The interpretation of complex high-dimensional data typically requires the
use of dimensionality reduction techniques to extract explanatory
low-dimensional representations. However, in many real-world problems these
representations may not be sufficient to aid interpretation on their own, and
it would be desirable to interpret the model in terms of the original features
themselves. Our goal is to characterise how feature-level variation depends on
latent low-dimensional representations, external covariates, and non-linear
interactions between the two. In this paper, we propose to achieve this through
a structured kernel decomposition in a hybrid Gaussian Process model which we
call the Covariate Gaussian Process Latent Variable Model (c-GPLVM). We
demonstrate the utility of our model on simulated examples and applications in
disease progression modelling from high-dimensional gene expression data in the
presence of additional phenotypes. In each setting we show how the c-GPLVM can
extract low-dimensional structures from high-dimensional data sets whilst
allowing a breakdown of feature-level variability that is not present in other
commonly used dimensionality reduction approaches