303 research outputs found

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Structure from motion using omni-directional vision and certainty grids

    Get PDF
    This thesis describes a method to create local maps from an omni-directional vision system (ODVS) mounted on a mobile robot. Range finding is performed by a structure-from-motion method, which recovers the three-dimensional position of objects in the environment from omni-directional images. This leads to map-making, which is accomplished using certainty grids to fuse information from multiple readings into a two-dimensional world model. The system is demonstrated both on noise-free data from a custom-built simulator and on real data from an omni-directional vision system on-board a mobile robot. Finally, to account for the particular error characteristics of a real omni-directional vision sensor, a new sensor model for the certainty grid framework is also created and compared to the traditional sonar sensor model

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    An intelligent multi-floor mobile robot transportation system in life science laboratories

    Get PDF
    In this dissertation, a new intelligent multi-floor transportation system based on mobile robot is presented to connect the distributed laboratories in multi-floor environment. In the system, new indoor mapping and localization are presented, hybrid path planning is proposed, and an automated doors management system is presented. In addition, a hybrid strategy with innovative floor estimation to handle the elevator operations is implemented. Finally the presented system controls the working processes of the related sub-system. The experiments prove the efficiency of the presented system

    Sensor Fusion and Deep Learning for Indoor Agent Localization

    Get PDF
    Autonomous, self-navigating agents have been rising in popularity due to a push for a more technologically aided future. From cars to vacuum cleaners, the applications of self-navigating agents are vast and span many different fields and aspects of life. As the demand for these autonomous robotic agents has been increasing, so has the demand for innovative features, robust behavior, and lower cost hardware. One particular area with a constant demand for improvement is localization, or an agent\u27s ability to determine where it is located within its environment. Whether the agent\u27s environment is primarily indoor or outdoor, dense or sparse, static or dynamic, an agent must be able to have knowledge of its location. Many different techniques exist today for localization, each having its strengths and weaknesses. Despite the abundance of different techniques, there is still room for improvement. This research presents a novel indoor localization algorithm that fuses data from multiple sensors for a relatively low cost. Inspired by recent innovations in deep learning and particle filters, a fast, robust, and accurate autonomous localization system has been created. Results demonstrate that the proposed system is both real-time and robust against changing conditions within the environment

    Autonomous Navigation of Mobile Robot Using Modular Architecture for Unstructured Environment

    Get PDF
    This article proposes a solution for autonomous navigation of mobile robot based on distributed control architecture. In this architecture, each stage of the algorithm is divided into separate software modules capable of interfacing to each other to obtain an effective global solution. The work starts with selection of suitable sensors depending on their requirement for the purpose and for the present work a stereo vision module and a laser range finder are used. These sensors are integrated with the robot controller via Ethernet/USB and the sensory feedbacks are used to control and navigate the robot. Using the architecture, an algorithm has been developed and implemented to intelligently avoid dynamic obstacles and optimally re-planning the path to reach the target location. The algorithm has been successfully tested with a Summit_XL mobile robot. The thesis describing the present research work is divided into eight chapters. The subject of the topic its contextual relevance and the related matters including the objectives of the work are presented in Chapter 1. The reviews on several diverse streams of literature on different issues of the topic such as autonomous navigation using various combinations of sensors networks, SLAM, obstacle detection and avoidance etc. are presented in Chapter 2. In Chapter 3, selected methodologies are explained. Chapter 4 presents the detail description of the sensors, automobile platform and software tools used to implement the developed methodology. In Chapter 5, detail view of the experimental setup is provided. Procedures and parametric evaluations are given in chapter 6. Successful indoor tests results are described in chapter 7. Finally, Chapter 8 presents the conclusion and future scope of the research work

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Intelligent vision-based navigation system for mobile robot: A technological review

    Get PDF
    Vision system is gradually becoming more important. As computing technology advances, it has been widely utilized in many industrial and service sectors. One of the critical applications for vision system is to navigate mobile robot safely. In order to do so, several technological elements are required. This article focuses on reviewing recent researches conducted on the intelligent vision-based navigation system for the mobile robot. These include the utilization of mobile robot in various sectors such as manufacturing, warehouse, agriculture, outdoor navigation and other service sectors. Multiple intelligent algorithms used in developing robot vision system were also reviewed

    Indoor Navigation and Manipulation using a Segway RMP

    Get PDF
    This project dealt with a Segway RMP, utilizing it in an assistive-technology manner, encompassing navigation and manipulation aspects of robotics. First, background research was conducted to develop a blueprint for the robot. The hardware, software, and configuration of the RMP was updated, and a robotic arm was designed to extend the RMP’s capabilities. The robot was programmed to accomplish autonomous multi-floor navigation through the use of the navigation stack in ROS, image detection, and a GUI. The robot can navigate through the hallways of the building utilizing the elevator. The robotic arm was designed to accomplish tasks such as pressing a button and picking an object up off of a table. The Segway RMP is designed to be utilized and expanded upon as a robotics research platform

    Distributed Self-Deployment in Visual Sensor Networks

    Get PDF
    Autonomous decision making in a variety of wireless sensor networks, and also in visual sensor networks (VSNs), specifically, has become a highly researched field in recent years. There is a wide array of applications ranging from military operations to civilian environmental monitoring. To make VSNs highly useful in any type of setting, a number of fundamental problems must be solved, such as sensor node localization, self-deployment, target recognition, etc. This presents a plethora of challenges, as low cost, low energy consumption, and excellent scalability are desired. This thesis describes the design and implementation of a distributed self-deployment method in wireless visual sensor networks. Algorithms are developed for the imple- mentation of both centralized and distributed self-deployment schemes, given a set of randomly placed sensor nodes. In order to self-deploy these nodes, the fundamental problem of localization must first be solved. To this end, visual structured marker detection is utilized to obtain coordinate data in reference to artificial markers, which then is used to deduct the location of a node in an absolute coordinate system. Once localization is complete, the nodes in the VSN are deployed in either centralized or distributed fashion, to pre-defined target locations. As is usually the case, in cen- tralized mode there is a single processing node which makes the vast majority of decisions, and since this one node has knowledge of all events in the VSN, it is able to make optimal decisions, at the expense of time and scalability. The distributed mode, however, offers increased performance in regard to time and scalability, but the final deployment result may be considered sub-optimal. Software is developed for both modes of operations, and a GUI is provided as an easy control interface, which also allows for visualization of the VSN progress in the testing environment. The algorithms are tested on an actual testbed consisting of five custom-built Mobile Sensor Platforms (MSPs). The MSPs are configured to have a camera and an ultra-sonic range sensor. The visual marker detection uses the camera, and for obstacle avoidance during motion, the sonic ranger is used. Eight markers are placed in an area measuring 4 × 4 meters, which is surrounded by white background. Both algorithms are evaluated for speed and accuracy. Experimental results show that localization using the visual markers has an accuracy of about 96% in ideal lighting conditions, and the proposed self-deployment algorithms perform as desired. The MSPs suffer from some physical design limitations, such as lacking wheel encoders for reliable movement in straight lines. Experiments show that over 1 meter of travel the MSPs deviate from the path by an average of 7.5 cm in a lateral direction. Finally, the time needed for each algorithm to complete is recorded, and it is found that centralized and distributed modes require an average of 34.3 and 28.6 seconds, respectively, effectively meaning that distributed self-deployment is approximately 16.5% faster than centralized deployment
    corecore