193 research outputs found

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 10−1510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    Low-Density Arrays of Circulant Matrices: Rank and Row-Redundancy Analysis, and Quasi-Cyclic LDPC Codes

    Full text link
    This paper is concerned with general analysis on the rank and row-redundancy of an array of circulants whose null space defines a QC-LDPC code. Based on the Fourier transform and the properties of conjugacy classes and Hadamard products of matrices, we derive tight upper bounds on rank and row-redundancy for general array of circulants, which make it possible to consider row-redundancy in constructions of QC-LDPC codes to achieve better performance. We further investigate the rank of two types of construction of QC-LDPC codes: constructions based on Vandermonde Matrices and Latin Squares and give combinatorial expression of the exact rank in some specific cases, which demonstrates the tightness of the bound we derive. Moreover, several types of new construction of QC-LDPC codes with large row-redundancy are presented and analyzed.Comment: arXiv admin note: text overlap with arXiv:1004.118

    Projective-Plane Iteratively Decodable Block Codes for WDM High-Speed Long-Haul Transmission Systems

    Full text link

    An Efficient Algorithm for Counting Cycles in QC and APM LDPC Codes

    Full text link
    In this paper, a new method is given for counting cycles in the Tanner graph of a (Type-I) quasi-cyclic (QC) low-density parity-check (LDPC) code which the complexity mainly is dependent on the base matrix, independent from the CPM-size of the constructed code. Interestingly, for large CPM-sizes, in comparison of the existing methods, this algorithm is the first approach which efficiently counts the cycles in the Tanner graphs of QC-LDPC codes. In fact, the algorithm recursively counts the cycles in the parity-check matrix column-by-column by finding all non-isomorph tailless backtrackless closed (TBC) walks in the base graph and enumerating theoretically their corresponding cycles in the same equivalent class. Moreover, this approach can be modified in few steps to find the cycle distributions of a class of LDPC codes based on Affine permutation matrices (APM-LDPC codes). Interestingly, unlike the existing methods which count the cycles up to 2g−22g-2, where gg is the girth, the proposed algorithm can be used to enumerate the cycles of arbitrary length in the Tanner graph. Moreover, the proposed cycle searching algorithm improves upon various previously known methods, in terms of computational complexity and memory requirements.Comment: 18 pages, 4 figure

    Structural Design and Analysis of Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Get PDF
    The discovery of two fundamental error-correcting code families, known as turbo codes and low-density parity-check (LDPC) codes, has led to a revolution in coding theory and to a paradigm shift from traditional algebraic codes towards modern graph-based codes that can be decoded by iterative message passing algorithms. From then on, it has become a focal point of research to develop powerful LDPC and turbo-like codes. Besides the classical domain of randomly constructed codes, an alternative and competitive line of research is concerned with highly structured LDPC and turbo-like codes based on combinatorial designs. Such codes are typically characterized by high code rates already at small to moderate code lengths and good code properties such as the avoidance of harmful 4-cycles in the code's factor graph. Furthermore, their structure can usually be exploited for an efficient implementation, in particular, they can be encoded with low complexity as opposed to random-like codes. Hence, these codes are suitable for high-speed applications such as magnetic recording or optical communication. This thesis greatly contributes to the field of structured LDPC codes and systematic repeat-accumulate (sRA) codes as a subclass of turbo-like codes by presenting new combinatorial construction techniques and algebraic methods for an improved code design. More specifically, novel and infinite families of high-rate structured LDPC codes and sRA codes are presented based on balanced incomplete block designs (BIBDs), which form a subclass of combinatorial designs. Besides of showing excellent error-correcting capabilites under iterative decoding, these codes can be implemented efficiently, since their inner structure enables low-complexity encoding and accelerated decoding algorithms. A further infinite series of structured LDPC codes is presented based on the notion of transversal designs, which form another subclass of combinatorial designs. By a proper configuration of these codes, they reveal an excellent decoding performance under iterative decoding, in particular, with very low error-floors. The approach for lowering these error-floors is threefold. First, a thorough analysis of the decoding failures is carried out, resulting in an extensive classification of so-called stopping sets and absorbing sets. These combinatorial entities are known to be the main cause of decoding failures in the error-floor region over the binary erasure channel (BEC) and additive white Gaussian noise (AWGN) channel, respectively. Second, the specific code structures are exploited in order to calculate conditions for the avoidance of the most harmful stopping and absorbing sets. Third, powerful design strategies are derived for the identification of those code instances with the best error-floor performances. The resulting codes can additionally be encoded with low complexity and thus are ideally suited for practical high-speed applications. Further investigations are carried out on the infinite family of structured LDPC codes based on finite geometries. It is known that these codes perform very well under iterative decoding and that their encoding can be achieved with low complexity. By combining the latest findings in the fields of finite geometries and combinatorial designs, we generate new theoretical insights about the decoding failures of such codes under iterative decoding. These examinations finally help to identify the geometric codes with the most beneficial error-correcting capabilities over the BEC
    • …
    corecore