This paper is concerned with general analysis on the rank and row-redundancy
of an array of circulants whose null space defines a QC-LDPC code. Based on the
Fourier transform and the properties of conjugacy classes and Hadamard products
of matrices, we derive tight upper bounds on rank and row-redundancy for
general array of circulants, which make it possible to consider row-redundancy
in constructions of QC-LDPC codes to achieve better performance. We further
investigate the rank of two types of construction of QC-LDPC codes:
constructions based on Vandermonde Matrices and Latin Squares and give
combinatorial expression of the exact rank in some specific cases, which
demonstrates the tightness of the bound we derive. Moreover, several types of
new construction of QC-LDPC codes with large row-redundancy are presented and
analyzed.Comment: arXiv admin note: text overlap with arXiv:1004.118