also 

characterized. BaTiO3 base discs were produced by a dip-pen printing technique 

using the inks described above. 
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4.3 Investigation of Dopant Distribution in Porous BT Base via a 

Droplet-doping Method 

A novel high-throughput doping technique for BT-based PTCR ceramics was 

demonstrated. The droplet-doping method was performed by infiltrating liquid 

dopant precursors on the porous BT base discs. The method eliminates the multiple 

steps in traditional sample preparation; mixing, drying, calcination, regrinding, 

drying, pressing and sintering but as with all high-throughput operations there is a 

compromise between compositional exactitude and sample processing speed. The 

factors including liquid infiltration pattern in porous substrate, capillary evaporative 

flow and flow of molten dopant salt hydrate which could affect the uniformity of 

dopant salt in the final sample were investigated. Erbium-doped and Yttrium-doped 

BT were fabricated using this combinatorial technique. Different compositional 

characterization methods including EDS and WDS were used to assess the 

distribution of dopant through the body of the sample discs. An acceptably uniform 

distribution of dopant in trace-doped BT ceramics produced by this droplet-doping 

method can be achieved.  

 

4.4 Heating Control Unit Construction and Furnace Calibration 

A PC-controlled furnace system including a heating control unit and an operational 

interface was developed. This automatic heating unit was calibrated in a temperature 

range of 20-300 ºC. The temperature gradient between the inner furnace and the 

surface of the sample that was placed at the furnace centre was investigated 
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4.5 High-throughput Arrayed Testing System  

An in-house multiple sample measurement jig with a capacity of 20 samples, was 

designed and assembled for high throughput resistivity-temperature measurement. A 

PC-controlled r/T measuring panel was also developed. The validity and accuracy of 

this integrated heating and testing system was examined. 

 

4.6 Fabrication of La-doped BT Exhibiting PTCR Property 

The room temperature conductivity of donor-doped BT is influenced by a broad 

variety of factors including impurities in the starting powders, cation stoichiometric 

variation, dopant additive attributes, firing parameters and nature of the 

external/internal defects etc. BT powder from different sources used as a starting 

powder was doped with lanthanum as a donor dopant via conventional SSR route. 

The corresponding PTCR profiles of samples after sintering in air were compared.  

 

The PTCR behaviour of the semiconducting BT ceramics is closely related to the 

microstructure of the samples. The atmosphere with relatively low oxygen partial 

pressure during sintering, e.g. applying N2 flow, can effectively reduce the room-

temperature resistivity of La-doped BT samples where the anomalous grain growth 

was found to occur. In-Ga alloy was selected as the electrode material. 

  

Library of La-doped BT was made with vary doping concentration in the range of 

0.1-0.8 mol.% in steps of 0.1. XRD and electrical measurements showed evidence of 

the changes in structure and PTCR profiles with the change in composition and were 

closely matched to previously published data for samples made by conventional 

ceramic routes. The procedure, thus validated, has the potential to deliver dopant-



Conclusions 

 261

doped BT-based PTCR libraries rapidly with a very wide range of dopant mixtures 

and concentrations for electrical property measurement and deserves to be applied to 

other doped ceramic systems.  

 

4.7 High-throughput Fabrication of Donor-acceptor Co-doped BT 

Libraries Exhibiting PTCR Property 

As a proof of principle, libraries of Er-Mn and Y-Mn codoped BT discs were 

manufactured by HT method with varying donor content in the range of 0.1 to 0.8 

mol.% in steps of 0.1 with a fixed Mn as acceptor content of 0.02 mol.%. Fired at 

1380 °C for 1h in N2, the samples appeared well sintered. r/T measurements (25-

300°C) showed all the co-doped BT samples exhibited the expected PTCR property 

and presented evidence of room-temperature resistivity and PTCR jump ratio trends 

with change in donor composition corresponding to expected values. Despite the 

inherent errors in such fabrication and measurements, these results demonstrate that 

the Er-Mn and Y-Mn co-doped BT libraries produced by the HT method exhibit clear 

evidence of PTCR property variations consistent with change in donor concentration 

and values close to those reported in the literature.  

 

This study has shown the viability of producing donor-doped BT PTCR materials 

with varying donor concentration by a combination high-throughput technology of 

dip-pen printing and rapid droplet-doping. The small individual samples (~3 mm 

diameter) that make up the combinatorial libraries can be measured to within a 

degree of accuracy acceptable for the characterization of combinatorial searches. 
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5. Suggestions for Future Work 

1. Automation production of BT-based PTCR libraries using LUSI system. The 

London University Search Instrument (LUSI) has already successfully presented 

the capability of mass production of thick film ceramic libraries.40, 102, 104 It only 

needs a minor modification to integrate the droplet-printing part into the whole 

production system which the corresponding schematic structure as displayed in 

Figure 5.1. Stages A and B demonstrate the implementation of this high 

throughput fabrication method for producing the BT base discs on the LUSI 

printer: stage A shows the printing of the BT suspension and in stage B it is 

allowed to dry. Stage C illustrates infiltrating liquid dopant precursor into the BT 

base disc. In order to achieve a homogeneous distribution of dopant solution 

throughout the body of the porous base, the volume of the dopant solution must 

be equal to the total volume of the pores in the base which is determined by its 

porosity. Stage D shows the firing process and the procedure for applying 

electrodes on sample surfaces is presented in stage E. 

2. Mass production of combinatorial libraries of doped BT PTCR materials 

and high-throughput screening of PTCR properties and discovery of new 

BT-based PTCR ceramics with promising properties. The principle of making 

BT-based PTCR ceramics via combinatorial method has been proven. More 

libraries should be fabricated containing a vast variety of dopant selection and in 

a broader range of doping concentration. The corresponding composition-

structure-property relationships can be found. A data mining technique needs to 

be developed in such informatics research. 

3. Investigation on other electrical properties of the BT-based PTCR materials. 

Only the r/T curve of the BT-based PTCR samples via HT method was measured 
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in this work. In order to create a complete image of the PTCR profiles of the 

doped BT samples, current/voltage characteristic, voltage dependence of 

resistivity and frequency dependence of resistivity need to be screened.  

4. To seek possible correlations between sintering parameters and electrical 

performance properties. It was observed that the PTCR features of donor-doped 

BT samples are readily influenced by the firing parameters particularly the 

sintering atmosphere. Future research on building systematic global composition-

structure-property maps for BT-based PTCR materials should include the 

variation resulting from the change of heat treatment. 

5. Investigation on other low level dopant ceramic systems. Currently, BT-based 

PTCR ceramics which is subjected to low level of dopant doing (<1 mol.%)) are 

investigated. Other systems such as ZnO-based varistors, Al2O3-based transparent 

ceramics, TiO2-based catalysts etc. could be explored. Multi-component starting 

powder system for various applications can also be investigated. 

6. To optimize the drying pattern of sessile droplets. The structure uniformity of 

the as-dried disc is critical for subsequent doping and measuring procedures in 

this work. More studies need to be done to improve the structural homogeneity 

by making a convex disc with very small curvature and reduce the variations 

between the individuals within the same batch. 

7. Investigation of distribution of dopant salt in the body of the base. More 

accurate characterization tools such as XPS etc. may be needed for investigation 

of the dopant compositional distribution throughout the BT body. More in depth 

analytical experiments (such as quantitative analysis of dopant distribution under 

different circumstances in the way of droplet-doping proceeding described in 

Section 3.3.5.) are required. 
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Figure 5.1 Schematic layout of the fabrication method for high throughput discovery of donor-doped BT PTCR ceramics showing the following 

stages: droplet-printing (A), drying and debinding (B), droplet-doping (C), sintering (D) application of electrode (E). 
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Appendix A Terminal layout of temperature controller (Eurotherm 3216) and RS232 connection 

 
Terminal layout of temperature controller 

 

 
RS232 connection 
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Appendix B SubVI used in LabVIEW program 
 

 SubVI icon Name of functional module 
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Close program 
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Configure instrument mode 
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Acknowledge alarm 
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Set controller mode 
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Set setpoint value 
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Read process variables 
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Read processor utilization factor 
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Read alarm notification 

10 
 

Error message 

11 
 

Create file 

 
 
 


