5 research outputs found

    Modeling of Magnetic Resonance Wireless Electric Vehicle Charging

    Get PDF
    Due to the fast-growing market for an electric vehicle, it is necessary that the drawbacks involved in electric vehicle technology should be overcome, therefore introducing a wireless charging technique which is more convenient as battery cost, recharge time and weight has been removed. Different wireless charging techniques for electric vehicles are discussed. This research work investigates the feasibility of wireless power transfer for Electric Vehicles by electromagnetic resonance coupling. Wireless power transfer (WPT) for Electric Vehicles by magnetic resonance coupling is of high priority due to its efficiency, high power transmission, and more considerable charging distance. Simulation results show the energy transfer efficiency between two magnetically coupled resonating coils. However, results show the effects of parameters such as an inductor, capacitor, load and coupling coefficient on efficiency. Additionally, implementation of a closed loop circuit using a three-level cascaded PI controller for the dynamic wireless electric vehicle charging to eliminate the variation of voltage because of varied spacing existing between both coils as the vehicle is in motion and thereby delivering a constant voltage and constant current to the load is carried out. Simulation results and comparison with a single level PI controller indicate the effectiveness of the control method. A fuzzy logic and neuro-fuzzy controller are implemented for the wireless electric vehicle transfer which is seen to be more robust than the PI controller as there is no undershoot in the output voltage. Furthermore, wireless power transfer with three - level cascaded PI controller with MPPT is designed. The proposed system consists of a solar PV array, boost DC/DC converter, inverter, transmitter coil, a receiver coil, rectifier, buck converter, and batteries. The design of the MPPT controller tracks the highest voltage and current from the PV array required to charge a battery in which the highest power point voltage is 61.5 V. The stability analysis for the closed-loop system has been done and the system is asymptotically stable

    Design of High Efficiency Wireless Power Thansfer System With Nonlinear Resonator

    Get PDF
    Wireless power transfer technology (WPT) has been rapidly developed in recent years. The primary benefit of WPT is that it replaces the traditional wire charging with a cordless charging method. WPT technology has been applied in many fields, such as bio-implants, electric vehicles, and wirelessly charging systems. According to the different energy transmission mechanism, WPT technology can be divided into magnetic field coupling (includes magnetically coupled inductive and magnetically-coupled resonant), microwave radiation, laser emission, electrical-field coupling, and ultrasonic transmission type. Among these technologies, the magnetic resonance coupling method has a better promise because of its long transfer distance and high efficiency. However, there are some questions that need to be resolved, among which the most prominent is that the technology has a low tolerance to the variations of the coupling factor because of the frequency splitting phenomenon, which would lead to transmission efficiency degradation of magnetic resonance coupling WPT systems. Hence, based on reviewing the research status and trend of WPT technology, this paper analyses the frequency splitting phenomenon of the wireless power transfer system, discusses the duffing resonator circuit and its properties, and designs a kind of high-efficiency wireless power transfer inductive system with both non-linear inductors and non-linear capacitors. The main research works of this paper are as follows: Firstly, aiming at the frequency splitting problem during magnetic coupled resonance wireless power transmission, the frequency splitting phenomenon for the wireless power transfer system is studied by an electric circuit model method. The expression of the relationship between the load voltage, transmission efficiency, and coupling factor was derived, and the law of frequency splitting is discussed. Furtherly, an analysis of frequency splitting based on simulation also presented. Finally, the frequency splitting suppression method is proposed. The above research work provides a theoretical basis for solving the problem of frequency splitting and designing a kind of high-efficiency WPT system. Subsequently, a duffing resonator circuit with a nonlinear capacitor, which can eliminate the frequency splitting and keep the high transmission efficiency and power delivered to the load is developed. With the help MATLAB software, the properties of the duffing resonance circuit are discussed furtherly. The results show that the duffing resonance circuit has significantly wider bandwidth than the conventional linear resonance circuit while achieving a similar amplitude level. Finally, the high efficiency non-linear wireless power transfer system based on non-linear inductors with ferromagnetic thin film core and non-linear capacitors with ferroelectric thin film dielectrics is designed. Moreover, the system\u27s performance is improved, the range of coupling factors significantly extended while both load power and high PTE were maintained. The reason for the high efficiency of the system is furtherly discussed, and the research result shows that non-linear inductor with ferromagnetic thin film core has variable inductance which can be synchronously changed along with the current through the inductor in the circuit. The non-linear capacitor with ferroelectric thin film dielectrics can also have variable capacitance, which can be synchronously changed along with the voltage applied to the capacitor. However, the voltage across the capacitor and current through the inductors are different initially, high power transmission efficiency can be achieved by self-tuning capability of inductance and capacitance from the film based non-linear resonators. Research results of this paper can lay the solid foundations for the application of WPT technology in the fields of bio-implants, electric vehicles, wirelessly charging systems, etc

    Control of wireless power transfer system for dynamic charging of electric vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    High-Efficiency Wireless Power Transfer System for Electric Vehicle Applications

    No full text

    Applications of Power Electronics:Volume 2

    Get PDF
    corecore