14 research outputs found

    Ondas milimétricas e MIMO massivo para otimização da capacidade e cobertura de redes heterogeneas de 5G

    Get PDF
    Today's Long Term Evolution Advanced (LTE-A) networks cannot support the exponential growth in mobile traffic forecast for the next decade. By 2020, according to Ericsson, 6 billion mobile subscribers worldwide are projected to generate 46 exabytes of mobile data traffic monthly from 24 billion connected devices, smartphones and short-range Internet of Things (IoT) devices being the key prosumers. In response, 5G networks are foreseen to markedly outperform legacy 4G systems. Triggered by the International Telecommunication Union (ITU) under the IMT-2020 network initiative, 5G will support three broad categories of use cases: enhanced mobile broadband (eMBB) for multi-Gbps data rate applications; ultra-reliable and low latency communications (URLLC) for critical scenarios; and massive machine type communications (mMTC) for massive connectivity. Among the several technology enablers being explored for 5G, millimeter-wave (mmWave) communication, massive MIMO antenna arrays and ultra-dense small cell networks (UDNs) feature as the dominant technologies. These technologies in synergy are anticipated to provide the 1000_ capacity increase for 5G networks (relative to 4G) through the combined impact of large additional bandwidth, spectral efficiency (SE) enhancement and high frequency reuse, respectively. However, although these technologies can pave the way towards gigabit wireless, there are still several challenges to solve in terms of how we can fully harness the available bandwidth efficiently through appropriate beamforming and channel modeling approaches. In this thesis, we investigate the system performance enhancements realizable with mmWave massive MIMO in 5G UDN and cellular infrastructure-to-everything (C-I2X) application scenarios involving pedestrian and vehicular users. As a critical component of the system-level simulation approach adopted in this thesis, we implemented 3D channel models for the accurate characterization of the wireless channels in these scenarios and for realistic performance evaluation. To address the hardware cost, complexity and power consumption of the massive MIMO architectures, we propose a novel generalized framework for hybrid beamforming (HBF) array structures. The generalized model reveals the opportunities that can be harnessed with the overlapped subarray structures for a balanced trade-o_ between SE and energy efficiently (EE) of 5G networks. The key results in this investigation show that mmWave massive MIMO can deliver multi-Gbps rates for 5G whilst maintaining energy-efficient operation of the network.As redes LTE-A atuais não são capazes de suportar o crescimento exponencial de tráfego que está previsto para a próxima década. De acordo com a previsão da Ericsson, espera-se que em 2020, a nível global, 6 mil milhões de subscritores venham a gerar mensalmente 46 exa bytes de tráfego de dados a partir de 24 mil milhões de dispositivos ligados à rede móvel, sendo os telefones inteligentes e dispositivos IoT de curto alcance os principais responsáveis por tal nível de tráfego. Em resposta a esta exigência, espera-se que as redes de 5a geração (5G) tenham um desempenho substancialmente superior às redes de 4a geração (4G) atuais. Desencadeado pelo UIT (União Internacional das Telecomunicações) no âmbito da iniciativa IMT-2020, o 5G irá suportar três grandes tipos de utilizações: banda larga móvel capaz de suportar aplicações com débitos na ordem de vários Gbps; comunicações de baixa latência e alta fiabilidade indispensáveis em cenários de emergência; comunicações massivas máquina-a-máquina para conectividade generalizada. Entre as várias tecnologias capacitadoras que estão a ser exploradas pelo 5G, as comunicações através de ondas milimétricas, os agregados MIMO massivo e as redes celulares ultradensas (RUD) apresentam-se como sendo as tecnologias fundamentais. Antecipa-se que o conjunto destas tecnologias venha a fornecer às redes 5G um aumento de capacidade de 1000x através da utilização de maiores larguras de banda, melhoria da eficiência espectral, e elevada reutilização de frequências respetivamente. Embora estas tecnologias possam abrir caminho para as redes sem fios com débitos na ordem dos gigabits, existem ainda vários desafios que têm que ser resolvidos para que seja possível aproveitar totalmente a largura de banda disponível de maneira eficiente utilizando abordagens de formatação de feixe e de modelação de canal adequadas. Nesta tese investigamos a melhoria de desempenho do sistema conseguida através da utilização de ondas milimétricas e agregados MIMO massivo em cenários de redes celulares ultradensas de 5a geração e em cenários 'infraestrutura celular-para-qualquer coisa' (do inglês: cellular infrastructure-to-everything) envolvendo utilizadores pedestres e veiculares. Como um componente fundamental das simulações de sistema utilizadas nesta tese é o canal de propagação, implementamos modelos de canal tridimensional (3D) para caracterizar de forma precisa o canal de propagação nestes cenários e assim conseguir uma avaliação de desempenho mais condizente com a realidade. Para resolver os problemas associados ao custo do equipamento, complexidade e consumo de energia das arquiteturas MIMO massivo, propomos um modelo inovador de agregados com formatação de feixe híbrida. Este modelo genérico revela as oportunidades que podem ser aproveitadas através da sobreposição de sub-agregados no sentido de obter um compromisso equilibrado entre eficiência espectral (ES) e eficiência energética (EE) nas redes 5G. Os principais resultados desta investigação mostram que a utilização conjunta de ondas milimétricas e de agregados MIMO massivo possibilita a obtenção, em simultâneo, de taxas de transmissão na ordem de vários Gbps e a operação de rede de forma energeticamente eficiente.Programa Doutoral em Telecomunicaçõe

    Contact-Free Multitarget Tracking Using Distributed Massive MIMO-OFDM Communication System:Prototype and Analysis

    Get PDF
    Wireless-based human activity recognition has become an essential technology that enables contact-free human-machine and human-environment interactions. In this article, we consider contact-free multitarget tracking (MTT) based on available communication systems. A radar-like prototype is built upon a sub-6-GHz distributed massive multiple-input and multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) communication system. Specifically, the raw channel state information (CSI) is calibrated in the frequency and antenna domain before being used for tracking. Then, the targeted CSIs reflected or scattered from the moving pedestrians are extracted. To evade the complex association problem of distributed massive MIMO-based MTT, we propose to use a complex Bayesian compressive sensing (CBCS) algorithm to estimate the targets' locations based on the extracted target-of-interest CSI signal directly. The estimated locations from CBCS are fed to a Gaussian mixture probability hypothesis density (GM-PHD) filter for tracking. A multipedestrian tracking experiment is conducted in a room with a size of 6.5 × 10 m to evaluate the performance of the proposed algorithm. According to the experimental results, we achieve 75th and 95th percentile accuracy of 12.7 and 18.2 cm for single-person tracking and 28.9 and 45.7 cm for multiperson tracking, respectively. Furthermore, the proposed algorithm achieves tracking purposes in real time, which is promising for practical MTT use cases.</p

    Study, Measurements and Characterisation of a 5G system using a Mobile Network Operator Testbed

    Get PDF
    The goals for 5G are aggressive. It promises to deliver enhanced end-user experience by offering new applications and services through gigabit speeds, and significantly improved performance and reliability. The enhanced mobile broadband (eMBB) 5G use case, for instance, targets peak data rates as high as 20 Gbps in the downlink (DL) and 10 Gbps in the uplink (UL). While there are different ways to improve data rates, spectrum is at the core of enabling higher mobile broadband data rates. 5G New Radio (NR) specifies new frequency bands below 6 GHz and also extends into mmWave frequencies where more contiguous bandwidth is available for sending lots of data. However, at mmWave frequencies, signals are more susceptible to impairments. Hence, extra consideration is needed to determine test approaches that provide the precision required to accurately evaluate 5G components and devices. Therefore, the aim of the thesis is to provide a deep dive into 5G technology, explore its testing and validation, and thereafter present the OTE (Hellenic Telecommunications Organisation) 5G testbed, including measurement results obtained and its characterisation based on key performance indicators (KPIs)

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Keilaavan millimetriaaltoradiolinkin suuntaaminen ja seuraaminen

    Get PDF
    In order to provide high-throughput mobile broadband in a dense urban information society, upcoming cellular networks will finally employ the under-utilized millimeter-wave (mmW) frequencies. The challenging mmW radio environment, however, necessitates massive cell densification with wireless backhauling using very directional links. This thesis investigates how these links between access points may be aligned efficiently, and how alignment reflects the network organization. The work provides a thorough presentation of different high-level aspects and background information required when designing a mmW small cell system. In terms of alignment functionality, both automatic link establishment and proactive tracking are considered. Additionally, the presentation includes an overview of beam steerable antennas, mmW propagation in urban environments, and network organization. The thesis further specifies requirements, proposes possible approaches and compares those with existing implementations. Most of existing mmW beam alignment solutions are intended for short-range indoor communications and do not address the issues in cellular systems. While existing functionality considers only a single link between two devices, efficient design should consider both the entire network and the underlying phenomena. The devices should further exploit the existing network infrastructure, location and orientation information, and the concepts of machine learning. Even though the world has recently seen advancements in the related fields, there is still much work to be done before commercial deployment is possible.Seuraavan sukupolven matkaviestinjärjestelmien erittäin nopeissa datayhteyksissä tullaan hyödyntämään millimetriaaltoteknologiaa. Näillä taajuuksilla radioympäristö on kuitenkin hyvin haastava, mikä edellyttää verkon solutiheyden moninkertaistamista, täysin langattomia tukiasemia ja erittäin suuntaavia antenneja. Tässä diplomityössä tutkitaan eri keinoja kuinka tukiasemien väliset linkit kohdistetaan tehokkaasti, ja miten se vaikuttaa verkon rakenteeseen ja hallintaan. Työ tarjoaa kattavan taustaselvityksen mm-aaltosoluverkon toteuttamiseen tarvittavista asioista. Keilanohjausta tarkastellaan sekä verkon automaattisen laajentamisen että kohteen aktiivisen seurauksen kannalta. Tämän lisäksi työssä tutkitaan keilattavia antenneja, mm-aaltojen etenemistä kaupunkiympäristöissä ja verkkorakennetta. Näiden lisäksi työssä rajataan edellytykset, esitetään mahdollisia ratkaisuja, ja vertaillaan näitä olemassa oleviin toteutuksiin. Nykyiset keilaustoteutukset ovat pääasiassa suunniteltu lyhyen kantaman sisäyhteyksille, eivätkä siten vastaa ongelman asettelua. Aikaisempi toiminnallisuus keskittyy yhteen ainoaan linkkiin vaikka tehokas toteutus huomioisi koko järjestelmän kohdistusongelman fysikaalista perustaa unohtamatta. Verkkolaitteiden tulisi hyödyntää olemassa olevaa radioverkkoa, sekä paikka- että suuntatietoja, ja koneoppimisen keinoja. Vaikka aiheeseen liittyvä teknologia on kehittynyt viime vuosina harppauksin, mm-aaltosoluverkot ovat kaikkea muuta kuin valmiita markkinoille

    Temperature aware power optimization for multicore floating-point units

    Full text link

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    corecore