1,185 research outputs found

    Beampattern-Based Tracking for Millimeter Wave Communication Systems

    Full text link
    We present a tracking algorithm to maintain the communication link between a base station (BS) and a mobile station (MS) in a millimeter wave (mmWave) communication system, where antenna arrays are used for beamforming in both the BS and MS. Downlink transmission is considered, and the tracking is performed at the MS as it moves relative to the BS. Specifically, we consider the case that the MS rotates quickly due to hand movement. The algorithm estimates the angle of arrival (AoA) by using variations in the radiation pattern of the beam as a function of this angle. Numerical results show that the algorithm achieves accurate beam alignment when the MS rotates in a wide range of angular speeds. For example, the algorithm can support angular speeds up to 800 degrees per second when tracking updates are available every 10 ms.Comment: 6 pages, to be published in Proc. IEEE GLOBECOM 2016, Washington, D.C., US

    Dynamic Channel Modeling for Indoor Millimeter-Wave Propagation Channels Based on Measurements

    Get PDF
    In this contribution, a recently conducted measurement campaign for indoor millimeter-wave propagation channels is introduced. A vector network analyzer (VNA)-based channel sounder was exploited to record the channel characteristics at the frequency band from 28-30 GHz. A virtual uniform circular array (UCA) with a radius of 0.25m was formed using a rotator with 360 steps. Moreover, by taking advantage of fiber-optic technique applied in the channel sounder, measurements at 50 positions were performed from an indoor hall to an indoor corridor along a long pre-defined route. A low-complexity highresolution propagation estimation (HRPE) algorithm is exploited to estimate the propagation parameters of multipath components (MPCs). Based on the HRPE estimation results, a novel clustering identification and tracking algorithm is proposed to trace clusters. Composite channel characteristics, cluster-level characteristics and dynamic (or birth-death) behaviours of the clusters are investigated, which constitute a dynamic model for the indoor millimeter-wave channel

    Feasibility and systems definition study for Microwave Multi-Application Payload (MMAP)

    Get PDF
    Work completed on three Shuttle/Spacelab experiments is examined: the Adaptive Multibeam Phased Array Antenna (AMPA) Experiment, Electromagnetic Environment Experiment (EEE) and Millimeter Wave Communications Experiment (MWCE). Results included the definition of operating modes, sequence of operation, radii of operation about several ground stations, signal format, foot prints of typical orbits and preliminary definition of ground and user terminals. Conceptual hardware designs, Spacelab interfaces, data handling methods, experiment testing and verification studies were included. The MWCE-MOD I was defined conceptually for a steerable high gain antenna

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    A Complexity-Efficient High Resolution Propagation Parameter Estimation Algorithm for Ultra-Wideband Large-Scale Uniform Circular Array

    Get PDF
    Millimeter wave (mm-wave) communication with large-scale antenna array configuration is seen as the key enabler of the next generation communication systems. Accurate knowledge of the mm-wave propagation channels is fundamental and essential. In this contribution, a novel complexity-efficient high resolution parameter estimation (HRPE) algorithm is proposed for the mm-wave channel with large-scale uniform circular array (UCA) applied. The proposed algorithm is able to obtain the high-resolution estimation results of the spherical channel propagation parameters. The prior channel information in the delay domain, i.e., the delay trajectories of individual propagation paths observed across the array elements, is exploited, by combining the high-resolution estimation principle and the phase mode excitation technique. Fast initializations, effective interference cancellations and reduced searching spaces achieved by the proposed schemes significantly decrease the algorithm complexity. Furthermore, the channel spatial non-stationarity in path gain across the array elements is considered for the first time in the literature for propagation parameter estimation, which is beneficial to obtain more realistic results as well as to decrease the complexity. A mm-wave measurement campaign at the frequency band of 28-30 GHz using a large-scale UCA is exploited to demonstrate and validate the proposed HRPE algorithm.Comment: Single column, 28 pages. In review process with IEEE Transactions on Communication

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    • …
    corecore