8,937 research outputs found

    Pipelining Saturated Accumulation

    Get PDF
    Aggressive pipelining and spatial parallelism allow integrated circuits (e.g., custom VLSI, ASICs, and FPGAs) to achieve high throughput on many Digital Signal Processing applications. However, cyclic data dependencies in the computation can limit parallelism and reduce the efficiency and speed of an implementation. Saturated accumulation is an important example where such a cycle limits the throughput of signal processing applications. We show how to reformulate saturated addition as an associative operation so that we can use a parallel-prefix calculation to perform saturated accumulation at any data rate supported by the device. This allows us, for example, to design a 16-bit saturated accumulator which can operate at 280 MHz on a Xilinx Spartan-3(XC3S-5000-4) FPGA, the maximum frequency supported by the component's DCM

    Area efficient parallel lfsr for cyclic redundancy check

    Get PDF
    Cyclic Redundancy Check (CRC), code for error detection finds many applications in the field of digital communication, data storage, control system and data compression. CRC encoding operation is carried out by using a Linear Feedback Shift Register (LFSR). Serial implementation of CRC requires more clock cycles which is equal to data message length plus generator polynomial degree but in parallel implementation of CRC one clock cycle is required if a whole data message is applied at a time. In previous work related to parallel LFSR, hardware complexity of the architecture reduced using a technique named state space transformation. This paper presents detailed explaination of search algorithm implementation and technique to find number of XOR gates required for different CRC algorithms. This paper presents a searching algorithm and new technique to find the number of XOR gates required for different CRC algorithms. The comparison between proposed and previous architectures shows that the number of XOR gates are reduced for CRC algorithms which improve the hardware efficiency. Searching algorithm and all the matrix computations have been performed using MATLAB simulations

    Tree Parity Machine Rekeying Architectures

    Get PDF
    The necessity to secure the communication between hardware components in embedded systems becomes increasingly important with regard to the secrecy of data and particularly its commercial use. We suggest a low-cost (i.e. small logic-area) solution for flexible security levels and short key lifetimes. The basis is an approach for symmetric key exchange using the synchronisation of Tree Parity Machines. Fast successive key generation enables a key exchange within a few milliseconds, given realistic communication channels with a limited bandwidth. For demonstration we evaluate characteristics of a standard-cell ASIC design realisation as IP-core in 0.18-micrometer CMOS-technology

    Low-Power and Low-Noise Clock Generator for High-Speed ADCs

    Get PDF
    The rapid development of high-performance communication technologies reflects a clear trend in demanding requirements imposed on analog-to-digital converters (ADCs). Thus, it appears that these requirements imply higher frequencies not only for the input signal but also higher sampling frequencies, which translates into a higher sensitivity of the circuit to thermal noise and consequent increase in phase-noise. This arises as to the main purpose of this document, which will seek, as its main objective, the development of an architecture that allows the generation of multiple clock signals at high input frequencies with low jitter and low power dissipation to make ADCs more efficient and faster. This dissertation proposes an architecture implemented by a Clock Buffer that converts a differential input signal into a single-ended output signal, a Digital Buffer that transforms a sine wave into a square wave, and finally a Multi Clock Phase Generator (MPCG), consisting of Shift Registers. Both architectures are implemented in 130 nm CMOS technology. The architecture is powered by a LVDS signal with an amplitude of 200 mV and a frequency of 1 GHz, in order to output 8 square wave clock signals with an amplitude of 1.2 V and with a frequency of 125 MHz. The signals obtained at the output later will feed an architecture of 8 Time-Interleaved ADCs. The total area of the implemented circuit is about 8054.3 μm2, for a dissipated power of 5.3 mW and a jitter value of 1.13 ps. This new architecture will be aimed at all types of entities that work with devices that are made up of high-speed performance ADCs, to improve the operation of these same devices, making the processing from a continuous signal to a discrete signal as efficiently as possible.O rápido desenvolvimento das tecnologias de comunicação de alto desempenho, reflete uma tendência clara na exigência dos requisitos impostos aos conversores analógico-digital (ADCs). Deste modo, verifica-se que estes requisitos implicam elevadas frequências não só sinal de entrada, como também frequências elevadas de amostragem o que se traduz numa maior sensibilidade do circuito ao ruído térmico e consequente aumento ruído de fase. Esta problemática, surge como propósito principal deste documento, no qual se procurará, como objetivo principal, o desenvolvimento de uma arquitetura que permita gerar múltiplos sinais de relógio a altas frequências de entrada e períodos de amostragem, com um baixo jitter e baixa energia consumida de forma a tornar mais eficiente e rápido o funcionamento de ADCs. Ruido térmico. Esta dissertação propõe uma arquitetura composta por um amplificador de sinal de relógio que converte o duplo sinal de entrada num único sinal de saída, um amplificador digital que transforma uma onda sinusoidal numa onda quadrada e por fim um gerador de fase múltipla de sinais de relógio (MPCG), constituído por registos de deslocamento. Ambas as arquiteturas são implementadas em tecnologia CMOS de 130 nm. A arquitetura é alimentada com um sinal LVDS de 200 mV de amplitude e com uma frequência de 1 GHz, de forma a obter à saída 8 sinais de relógio de onda quadrada com uma amplitude de 1,2 V e com 125 MHz de frequência. Os sinais obtidos à saída posteriormente alimentarão uma arquitetura de 8 canais com multiplexagem temporal. A área total do circuito implementado é cerca de 8054,3 μm2, para uma potência dissipada de 5,3 mW e para um valor de jitter de 1,13 ps. Esta nova arquitetura será direcionada para todo o tipo de entidades que trabalham com dispositivos que são constituídos por ADCs de alta velocidade de desempenho, de forma a poder melhorar o funcionamento desses mesmos dispositivos, tornando o processamento de sinal continuo para sinal discreto o mais eficiente possível
    corecore