2,375 research outputs found

    A Benchmark for Image Retrieval using Distributed Systems over the Internet: BIRDS-I

    Full text link
    The performance of CBIR algorithms is usually measured on an isolated workstation. In a real-world environment the algorithms would only constitute a minor component among the many interacting components. The Internet dramati-cally changes many of the usual assumptions about measuring CBIR performance. Any CBIR benchmark should be designed from a networked systems standpoint. These benchmarks typically introduce communication overhead because the real systems they model are distributed applications. We present our implementation of a client/server benchmark called BIRDS-I to measure image retrieval performance over the Internet. It has been designed with the trend toward the use of small personalized wireless systems in mind. Web-based CBIR implies the use of heteroge-neous image sets, imposing certain constraints on how the images are organized and the type of performance metrics applicable. BIRDS-I only requires controlled human intervention for the compilation of the image collection and none for the generation of ground truth in the measurement of retrieval accuracy. Benchmark image collections need to be evolved incrementally toward the storage of millions of images and that scaleup can only be achieved through the use of computer-aided compilation. Finally, our scoring metric introduces a tightly optimized image-ranking window.Comment: 24 pages, To appear in the Proc. SPIE Internet Imaging Conference 200

    Technology Directions for the 21st Century

    Get PDF
    The Office of Space Communications (OSC) is tasked by NASA to conduct a planning process to meet NASA's science mission and other communications and data processing requirements. A set of technology trend studies was undertaken by Science Applications International Corporation (SAIC) for OSC to identify quantitative data that can be used to predict performance of electronic equipment in the future to assist in the planning process. Only commercially available, off-the-shelf technology was included. For each technology area considered, the current state of the technology is discussed, future applications that could benefit from use of the technology are identified, and likely future developments of the technology are described. The impact of each technology area on NASA operations is presented together with a discussion of the feasibility and risk associated with its development. An approximate timeline is given for the next 15 to 25 years to indicate the anticipated evolution of capabilities within each of the technology areas considered. This volume contains four chapters: one each on technology trends for database systems, computer software, neural and fuzzy systems, and artificial intelligence. The principal study results are summarized at the beginning of each chapter

    COSPO/CENDI Industry Day Conference

    Get PDF
    The conference's objective was to provide a forum where government information managers and industry information technology experts could have an open exchange and discuss their respective needs and compare them to the available, or soon to be available, solutions. Technical summaries and points of contact are provided for the following sessions: secure products, protocols, and encryption; information providers; electronic document management and publishing; information indexing, discovery, and retrieval (IIDR); automated language translators; IIDR - natural language capabilities; IIDR - advanced technologies; IIDR - distributed heterogeneous and large database support; and communications - speed, bandwidth, and wireless

    High performance computing and communications: FY 1995 implementation plan

    Full text link

    A New Multi-threaded and Interleaving Approach to Enhance String Matching for Intrusion Detection Systems

    Get PDF
    String matching algorithms are computationally intensive operations in computer science. The algorithms find the occurrences of one or more strings patterns in a larger string or text. String matching algorithms are important for network security, biomedical applications, Web search, and social networks. Nowadays, the high network speeds and large storage capacity put a high requirement on string matching methods to perform the task in a short time. Traditionally, Aho-Corasick algorithm, which is used to find the string matches, is executed sequentially. In this paper, a new multi-threaded and interleaving approach of Aho-Corasick using graphics processing units (GPUs) is designed and implemented to achieve high-speed string matching. Compute Unified Device Architecture (CUDA) programming language is used to implement the proposed parallel version. Experimental results show that our approach achieves more than 5X speedup over the sequential and other parallel implementations. Hence, a wide range of applications can benefit from our solution to perform string matching faster than ever before

    Data Warehousing Modernization: Big Data Technology Implementation

    Get PDF
    Considering the challenges posed by Big Data, the cost to scale traditional data warehouses is high and the performances would be inadequate to meet the growing needs of the volume, variety and velocity of data. The Hadoop ecosystem answers both of the shortcomings. Hadoop has the ability to store and analyze large data sets in parallel on a distributed environment but cannot replace the existing data warehouses and RDBMS systems due to its own limitations explained in this paper. In this paper, I identify the reasons why many enterprises fail and struggle to adapt to Big Data technologies. A brief outline of two different technologies to handle Big Data will be presented in this paper: Using IBM’s Pure Data system for analytics (Netezza) usually used in reporting, and Hadoop with Hive which is used in analytics. Also, this paper covers the Enterprise architecture consisting of Hadoop that successful companies are adapting to analyze, filter, process, and store the data running along a massively parallel processing data warehouse. Despite, having the technology to support and process Big Data, industries are still struggling to meet their goals due to the lack of skilled personnel to study and analyze the data, in short data scientists and data statisticians

    Development of a parallel database environment

    Get PDF
    • …
    corecore