219 research outputs found

    Parallel and Distributed Immersive Real-Time Simulation of Large-Scale Networks

    Get PDF

    Faithful reproduction of network experiments

    Get PDF
    The proliferation of cloud computing has compelled the research community to rethink fundamental aspects of network systems and architectures. However, the tools commonly used to evaluate new ideas have not kept abreast of the latest developments. Common simulation and emulation frameworks fail to provide scalability, fidelity, reproducibility and execute unmodified code, all at the same time. We present SELENA, a Xen-based network emulation framework that offers fully reproducible experiments via its automation interface and supports the use of unmodified guest operating systems. This allows out-of-the-box compatibility with common applications and OS components, such as network stacks and filesystems. In order to faithfully emulate faster and larger networks, SELENA adopts the technique of time-dilation and transparently slows down the passage of time for guest operating systems. This technique effectively virtualizes the availability of host’s hardware resources and allows the replication of scenarios with increased I/O and computational demands. Users can directly control the tradeoff between fidelity and running-times via intuitive tuning knobs. We evaluate the ability of SELENA to faithfully replicate the behaviour of real systems and compare it against existing popular experimentation platforms. Our results suggest that SELENA can accurately model networks with aggregate link speeds of 44 Gbps or more, while improving by four times the execution time in comparison to ns3 and exhibits near-linear scaling properties.This is the author accepted manuscript. The final version is available from ACM via http://dx.doi.org/10.1145/2658260.265827

    DMEF:Dynamic Malware Evaluation Framework

    Get PDF
    Botnets are the top concern responsible for SPAM, Cryptomining, DDoS attacks and offer a variety of attacks-as-a-service to disrupt IT infrastructure and services. Current approaches to detect and analyze Botnet characteristics rely on disassembly and reverse engineering, and single instance deployments in an isolated environment. However, Botnets consist of distributed and interconnected instances and thus current approaches only observe a fraction of a Botnet and its characteristics. In this paper, we introduce the framework DMEF to deploy and analyze malware in a scalable, distributed and secure environment. DMEF provides a training environment for network administrators and researchers in the fight against malware and contributes to optimize intrusion response.</p

    Hybrid IP/SDN networking: open implementation and experiment management tools

    Full text link
    The introduction of SDN in large-scale IP provider networks is still an open issue and different solutions have been suggested so far. In this paper we propose a hybrid approach that allows the coexistence of traditional IP routing with SDN based forwarding within the same provider domain. The solution is called OSHI - Open Source Hybrid IP/SDN networking as we have fully implemented it combining and extending Open Source software. We discuss the OSHI system architecture and the design and implementation of advanced services like Pseudo Wires and Virtual Switches. In addition, we describe a set of Open Source management tools for the emulation of the proposed solution using either the Mininet emulator or distributed physical testbeds. We refer to this suite of tools as Mantoo (Management tools). Mantoo includes an extensible web-based graphical topology designer, which provides different layered network "views" (e.g. from physical links to service relationships among nodes). The suite can validate an input topology, automatically deploy it over a Mininet emulator or a distributed SDN testbed and allows access to emulated nodes by opening consoles in the web GUI. Mantoo provides also tools to evaluate the performance of the deployed nodes.Comment: Accepted for publication in IEEE Transaction of Network and Service Management - December 2015 http://dx.doi.org/10.1109/TNSM.2015.250762

    The Glasgow raspberry pi cloud: a scale model for cloud computing infrastructures

    Get PDF
    Data Centers (DC) used to support Cloud services often consist of tens of thousands of networked machines under a single roof. The significant capital outlay required to replicate such infrastructures constitutes a major obstacle to practical implementation and evaluation of research in this domain. Currently, most research into Cloud computing relies on either limited software simulation, or the use of a testbed environments with a handful of machines. The recent introduction of the Raspberry Pi, a low-cost, low-power single-board computer, has made the construction of a miniature Cloud DCs more affordable. In this paper, we present the Glasgow Raspberry Pi Cloud (PiCloud), a scale model of a DC composed of clusters of Raspberry Pi devices. The PiCloud emulates every layer of a Cloud stack, ranging from resource virtualisation to network behaviour, providing a full-featured Cloud Computing research and educational environment
    • …
    corecore