
MacFarlane, A. (2009). Models Performance Issues in Parallel Computing for Information

Retrieval. In: A.S. Goker & J. Davies (Eds.), Information Retrieval: Searching in the 21st Century.

(pp. 255-271). John Wiley & Sons Inc. ISBN 0470027622

City Research Online

Original citation: MacFarlane, A. (2009). Models Performance Issues in Parallel Computing for

Information Retrieval. In: A.S. Goker & J. Davies (Eds.), Information Retrieval: Searching in the

21st Century. (pp. 255-271). John Wiley & Sons Inc. ISBN 0470027622

Permanent City Research Online URL: http://openaccess.city.ac.uk/4492/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42627283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Parallel Computing for Information Retrieval and

Performance Issues

Andrew MacFarlane

1. Introduction

The use of performance models when considering the deployment of parallel computing to

information retrieval applications is a much neglected area. During the late 1980’s and early

1990’s there was a great deal of interest in research into parallel computing for Information

Retrieval, but due to various issues interest has faded and very little research is now being

done MacFarlane (2000). Much of this work was a) empirically based and did not try to

produce models of performance in order to obtain some kind of theoretical underpinning for

the research; b) only tackled one issue i.e. search for the most part; and c) only looked at one

method for the distribution of data to nodes in a parallel machine. The PhD thesis written by

the author MacFarlane (2000) attempted to tackle these issues and succeeded with issue c),

but a great deal still needs to be addressed in a) and b). In this chapter we will briefly review

the relevant literature, present a model of performance developed in MacFarlane (2000) and

outline areas of further research that the author regards as being fruitful. The chapter is

organised as follows. Section 2 justifies the use of parallel computing to solve information

retrieval problems. Section 3 reviews previous work in modelling parallel IR. In section 4 a

definition of tasks in IR under discussion and describes a number of distribution methods for

inverted files which could be used in these tasks. Using these defined tasks and distribution

methods, a synthetic model of performance outlined in section 5, which is in turn examined

using empirical evidence in section 6. Finally we draw conclusions from the material and

outline further research.

2. Why parallel IR?

There is a limit to the gains which can be achieved algorithmically and while great strides

have been made in the power of computer hardware parts (particularly CPU’s) there will

always be an absolute limit. This combined with increasing amounts of information being

made available, particularly on the Internet, is putting increasing strain on sequential

processing systems. The only way forward for many compute heavy tasks is to use

parallelism. There are a number of computationally heavy tasks in information retrieval which

do require the use of parallelism (more detail of these tasks is given in section 5). There is

increasing interest in using much larger collections for experimentation recently with the

introduction of a Terabyte track within the TREC series of conferences (Clarke et al, 2005)

and some kind of parallelism will be useful to the participants.

 It should be noted that the use of parallelism for IR caused some controversy in the

late 1980’s with criticism from Stone (1987) and Salton & Buckley (1988). The basis of this

criticism was some work done on the massively parallel Connection Machine which used a

signature file method (a fixed length surrogate is used to represent each document). Of the

criticisms Stone’s was more useful in that he put forward an alternative parallel method based

on inverted files – a far more efficient method for search (Harman et al, 1992). Stones ideas

have proved to be very influential and most parallel IR systems use inverted files. In a review,

Rasmussen (1992) put forward a number of reasons for applying parallelism to IR problems:

• Response times: there may be situations (the web is a good example of this) where

many users require access to the same document collection. The purpose of

parallelism would be to reduce contention between queries thereby increasing the

system response time and query throughput.

• Very large databases: the time to process queries increases linearly with the

document collection e.g. a query on a 10 gigabyte collection which takes 10 times

longer than a query on a 1 gigabyte collection. The purpose of parallelism is to scale

up the methods used to handle much larger collections.

• Superior algorithms: there are some models such as the extended Boolean models

(Fox et al, 1992) which offer improved retrieval effectiveness at the cost of extra

computation. The role of parallel computing is to make these algorithms useable in a

realistic search environment.

• Search cost: Stanfill et al (1989) showed the resources needed to search a database

approach a level of cost effectiveness, given the assumption that search time is linear

with collection size and resource costs are static. The role of parallelism is to make

the deployment of hardware economically effective (web search engines use this

factor to very good effect).

In this chapter we concentrate on addressing the issue of Response times. The examples we

give above are all related to queries, but the issue applies as much to other tasks in IR such as

Indexing and Inverted file maintenance.

3. Review of previous work

There have been two major reviews of parallel computing for information retrieval, namely

Rasmussen (1992) and MacFarlane et al (1997). For the most part these reviews concentrated

on the practical implementation of information retrieval systems, such as the architectures and

algorithms used, and models implemented etc. The Rasmussen (1992) review did have a

section on evaluation performance using such metrics as Speedup, but does not tackle the

issue of modelling performance. Performance modelling in this context means a predictive

model that can be used to estimate how a given algorithm will behave under a given set of

conditions. Of particular concern is the lack of recent interest in doing research in parallel IR:

it is seen as a ‘solved problem’ etc. However there has been success in applying parallelism to

real world IR problems: the most significant example is that of the Internet search engines.

There is therefore good reason to produce predictive models of performance.

 A few attempts haven been made to produce such models, but they also have

limitations. Those models that provide a general performance overview of IR do not deal with

the problem of distribution (Cardenas, 1975; Fedorowicz, 1987; Wolfram, 1992a and 1992b).

Distribution in this context is the method of allocation of index data to nodes in a parallel

computer. Much of the work described in the literature on the subject which does look at

distribution either tackles one task (Jeong and Omiecinski, 1995; Tomasic and Garcia-Molina,

1993a & 1993b) or one aspect of a task such as the consideration of only one distribution

method (Ribeirio-Neto et al, 1999; Hawking, 1996). We define a task as being a specific

aspect of an IR system that has its own functionality (see section 5 below). In an attempt to

address this issue MacFarlane (2000) produced a synthetic model of performance which

tackles both the issue of distribution and on a number of different tasks. It is this model which

is discussed in this chapter. It should be noted that we draw a distinction between synthetic

models that only predict the relative difference between two algorithms and analytical models

which actually try to predict real performance of the two algorithms. Attempts by the author

to produce an analytical model of performance failed due to the complexity of trying to model

real performance on a disparate number of tasks: this is the main reason that the issue has not

be tackled satisfactorily in the literature.

 In order to set the scene for our attempt at solving this problem we describe the issue

of distributing inverted file data and define some tasks that we attempt to model using our

techniques.

4. Distribution methods for inverted file data

We look at four distribution methods; On-the-fly distribution, Replication and two types of

Partitioning. Because of the criteria used some data distribution methods are invalid for some

tasks (this issue is tackled when the tasks are defined below). In order to explain the

differences between these distributions we use an abstract task, which is defined as follows.

We have some inverted file data D, together with some work W to be done on D (W can be

any information retrieval task e.g. index a document or do a search). When W is applied to D,

we get a result R. Any or all of the three variables D, W and R may be subdivided or

partitioned in some way; W’, D’ and R’ will denote some such partition or subset, which may

nevertheless be the whole of the original variable in some cases. We define some algorithmic

steps on these variables that are common to all distribution methods;

• A central node sends W” plus any data needed to a number of i identical processor

nodes.

• The processor nodes apply W’ to D’ to produce results R’.

• The results R’ are sent back to the central node which prepares the final result R using

all R’ results.

It may help the reader to think of an inverted file (or more formally D) as a matrix with the

rows made up of term references and the columns made up of references to documents, see

fig 1.

 Documents

 1 n

 1 x x x x

 x x x

 x x x x x x

Terms x x x x x x

 x x

 x x xxx xxxxxx xx x x x xx x x

 m

Fig 1: Example matrix

In the example we have m terms in the collection, which invert n documents from the indexed

text. Relations between terms and documents are signified by a x. The matrix will be very

sparse, and some relations between documents and terms or vice versa will be richer than

others. We will use this matrix representation to show how data is distributed in the methods

to be examined in this chapter.

4.1 On-the-fly distribution

We define On-the-fly distribution as the distribution of part of the data as it is required by a

given task. It is a dynamic data distribution method, all the others are static. The method is

very flexible in that we can distribute the whole matrix D or any D’ which could be the whole

or part of either a row or column. The inverted file data is held in one location. Consider the

following example;

 Out In

 R W Processor

 i*(W’+D’) Node 1

 Central

 Node i*R’

 Processor

 D|D’ Node i

 D

Fig 2: Example of abstract task on On-the-fly distribution

Note that the ellipse is a node, a box is a disk, and the dashed line box is the universe of our

processor nodes. The arrows signify the direction of data exchange between nodes and or

disks. Our abstract task uses the following algorithmic steps. The work W is input and the

data associated with W (D’) is lifted from the inverted file and is packed up with a subset of

W (W’). Each of the i processor nodes each gets its own W’ and D’, and processes the data

producing R’. All results from i processor nodes (R’) are sent back to the central node which

prepares the final result R. The significant disadvantage with this method is that a large

amount of data must be distributed before computation can be done. The communication may

swamp any useful work, and this makes the distribution method impractical for many

information retrieval tasks.

4.2 Inverted file Replication

Replication is the duplication of inverted file data on local disks of a parallel computer. Each

node in the system has access to all the data locally, therefore the need to transmit large

amounts of data is greatly reduced. The advantage of replication as against On-the-fly

distribution is that the high communication cost is much reduced without loss of flexibility.

The disadvantage is that space costs are considerably higher than any of the other distribution

methods discussed here. Consider the following example;

 Out In

 R W Processor D

 i*W’ Node 1 D’

 Central

 Node i* R’

 Processor D

 Node i D’

 D

Fig 3: Example of abstract task on inverted file replication.

The key issue here is that all nodes have access to matrix D locally. In our abstract task we

send each processor node W’ together with some scheme for partitioning the matrix as

required by the given computation or task. We then produce R’ for each processor node and

return the result back to the central node to compute the final R as would be done with On-

the-fly distribution. A further advantage in having the whole matrix D available to the node is

that load can be re-balanced by exchanging subsets of W’ between the processor nodes,

without having to communicate any aspect of D.

 Out In

 R W Processor D’

 i*W’ Node 1 D’’

 Central

 Node

 i*R’ Processor D’

 Node i D’’

Fig 4: Example of abstract task on inverted file partitioning.

4.3 Inverted file partitioning

 Partitioning is the fragmentation of inverted file data over local disks in a parallel computer

(see fig 4). In the example given in figure 4 each node has access to its own subset of D, D’

and which can only be accessed by that node. In terms of the abstract task, each node

manipulates a subset of D’, D’’ in order to service work W or W’. The node services W or W’

depending on the task and partitioning type. The advantage of partitioning is that the space

costs are lower than Replication, but it is a static distribution method and is therefore not as

flexible as the On-the-fly distribution method. The process of distribution is also much more

complex than inverted file Replication.

 Documents

 1 i j n

 1 x x x x

 x x x

 x x x x x x

Terms x x x x x x

 x x

 x x xxx xxxxxx xx x xx xx x x

 m

Fig 5: Example DocId matrix partitioning

 There are two main inverted file Partitioning methods (Jeong and Omiecinski, 1995):

by term identifier (TermId) and by document identifier (DocId). These partitioning methods

are orthogonal to each other. With DocId partitioning the terms for a single document are

placed on one disk, therefore postings for the same term may be held on multiple disks (see

figure 5).

 Documents

 1 n

 1 x x x x

 x x x

 i x x x x x x

Terms x x x x x x

 j x x

 x x xxx xxxxxx xx x x x xx x x

 m

Fig 6: Example TermId matrix partitioning

We assume for arguments sake that we have three partitions in our example. In the example

documents 1 to i-1 are given to node 1, documents i to j-1 are given to node 2 and documents

j to n are given to node 3. The demarcation of the partitions is signified by the dotted line.

With respect to our abstract task, we need to distribute W (if W is a query) to all partitions as

all may have data for any or all of the terms in W. With TermId partitioning however, all

postings for a given term are on one disk, therefore postings for the same document may be

on multiple disks (see figure 6). In the example terms 1 to i-1 are given to node 1, terms i to j-

1 are given to node 2 and terms j to n are given to node 3. With respect to our abstract task

and our specific example given above on DocId, nodes get there own unique subset of work

W’ as each nodes has its set of unique terms.

5. Tasks in Information Retrieval

To recap, we define a task as being a specific aspect of an IR system that has its own

functionality. We do not attempt to examine every task in IR, as the field is large. Thesaurus

construction, clustering and hypertext creation tasks are among the notable exceptions that we

do not investigate. We largely concentrate on what we regard as the main tasks in IR such as

indexing and search: we define a main task as one with which an IR system using inverted

files would be unable to function if such did not exist. The other (non-main) tasks studied can

be built using the core tasks and extended as required. For example index update can be built

from search and index functionality, while routing/filtering and passage retrieval can be built

from search functionality. Each of the tasks to be studied in this chapter is defined below.

5.1 The indexing task

The indexing task is the process of taking raw text and building an index over that text using

some criteria such as removal of stop words and stemming, etc. The process of indexing is

one of the most computationally intensive aspects of IR requiring vast CPU, memory and disk

resources (but is done only once and incremented thereafter). It is therefore a prime candidate

for the application of parallelism. We consider Partitioning only for this task. On-the-fly

distribution is irrelevant (our consideration of distribution is on inverted file data not raw

text). Indexing on one processor and copying the data to the nodes can produce Replicated

indexes.

5.2 The probabilistic search task

The probabilistic search task is the process of servicing queries on inverted files to produce a

ranked list of documents using a term weighting scheme such as that derived by Robertson

and Sparck Jones (1976). Query processing in this context is very fast, which is why inverted

files in some form have become the dominant storage technique in IR. However, it is still

possible to increase the speed of query processing further using parallelism, and by doing so

increase the system throughput. With respect to distribution methods, Replication is not a

suitable method for probabilistic search (with the possible exception of concurrent query

service) while On-the-fly would restrict efficiency due to the extra communication overhead.

It is likely that this extra overhead would outweigh any gain made by parallelism. Our

discussion on the probabilistic search task is restricted to Partitioning methods only.

5.3 The passage retrieval task

The passage retrieval task described here is one used in Okapi experiments conducted within

the TREC conference framework, in particular Okapi at TREC-3 Robertson et al (1995). We

classify passage retrieval as being the retrieval of part of a document that is most likely to be

of interest to a user, given a query. This algorithm takes an atom of text, say a paragraph, and

iterates through the atoms of a document to a given maximum passage size. Passages that do

not have query terms at either the start or end text atoms are ignored. Each passage is

assigned a weight (using probabilistic model techniques), and the best-weighted passage used

for display to the user, as a surrogate for the whole document or in relevance feedback. This

passage processing technique is very computationally intensive and benefits from parallelism

MacFarlane et al (2004). We study Partitioning methods only for the same reasons as given

for the probabilistic search task.

5.4 The routing/filtering task

The idea behind information filtering is to disseminate incoming documents to users who

require them. Users have long term information needs that may be satisfied by newly

published documents. A method for information filtering is to take the documents that have

been marked relevant by the user in the past and apply a relevance feedback mechanism to

obtain a set of terms that can be applied to the new documents. We use TREC definitions of

routing and filtering Harman (1996). In routing we provide the user with the top n documents,

while in filtering we make a binary decision on which n documents will be presented to the

user. There are a number of filtering techniques: batch filtering that takes n documents as a

batch and adaptive filtering where documents are considered one at a time, with the

possibility of feedback after each one. In Robertson et al (1995) it was stated that an

alternative to some term ranking methods described would be to "evaluate every possible

combination of terms on a training set and use some performance evaluation measure to

determine which combination is best". This is a combinatorial optimisation problem in term

selection. A number of Hill Climbers have been implemented in Okapi at TREC-4 Robertson

et al (1996) to solve this problem. The method we concentrate on in this chapter is the ‘Find

Best’ algorithm which is a steepest ascent Hill Climber – the best term is chosen from on the

terms in the evaluation set until some stopping criteria has been reached e.g. no further

improvement can be made. In each algorithm a number of operations are available for term

selection: add only, remove only and add/remove. Query terms can also be re-weighted any

number of times. We consider add only with no re-weighting, and also with re-weighting

terms twice. It is this term selection task in routing/filtering that we attempt to model here.

We examine all the data distribution techniques theoretically for this task.

5.5 The index update task

The index update task consists of a number of different aspects. We consider the issue of

transaction processing where a transaction is either a document to be inserted or a

probabilistic search request. We define index update as data to be periodically added to the

index when a buffer with document insertions has exceeded some memory limit. This

requires some form of index reorganisation which must be done concurrently with transaction

processing to prevent delays: we assume that transaction processing cannot be suspended and

specify a requirement that queries should be serviced as soon as possible. It should be noted

that we consider insertions only, not deletions or modifications. To do otherwise would

complicate the modelling process further and in any case most text collections are archival in

nature (the web being a notable exception). Index maintenance is a computationally intensive

activity and we study the modelling of the task in order to investigate the viability of

parallelism in a transaction processing context. We study partitioning methods only for the

same reasons as given for the probabilistic search task.

6 A synthetic model of performance for parallel IR

In this section we briefly outline synthetic models of performance in order to compare

distribution methods for all tasks under consideration in the chapter (a detailed description of

the actual models themselves can be found in MacFarlane (2000)). However, due to

practicalities we do not study absolute performance of the tasks (for reasons stated above),

and our emphasis is restricted to the derivation of synthetic models that can only be used for

comparative purposes. Not having to address the issue of absolute performance simplifies the

process of modelling greatly. While our primary aim is to produce models that are strong

enough to compare distribution methods and make choices between them, we also try to look

beyond this simple requirement. We would like models that are good enough to predict the

relative difference between data distribution schemes. We would also like to be able to make

generic statements about parallel IR performance beyond the algorithms and architectures

which we examine in this chapter: this may be difficult to do given the range of systems

described in the literature (see Rasmussen (1992) and MacFarlane et al (1997)). These issues

will be examined later on in the chapter by reviewing the empirical results gathered. The

algorithms and methods modelled in this chapter are those described in MacFarlane et al

(1999). We have a number of general variables for the models that are declared in table 1.

 Tcpu : CPU time (for some operation).

 Ti/o[x] : I/O time - Components: 1Tseek + x Ttrans;

 Tseek : Time to seek for I/O

 Ttrans : Time to transfer data for I/O

 Tcomm : Communication time

 Tt : Unit Time

 P : No of nodes in a parallel machine

 LI[P] : Load imbalance estimate at P processors

Table 1. General variables for the synthetic models

 The format of the models is functional. This allows us to specify equations and reuse

them in other defined equations. This makes it easier to replace various aspects of a given

model in order to study different type of methods not under consideration in this chapter such

as query processing optimisation and compression. We attempt to make our models as generic

as possible. All functions return a single figure in abstract time. The functions only take

variables as arguments: we do not specify higher order functions. Lookup values declared in

the form x[y] (e.g. LI[P]) are not recorded as parameters but global variables. The scope rules

for any declared variable are the normal ones found in most programming languages:

variables declared locally take precedence over global ones. Sequential and parallel models

are declared for all tasks. Simplifying assumptions for each of the models is declared in the

relevant sections.

 We make a number of assumptions in the general variables that impact (with varying

degrees) on the synthetic models. We assume a low latency network in order to simplify the

modelling of communication (otherwise we would have to break down Tcomm using a Tcomm[x]

format). For I/O we do allow two forms as blocks of data can be either static or dynamic. The

Ti/o form of the variable can be used if fixed size blocks are transferred, and it is safe to

assume that the balance between transfer and seek time is constant. We use the Ti/o[x] where

variable sized blocks are transferred and the balance between seek and transfer time must be

an integral part of the modelling process. For seek time we assume that an I/O request entails

a single disk head movement. We assume an accumulated increase in load imbalance

(variable LI[P]), at a rate of 0.015 for all synthetic models. It is difficult to know what the

load balance will be for the parallel version of a particular task, without running a program

and measuring the imbalance. We take this approach to provide a reasonable level of load

imbalance for a given parallel machine size. For a given model we assume that the same

parallel machine is used, that is the communication, CPU and I/O costs are identical across

nodes in the machine: we do not address the issue of heterogeneous parallelism in the models

(e.g. nodes with different architectures).

 What follows in section 7 is a brief description of the model is given for each task

described in section 5, and the results using that model are examined and compared with

empirical data. Details of the models and how they were constructed and derived can be

found on a web site from MacFarlane (2000).

7 Empirical examination of synthetic model

Our purpose in this section is twofold, to compare the theoretical results in order to show

which distribution method is appropriate for each task, and then to compare the theoretical

results with empirical results from our implementation of the tasks in order to see how well

the models can distinguish different distribution methods. In each section we describe the

evidence used to instantiate the theoretical models, in order to produce them. All diagrams

declare the theoretical results on abstract unit time as against the number of processors (P).

7.1 Comparative results using indexing models

The evidence we used to develop the theoretical models is from the BASE1 collection

Hawking et al (1999): this collection consists of 187,000 documents with an average

document length of around 465 words. We use the following values in the models: Tcpu of

0.01, Ti/o of 0.015 and Tcomm of 1 – these were chosen to reflect he approximate balance

between the different aspects. We assume the transfer to and from disk is with fixed sized

blocks. With communication time we assume a fast network, given the amount of data to be

transferred between nodes. We produce three theoretical models, one for the TermId

partitioning method and two for the DocId partitioning method. The two models for the latter

partitioning scheme reflect different types of builds: Local where documents are saved to and

indexed from a local disk and Distributed where a single master processor distributes

documents to other processors in the parallel computer.

 From figure 7 it can be seen that there is an advantage in theory in using DocId

partitioning over the TermId method for indexing in that the models for the former predict

better performance over the latter on all parallel machine sizes. It should be noted that the

model predicts a narrowing of the gap between partitioning methods with increasing machine

size (we will examine this issue later in this section). There is little difference between Local

and Distributed builds in DocId, but we have assumed a high bandwidth network in the

instantiated models (the graph for Local build DocId is obstructed by Distributed build DocId

as there is virtually no difference in theoretical time between them). If we assumed a much

lower bandwidth network, there would be a clear difference between the builds and TermId

would not compare well with either of the DocId methods.

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

1 2 3 4 5 6 7 8 9

P

U
n

it
 T

im
e INDEXLocal_Docid

INDEXDistr_DocId

INDEXDistr_TermId

Fig 7. Synthetic indexing performance on 1 to 9 Leaf nodes

When comparing the performance of both partitioning methods with our empirical results

MacFarlane at al (2005), the synthetic model for indexing was able to predict that DocId

builds are faster than TermId builds. Our empirical results show definitively that the DocId

partitioning scheme is a superior method in terms of speed, than the TermId method

MacFarlane et al (2005). The clear reason for this was the extra communication costs, implied

by the TermId method: even using the assumption of a fast network. The extra

communication costs are largely due to an extra merging process needed for TermId indexing.

Documents are distributed to processors in TermId for a parsing phase, which meant that

intermediate results must be exchanged, requiring N*(N-1) data sets to be transmitted over

the network. Problems in the modelling of communication in the synthetic model on this

merging process meant that a widening gap in performance between the two partitioning

methods for increasing parallel machine size was not anticipated (the model actually

predicted a narrowing of the gap in run time between the two partitioning methods). This

failure in modelling is discussed in more detail in the conclusion. With respect to Local

versus Distributed builds in DocId partitioning, no direct comparison was made, as it was

clear that Local build indexing run time would be faster.

7.2 Comparative results using search models

The BASE1 collection was again used as source of evidence to develop the theoretical search

models. The same values for Tcpu and Tcomm where used as in the indexing models, but

assumed in the search case that variable sized blocks would be transferred from disk and

therefore split Ti/o into Ttrans and Tseek using the values 0.015 and 0.1 respectively. These are the

values we assumed for all the theoretical search models discussed below. We assumed a

query size of 2.5 terms for the models as users tend to submit just over two terms per query

(Silverstein et al, 1999). The results of applying these values shown in fig 8 demonstrate that

in theory the DocId partitioning method (SEARCHdocid) would perform better than the TermId

method using either a parallel sort (SEARCHtermid2) or sequential sort (SEARCHtermid1). The

comparative results also predict that the TermId method with parallel sort will outperform the

algorithm with a sequential sort by a substantial amount: the synthetic model predicts that a

sequential sort will be a bottleneck. The prediction on the TermId partitioning method with a

sequential sort is particularly bleak, with little or no advantage to be gained from parallelism.

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1 2 3 4 5 6 7 8 9

P

U
n

it
 T

im
e SEARCHdocid

SEARCHtermid1

SEARCHtermid2

Fig 8. Comparative results for search models on 1-9 leaf nodes

 Our empirical results MacFarlane et al (2000) show that runs on the DocId

partitioning scheme outperform a TermId scheme, whether or not a parallel sort is

implemented. The prediction in the synthetic model that a sequential sort would be a

bottleneck is confirmed by empirical results (MacFarlane et al, 2000). The synthetic model is

also able to predict the relative performance difference between the partitioning methods to a

great extent. However our empirical results show that TermId with parallel sort performance

is nearer to TermId with sequential sort, whereas our synthetic model predicted that search on

TermId with parallel sort would be nearer to DocId. The implemented parallel sort, required

that the final merged results be distributed to processors and the sorted data retrieved when

each processor has completed its sort: as with indexing this communication was not dealt with

correctly by the synthetic model.

0.0

100000.0

200000.0

300000.0

400000.0

500000.0

1 2 3 4 5 6 7 8 9

P

U
n

it
 T

im
e

PASSAGEdocid_local

PASSAGEdocid_distr

PASSAGEtermid1

PASSAGEtermid2

Fig 9. Synthetic passage retrieval model on 1 to 9 leaf nodes

7.3 Comparative results using passage retrieval models

We used the same values for the models as per the search models in section 7.2 above, but

need some further assumptions to make on the average number of text segments to inspect per

document and the total number of documents on which to do passage retrieval: we chose the

values of 11 and 1000 respectively. Figure 9 shows the results on the theoretical passage

retrieval models for both partitioning methods. There is clearly a significant problem with

using TermId partitioning with the passage retrieval algorithm we model. The predicted

comparative performance is so poor that the DocId models appear to be near zero. It is clear

from the model that predicted communication costs would increase the run time of any

parallel program using such a partitioning method. Given the problems with modelling

communication in both indexing and search models, the costs for passage retrieval are likely

to a significant underestimate. As a result we chose not to run any practical experiments using

this partitioning method, and therefore concentrated on the DocId partition method alone

using both the local and distributed document allocation methods. With the local method, the

local top 1000/P documents are used for passage processing, whereas in the distributed

method the global top 1000 documents are processed.

 Fig 10 shows synthetic model results for DocId partitioning only. With both types of

passage retrieval using DocId the prediction is time reduction with increasing numbers of

processors, but the local method (marked PASSAGEdocid_local) shows slightly better theoretical

results than the distributed method (marked PASSAGEdocid_distr). There is a little extra

communication for the distributed method, where the master process needs to identify the top

1000 documents, and inform the search processes as to which of their documents are to be

examined for passages. Also, there is no guarantee that passages will be equally distributed in

the distributed method, and this has the potential to effect load balance. This aspect is very

difficult to model, as the distribution of documents to which passage processing is to be

applied, cannot be determined prior to search.

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1 2 3 4 5 6 7 8 9

P

U
n

it
 t

im
e

PASSAGEdocid_local PASSAGEdocid_distr

Fig 10. Synthetic passage retrieval models - DocId only

The empirical results show that our synthetic model correctly predicted that the local

passage processing method would outperform the distributed version. However, the model

was unable to predict the relative difference due to the super linear speedup performance for

the former and the erratic nature of the performance in the latter on short queries (MacFarlane

et al, 2004). The remarkable performance of the local passage processing method was

somewhat hard to fathom at first, as the number of passages processed was around the same

as the distributed method. However individual text atoms can vary in size considerably, it is

clear that the local method was processing a different set of documents which were less

computationally costly to process than the distributed method. The variable performance of

the distributed method was due to the different numbers of documents processed at each

machine size, which tended to vary quite considerably and non deterministically. The factors

found by empirical experiment added yet another unforseen level of complexity to the

modelling process which we are currently unable to deal with, that is modelling the effect of

text atoms on passage processing.

7.4 Comparative results using term selection models

For our modelling of the term selection we assumed that the optimisation process would be

done on 300 terms with a maximum of 100 iterations. The values chosen for these variables

were used in the empirical experiments (MacFarlane et al, 2003). We modelled only one of

the hill climbers under consideration, namely ‘Find Best’. Fig 11 shows the comparison

between models on all distribution and partitioning methods with the number of processors

(P) set between 10-100.

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

10 20 30 40 50 60 70 80 90 100

P

U
n

it
 T

im
e

ROUTINGdocid

ROUTINGtermid

ROUTINGrep

ROUTINGparfly

Fig 11. Term selection model results using large slave node set and iteration sizes

 The theoretical models predict that the best performing distribution scheme overall

would be the replication method. On smaller processor sets, the DocId partitioning method

shows better theoretical results, but predicts that the performance would deteriorate

substantially due to the restriction on the level of parallelism in that distribution method: the

communication/ computation balance would be skewed with increasing numbers of

processors. We therefore did not implement the DocId partitioning method, as it was clear

that other distribution methods where more likely to succeed when larger parallel machines

were used. The prediction with respect to TermId partitioning and On-the-fly distribution is

that there is little difference between them particularly with large processor sets.

 The synthetic model was successfully able predict that Replication is a superior

method to On-the-fly distribution, but not that the latter would perform so poorly

(MacFarlane, 2000). The ‘Find Best’ algorithm show near linear speedup on the Replication

method. However, the results for the On-the-fly distribution method actually show a

slowdown with more processors than just using one processor: the performance gets worse

with more processors. This is in spite of the fact that we used a 50 Mb per second network or

on a large scale Fujitsu parallel computing (with 100 processors). The bottleneck at the

synchronisation point, where data must be exchanged between iterations proved to the

stumbling block for the method.

 We can make a further statement on the synthetic models, given the evidence found

with On-the-fly distribution. The TermId partitioning method would require more

communication at the synchronisation point than On-the-fly distribution. There is no

guarantee that query terms with be distributed evenly with the TermId method, and this has

the potential to effect load balance detrimentally. The TermId partitioning method is therefore

not a viable method, and as a result we did not implement this scheme for our experiments.

7.5 Comparative results using index update model

In the index update model we assumed that for every 10 searches, there would be 1 update to

process. Fig 11 shows the prediction using these values and compares the theoretical

performance between both types of partitioning methods where transactions are affected by a

concurrent index update (models are labelled with the suffix RO) and normal transaction

processing without contention for resources. What we mean by concurrent index update is

that updates held in a temporary buffer are merged with the inverted file, while transactions

are serviced concurrently.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

P

U
n

it
 T

im
e

TRANSdocid

TRANStermid2

TRANSdocid-RO

TRANStermid2-RO

Fig 11. Comparison between partitioning methods in presence and absence of index update

 The models predict that DocId partitioning will outperform TermId whether or not

there is contention for resources due to index update. As you would expect, where there is

contention for resources the predicted performance is worse than non-contention models. The

model on TermId partitioning in the presence of an index update predicts a deterioration in

performance with increasing numbers of processors: with DocId the prediction is that

performance will remain constant after a certain number of processors is reached.

 Our synthetic model for the index update task is strong enough to distinguish between

the partitioning methods (MacFarlane et al, 2007). Problems highlighted in our probabilistic

search experiments (see section 7.2 above) impose severe restrictions on transaction

processing when the TermId method is used, which are difficult to solve within our

experimental context. These problems (most notably the sort aspect of search) had an impact

on the relative difference between the two partitioning methods during transaction processing,

a problem the synthetic model was not able to deal with very well. The synthetic model

correctly predicted that the performance of transactions serviced on TermId indexes during an

index reorganisation would deteriorate (although the empirical results were relatively worse

because of a list size problem described in (MacFarlane et al, 2006). The synthetic model also

correctly predicted that transaction performance on DocId partitioning indexes would be

constant after a given number of leaf nodes is reached in the same situation.

7. Conclusions and Further research

The synthetic models outlined in this chapter predict that for most tasks the DocId

partitioning method would be the better performing data distribution scheme of those studied.

For the index, probabilistic search, passage retrieval and index update tasks the prediction is

unambiguous. For the passage retrieval task in particular it is very clear that the TermId

partitioning method is simply not viable: we did not therefore implement this partitioning

method for the passage processing task (MacFarlane et al, 2000). The theoretical evidence on

the routing/filtering task is more complicated and therefore needs more discussion. On small

numbers of processors the prediction is that DocId partitioning would be the best data

distribution scheme, but on larger parallel machines the performance would deteriorate due to

excessive communication. Due to the restrictions on inter-set parallelism, the proposed

method for DocId partitioning does not show the same promise as intra-set parallelism usable

on the other distribution methods. Of the other three, the prediction is that replication would

be the best performing method and that performance with on-the-fly distribution would be

about the same with TermId partitioning. We therefore concentrated our efforts on replication

and on-the-fly distribution schemes, partly because of the theoretical comparison and partly

because such methods are easier to manage. Only one indexing run needed to be initiated in

order to undertake those experiments, whereas with TermId partitioning a new indexing run

would be required for every processor added.

 Further work on the synthetic modelling technique used in this chapter is merited

both in terms of strengthening the actual model and extending it for use in other tasks not

studied here. While the models were able to correctly predict that one distribution scheme was

superior to the others, given the empirical evidence, they were not able to predict the relative

difference between the models. This was largely because the synthetic models were not able

to model communication completely. The key aspect to concentrate on initially therefore will

be the modelling of communication, given that it was such a significant problem in our

models. The problems in being able to do this successfully should not be underestimated. The

model will not only have to cope with interactions between two processors, it will also have

to model the pattern of communication throughout the whole system (one of the reasons for

our simplified modelling of communication was to avoid this complexity). A particular

problem with passage retrieval, is the ability to model the effect of the text atoms on passage

processing: this non-deterministic factor is very hard to model. An interesting and worthwhile

piece of research would be to extend the functional modelling and use formal techniques to

prove various aspects of it: this may well provide insights that would not be obtained

otherwise. When many problems have been solved by using synthetic modelling, and more of

an understanding of the theory of performance of parallelism in IR is obtained, it may well be

possible to derive an analytical model of performance in order to model real performance.

Hopefully, this analytical model would be able to predict the actual performance in a given IR

task, more accurately then we can at present.

References

Cardenas, A.F. (1975). Analysis and performance of inverted data base structures.

Communications of the ACM, 18 (5), 253-263.

Clarke, C., Craswell, N. and Soboroff, I. (2005). Overview of the TREC 2004 Terabyte

Track, in Proceedings of the Eleventh Text REtrieval Conference, (TREC 2004), (eds E.

Voorhees and L. Buckland), NIST Special Publication 500-261, Gaithersburg, U.S.A,

[available on: http://trec.nist.gov - visited 15
th

 March 2007].

Fedorowicz, J. (1987). Database performance evaluation in an indexed file environment.

ACM Transactions on Database Systems, 12 (1):85-110.

Fox, E., Betrabet, S., Koushik, M., and Lee, W. (1992). Extended Boolean models in

Information Retrieval, Data Structures and Algorithms. (eds W.B. Frakes, and R. Baeza-

Yates), Prentice-Hall, N.J., pp393-418.

Harman, D.K. Fox, E. Baeza-Yates, R and Lee, W. (1992). Inverted Files, in Information

Retrieval, Data Structures and Algorithms. (eds W.B. Frakes, and R. Baeza-Yates), Prentice-

Hall, N.J., 28-43.

Harman, D.K. (1996). Overview of the fourth text retrieval conference (TREC-4), in,

Proceedings of the Fourth Text Retrieval Conference (TREC-4), (ed D.K. Harman) NIST

Special Publication 500-236, Gaithersburg, U.S.A, 1-24.

Hawking, D. (1996). Document retrieval performance on parallel systems. In: ARABNIAL,

H.R., ed, Proceedings of the 1996 International Conference on Parallel and Distributed

Processing Techniques and Applications, Sunnyvale, California, August 1996, (Athens:

CSREA): 1354-1365.

Hawking, D., Craswell, N. and Thistlewaite, P. (1999). Overview of TREC-7 very large

collection track. In: Voorhees, E.M. and Harman, D.K., eds. Proceedings of Seventh Text

Retrieval Conference (TREC-7), Gaithersburg, USA, November 1998. NIST SP 500-242,

(Gaithersburg: NIST): 257-268.

Jeong, B., and Omiecinski, E. (1995). Inverted file partitioning schemes in multiple disk

systems. IEEE Transactions on Parallel and Distributed Systems, 6 (2): 142-153.

MacFarlane, A. Robertson , S.E. AND McCann, J. A. (1997). Parallel computing in

information retrieval – an updated review. Journal of Documentation 53(3), 274-315.

MacFarlane, A., McCann, J. A. and Robertson, S.E. (1999). PLIERS: a parallel information

retrieval system using MPI. In: Dongarra, J., Luque, E. and Margalef, T., eds. Proceedings of

6th European PVM/MPI Users' Group Meeting, Barcelona, Lecture Notes in Computer

Science 1697, (Berlin: Springer-Verlag): 317-324.

MacFarlane, A. (2000). Distributed Inverted files and performance: a study of parallelism and

data distribution methods in IR, PhD thesis, City University London, August 2000. [Available

on: http://www.soi.city.ac.uk/~andym/PHD/: visited 7
th

 November 2005]

MacFarlane, A., McCann, J. A. and Robertson, S.E. (2000). Parallel search using partitioned

inverted files. In: DE LA FUENTE, P., ed, Proceedings of String Processing and Information

Retrieval - SPIRE 2000, September 2000, A Coruna, Spain, (Los Alamitos:IEEE Computer

Society Press), 209-220.

MacFarlane, A. Robertson , S.E. and McCann, J. A. (2003). Parallel computing for term

selection in routing/filtering, In: Sebastiani, F. Proceedings of ECIR 2003, LNCS 2633, 537-

545.

MacFarlane, A. Robertson , S.E. and McCann, J. A. (2004). Parallel computing for Passage

Retrieval. ASLIB Proceedings: New Information Perspectives, 56(4), 201-211.

MacFarlane, A., McCann, J. A. and Robertson, S.E. (2005). Parallel methods for the

generation of partitioned inverted files. ASLIB Proceedings: New Information Perspectives,

57(5), 434-459.

MacFarlane, A., McCann, J. A. and Robertson, S.E. (2007). Parallel methods for the update

of partitioned inverted files. ASLIB Proceedings: New Information Perspectives (to appear).

Rasmussen, E. (1992). Parallel information processing. In: Williams M.E., Annual Review of

Information Science and Technology (ARIST), Volume 27, 99-130.

Ribeiro-Neto, B., Moura, E.S., Neubert, M.S., and Ziviani, N. (1999). Efficient distributed

algorithms to build inverted files. In: Hearst, M., Gey, F. and Tong, R., Proceedings for the

22nd International Conference on the Research and Development in Information Retrieval,

SIGIR'99, (New York: ACM Press): 105-112.

Robertson, S.E., & Sparck Jones, K. (1976). Relevance weighting of search terms.

JASIS, May-June: 129-145.

Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M. & Gatford, M. (1995). Okapi

at TREC-3. In: Harman, D.K., ed. Proceedings of Third Text Retrieval Conference,

Gaithersburg, USA, November 1994, NIST SP 500-226, (Gaithersburg: NIST): 109-126.

Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M. and Payne, A.

(1996). Okapi at TREC-4. In: Harman, D.K., ed, Proceedings of the Fourth Text Retrieval

Conference, Gaithersburg, U.S.A, November 1995, NIST SP 500-236, (Gaithersburg: NIST):

73-96.

Salton, G., and Buckley, C. (1988). Parallel text search methods. Communications of the

ACM, 31 (2): 202-215.

Silverstein, C., Henzinger, M., Marais, H, and Moricz, M. (1999). Analysis of a very large

web search engine log. SIGIR Forum, 33 (1): 6-12.

Stanfill, C., Thau, R., and Waltz, D. (1989). A parallel Indexed algorithm for Information

Retrieval. In: Belkin, N.J., and van Rijsbergen, C.J., eds. Proceedings of the 12th annual

conference on research and development in Information Retrieval, SIGIR'89, (New York:

ACM Press): 88-97.

Stone, H. S. (1987). Parallel querying of large database: a case study. IEEE Computer, 20

(10): 11-21.

Tomasic, A., and Garcia-Molina, H. (1993a). Performance of inverted indices in shared-

nothing distributed text document information retrieval systems. Proceedings of the 2nd

International Conference on Parallel and Distributed Information Systems, (Los Alomitos:

IEEE Computer society press): 8-17.

Tomasic, A., and Garcia-Molina, H.. (1993b). Caching and database scaling in distributed

shared-nothing information retrieval systems. In: Buneman, P., and Jajoida, S., eds,

Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data.

(N.Y.: ACM Press): 129-138.

Wolfram, D. (1992a). Applying informetric characteristics of databases for IR system file

design, part i: informetric models. Information Processing and Management, 28 (1): 121-133.

Wolfram, D. (1992b). Applying informetric characteristics of databases for IR system file

design, part ii: simulation comparisons. Information Processing and Management, 28 (1):

135-151.

