100,165 research outputs found

    High-Dimensional Dependency Structure Learning for Physical Processes

    Full text link
    In this paper, we consider the use of structure learning methods for probabilistic graphical models to identify statistical dependencies in high-dimensional physical processes. Such processes are often synthetically characterized using PDEs (partial differential equations) and are observed in a variety of natural phenomena, including geoscience data capturing atmospheric and hydrological phenomena. Classical structure learning approaches such as the PC algorithm and variants are challenging to apply due to their high computational and sample requirements. Modern approaches, often based on sparse regression and variants, do come with finite sample guarantees, but are usually highly sensitive to the choice of hyper-parameters, e.g., parameter λ\lambda for sparsity inducing constraint or regularization. In this paper, we present ACLIME-ADMM, an efficient two-step algorithm for adaptive structure learning, which estimates an edge specific parameter λij\lambda_{ij} in the first step, and uses these parameters to learn the structure in the second step. Both steps of our algorithm use (inexact) ADMM to solve suitable linear programs, and all iterations can be done in closed form in an efficient block parallel manner. We compare ACLIME-ADMM with baselines on both synthetic data simulated by partial differential equations (PDEs) that model advection-diffusion processes, and real data (50 years) of daily global geopotential heights to study information flow in the atmosphere. ACLIME-ADMM is shown to be efficient, stable, and competitive, usually better than the baselines especially on difficult problems. On real data, ACLIME-ADMM recovers the underlying structure of global atmospheric circulation, including switches in wind directions at the equator and tropics entirely from the data.Comment: 21 pages, 8 figures, International Conference on Data Mining 201

    Detecting and quantifying causal associations in large nonlinear time series datasets

    Get PDF
    Identifying causal relationships and quantifying their strength from observational time series data are key problems in disciplines dealing with complex dynamical systems such as the Earth system or the human body. Data-driven causal inference in such systems is challenging since datasets are often high dimensional and nonlinear with limited sample sizes. Here, we introduce a novel method that flexibly combines linear or nonlinear conditional independence tests with a causal discovery algorithm to estimate causal networks from large-scale time series datasets. We validate the method on time series of well-understood physical mechanisms in the climate system and the human heart and using large-scale synthetic datasets mimicking the typical properties of real-world data. The experiments demonstrate that our method outperforms state-of-the-art techniques in detection power, which opens up entirely new possibilities to discover and quantify causal networks from time series across a range of research fields

    Linear State-Space Model with Time-Varying Dynamics

    Full text link
    This paper introduces a linear state-space model with time-varying dynamics. The time dependency is obtained by forming the state dynamics matrix as a time-varying linear combination of a set of matrices. The time dependency of the weights in the linear combination is modelled by another linear Gaussian dynamical model allowing the model to learn how the dynamics of the process changes. Previous approaches have used switching models which have a small set of possible state dynamics matrices and the model selects one of those matrices at each time, thus jumping between them. Our model forms the dynamics as a linear combination and the changes can be smooth and more continuous. The model is motivated by physical processes which are described by linear partial differential equations whose parameters vary in time. An example of such a process could be a temperature field whose evolution is driven by a varying wind direction. The posterior inference is performed using variational Bayesian approximation. The experiments on stochastic advection-diffusion processes and real-world weather processes show that the model with time-varying dynamics can outperform previously introduced approaches.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-662-44851-9_2

    Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models

    Full text link
    The interpretation of complex high-dimensional data typically requires the use of dimensionality reduction techniques to extract explanatory low-dimensional representations. However, in many real-world problems these representations may not be sufficient to aid interpretation on their own, and it would be desirable to interpret the model in terms of the original features themselves. Our goal is to characterise how feature-level variation depends on latent low-dimensional representations, external covariates, and non-linear interactions between the two. In this paper, we propose to achieve this through a structured kernel decomposition in a hybrid Gaussian Process model which we call the Covariate Gaussian Process Latent Variable Model (c-GPLVM). We demonstrate the utility of our model on simulated examples and applications in disease progression modelling from high-dimensional gene expression data in the presence of additional phenotypes. In each setting we show how the c-GPLVM can extract low-dimensional structures from high-dimensional data sets whilst allowing a breakdown of feature-level variability that is not present in other commonly used dimensionality reduction approaches

    Optimal Reinforcement Learning for Gaussian Systems

    Full text link
    The exploration-exploitation trade-off is among the central challenges of reinforcement learning. The optimal Bayesian solution is intractable in general. This paper studies to what extent analytic statements about optimal learning are possible if all beliefs are Gaussian processes. A first order approximation of learning of both loss and dynamics, for nonlinear, time-varying systems in continuous time and space, subject to a relatively weak restriction on the dynamics, is described by an infinite-dimensional partial differential equation. An approximate finite-dimensional projection gives an impression for how this result may be helpful.Comment: final pre-conference version of this NIPS 2011 paper. Once again, please note some nontrivial changes to exposition and interpretation of the results, in particular in Equation (9) and Eqs. 11-14. The algorithm and results have remained the same, but their theoretical interpretation has change
    • …
    corecore