
Hybrid Rendering: Enabling Interactivity in a

Distributed Post-Processing Environment

Markus Flatken and Andreas Gerndt

German Aerospace Center, Simulation and Software Technology,
Lilienthalplatz 7, 38108 Braunschweig, Germany
{markus.flatken,andreas.gerndt}@dlr.de

http://www.dlr.de/sc/

1 Introduction

The ever increasing compute capacity of high performance computing (HPC)
systems enables scientists to simulate and explore physical phenomena with an
enormous spatial and temporal accuracy. On the other hand, this accuracy leads
to datasets of many terabytes, petabytes, and even exabytes envisioning the up-
coming exascale area projected for 2018 [1]. To understand complex physical
coherences behind such a simulation, an efficient analysis and visualization is
essential but also difficult, since the challenges concern all stages of the visual-
ization pipeline [2]. With this presentation we set the focus on distributed and
hybrid rendering.

2 Parallel Rendering

The amount of data to be rendered from a large-scale simulation on a super-
computer can easily exceed the required main memory size and rendering per-
formance of a single machine. Therefore, parallel rendering techniques have been
developed. Using these techniques each processor only renders a subset of the
total data. Molnar et al. have given an early classification of these parallel ren-
dering techniques [3]. The sort-last rendering approach e.g. distributes the data
over a defined number of rendering machines. Each of these rendering machines
determines whether their chunk of data is projected onto screen. In that case
the rendering machine calculates the correct color and depth value per pixel and
stores them in buffers. In a conclusive step all generated buffers are composed
via z-value comparison to a final image (depicted in the middle of Figure 1).
The major advantage is that sort-last rendering scales with respect to the size
of the data. The achieved frame rate, however, is limited by network bandwidth
due to costly communication for image composition and therefore disrupts user
interaction. Thus, decoupling rendering from the display stage is useful.

3 Hybrid Rendering

Hybrid rendering (depicted in Figure 1) aims at splitting render load to local and
remote resources [5]. Remote resources are generally supercomputers or graphics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31015197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. Flatken, A. Gerndt

Remote Rendering Resource Local ResourceRemote HPC System

File-SystemFile-System

Parallel Filtering 

& Mapping

Simulation

Fig. 1. Remotely rendered images are transfered to the local resource where they are
combined with the local context image according to the pixels depth values.

clusters while local resources may be simple workstations. Complex features of
the simulation are rendered remotely while the context geometry, e.g. the shape
of an airplane, is rendered locally to guarantee interactivity. Therefore, images
are generated with different frame rates on these resources. Since remote im-
ages are generated with lower frame rates and cause latency, they might not
fit with the current local view (depicted in Figure 2(a)). To avoid this problem
image-based rendering (IBR) techniques are exploited. With these IBR tech-
niques it’s possible to align an obsolete 2.5D remote image to the current local
view. A pixel is transformed from screen space into object space by calculating
its inverse projection. This 3D point is then transformed according to the current
local projection. However, this approach leads to artifacts inside the presentation
depicted in Figure 2(b). To deal with these artifacts we use an adaptive point
size adjustment. The required point size is determined during point transforma-
tions and depends on the derivation in x- and y-axis. Therefore, we calculate the
screen-space distance to the transformed neighbor pixels with the same z-values.
This adaptive point size rendering approach successfully fills holes inside a sur-
face (depicted in Figure 2(c)). Boundaries, however, tend to be a bit blurred
compared to correct rendering in Figure 2(d). Nevertheless, this hybrid render-
ing approach combined with IBR hides the varying frame rates and latencies
and thus guarantees interactivity on the local resource. This approach is also
suitable for tiled displays. To further optimize communication and latency, the
image stream can be encoded using video and depth compression algorithms [6].

(a) rotated local
image

(b) fixed point-size
adjustment

(c) adaptive point-
size adjustment

(d) correct remote
image

Fig. 2. In the left image the user is rotating the scene leading to diverged images. The
second image shows the re-projected version with fixed point sizes. The third image is
generated with adaptive point sizes and the right image depicts a correct rendering. [4]



Hybrid Rendering 3

References

1. Ashby, S. et al.:The opportunities and challenges of exascale computing. Summary
report of the advanced scientific computing advisory computing subcommittee, U.S
Department of Energy (2010)

2. Moreland, K.: A Survey of Visualization Pipelines. IEEE Transactions on Visual-
ization and Computer Graphics. vol. 19, 367–378 (2013)

3. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel
rendering. IEEE Comput. Graph. Appl. vol. 14, 23–32 (1994)

4. Wagner, C., Flatken, M., Chen, F., Gerndt, A., Hansen, C., Hagen, H.: Interactive
Hybrid Remote Rendering for Multi-pipe Powerwall Systems. In: VR/AR, pp. 155–
166. Shaker, Herzogenrath (2012)

5. Noguera, J. M., Segura, R. J., Ogyar, C. J., Joan-Arinyo, R.: Navigating large
terrains using commodity mobile devices. Computers and Geosciences. vol. 37, 1218–
1233 (2011)

6. Pajak, D., Herzog, R., Eisemann, E., Myszkowski, K., Seidel, H.: Scalable Remote
Rendering with Depth and Motion-flow Augmented Streaming. Computer Graphics
Forum. vol 30, 415–424 (2011)


