446 research outputs found

    Design, Modeling and Analysis of Non-classical Field Effect Transistors

    Get PDF
    Transistor scaling following per Moore\u27s Law slows down its pace when entering into nanometer regime where short channel effects (SCEs), including threshold voltage fluctuation, increased leakage current and mobility degradation, become pronounced in the traditional planar silicon MOSFET. In addition, as the demand of diversified functionalities rises, conventional silicon technologies cannot satisfy all non-digital applications requirements because of restrictions that stem from the fundamental material properties. Therefore, novel device materials and structures are desirable to fuel further evolution of semiconductor technologies. In this dissertation, I have proposed innovative device structures and addressed design considerations of those non-classical field effect transistors for digital, analog/RF and power applications with projected benefits. Considering device process difficulties and the dramatic fabrication cost, application-oriented device design and optimization are performed through device physics analysis and TCAD modeling methodology to develop design guidelines utilizing transistor\u27s improved characteristics toward application-specific circuit performance enhancement. Results support proposed device design methodologies that will allow development of novel transistors capable of overcoming limitation of planar nanoscale MOSFETs. In this work, both silicon and III-V compound devices are designed, optimized and characterized for digital and non-digital applications through calibrated 2-D and 3-D TCAD simulation. For digital functionalities, silicon and InGaAs MOSFETs have been investigated. Optimized 3-D silicon-on-insulator (SOI) and body-on-insulator (BOI) FinFETs are simulated to demonstrate their impact on the performance of volatile memory SRAM module with consideration of self-heating effects. Comprehensive simulation results suggest that the current drivability degradation due to increased device temperature is modest for both devices and corresponding digital circuits. However, SOI FinFET is recommended for the design of low voltage operation digital modules because of its faster AC response and better SCEs management than the BOI structure. The FinFET concept is also applied to the non-volatile memory cell at 22 nm technology node for low voltage operation with suppressed SCEs. In addition to the silicon technology, our TCAD estimation based on upper projections show that the InGaAs FinFET, with superior mobility and improved interface conditions, achieve tremendous drive current boost and aggressively suppressed SCEs and thereby a strong contender for low-power high-performance applications over the silicon counterpart. For non-digital functionalities, multi-fin FETs and GaN HEMT have been studied. Mixed-mode simulations along with developed optimization guidelines establish the realistic application potential of underlap design of silicon multi-Fin FETs for analog/RF operation. The device with underlap design shows compromised current drivability but improve analog intrinsic gain and high frequency performance. To investigate the potential of the novel N-polar GaN material, for the first time, I have provided calibrated TCAD modeling of E-mode N-polar GaN single-channel HEMT. In this work, I have also proposed a novel E-mode dual-channel hybrid MIS-HEMT showing greatly enhanced current carrying capability. The impact of GaN layer scaling has been investigated through extensive TCAD simulations and demonstrated techniques for device optimization

    Electrical characterization of high-k gate dielectrics for advanced CMOS gate stacks

    Get PDF
    The oxide/substrate interface quality and the dielectric quality of metal oxide semiconductor (MOS) gate stack structures are critical to future CMOS technology. As SiO2 was replaced by the high-k dielectric to further equivalent oxide thickness (EOT), high mobility substrates like Ge have attracted increasing in replacing Si substrate to further enhance devices performance. Precise control of the interface between high-k and the semiconductor substrate is the key of the high performance of future transistor. In this study, traditional electrical characterization methods are used on these novel MOS devices, prepared by advanced atomic layer deposition (ALD) process and with pre and post treatment by plasma generated by slot plane antenna (SPA). MOS capacitors with a TiN metal gate/3 nm HfAlO/0.5 nm SiO2/Si stacks were fabricated by different Al concentration, and different post deposition treatments. A simple approach is incorporated to correct the error, introduced by the series resistance (Rs) associated with the substrate and metal contact. The interface state density (Dit), calculated by conductance method, suggests that Dit is dependent on the crystalline structure of hafnium aluminum oxide film. The amorphous structure has the lowest Dit whereas crystallized HfO2 has the highest Dit. Subsequently, the dry and wet processed interface layers for three different p type Ge/ALD 1nm-Al2O3/ALD 3.5nm-ZrO2/ALD TiN gate stacks are studied at low temperatures by capacitance-voltage (CV),conductance-voltage (GV) measurement and deep level transient spectroscopy (DLTS). Prior to high-k deposition, the interface is treated by three different approaches (i) simple chemical oxidation (Chemox); (ii) chemical oxide removal (COR) followed by 1 nm oxide by slot-plane-antenna (SPA) plasma (COR&SPAOx); and (iii) COR followed by vapor O3 treatment (COR&O3). Room temperature measurement indicates that superior results are observed for slot-plane-plasma-oxidation processed samples. The reliability of TiN/ZrO2/Al2O3/p-Ge gate stacks is studied by time dependent dielectric breakdown (TDDB). High-k dielectric is subjected to the different slot plane antenna oxidation (SPAO) processes, namely, (i) before high-k ALD (Atomic Layer Deposition), (ii) between high-k ALD, and (iii) after high-k ALD. High-k layer and interface states are improved due to the formation of GeO2 by SPAO when SPAO is processed after high-k. GeO2 at the interface can be degraded easily by substrate electron injection. When SPAO is processed between high-k layers, a better immunity of interface to degradation was observed under stress. To further evaluate the high-k dielectrics and how EOT impacts on noise mechanism time zero 1/f noise is characterized on thick and thin oxide FinFET transistors, respectively. The extracted noise models suggest that as a function of temperatures and bias conditions the flicker noise mechanism tends to be carrier number fluctuation model (McWhorter model). Furthermore, the noise mechanism tends to be mobility fluctuation model (Hooge model) when EOT reduces

    Variability analysis of FinFET AC/RF performances through efficient physics-based simulations for the optimization of RF CMOS stages

    Get PDF
    A nearly insatiable appetite for the latest electronic device enables the electronic technology sector to maintain research momentum. The necessity for advancement with miniaturization of electronic devices is the need of the day. Aggressive downscaling of electronic devices face some fundamental limits and thus, buoy up the change in device geometry. MOSFETs have been the leading contender in the electronics industry for years, but the dire need for miniaturization is forcing MOSFET to be scaled to nano-scale and in sub-50 nm scale. Short channel effects (SCE) become dominant and adversely affect the performance of the MOSFET. So, the need for a novel structure was felt to suppress SCE to an acceptable level. Among the proposed devices, FinFETs (Fin Field Effect Transistors) were found to be most effective to counter-act SCE in electronic devices. Today, many industries are working on electronic circuits with FinFETs as their primary element.One of limitation which FinFET faces is device variability. The purpose of this work was to study the effect that different sources of parameter fluctuations have on the behavior and characteristics of FinFETs. With deep literature review, we have gained insight into key sources of variability. Different sources of variations, like random dopant fluctuation, line edge roughness, fin variations, workfunction variations, oxide thickness variation, and source/drain doping variations, were studied and their impact on the performance of the device was studied as well. The adverse effect of these variations fosters the great amount of research towards variability modeling. A proper modeling of these variations is required to address the device performance metric before the fabrication of any new generation of the device on the commercial scale. The conventional methods to address the characteristics of a device under variability are Monte-Carlo-like techniques. In Monte Carlo analysis, all process parameters can be varied individually or simultaneously in a more realistic approach. The Monte Carlo algorithm takes a random value within the range of each process parameter and performs circuit simulations repeatedly. The statistical characteristics are estimated from the responses. This technique is accurate but requires high computational resources and time. Thus, efforts are being put by different research groups to find alternative tools. If the variations are small, Green’s Function (GF) approach can be seen as a breakthrough methodology. One of the most open research fields regards "Variability of FinFET AC performances". One reason for the limited AC variability investigations is the lack of commercially available efficient simulation tools, especially those based on accurate physics-based analysis: in fact, the only way to perform AC variability analysis through commercial TCAD tools like Synopsys Sentaurus is through the so-called Monte Carlo approach, that when variations are deterministic, is more properly referred to as incremental analysis, i.e., repeated solutions of the device model with varying physical parameters. For each selected parameter, the model must be solved first in DC operating condition (working point, WP) and then linearized around the WP, hence increasing severely the simulation time. In this work, instead, we used GF approach, using our in-house Simulator "POLITO", to perform AC variability analysis, provided that variations are small, alleviating the requirement of double linearization and reducing the simulation time significantly with a slight trade-off in accuracy. Using this tool we have, for the first time addressed the dependency of FinFET AC parameters on the most relevant process variations, opening the way to its application to RF circuits. This work is ultimately dedicated to the successful implementation of RF stages in commercial applications by incorporating variability effects and controlling the degradation of AC parameters due to variability. We exploited the POLITO (in-house simulator) limited to 2D structures, but this work can be extended to the variability analysis of 3D FinFET structure. Also variability analysis of III-V Group structures can be addressed. There is also potentiality to carry out the sensitivity analysis for the other source of variations, e.g., thermal variations

    Technology CAD of Nanowire FinFETs

    Get PDF

    Compact modeling of the rf and noise behavior of multiple-gate mosfets

    Get PDF
    La reducción de la tecnología MOSFET planar ha sido la opción tecnológica dominante en las últimas décadas. Sin embargo, hemos llegado a un punto en el que los materiales y problemas en los dispositivos surgen, abriendo la puerta para estructuras alternativas de los dispositivos. Entre estas estructuras se encuentran los dispositivos DG, SGT y Triple-Gate. Estas tres estructuras están estudiadas en esta tesis, en el contexto de rducir las dimensiones de los dispositivos a tamaños tales que los mecanismos cuánticos y efectos de calan coro deben tenerse n cuenta. Estos efectos vienen con una seria de desafíos desde el pun to de vista de modelación, unos de los más grandes siendo el tiempo y los recursos comprometidos para ejecutar las simulaciones. para resolver este problema, esta tesis propone modelos comlets analíticos y compactos para cada una de las geometrías, validos desde DC hasta el modo de operación en Rf para los nodos tecnológicos futuros. Dichos modelos se han extendido para analizar el ruido de alta frecuencia en estos diapositivos

    Analysis of performance variation in 16nm FinFET FPGA devices

    Get PDF

    Characterization of self-heating effects and assessment of its impact on reliability in finfet technology

    Get PDF
    The systematically growing power (heat) dissipation in CMOS transistors with each successive technology node is reaching levels which could impact its reliable operation. The emergence of technologies such as bulk/SOI FinFETs has dramatically confined the heat in the device channel due to its vertical geometry and it is expected to further exacerbate with gate-all-around transistors. This work studies heat generation in the channel of semiconductor devices and measures its dissipation by means of wafer level characterization and predictive thermal simulation. The experimental work is based on several existing device thermometry techniques to which additional layout improvements are made in state of the art bulk FinFET and SOI FinFET 14nm technology nodes. The sensors produce excellent matching results which are confirmed through TCAD thermal simulation, differences between sensor types are quantified and error bars on measurements are established. The lateral heat transport measurements determine that heat from the source is mostly dissipated at a distance of 1µm and 1.5µm in bulk FinFET and SOI FinFET, respectively. Heat additivity is successfully confirmed to prove and highlight the fact that the whole system needs to be considered when performing thermal analysis. Furthermore, an investigation is devoted to study self-heating with different layout densities by varying the number of fins and fingers per active region (RX). Fin thermal resistance is measured at different ambient temperatures to show its variation of up to 70% between -40°C to 175°C. Therefore, the Si fin has a more dominant effect in heat transport and its varying thermal conductivity should be taken into account. The effect of ambient temperature on self-heating measurement is confirmed by supplying heat through thermal chuck and adjacent heater devices themselves. Motivation for this work is the continuous evolution of the transistor geometry and use of exotic materials, which in the recent technology nodes made heat removal more challenging. This poses reliability and performance concerns. Therefore, this work studies the impact of self-heating on reliability testing at DC conditions as well as realistic CMOS logic operating (AC) conditions. Front-end-of-line (FEOL) reliability mechanisms, such as hot carrier injection (HCI) and non-uniform time dependent dielectric breakdown (TDDB), are studied to show that self-heating effects can impact measurement results and recommendations are given on how to mitigate them. By performing an HCI stress at moderate bias conditions, this dissertation shows that the laborious techniques of heat subtraction are no longer necessary. Self-heating is also studied at more realistic device switching conditions by utilizing ring oscillators with several densities and stage counts to show that self-heating is considerably lower compared to constant voltage stress conditions and degradation is not distinguishable

    Characterisation of thermal and coupling effects in advanced silicon MOSFETs

    Get PDF
    PhD ThesisNew approaches to metal-oxide-semiconductor field effect transistor (MOSFET) engineering emerge in order to keep up with the electronics market demands. Two main candidates for the next few generations of Moore’s law are planar ultra-thin body and buried oxide (UTBB) devices and three-dimensional FinFETs. Due to miniature dimensions and new materials with low thermal conductivity, performance of advanced MOSFETs is affected by self-heating and substrate effects. Self-heating results in an increase of the device temperature which causes mobility reduction, compromised reliability and signal delays. The substrate effect is a parasitic source and drain coupling which leads to frequency-dependent analogue behaviour. Both effects manifest themselves in the output conductance variation with frequency and impact analogue as well as digital performance. In this thesis self-heating and substrate effects in FinFETs and UTBB devices are characterised, discussed and compared. The results are used to identify trade-offs in device performance, geometry and thermal properties. Methods how to optimise the device geometry or biasing conditions in order to minimise the parasitic effects are suggested. To identify the most suitable technique for self-heating characterisation in advanced semiconductor devices, different methods of thermal characterisation (time and frequency domain) were experimentally compared and evaluated alongside an analytical model. RF and two different pulsed I-V techniques were initially applied to partially depleted silicon-on-insulator (PDSOI) devices. The pulsed I-V hot chuck method showed good agreement with the RF technique in the PDSOI devices. However, subsequent analysis demonstrated that for more advanced technologies the time domain methods can underestimate self-heating. This is due to the reduction of the thermal time constants into the nanosecond range and limitations of the pulsed I-V set-up. The reduction is related to the major increase of the surface to volume ratio in advanced MOSFETs. Consequently the work showed that the thermal properties of advanced semiconductor devices must be characterised within the frequency domain. For UTBB devices with 7-8 nm Si body and 10 nm ultra-thin buried oxide (BOX) the analogue performance degradation caused by the substrate effects can be stronger than the analogue performance degradation caused by self-heating. However, the substrate effects can be effectively reduced if the substrate doping beneath the buried ii oxide is adjusted using a ground plane. In the MHz – GHz frequency range the intrinsic voltage gain variation is reduced ~6 times when a device is biased in saturation if a ground plane is implemented compared with a device without a ground plane. UTBB devices with 25 nm BOX were compared with UTBB devices with 10 nm BOX. It was found that the buried oxide thinning from 25 nm to 10 nm is not critical from the thermal point of view as other heat evacuation paths (e.g. source and drain) start to play a role. Thermal and substrate effects in FinFETs were also analysed. It was experimentally shown that FinFET thermal properties depend on the device geometry. The thermal resistance of FinFETs strongly varies with the fin width and number of parallel fins, whereas the fin spacing is less critical. The results suggest that there are trade-offs between thermal properties and integration density, electrostatic control and design complexity, since these aspects depend on device geometry. The high frequency substrate effects were found to be effectively reduced in devices with sub-100 nm wide fins.Engineering and Physical Sciences Research Council (EPSRC) and EU fundin

    Fabrication, characterization, and modeling of silicon multi-gate devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore