144,756 research outputs found

    A Data-driven, High-performance and Intelligent CyberInfrastructure to Advance Spatial Sciences

    Get PDF
    abstract: In the field of Geographic Information Science (GIScience), we have witnessed the unprecedented data deluge brought about by the rapid advancement of high-resolution data observing technologies. For example, with the advancement of Earth Observation (EO) technologies, a massive amount of EO data including remote sensing data and other sensor observation data about earthquake, climate, ocean, hydrology, volcano, glacier, etc., are being collected on a daily basis by a wide range of organizations. In addition to the observation data, human-generated data including microblogs, photos, consumption records, evaluations, unstructured webpages and other Volunteered Geographical Information (VGI) are incessantly generated and shared on the Internet. Meanwhile, the emerging cyberinfrastructure rapidly increases our capacity for handling such massive data with regard to data collection and management, data integration and interoperability, data transmission and visualization, high-performance computing, etc. Cyberinfrastructure (CI) consists of computing systems, data storage systems, advanced instruments and data repositories, visualization environments, and people, all linked together by software and high-performance networks to improve research productivity and enable breakthroughs that are not otherwise possible. The Geospatial CI (GCI, or CyberGIS), as the synthesis of CI and GIScience has inherent advantages in enabling computationally intensive spatial analysis and modeling (SAM) and collaborative geospatial problem solving and decision making. This dissertation is dedicated to addressing several critical issues and improving the performance of existing methodologies and systems in the field of CyberGIS. My dissertation will include three parts: The first part is focused on developing methodologies to help public researchers find appropriate open geo-spatial datasets from millions of records provided by thousands of organizations scattered around the world efficiently and effectively. Machine learning and semantic search methods will be utilized in this research. The second part develops an interoperable and replicable geoprocessing service by synthesizing the high-performance computing (HPC) environment, the core spatial statistic/analysis algorithms from the widely adopted open source python package – Python Spatial Analysis Library (PySAL), and rich datasets acquired from the first research. The third part is dedicated to studying optimization strategies for feature data transmission and visualization. This study is intended for solving the performance issue in large feature data transmission through the Internet and visualization on the client (browser) side. Taken together, the three parts constitute an endeavor towards the methodological improvement and implementation practice of the data-driven, high-performance and intelligent CI to advance spatial sciences.Dissertation/ThesisDoctoral Dissertation Geography 201

    Acceleration of Computational Geometry Algorithms for High Performance Computing Based Geo-Spatial Big Data Analysis

    Get PDF
    Geo-Spatial computing and data analysis is the branch of computer science that deals with real world location-based data. Computational geometry algorithms are algorithms that process geometry/shapes and is one of the pillars of geo-spatial computing. Real world map and location-based data can be huge in size and the data structures used to process them extremely big leading to huge computational costs. Furthermore, Geo-Spatial datasets are growing on all V’s (Volume, Variety, Value, etc.) and are becoming larger and more complex to process in-turn demanding more computational resources. High Performance Computing is a way to breakdown the problem in ways that it can run in parallel on big computers with massive processing power and hence reduce the computing time delivering the same results but much faster.This dissertation explores different techniques to accelerate the processing of computational geometry algorithms and geo-spatial computing like using Many-core Graphics Processing Units (GPU), Multi-core Central Processing Units (CPU), Multi-node setup with Message Passing Interface (MPI), Cache optimizations, Memory and Communication optimizations, load balancing, Algorithmic Modifications, Directive based parallelization with OpenMP or OpenACC and Vectorization with compiler intrinsic (AVX). This dissertation has applied at least one of the mentioned techniques to the following problems. Novel method to parallelize plane sweep based geometric intersection for GPU with directives is presented. Parallelization of plane sweep based Voronoi construction, parallelization of Segment tree construction, Segment tree queries and Segment tree-based operations has been presented. Spatial autocorrelation, computation of getis-ord hotspots are also presented. Acceleration performance and speedup results are presented in each corresponding chapter

    The Second Competition on Spatial Statistics for Large Datasets

    Full text link
    In the last few decades, the size of spatial and spatio-temporal datasets in many research areas has rapidly increased with the development of data collection technologies. As a result, classical statistical methods in spatial statistics are facing computational challenges. For example, the kriging predictor in geostatistics becomes prohibitive on traditional hardware architectures for large datasets as it requires high computing power and memory footprint when dealing with large dense matrix operations. Over the years, various approximation methods have been proposed to address such computational issues, however, the community lacks a holistic process to assess their approximation efficiency. To provide a fair assessment, in 2021, we organized the first competition on spatial statistics for large datasets, generated by our {\em ExaGeoStat} software, and asked participants to report the results of estimation and prediction. Thanks to its widely acknowledged success and at the request of many participants, we organized the second competition in 2022 focusing on predictions for more complex spatial and spatio-temporal processes, including univariate nonstationary spatial processes, univariate stationary space-time processes, and bivariate stationary spatial processes. In this paper, we describe in detail the data generation procedure and make the valuable datasets publicly available for a wider adoption. Then, we review the submitted methods from fourteen teams worldwide, analyze the competition outcomes, and assess the performance of each team

    Hybrid Rendering: Enabling Interactivity in a Distributed Post-Processing Environment

    Get PDF
    The ever increasing compute capacity of high performance computing (HPC) systems enables scientists to simulate and explore physical phenomena with an enormous spatial and temporal accuracy. On the other hand, this accuracy leads to datasets of many terabytes, petabytes, and even exabytes envisioning the up- coming exascale area projected for 2018. To understand complex physical coherences behind such a simulation, an efficient analysis and visualization is essential but also difficult, since the challenges concern all stages of the visual- ization pipeline. With this presentation we set the focus on distributed and hybrid rendering

    Learning to Zoom and Unzoom

    Full text link
    Many perception systems in mobile computing, autonomous navigation, and AR/VR face strict compute constraints that are particularly challenging for high-resolution input images. Previous works propose nonuniform downsamplers that "learn to zoom" on salient image regions, reducing compute while retaining task-relevant image information. However, for tasks with spatial labels (such as 2D/3D object detection and semantic segmentation), such distortions may harm performance. In this work (LZU), we "learn to zoom" in on the input image, compute spatial features, and then "unzoom" to revert any deformations. To enable efficient and differentiable unzooming, we approximate the zooming warp with a piecewise bilinear mapping that is invertible. LZU can be applied to any task with 2D spatial input and any model with 2D spatial features, and we demonstrate this versatility by evaluating on a variety of tasks and datasets: object detection on Argoverse-HD, semantic segmentation on Cityscapes, and monocular 3D object detection on nuScenes. Interestingly, we observe boosts in performance even when high-resolution sensor data is unavailable, implying that LZU can be used to "learn to upsample" as well.Comment: CVPR 2023. Code and additional visuals available at https://tchittesh.github.io/lzu

    Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains

    Full text link
    We introduce a class of scalable Bayesian hierarchical models for the analysis of massive geostatistical datasets. The underlying idea combines ideas on high-dimensional geostatistics by partitioning the spatial domain and modeling the regions in the partition using a sparsity-inducing directed acyclic graph (DAG). We extend the model over the DAG to a well-defined spatial process, which we call the Meshed Gaussian Process (MGP). A major contribution is the development of a MGPs on tessellated domains, accompanied by a Gibbs sampler for the efficient recovery of spatial random effects. In particular, the cubic MGP (Q-MGP) can harness high-performance computing resources by executing all large-scale operations in parallel within the Gibbs sampler, improving mixing and computing time compared to sequential updating schemes. Unlike some existing models for large spatial data, a Q-MGP facilitates massive caching of expensive matrix operations, making it particularly apt in dealing with spatiotemporal remote-sensing data. We compare Q-MGPs with large synthetic and real world data against state-of-the-art methods. We also illustrate using Normalized Difference Vegetation Index (NDVI) data from the Serengeti park region to recover latent multivariate spatiotemporal random effects at millions of locations. The source code is available at https://github.com/mkln/meshgp

    MPI-Vector-IO: Parallel I/O and Partitioning for Geospatial Vector Data

    Get PDF
    In recent times, geospatial datasets are growing in terms of size, complexity and heterogeneity. High performance systems are needed to analyze such data to produce actionable insights in an efficient manner. For polygonal a.k.a vector datasets, operations such as I/O, data partitioning, communication, and load balancing becomes challenging in a cluster environment. In this work, we present MPI-Vector-IO 1 , a parallel I/O library that we have designed using MPI-IO specifically for partitioning and reading irregular vector data formats such as Well Known Text. It makes MPI aware of spatial data, spatial primitives and provides support for spatial data types embedded within collective computation and communication using MPI message-passing library. These abstractions along with parallel I/O support are useful for parallel Geographic Information System (GIS) application development on HPC platforms
    • …
    corecore