26 research outputs found

    Exploration and Design of Power-Efficient Networked Many-Core Systems

    Get PDF
    Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by todayโ€™s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.Siirretty Doriast

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Cross-layer reliability evaluation, moving from the hardware architecture to the system level: A CLERECO EU project overview

    Get PDF
    Advanced computing systems realized in forthcoming technologies hold the promise of a significant increase of computational capabilities. However, the same path that is leading technologies toward these remarkable achievements is also making electronic devices increasingly unreliable. Developing new methods to evaluate the reliability of these systems in an early design stage has the potential to save costs, produce optimized designs and have a positive impact on the product time-to-market. CLERECO European FP7 research project addresses early reliability evaluation with a cross-layer approach across different computing disciplines, across computing system layers and across computing market segments. The fundamental objective of the project is to investigate in depth a methodology to assess system reliability early in the design cycle of the future systems of the emerging computing continuum. This paper presents a general overview of the CLERECO project focusing on the main tools and models that are being developed that could be of interest for the research community and engineering practice

    ์˜จ ์นฉ ๋„คํŠธ์›Œํฌ ์„ค๊ณ„: ๋งคํ•‘, ๊ด€๋ฆฌ, ๋ผ์šฐํŒ…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2016. 2. ์ตœ๊ธฐ์˜.์ง€๋‚œ ์ˆ˜์‹ญ ๋…„๊ฐ„ ์ด์–ด์ง„ ๋ฐ˜๋„์ฒด ๊ธฐ์ˆ ์˜ ํ–ฅ์ƒ์€ ๋งค๋‹ˆ ์ฝ”์–ด์˜ ์‹œ๋Œ€๋ฅผ ๊ฐ€์ ธ๋‹ค ์ฃผ์—ˆ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ผ์ƒ ์ƒํ™œ์— ์“ฐ๋Š” ๋ฐ์Šคํฌํ†ฑ ์ปดํ“จํ„ฐ์กฐ์ฐจ๋„ ์ด๋ฏธ ์ˆ˜ ๊ฐœ์˜ ์ฝ”์–ด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ˆ˜๋ฐฑ ๊ฐœ์˜ ์ฝ”์–ด๋ฅผ ๊ฐ€์ง„ ์นฉ๋„ ์ƒ์šฉํ™”๋˜์–ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋งŽ์€ ์ฝ”์–ด๋“ค ๊ฐ„์˜ ํ†ต์‹  ๊ธฐ๋ฐ˜์œผ๋กœ์„œ, ๋„คํŠธ์›Œํฌ-์˜จ-์นฉ(NoC)์ด ์ƒˆ๋กœ์ด ๋Œ€๋‘๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ํ˜„์žฌ ๋งŽ์€ ์—ฐ๊ตฌ ๋ฐ ์ƒ์šฉ ์ œํ’ˆ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋„คํŠธ์›Œํฌ-์˜จ-์นฉ์„ ๋งค๋‹ˆ ์ฝ”์–ด ์‹œ์Šคํ…œ์— ์‚ฌ์šฉํ•˜๋Š” ๋ฐ์—๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฌธ์ œ๊ฐ€ ๋”ฐ๋ฅด๋ฉฐ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ทธ ์ค‘ ๋ช‡ ๊ฐ€์ง€๋ฅผ ํ’€์–ด๋‚ด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๋‘ ๋ฒˆ์งธ ์ฑ•ํ„ฐ์—์„œ๋Š” NoC ๊ธฐ๋ฐ˜ ๋งค๋‹ˆ์ฝ”์–ด ๊ตฌ์กฐ์— ์ž‘์—…์„ ํ• ๋‹นํ•˜๊ณ  ์Šค์ผ€์ฅดํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋งค๋‹ˆ์ฝ”์–ด์—์˜ ์ž‘์—… ํ• ๋‹น์„ ๋‹ค๋ฃฌ ๋…ผ๋ฌธ์€ ์ด๋ฏธ ๋งŽ์ด ์ถœํŒ๋˜์—ˆ์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฉ”์‹œ์ง€ ํŒจ์‹ฑ๊ณผ ๊ณต์œ  ๋ฉ”๋ชจ๋ฆฌ, ๋‘ ๊ฐ€์ง€์˜ ํ†ต์‹  ๋ฐฉ์‹์„ ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์„ฑ๋Šฅ๊ณผ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์—ญ๋ฐฉํ–ฅ ์˜์กด์„ฑ์„ ๊ฐ€์ง„ ์ž‘์—… ๊ทธ๋ž˜ํ”„๋ฅผ ์Šค์ผ€์ฅดํ•˜๋Š” ๋ฐฉ๋ฒ• ๋˜ํ•œ ์ œ์‹œํ•˜์˜€๋‹ค. 3์ฐจ์› ์ ์ธต ๊ธฐ์ˆ ์€ ๋†’์•„์ง„ ์ „๋ ฅ ๋ฐ€๋„ ๋•Œ๋ฌธ์— ์—ด ๋ฌธ์ œ๊ฐ€ ์‹ฌ๊ฐํ•ด์ง€๋Š” ๋“ฑ, ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋„์ „ ๊ณผ์ œ๋ฅผ ๋‚ดํฌํ•˜๊ณ  ์žˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์ฑ•ํ„ฐ์—์„œ๋Š” DVFS ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ์—ด ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ธฐ์ˆ ์„ ์†Œ๊ฐœํ•œ๋‹ค. ๊ฐ ์ฝ”์–ด์™€ ๋ผ์šฐํ„ฐ๊ฐ€ ์ „์••, ์ž‘๋™ ์†๋„๋ฅผ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ์—์„œ, ๊ฐ€์žฅ ๋†’์€ ์„ฑ๋Šฅ์„ ์ด๋Œ์–ด ๋‚ด๋ฉด์„œ๋„ ์ตœ๋Œ€ ์˜จ๋„๋ฅผ ๋„˜์–ด์„œ์ง€ ์•Š๋„๋ก ํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ์™€ ๋„ค ๋ฒˆ์งธ ์ฑ•ํ„ฐ๋Š” ์กฐ๊ธˆ ๋‹ค๋ฅธ ์ธก๋ฉด์„ ๋‹ค๋ฃฌ๋‹ค. 3D ์ ์ธต ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•  ๋•Œ, ์ธต๊ฐ„ ํ†ต์‹ ์€ ์ฃผ๋กœ TSV๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด๋ฃจ์–ด์ง„๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ TSV๋Š” ์ผ๋ฐ˜ wire๋ณด๋‹ค ํ›จ์”ฌ ํฐ ๋ฉด์ ์„ ์ฐจ์ง€ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์ „์ฒด ๋„คํŠธ์›Œํฌ์—์„œ์˜ TSV ๊ฐœ์ˆ˜๋Š” ์ œํ•œ๋˜์–ด์•ผ ํ•  ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ด ๊ฒฝ์šฐ์—๋Š” ๋‘ ๊ฐ€์ง€ ์„ ํƒ์ง€๊ฐ€ ์žˆ๋Š”๋ฐ, ์ฒซ์งธ๋Š” ๊ฐ ์ธต๊ฐ„ ํ†ต์‹  ์ฑ„๋„์˜ ๋Œ€์—ญํญ์„ ์ค„์ด๋Š” ๊ฒƒ์ด๊ณ , ๋‘˜์งธ๋Š” ๊ฐ ์ฑ„๋„์˜ ๋Œ€์—ญํญ์€ ์œ ์ง€ํ•˜๋˜ ์ผ๋ถ€ ๋…ธ๋“œ๋งŒ ์ธต๊ฐ„ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•œ ์ฑ„๋„์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ฐ๊ฐ์˜ ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ๋ผ์šฐํŒ… ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•˜๋‚˜์”ฉ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฒฝ์šฐ์— ์žˆ์–ด์„œ๋Š” deflection ๋ผ์šฐํŒ… ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธต๊ฐ„ ํ†ต์‹ ์˜ ๊ธด ์ง€์—ฐ ์‹œ๊ฐ„์„ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ธต๊ฐ„ ํ†ต์‹ ์„ ๊ท ๋“ฑํ•˜๊ฒŒ ๋ถ„๋ฐฐํ•จ์œผ๋กœ์จ, ์ œ์‹œ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐœ์„ ๋œ ์ง€์—ฐ ์‹œ๊ฐ„์„ ๋ณด์ด๋ฉฐ ๋ผ์šฐํ„ฐ ๋ฒ„ํผ์˜ ์ œ๊ฑฐ๋ฅผ ํ†ตํ•œ ๋ฉด์  ๋ฐ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ ๋˜ํ•œ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๊ฒฝ์šฐ์—์„œ๋Š” ์ธต๊ฐ„ ํ†ต์‹  ์ฑ„๋„์„ ์„ ํƒํ•˜๊ธฐ ์œ„ํ•œ ๋ช‡ ๊ฐ€์ง€ ๊ทœ์น™์„ ์ œ์‹œํ•œ๋‹ค. ์•ฝ๊ฐ„์˜ ๋ผ์šฐํŒ… ์ž์œ ๋„๋ฅผ ํฌ์ƒํ•จ์œผ๋กœ์จ, ์ œ์‹œ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐ€์ƒ ์ฑ„๋„ ์š”๊ตฌ ์กฐ๊ฑด์„ ์ œ๊ฑฐํ•˜๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ๋Š” ์„ฑ๋Šฅ ๋˜๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์˜ ์ฆ๊ฐ€๋ฅผ ๊ฐ€์ ธ ์˜จ๋‹ค.For decades, advance in semiconductor technology has led us to the era of many-core systems. Today's desktop computers already have multi-core processors, and chips with more than a hundred cores are commercially available. As a communication medium for such a large number of cores, network-on-chip (NoC) has emerged out, and now is being used by many researchers and companies. Adopting NoC for a many-core system incurs many problems, and this thesis tries to solve some of them. The second chapter of this thesis is on mapping and scheduling of tasks on NoC-based CMP architectures. Although mapping on NoC has a number of papers published, our work reveals that selecting communication types between shared memory and message passing can help improve the performance and energy efficiency. Additionally, our framework supports scheduling applications containing backward dependencies with the help of modified modulo scheduling. Evolving the SoCs through 3D stacking makes us face a number of new problems, and the thermal problem coming from increased power density is one of them. In the third chapter of this thesis, we try to mitigate the hotspot problem using DVFS techniques. Assuming that all the routers as well as cores have capabilities to control voltage and frequency individually, we find voltage-frequency pairs for all cores and routers which yields the best performance within the given thermal constraint. The fourth and the fifth chapters of this thesis are from a different aspect. In 3D stacking, inter-layer interconnections are implemented using through-silicon vias (TSV). TSVs usually take much more area than normal wires. Furthermore, they also consume silicon area as well as metal area. For this reason, designers would want to limit the number of TSVs used in their network. To limit the TSV count, there are two options: the first is to reduce the width of each vertical links, and the other is to use fewer vertical links, which results in a partially connected network. We present two routing methodologies for each case. For the network with reduced bandwidth vertical links, we propose using deflection routing to mitigate the long latency of vertical links. By balancing the vertical traffics properly, the algorithm provides improved latency. Also, a large amount of area and energy reduction can be obtained by the removal of router buffers. For partially connected networks, we introduce a set of routing rules for selecting the vertical links. At the expense of sacrificing some amount of routing freedom, the proposed algorithm removes the virtual channel requirement for avoiding deadlock. As a result, the performance, or energy consumption can be reduced at the designer's choice.Chapter 1 Introduction 1 1.1 Task Mapping and Scheduling 2 1.2 Thermal Management 3 1.3 Routing for 3D Networks 5 Chapter 2 Mapping and Scheduling 9 2.1 Introduction 9 2.2 Motivation 10 2.3 Background 12 2.4 Related Work 16 2.5 Platform Description 17 2.5.1 Architcture Description 17 2.5.2 Energy Model 21 2.5.3 Communication Delay Model 22 2.6 Problem Formulation 23 2.7 Proposed Solution 25 2.7.1 Task and Communication Mapping 27 2.7.2 Communication Type Optimization 31 2.7.3 Design Space Pruning via Pre-evaluation 34 2.7.4 Scheduling 35 2.8 Experimental Results 42 2.8.1 Experiments with Coarse-grained Iterative Modulo Scheduling 42 2.8.2 Comparison with Different Mapping Algorithms 43 2.8.3 Experiments with Overall Algorithms 45 2.8.4 Experiments with Various Local Memory Sizes 47 2.8.5 Experiments with Various Placements of Shared Memory 48 Chapter 3 Thermal Management 50 3.1 Introduction 50 3.2 Background 51 3.2.1 Thermal Modeling 51 3.2.2 Heterogeneity in Thermal Propagation 52 3.3 Motivation and Problem Definition 53 3.4 Related Work 56 3.5 Orchestrated Voltage-Frequency Assignment 56 3.5.1 Individual PI Control Method 56 3.5.2 PI Controlled Weighted-Power Budgeting 57 3.5.3 Performance/Power Estimation 59 3.5.4 Frequency Assignment 62 3.5.5 Algorithm Overview 64 3.5.6 Stability Conditions for PI Controller 65 3.6 Experimental Result 66 3.6.1 Experimental Setup 66 3.6.2 Overall Algorithm Performance 68 3.6.3 Accuracy of the Estimation Model 70 3.6.4 Performance of the Frequency Assignment Algorithm 70 Chapter 4 Routing for Limited Bandwidth 3D NoC 72 4.1 Introduction 72 4.2 Motivation 73 4.3 Background 74 4.4 Related Work 75 4.5 3D Deflection Routing 76 4.5.1 Serialized TSV Model 76 4.5.2 TSV Link Injection/ejection Scheme 78 4.5.3 Deadlock Avoidance 80 4.5.4 Livelock Avoidance 84 4.5.5 Router Architecture: Putting It All Together 86 4.5.6 System Level Consideration 87 4.6 Experimental Results 89 4.6.1 Experimental Setup 89 4.6.2 Results on Synthetic Traffic Patterns 91 4.6.3 Results on Realistic Traffic Patterns 94 4.6.4 Results on Real Application Benchmarks 98 4.6.5 Fairness Issue 103 4.6.6 Area Cost Comparison 104 Chapter 5 Routing for Partially Connected 3D NoC 106 5.1 Introduction 106 5.2 Background 107 5.3 Related Work 109 5.4 Proposed Algorithm 111 5.4.1 Preliminary 112 5.4.2 Routing Algorithm for 3-D Stacked Meshes with Regular Partial Vertical Connections 115 5.4.3 Routing Algorithm for 3-D Stacked Meshes with Irregular Partial Vertical Connections 118 5.4.4 Extension to Heterogeneous Mesh Layers 122 5.5 Experimental Results 126 5.5.1 Experimental Setup 126 5.5.2 Experiments on Synthetic Traffics 128 5.5.3 Experiments on Application Benchmarks 133 5.5.4 Comparison with Reduced Bandwidth Mesh 139 Chapter 6 Conclusion 141 Bibliography 144 ์ดˆ๋ก 163Docto

    Complex scheduling models and analyses for property-based real-time embedded systems

    Get PDF
    Modern multi core architectures and parallel applications pose a significant challenge to the worst-case centric real-time system verification and design efforts. The involved model and parameter uncertainty contest the fidelity of formal real-time analyses, which are mostly based on exact model assumptions. In this dissertation, various approaches that can accept parameter and model uncertainty are presented. In an attempt to improve predictability in worst-case centric analyses, the exploration of timing predictable protocols are examined for parallel task scheduling on multiprocessors and network-on-chip arbitration. A novel scheduling algorithm, called stationary rigid gang scheduling, for gang tasks on multiprocessors is proposed. In regard to fixed-priority wormhole-switched network-on-chips, a more restrictive family of transmission protocols called simultaneous progression switching protocols is proposed with predictability enhancing properties. Moreover, hierarchical scheduling for parallel DAG tasks under parameter uncertainty is studied to achieve temporal- and spatial isolation. Fault-tolerance as a supplementary reliability aspect of real-time systems is examined, in spite of dynamic external causes of fault. Using various job variants, which trade off increased execution time demand with increased error protection, a state-based policy selection strategy is proposed, which provably assures an acceptable quality-of-service (QoS). Lastly, the temporal misalignment of sensor data in sensor fusion applications in cyber-physical systems is examined. A modular analysis based on minimal properties to obtain an upper-bound for the maximal sensor data time-stamp difference is proposed

    Spatial parallelism in the routers of asynchronous on-chip networks

    Get PDF
    State-of-the-art multi-processor systems-on-chip use on-chip networks as their communication fabric. Although most on-chip networks are implemented synchronously, asynchronous on-chip networks have several advantages over their synchronous counterparts. Timing division multiplexing (TDM) flow control methods have been utilized in asynchronous on-chip networks extensively. The synchronization required by TDM leads to significant speed penalties. Compared with using TDM methods, spatial parallelism methods, such as the spatial division multiplexing (SDM) flow control method, achieve better network throughput with less area overhead.This thesis proposes several techniques to increase spatial parallelism in the routers of asynchronous on-chip networks.Channel slicing is a new pipeline structure that alleviates the speed penalty by removing the synchronization among bit-level data pipelines. It is also found out that the lookahead pipeline using early evaluated acknowledgement can be used in routers to further improve speed.SDM is a new flow control method proposed for asynchronous on-chip networks. It improves network throughput without introducing synchronization among buffers of different frames, which is required by TDM methods. It is also found that the area overhead of SDM is smaller than the virtual channel (VC) flow control method -- the most used TDM method. The major design problem of SDM is the area consuming crossbars. A novel 2-stage Clos switch structure is proposed to replace the crossbar in SDM routers, which significantly reduces the area overhead. This Clos switch is dynamically reconfigured by a new asynchronous Clos scheduler.Several asynchronous SDM routers are implemented using these new techniques. An asynchronous VC router is also reproduced for comparison. Performance analyses show that the SDM routers outperform the VC router in throughput, area overhead and energy efficiency.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Spatial parallelism in the routers of asynchronous on-chip networks

    Get PDF
    State-of-the-art multi-processor systems-on-chip use on-chip networks as their communication fabric. Although most on-chip networks are implemented synchronously, asynchronous on-chip networks have several advantages over their synchronous counterparts. Timing division multiplexing (TDM) flow control methods have been utilized in asynchronous on-chip networks extensively. The synchronization required by TDM leads to significant speed penalties. Compared with using TDM methods, spatial parallelism methods, such as the spatial division multiplexing (SDM) flow control method, achieve better network throughput with less area overhead.This thesis proposes several techniques to increase spatial parallelism in the routers of asynchronous on-chip networks.Channel slicing is a new pipeline structure that alleviates the speed penalty by removing the synchronization among bit-level data pipelines. It is also found out that the lookahead pipeline using early evaluated acknowledgement can be used in routers to further improve speed.SDM is a new flow control method proposed for asynchronous on-chip networks. It improves network throughput without introducing synchronization among buffers of different frames, which is required by TDM methods. It is also found that the area overhead of SDM is smaller than the virtual channel (VC) flow control method -- the most used TDM method. The major design problem of SDM is the area consuming crossbars. A novel 2-stage Clos switch structure is proposed to replace the crossbar in SDM routers, which significantly reduces the area overhead. This Clos switch is dynamically reconfigured by a new asynchronous Clos scheduler.Several asynchronous SDM routers are implemented using these new techniques. An asynchronous VC router is also reproduced for comparison. Performance analyses show that the SDM routers outperform the VC router in throughput, area overhead and energy efficiency.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Rapport annuel 2004-2005

    Get PDF
    corecore