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ABSTRACT 

In the field of Geographic Information Science (GIScience), we have witnessed the 

unprecedented data deluge brought about by the rapid advancement of high-resolution 

data observing technologies. For example, with the advancement of Earth Observation 

(EO) technologies, a massive amount of EO data including remote sensing data and 

other sensor observation data about earthquake, climate, ocean, hydrology, volcano, 

glacier, etc., are being collected on a daily basis by a wide range of organizations. In 

addition to the observation data, human-generated data including microblogs, photos, 

consumption records, evaluations, unstructured webpages and other Volunteered 

Geographical Information (VGI) are incessantly generated and shared on the Internet.  

Meanwhile, the emerging cyberinfrastructure rapidly increases our capacity for handling 

such massive data with regard to data collection and management, data integration and 

interoperability, data transmission and visualization, high-performance computing, etc. 

Cyberinfrastructure (CI) consists of computing systems, data storage systems, advanced 

instruments and data repositories, visualization environments, and people, all linked 

together by software and high-performance networks to improve research productivity 

and enable breakthroughs that are not otherwise possible. 

The Geospatial CI (GCI, or CyberGIS), as the synthesis of CI and GIScience has inherent 

advantages in enabling computationally intensive spatial analysis and modeling (SAM) 

and collaborative geospatial problem solving and decision making.  

This dissertation is dedicated to addressing several critical issues and improving the 

performance of existing methodologies and systems in the field of CyberGIS. My 

dissertation will include three parts: The first part is focused on developing 

methodologies to help public researchers find appropriate open geo-spatial datasets 

from millions of records provided by thousands of organizations scattered around the 
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world efficiently and effectively. Machine learning and semantic search methods will be 

utilized in this research. The second part develops an interoperable and replicable 

geoprocessing service by synthesizing the high-performance computing (HPC) 

environment, the core spatial statistic/analysis algorithms from the widely adopted open 

source python package – Python Spatial Analysis Library (PySAL), and rich datasets 

acquired from the first research. The third part is dedicated to studying optimization 

strategies for feature data transmission and visualization. This study is intended for 

solving the performance issue in large feature data transmission through the Internet 

and visualization on the client (browser) side. 

Taken together, the three parts constitute an endeavor towards the methodological 

improvement and implementation practice of the data-driven, high-performance and 

intelligent CI to advance spatial sciences. 
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1 INTRODUCTION 

1.1  Background and Research Motivation 

Geographic Information Science (GIScience) and System (GISystem) have been booming 

in recent decades and achieved great development. On one hand, they have borrowed a 

lot of theories, concepts and approaches from many other disciplines, including 

Mathematics, Physics, Computer Science, Economics, Psychology etc. On the other hand, 

GIScience as a practical science continuously plays a critical role in numerous fields such 

as climate change, ecology, environmental sciences, public health and archaeology to 

help solve scientific problems and improve decision-making practices with significant 

societal impacts (Wang 2013). In the foreseeable future, such interaction between 

GIScience and other disciplines will be afoot. 

In the field of GIScience, we have witnessed the unprecedented data deluge resulting 

from the rapid advancement of high-resolution data observing technologies (Kitchin, 

2013; Li, Hodgson, & Li, 2018). For example, with the advancement of Earth 

Observation (EO) technologies, a massive amount of EO data including remote sensing 

data and other sensor observation data on earthquake, climate, ocean, hydrology, 

volcano, glacier, etc. are being collected on a daily basis by a wide range of organizations. 

Besides, human-generated data including microblogs, photos, consumption records, 

evaluations, unstructured web pages and many other Volunteered Geographical 

Information (VGI; Goodchild, 2007) are incessantly generated and shared on the 

Internet (Yang, Huang et al., 2017).  

Meanwhile, the emerging cyberinfrastructure rapidly increases our capacity for handling 

such massive data with regard to data collection, management, high-performance 

computing, data integration and interoperability, data transmission and visualization, 

etc. (Zhang and Tsou 2009; Yang et al. 2010; Wright and Wang 2011; Rey et al. 2015; Li, 
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Cao, and Church 2016a; Li, Wang, Bhatia 2016b; Li et al. 2016c; Song et al. 2016). 

Cyberinfrastructure consists of computing systems, data storage systems, advanced 

instruments and data repositories, visualization environments, and people, all linked 

together by software and high-performance networks to improve research productivity 

and enable breakthroughs that are not otherwise possible (Stewart et al, 2010, Wang et 

al, 2013). 

The Geospatial CyberInfrastructure (GCI, or CyberGIS), as the combination of 

Cyberinfrastructure and GIScience has inherent advantages in dealing with complicated 

tasks like enabling the analysis of big spatial data, computationally intensive spatial 

analysis and modeling (SAM), collaborative geospatial problem-solving and decision-

making, simultaneously conducted by a large number of users. According to Yang et al, 

(2010), the main functions of CyberGIS could include: 1) Multi-dimensional data 

processing, 2) Data collection and heterogeneous integration, 3) Data preservation and 

accessibility, 4) Supporting the life cycle from data to knowledge, 5) Virtual 

Organizations (VO), 6) Semantic Web and knowledge sharing, 7) High-performance 

computing (HPC) and associated spatial computing, 8) Location-based service, and 9) 

Cross-scale and domain management. Figure 1 demonstrates a generic framework of 

CyberGIS. From this figure, we can see how numerous components couple with each 

other and form the lifecycle of a CyberGIS system. 
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Figure 1 A generic framework for Geospatial CyberInfrastructure. (RST: rapid storage 
technology; SAM: spatial analysis models; LBS: location-based service) 

The advancement of technologies and economy makes it easier for scientists to assemble 

tremendous resources, workforce, funding, and equipment together to conquer complex 

and difficult research topics and projects through collaborative working mode. This is 

also true in the GIScience field. CyberGIS has the potential of providing significant 

contributions to such scenarios due to its capability of bridging all kinds of distributed 

resources and providing seamlessly integrated user interface to leverage the 

collaboration among different teams and disciplines. Such great potential and 

opportunities have attracted numbers of organizations, teams, and individuals to 

dedicate to the field of CyberGIS (Anselin & Rey, 2012; Huang et al., 2013; Li, Cao, & 



4 

 

Church, 2016; Wang, 2010; Wang et al., 2013; Yang, Huang, Li, Liu, & Hu, 2017; Yang, 

Raskin, Goodchild, & Gahegan, 2010; Yu, Yang, & Li, 2018). 

This dissertation introduces my systematic research works related to CyberGIS during 

my Ph.D. period. Three specific research topics are identified and studied: 1) open 

geospatial data discovery; 2) geospatial and spatial-temporal analysis service integration; 

3) high-performance spatial data transmission and visual analytics. 

Although massive geospatial data sets are collected and shared on the Internet, most of 

them are widely distributed on different data repositories hosted by various 

organizations. Not only the User Interface (UI) provided by those repositories are quite 

diverse, but also the data sets hosted on those repositories vary a lot in format, time 

representation, accuracy, coverage, attribute, projection etc. The 20/80 theorem also fits 

in this situation: compared to the time been spent on data analysis (20% of all), 

environmental scientists are spending much more time (80%) in finding appropriate 

data and organizing them (Li et al, 2010). Data integration is the basic ability of 

CyberGIS to build the bridge between data providers and end users (Horsburgh et al., 

2009). Facing such a situation of data deluge, the plight remains on how to help users 

conveniently and efficiently find appropriate datasets.  

Numbers of vibrant communities are working on introducing/integrating the most 

recent and advanced research algorithms/results into open source software and libraries, 

such as Python Spatial Analysis Library (PySAL) (Luc Anselin & Rey, 2014; Sergio J. Rey, 

2014; S. J. Rey & Anselin, 2007), GeoDa (L. Anselin, Syabri, & Kho, 2010), GDAL, 

GRASS GIS, GeoTools, GeoPython, spaceime (Pebesma, 2012), STARS (Sergio J. Rey & 

Janikas, 2006), spdep (Bivand et al., 2011) etc. These toolkits play a critical role in 

promoting the innovation in GIScience. Meanwhile, more and more big geospatial data 

sets and HPC resources are becoming available with the advancement of theory and 

technology. Coupling the spatial analytical functionalities with big data and HPC 
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resources could bring immediate benefits to multi-disciplines in helping solve complex 

spatial analysis tasks, supporting remote collaboration among participants from 

distributed groups, and assisting decision making (Shaowen Wang, 2013). However, 

most of the open source libraries and toolkits as aforementioned are initialized and 

designed mainly for the desktop working environment. Hence, how to bridge such 

advanced spatial analysis functionalities form open source libraries with HPC resources 

to provide researchers with interoperable and replicable geoprocessing APIs remains to 

be a great challenge. On the other hand, since GIScience has been widely applied in other 

research disciplines where empirical researchers do not necessarily have enough GIS 

background knowledge, the steep learning curve for the advanced algorithm and models 

will hinder their wide adoption. Therefore, during the implementation of a CyberGIS 

framework, challenges remains to be addressed on how to provide user-friendly graphic 

user interface (GUI) with abundant instruction and documentation in order to help users 

better understand and take advantage of such toolkits, then move a step further to foster 

the collaboration across the Internet. 

In the CyberGIS enabled web services, the ability of rapidly transmitting and sharing 

spatial data over the Internet is critical to meet the demands of real-time change 

detection, response and decision making. Many data sets are recorded in the form of 

vector with attributes (point, line, polygon), such as census tract, hydrology dataset, road 

network, sensor observation data. In many real-world data-driven applications, original 

vector datasets are essential for developing flexible, expressive and interactive data 

visualization and analysis functionalities to help users better understand the context of 

events and make decisions (Zhang and Li 2005; Stollberg and Zipf 2012). For example, 

in the scenario of disaster management, i.e. earthquake or flood, researchers need to 

retrieve multiple datasets including Digital Elevation Model (DEM), road networks, 

hydrology flow, population distribution, real-time observation data, etc. from distributed 
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Spatial Data Infrastructures (SDIs) and then conduct analysis immediately for 

developing evacuation and rescue plans. However, the vector dataset could be very large. 

The large data volume will slow down each data processing step including data encoding, 

transmitting, analyzing and visualizing, which could result in a failure to meet the time-

critical requirements in real word practices. Hence, developing an optimized 

processing/transmission module to handle spatial data with massive volume within the 

framework of CyberGIS could be of great importance to the GIScience field.   

1.2  Significance and Contributions 

This dissertation is comprised of three potentially publishable papers, each focusing on 

solving aforementioned specific issues related to CyberGIS. 

The building blocks of the first research are thousands of data repositories harvested 

from the Internet, which result from the pioneer studies of Li et al (Li, 2017; Li, Wang, & 

Bhatia, 2016; Li, Yang, & Yang, 2010). Based on the previous work, more than 70K 

datasets distributed in ninety-five countries have been found, which host more than 

millions of data layers mainly published through Open Geospatial Consortium’s (OGC) 

Web Map Service (WMS; de La Beaujardiere 2006) and Web Feature Service (WFS; 

Vretanos 2004). Each of the datasets has corresponding metadata which describes its 

content, topic, provider and other aspects of attributes. This chapter introduces my work 

on developing a synthetic system that exploits the state-of-art semantic search 

technologies and supplementary approaches for accomplishing the open access 

geospatial datasets discovery tasks. To be more specific, 1) a metadata enrichment 

method is introduced to retrieve more information about the datasets from their original 

website, 2) the phrase embedding method of natural language processing is adopted to 

automatically catch the semantic relationship among words and phrases, 3) a working 
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cyberinfrastructure portal that implements the methodologies is established for 

providing data search functionalities to public users.  

The second research is dedicated to developing an interoperable and replicable 

cyberinfrastructure for online spatial-statistical-visual analytics. More specifically, I 

focus on the widely used open source python library - Python Spatial Analysis Library 

(PySAL), the functions/classes of which are published as geoprocessing services - 

WebPySAL. Meanwhile, a friendly GUI is implemented in a CyberGIS portal named 

Geospatial CyberInfrastructure (GeoCI). The client side is capable of integrating any 

open geospatial data shared based on OGC’s WFS/WMS standards, and invoking the 

geoprocessing services from WebPySAL for on-the-fly spatial analysis, which endows 

great flexibility to users. During the system design and implementation, four challenges 

list below are addressed: 

● Interoperability between components and services: the deployed toolsets 

should be compatible with the mainstream software and other services, and 

meanwhile could be easily exploited by users under the network environment. 

● Provenance and metadata for spatial analytical workflows: this could be 

one of the most critical factors under the “collaboration” working mode, referring 

to all the information ranging from how the spatial data is produced, to how the 

geoprocessing steps are chained and conducted, and to how to obtain the results - 

the key for quality control and reproduction of geospatial analysis (Luc Anselin & 

Rey, 2012).  

● Granularity of the functionalities to be exposed as Application 

Programming Interfaces (APIs): many open source libraries are designed 

for the “single-user” working mode, in which the functionalities of each method 

and class are usually designed to be atomic, facilitating users to combine various 

methods for the exploratory analysis in a flexible manner. However, when 
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deploying the functions on the server side, the communication cost between the 

client side and the server side needs to be taken account of. The most intuitive 

way to reduce the communication cost is to combine the atomic APIs into non-

atomic ones which accomplish a sophisticated operation by accepting several 

parameter inputs from users at one shot (e.g. the inference about Local 

Indicators of Spatial Association (LISAs) (Luc Anselin, 1995)). 

● Documentations and supporting materials: many open source projects 

serve as a pioneer in implementing and introducing newly developed 

methodologies of spatial analysis. When deploying these methodologies, how to 

provide adequate documentation and materials to educate users to appropriately 

use the APIs, should be carefully considered as well. 

In the third chapter, I introduce the design and implementation of a comprehensive 

optimizing strategy for high-efficiency vector data sharing through OGC’s WFS 

standards. In general, a WFS processing involves the following workflow: when a web 

server receives a WFS request, it will first parse the request. Then, according to the 

parameters provided by the client, the WFS server accesses the required data source and 

conducts data processing. For example, a spatial filter operation will be applied to the 

raw data to derive a subset within the desired bounding box. After these processing steps, 

resultant features will be encoded into specific output format before being sent back to 

the client side. When the client side receives the response stream, it will decode the 

stream, parse the result, and convert it into a feature collection which could be used for 

visualization, statistics, and analysis. The strategy for improving WFS data transmission 

consists of 1. Combination of pre-generalization and real-time generalization for multiple 

layers; 2. Separated data transmission processes of features’ geometries and attributes; 3. 

Dynamic adoption of data compression/ decompression methods according to the 
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network status. Significant improvements will be achieved by applying this optimization 

strategy to conventional WFS approaches.  

 

Figure 2 Generic dissertation research framework 

Taken together, the three chapters constitute an endeavor towards methodological 

improvements and implementing practice for the data-driven, high-performance and 

intelligent CyberInfrastructure to advance spatial sciences. A synthetical and solid 

working CyberInfrastructure platform named GeoCI will be established as the 

deliverable outcome, which integrates basic GIS functionalities such as data 
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management, manipulation, and visualization, as well as all the advanced functionalities 

achieved in these research works. The relationship of these components and how they 

interact with each other are illustrated in Figure 2. Hopefully bridging these components 

together in GeoCI platform could gain the consequence of “1+1>2” in helping public 

researchers and users efficiently and conveniently discover open geospatial data, 

conducting exploratory spatial data analysis, and fostering collaboration across different 

disciplines.  

1.3  Organization of the dissertation 

The rest of the dissertation is comprised of four chapters. Chapter 2 presents the paper 

focusing on developing the methodologies to build a synthetic system that enables 

semantic search for open geospatial datasets. Chapter 3 is the paper on developing an 

interoperable and replicable cyberinfrastructure for online spatial-statistical and visual-

analytics. Chapter 4 presents the paper on designing and implementing a comprehensive 

optimization strategy for real-time spatial feature sharing and visual analytics under the 

cyberinfrastructure environment. Chapter 5 introduces the architecture of the 

comprehensive CyberGIS system GeoCI, as well as how those individual components are 

integrated into the system and enhance each other in help users solving complex spatial 

analysis problems.  Chapter 6 concludes with the main findings, limitations and 

potential research directions in future. 
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2 A SYNTHETIC SYSTEM THAT ENABLES SEMANTIC 

SEARCH FOR OPEN GEOSPATIAL DATASETS 

2.1 Introduction 

With the advancement of Earth Observation (EO) technologies, a massive amount of EO 

data covering the spectrum from remote sensing data to other sensor observation data 

about earthquake, climate, ocean, hydrology, volcano, glacier etc., are being collected 

and shared through the Internet on a daily basis by a wide range of organizations. These 

data play a critical role in the GIScience field in helping scholars gain comprehensive 

insights into the natural and social phenomena. 

However, these rapidly expanding data sources and subsequent processing results are 

mainly disconnected from each other due to the fact that the organizations which gather 

and process them are physically distributed around the world (Li et al., 2011). This 

introduces a great gap between the distributed data sources and users, brings 

inconvenience to users for searching, retrieving, and mining the massive datasets 

efficiently before interesting and significant research questions can be raised and 

answered (Ye, Li & Huang, 2018). 

For the distributed geospatial data sources, there are basically two different approaches 

for archiving, managing and providing them to end users. The first one is to build and 

maintain a synthetical gateway that aggregates as many available data as possible (Li, 

Goodchild and Raskin, 2012). A number of well-known organizations and agencies are 

dedicated to gathering and providing high-quality geospatial datasets to public users and 

professional researchers, including Global Earth Observation System of Systems (GEOSS; 

Christian, 2005), the INSPIRE geoportal of Europe (Bernard et al., 2005), National 

Snow & Ice Data Center (NSIDC), the Geospatial Platform of U.S. Federal Geospatial 
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Data Committee, National Oceanic and Atmospheric Administration (NOAA), the Oak 

Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) etc. This 

approach requires tremendous resources of time, labor, and funding as the long-term 

input, which might be feasible only with the support from government. Besides, the 

agreement and collaboration among participants are indispensable. However, the 

benefits are also obvious - the quality and quantity of datasets, as well as standards used 

for data maintenance and publishment could all be guaranteed. The second one is to 

develop active web crawler (like Google) to gather datasets provided by various 

repositories that exist on the Web and provide them through a uniformly designed 

portal/UI (Li, Yanga and Yang, 2010; Lopez-Pellicer et al., 2011; Patil, Bhattacharjee and 

Ghosh, 2014; Li, 2017). Li et al. (2017) developed a large-scale web crawling architecture 

called PolarHub to discover distributed geospatial data and service resources. PolarHub 

is built upon a service-oriented architecture (SOA) and adopts Data Access Object 

(DAO)-based software design to ensure the extendibility of the software system. 

According to the authors, metadata of 40,000 OGC services with 1.5million unique data 

layers are collected and hosted on their system. The second approach requires 

sophisticated methods and algorithms to be developed for data crawling and metadata 

fusion, harmonize and management, and the data quality and consistency are very hard 

to control. But this approach saves users’ time on browsing and searching data across the 

Internet, improving the accessibility of geospatial data. 

Once the huge amount of data is gathered, the following critical task is to provide 

efficient and friendly search functionalities to help users quickly locate the datasets they 

desire from hundreds of thousands of records. Both the quality of metadata and the 

capabilities of searching functionalities could affect the performance of such data 

searching task (Hu, K. Janowicz, Prasad, Gao, et al., 2015). The metadata is used to 

describe various aspects of each geospatial dataset, such as its topic, content, extent, 
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precision, provider, when and how the data is produced, etc. Detailed and accurate 

metadata is essential for building an effective and efficient data discovery portal. On the 

other hand, the choice of a data search algorithm and method also matters a lot. The 

conventional way of data search is based on the full-text keyword-matching technique: 

only the datasets whose metadata contains identical keywords provided by users will be 

selected as preliminary candidates, while other datasets which are actually relevant but 

are described with different keywords will be excluded. The information retrieval 

community has dedicated a lot of efforts to adopting machine learning and semantic 

search methods to build the linkages among different keywords and metadata records in 

order to improve the precision and recall rate of the search results. The methodologies 

include LSA, LDA et al. 

In this chapter I propose to introduce the phrase embedding method for automatically 

capturing the semantic relationship among various words and phrases in a large number 

of datasets. The phrase embedding method is based on the recent emerging Word2Vec 

model for natural language processing (NLP). Word2Vec represents words as vectors in 

the vector space, while phrases can be represented as the composition of word vectors 

using compositional models in phrase embedding methods. Then the semantic similarity 

between words and phrases can be measured. 

This chapter develops a synthetic system that enables the state-of-art semantic search 

technologies with the metadata enrichment approach for accomplishing the open access 

geospatial datasets discovery task. To be more specific, 1) a metadata enrichment 

strategy is introduced to retrieve more information about the datasets form their original 

website, 2) the phrase embedding method is adopted to automatically catch the semantic 

relationship among words and phrases, and 3) a cyberinfrastructure portal that 

implements the methodology is established and providing data search functionalities for 

public users. The rest of this chapter is organized as follows. Section 2.2 introduces 
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related research in this field, and background knowledge in the information retrieval 

field. Section 2.3 introduces the phrase embedding methodology. Section 2.4 introduces 

experiments and the architecture of the cyberinfrastructure system that integrates the 

data discovery engine. We conclude our work with future directions in Section 2.5. 

2.2 Related work 

In the scenario of spatial data query on a CyberGIS gateway, when the user inputs the 

query keyword, the most straightforward way for searching the related spatial data 

records is to check the database using the full-text keyword-matching technique which 

finds those datasets whose metadata includes the identical keyword. Such technique has 

been implemented in the search library such as Apache Lucene and Elastic search, and 

has been widely adopted in many of the existing geospatial catalogs and portals 

(McCandless, Hatcher and Gospodnetic, 2010). Its main disadvantage is that during the 

searching process, the datasets related to the keyword but depicted with synonyms will 

be excluded from the result candidates. For example, if the searching keyword is “sea”, 

datasets whose description contains keyword “ocean” or “offshore” may be excluded (Li, 

Goodchild and Raskin, 2014).  

Two factors can be used to measure the performance of a data query system: precision 

and recall, which are illustrated in Figure 3. Suppose the blue circle (𝐴 ∪ 𝐶) represents 

the set of true records in the database that are related with the searching keyword. The 

green circle (𝐵 ∪ 𝐶) represents the discovered set of records by using a specific searching 

mechanism. In a perfect world these two circles should overlap. Precision rate refers to 

the percent of records in returned datasets are current, which can be calculated as 

𝐶/(𝐵 ∪ 𝐶), while recall rate means how much percent of the “true” set of records is 

covered in the returned datasets. Recall rate can be calculated as 𝐶/(𝐴 ∪ 𝐵). Obviously 
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the results acquired by using full-text keyword-matching technique will have relatively 

low recall rate. 

 

Figure 3 Illustration of the recall and precision 

Semantic similarity is widely accepted as a promising solution for improving the 

precision and recall rates of data discovery tasks. Similarity measures have long been 

studied in the fields of information retrieval, artificial intelligence etc. Recently, these 

measures have been extended and reused to measure similarity (Janowicz, Raubal and 

Kuhn, 2011). When metadata participates in the semantic search, the most useful part is 

the descriptive text fields, such as title, abstract and keywords. The semantic similarity 

measure could be based on terms/words which comprise the metadata and have a finer 

granularity to measure the similarity of concepts. It can also be based on a higher level 

that treats each individual dataset as an integrated entity and directly measure the 

similarity among them. 

On the terms/words level, domain ontologies can be incorporated to identify 

associations between concepts (such as polysemes and synonyms) related to users’ query, 

based on which a list of related search terms could be recommended to help refine the 

search. Relevant work includes WordNet (Miller, 1995), Semantic Web for Earth and 

Environmental Terminology (SWEET) (Raskin and Pan, 2005), Geosciences Network 

(GEON) (Bowers, Lin and Ludascher, 2004), Linked Environments for Atmospheric 

Discovery (LEAD) (Droegemeier et al., 2005), Noesis (Movva et al., 2008), GeoSPARQL 
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(Battle and Kolas, 2012), GeoLink (Krisnadhi et al., 2015) etc. Ontology knowledgebases 

usually possess the advantages of high quality, meaningful hierarchical structure and 

precise relations among ontologies since they are mainly developed under experts’ 

supervision. However, ontology knowledgebases suffer from a limited coverage (Banea et 

al., 2014). Some researchers also point out that this relies heavily on humans’ manual 

input and definition, which will bring another issue that people with different knowledge 

background tend to have different perspectives on the categorization of terms as well as 

their linkages and relations. This would lead to heterogeneous representations and 

conflicting statements, and eventually influence the effectiveness of a search engine (Li, 

Wang & Bhatia, 2016). 

In addition to building an ontology knowledgebase, many researchers focus on 

automatically extracting semantic relationships between spatial datasets using machine 

learning approaches. Li, Raskin and Goodchild (2012) adopted an artificial neural 

network algorithm called Multiple Layer Feed-Forward Neural Network (MLFFN) to 

help measure the similarity between datasets. Hu, Ã. K. Janowicz, et al. (2015) employed 

the machine learning method, namely Labeled Latent Dirichlet Allocation (LLDA, a 

supervised version of LDA, Blei et al., 2003) to extract the topics of each dataset and the 

similarity between them. Jiang et al. (2017) introduced a large volume of user search 

histories from the PO.DAAC website as the supplementary materials for semantic 

processing. Similar work can also be found in a number of research (GuoDong, LongHua 

and QiaoMing, 2009; Gollapalli, Li and Wood, 2013; Liu et al., 2014; Li, Wang and 

Bhatia, 2016).  

The emergence of word embedding technologies in recent years have drawn much 

attention from researchers. The word embedding models treat words as vectors and train 

the vectors upon <word, context> pairs in the local window. The basic hypothesis is that 

words with similar meanings will be embedded into a similar context. Among various 
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word embedding models, the Word2vect model (Mikolov, Chen, et al., 2013; Mikolov, 

Sutskever, et al., 2013) has been enjoying wide application due to its effectiveness of 

automatically capturing semantic meanings of words more precisely than other models, 

as well as its efficiency of processing extremely large datasets. Besides word2vec, other 

word embedding models such as GloVe (Pennington, Socher and Manning, 2014) and 

fastText (Bojanowski et al., 2016) have been widely adopted as well. In addition to the 

word embedding models, phrase embedding, sentence embedding, paragraph 

embedding, and document embedding models have been developed recently to measure 

the semantic relationship among different hierarchical level corpus for different 

application scenarios (Cho et al., 2014; Zhang et al., 2014; Wieting, Bansal, Gimpel and 

Livescu, 2015; Gan et al., 2016; Melamud, Goldberger and Dagan, 2016; Conneau et al., 

2017; Zhou, Huang and Ji, 2017; Dwivedi, 2017; Jansen, 2017; Sato et al., 2017; Wang, 

Zhang and Zong, 2017; Young et al., 2017). In this chapter, I adopt a phrase embedding 

method to help measure phrase/word similarities in our research datasets. The details of 

the method will be discussed in the next section. 

2.3 Methodology 

2.3.1 Geospatial Metadata 

The building blocks of this research are thousands of data repositories harvested from 

the Internet, which result from the pioneer studies of Li et al (Li, 2017; Li, Wang, & 

Bhatia, 2016; Li, Yang, & Yang, 2010). Based on the previous work, more than 70K 

geospatial data providing services distributed in ninety-five countries have been found, 

hosting more than millions of data layers mainly published through Open Geospatial 

Consortium’s (OGC) Web Map Service (WMS; de La Beaujardiere 2006) and Web 

Feature Service (WFS; Vretanos 2004). WMS is the standard protocol for serving 

georeferenced map images through the Internet while WFS is the standard protocol for 
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serving geographical features (vector) data (Shao and Li, 2018). Both the WMS and WFS 

standards support the “get-capabilities” operation, which provides the “get-capabilities” 

XML file describing series of both human- and machine-readable information about the 

service, including 1) information about the data providing service itself (Service 

Identification), 2) metadata about the organization providing the service (Service 

Provider), 3) metadata of the supported operations (Operation Metadata), and 4) a 

metadata list describing all the data layers hosted on the service, etc.  

Table 1 demonstrates an example of the “get-capabilities” XML file extracted from a WFS 

data layer’s metadata section. In this metadata section, properties of the layer, such as 

name (as id), title, abstract, keywords, and bounding box are provided. Such information 

plays a critical role in helping users get the perception of the layer’s content and 

characteristics. It is also essential for data retrieval in later steps. 

Table 1 Example of a WFS Layer get-capability content 

<FeatureType xmlns:epi="http://sedac.ciesin.columbia.edu/data/collection/epi">    
  <Name>epi:epi-environmental-performance-index-2010_water-effects-on-ecosystems</Name>  
  <Title>EPI 2010: Water Effects on Ecosystems</Title>  
  <Abstract> Environmental Performance Index, 2010 Release (1994-2009): Water Effects on 
Ecosystems displays the indicators within the water effects on ecosystems policy category of EPI. 
See more information at http://dx.doi.org/10.7927/H4D21VHT. </Abstract>  
  <ows:Keywords>  
    <ows:Keyword>agriculture</ows:Keyword>  
    <ows:Keyword>climate</ows:Keyword>  
    <ows:Keyword>conservation</ows:Keyword>  
    <ows:Keyword>governance</ows:Keyword>  
    <ows:Keyword>health</ows:Keyword>  
    <ows:Keyword>marine-and-coastal</ows:Keyword>  
    <ows:Keyword>sustainability</ows:Keyword>  
    <ows:Keyword>water</ows:Keyword>  
    <ows:Keyword>epi-environmental-performance-index-2010</ows:Keyword>  
    <ows:Keyword> epi-environmental-performance-index-2010_water-effects-on-ecosystems  
    </ows:Keyword>  
  </ows:Keywords>  
  <DefaultSRS>urn:x-ogc:def:crs:EPSG:4326</DefaultSRS>  
  <ows:WGS84BoundingBox>  
    <ows:LowerCorner>-180.0 -55.792</ows:LowerCorner>  
    <ows:UpperCorner>180.0 83.667</ows:UpperCorner>  
  </ows:WGS84BoundingBox>  
  <MetadataURL type="FGDC" format="text/plain"> http://sedac.ciesin.columbia.edu/data/set/epi-
environmental-performance-index-2010/metadata </MetadataURL>  
</FeatureType>  
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2.3.2 Metadata Enrichment 

Metadata is the primary material for building the data search system. Hence its quality 

heavily affects the performance of the searching result (Hu, K. Janowicz, Prasad and Gao, 

2015). The spatial datasets used in this research are collected from a large number of 

data providing services scattered around the world. Thus, the metadata quality varies. 

OGC’s geospatial data sharing standards do not regulate quality of the metadata. 

Attributes of metadata such as title, abstract, and keywords provide descriptive 

information of the data content, which can be used for data search. Unfortunately, such 

attributes are incomplete, or even missing in a certain proportion of the datasets. 

As shown in  Table 1, the metadata includes a <MetadataURL> section whose content is 

a URL link pointing to some external metadata resource, which usually contains much 

more detailed information about the data layer. The external metadata is expected to 

follow some specific standards, such as Digital Geospatial Metadata (CSDGM) from the 

Federal Geographic Data Committee (FGDC), ISO TC211 19115, or ISO TC211 19139 

(Vretanos, 2004; de La Beaujardiere, 2006), making them relatively easy to be parsed. 

Such external metadata provides a possible solution for improving the situation of a lack 

of appropriate metadata in some data layers: on one hand, the information extracted can 

be harmonized into the layer’s original metadata to improve the metadata’s quality; on 

the other hand, the description document can be used for training the phrase 

representation model in the next step. 

According to our experience, the organizations who provide geospatial datasets usually 

host corresponding web portals as well. Rich context information about the geospatial 

dataset can be found in the web portals, such the description about their ongoing project, 

their study area, data acquisition methods, working background etc. Although such 

information cannot be directly used to enrich the metadata, they can still be used for 

training the phrase representation model in the next step.   
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2.3.3 Measuring semantic relationships in the metadata 

The recently developed word embedding technology – Word2Vec – will be adopted for 

learning the word representation. The word embedding is the generous name for those 

language modeling and feature learning techniques which project words into a vector 

space (Bartusiak et al., 2017). Word2vec is based on probabilistic prediction approach, 

which trains the word vectors based on their contextual neighbors inside a specific 

window size (usually around 5). The basic assumption is that semantically related words 

are more frequently co-occurring in the training corpus, and similar words have similar 

contexts. After the training by Word2Vec, a word is represented by a vector and its 

context property is preserved in the vector space. That is to say, for those words which 

co-occur more frequently in the corpus, their representing vectors will also have shorter 

distances in the vector space. Therefore, given a specific word, it will be very easy to find 

its semantically related words by looking for its close vectors in the vector space.   

The Word2Vec contains two core architectures for learning distributed representations 

of words, namely Skip-gram and CBOW (the continuous bag-of-words model). These two 

models are similar in the algorithm, while Skip-gram targets to find word 

representations which are useful for predicting the surrounding words in the context, 

CBOW does it in a reversed fashion, which tries to predict the current word based on its 

context. The performance of these two models varies across corpus (Liu and Gao, 2017). 

The Skip-gram model is adopted here. The training objective is to maximize the log 

probability: 

1

𝑇
∑ ∑ log𝑝(𝑤𝑡+𝑗|𝑤𝑡)

−𝑐≤𝑗≤𝑐

𝑇

𝑡=1
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where 𝑐 is the size of context window (which is set as 9 in our practice), training words 

are represented as 𝑤1, 𝑤2, … , 𝑤𝑇 . In the Skip-gram model, the original probability 

function 𝑝 is a softmax function: 

𝑝(𝑤𝑂|𝑤𝐼) =
exp(𝑣𝑤𝑂

′ 𝑇
𝑣𝑤𝐼)

∑ exp(𝑣𝑤
′ 𝑇𝑣𝑤𝐼)

𝑊
𝑤=1

 

where 𝑣𝑤 and 𝑣𝑤
′  are the input and output vector representations of the word 𝑤, and 𝑊 is 

the total number of words in the corpus. The computation cost of the full softmax 

function is very expensive, Mikolov et al. adopted a hierarchical softmax as the 

approximation in Skip-gram which significantly improved its efficiency. Besides, 

Word2Vec can also well preserve the linear regularities among words compare with 

other models such as LSI or LDA (Mikolov, Chen, et al., 2013), making it possible to 

apply binary operations on word vectors to extend the model. 

In many NLP scenarios, it is more reasonable to treat both words and phrases as the 

basic composite units of sentences, paragraphs and documents. For example, ‘New York’, 

‘green house’ and ‘point of interest’ are more semantically integrated as phrases than 

separate words. For the spatial data discovery task, it is also more meaningful and 

common for users to provide phrases instead of single words during data search, such as 

‘wild fire’, ‘sea surface temperature’, and ‘US annual economic data’. Therefore, it should 

be more appropriate to learn both words and phrases representations and use such 

information to assist data discovery.  

There exist two popular strategies for learning phrase representations. The first one 

treats phrase as an indivisible term (pseudo-word) and learns phrase embedding based 

on its external context similar to the word embedding methods. The second one 

acknowledges the meaning of words which comprise the phrase, and uses compositional 

methods to learn phrase representations. While the first method is suitable for learning 

short phrases (e.g. bi-word phrase) with a very large corpus (Mikolov, Sutskever, et al., 
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2013; Peng and Gildea, 2016), it cannot take advantage of the information embedded in 

the words which comprise the phrase. Besides, it suffers from data sparseness for those 

multi-words phrases which rarely appear in the corpus (M. Li et al., 2018). Hence, more 

efforts have been dedicated to developing the compositional models to jointly learn word 

and phrase representations in recent years (Anoop and Asharaf; Socher, Manning and 

Ng, 2010; Zhang et al., 2014; Yin and Schuetze, 2014; Zhao, Liu and Sun, 2015; Lebret 

and Collobert, 2015; Yin and Schütze, 2016; Hashimoto and Tsuruoka, 2016; Zhou, 

Huang and Ji, 2017; Dwivedi, 2017; Sato et al., 2017; B. Li et al., 2018). Simple 

operations on word vectors such as add (additive model) and point-wise multiplication 

(multi model) could be very efficient and produce well-performed phrase representations 

to fulfill general NLP tasks (Mitchell and Lapata, 2010; Blacoe and Lapata, 2012; Lebret 

and Collobert, 2015; Wieting, Bansal, Gimpel, Livescu, et al., 2015; Wang and Zong, 

2017). While more complicated methods for learning phrase representations, such as 

Matrix, RNN (recurrent neural network), and LSTM (Long short-term memory) are 

proposed to improve the accuracy (Socher, Manning and Ng, 2010; Cho et al., 2014; Yu 

and Dredze, 2015; Zhao, Liu and Sun, 2015; Hashimoto and Tsuruoka, 2016; Dwivedi, 

2017; B. Li et al., 2018; M. Li et al., 2018), they usually need to be fed with high-quality 

training data, such as positively related phrase pairs, and carefully tuned in order to 

achieve high accuracy. What’s more, the training time is significantly longer than the 

additive model and multi model. Other factors such as the profile of training data, how 

the word representation is pre-trained, and how the objective function is selected could 

all affect the performance (Wang and Zong, 2017). 

In this chapter, the additive model is adopted for automatically calculating the phrase 

representations in the same vector space as words. Then, the word and phrase 

representations will be used in two places: 1) when a user types a keyword, the relevant 

phrases and words will be quickly extracted and provided to the user for selection, 
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encouraging the user to provide more specific and unambiguous query criteria to help 

improve the query performance; 2) given a query word or phrase, the related 

words/phrases will be found by calculating the cosine similarity among their 

representing vectors, followed by the full-text matching with these words/phrases in the 

database to find the appropriate datasets. This step will significantly improve the recall 

rate of searching results.   

2.4 Experiments and Results 

2.4.1 Experimental Dataset Profile 

A subset of data services is separated from the massive database for the experiments. 

The criteria for selecting the samples include: 1) The language used by the service should 

be English, 2) Each data service contains no less than 200 spatial data layers. For all the 

services that meet the criteria, 303 of them are randomly selected for experiments, which 

contains 163,285 data layers. 

Figure 4 demonstrates the summary statistics about the experimental datasets. From 

Figure 4.a we can see most of the services contain less than 1000 data layers. As shown 

in Figure 4.b, even after excluding layers whose abstracts contain less than 8 words, we 

can observe a large proportion of layers with short abstracts, an indicating of poor 

quality. 
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Figure 4 Static profile of experimental datasets 

Table 2. demonstrates the summary statistics concerning missing attributes of our 

experimental layers. We can observe that there is a large proportion which have 

incomplete keywords and abstracts. 

Table 2 Statistic of missing attributes in experimental layers 

Attributes Number of missing layers (in percentage) 

Title 193 (0.12%) 

Keywords 51600 (31.6%) 

Abstract 105601 (64.7%) 

 

2.4.2 Metadata Enrichment 

After parsing the metadata, I detected 13199 external metadata URLs from 9162 layers, 

accounting for 5.6% of the experimental datasets. Figure 5 illustrates how different 

metadata standards are supported by the metadata of geospatial data layers. From the 

graph, we can see ISO TC211 19115 is the most popular standard. After the metadata 

records are crawled, they will be used for enriching original metadata of each layer and 

training the phrase representation model. 
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Figure 5 Supported external metadata standards by experimental data layers 

For the experimental services, if their organizations also host website portals, the 

documents in the websites can potentially provide rich context information about the 

spatial dataset. After manual check, I located 74 websites which are directly related with 

the experimental datasets. Then I employed Apache Nutch1 to crawl the websites and 

retrieve the documents. Finally, 146,482 web pages were acquired, from which 119MB 

text-based documents are extracted. These documents will be used for the phrase 

representation model training. 

2.4.3 Word and Phrase Representation Training  

Word representations are calculated using Word2Vec in the first step. The corpus for 

model training consists of 1) titles, abstracts, and keywords extracted from all 

experimental layers’ metadata and 2) webpage documents crawled from the portals of 

data providers. The Word2Vec model in Gensim2 library is employed for training the 

word representations. Basic text preprocessing steps are conducted before the training, 

include removing stop words and lowercasing all words. Configurations for the training 

process include 1) training algorithm: Skip-gram, 2) window size: 9, 3) minimum count 

of vocabulary: 2, 4) word vectors dimension: 100. 

                                                 

1 http://nutch.apache.org/ 

2 https://radimrehurek.com/gensim/ 

http://nutch.apache.org/
https://radimrehurek.com/gensim/
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In the second step, I first extracted all the phrases from the corpus. The part of speech 

(POS) annotation methods in Stanford CoreNLP library (Manning et al., 2014) was 

employed. Figure 6 demonstrates the statistical information of extracted phrases. Figure 

6.a shows the distribution of each phrase’s appearances in the corpus. A lot of phrases 

appear rarely here since the size of the corpus is not very large. Hence, it will be not 

suitable to use the pseudo-word strategy for phrase representation calculation.  Figure 

6.b shows the distribution of phrase length, we can find that the majority of the phrases 

are relatively short (containing less than 5 words). 

 

Figure 6 Statistical information of extracted phrases 

After the phrases are extracted, the representing vector of each phrase can be calculated 

by averaging its component word vectors: 

𝑉𝑝 =
∑ 𝑉𝑤𝑖
𝑛
𝑖=1

𝑛
 

where 𝑉𝑝 is the vector of phrase 𝑝, which contains a word sequence of 𝑤1, 𝑤2, … , 𝑤𝑛. For 

word  𝑤𝑖 , its representing vector is represented as 𝑉𝑤𝑖 . The calculated phrase 

representations and the previous word representations belong to the same vector space. 

Similarity of any pair of word or phrase can be calculated by using their cosine similarity: 

𝑠𝑖𝑚(𝑋, 𝑌) =  
∑ 𝑋𝑖𝑌𝑖
𝑑
𝑖=1

√∑ 𝑋𝑖
2𝑑

𝑖=1 √∑ 𝑌𝑖
2𝑑

𝑖=1
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where 𝑋 and 𝑌 are the vectors of a pair of units (word or phrase) with dimension 𝑑 (𝑑 =

100 in our experiment). 𝑋𝑖 and 𝑌𝑖 are the components of vector 𝑋 and 𝑌 respectively. 

I trained the LSI model, Word2Vec model for single word and pseudo-word model on 

the corpus and compared them with the additive word and phrase representation model. 

The comparison results are presented in Table 3: for some query term examples, the top 

20 most similar terms in each model are listed. For the LSI model, since similarity 

measurement can only apply to single words, no result will be returned for phrases. The 

results in Table 3 indicate: 1) The pseudo-word model performs poor for the similarity 

measure task, 2) For single word similarity measurement, the Word2Vec model 

performs better than LSI, 3) Comparing the Word2Vec model with the additive model, 

for single words, the former performs better in some cases (‘coastline’, ‘rice’, ‘road’) and 

worse in others (‘train’, ‘marine’, ‘forest’, ‘earthquake’, ‘rain’), while for the multi-word 

phrases, the latter performs much better than any other models. 

Table 3 Comparison of top 20 most similar terms returned with different models 

Query 

term 

LSI Word2Vec Pseudo-word model Additive model 

train lines, transmission, 

features, point, 
buffers, electric, 

data, boundary, 

article, chesapeake, 
anonymised, 

stations, tline, uae, 

ais, quality, admin, 
spatial, bay, 

railroads 

stops, ride, bus, tube, 

railway, commuter, 
trains, tram, rails, 

centreline, passenger, 

buses, passengers, routes, 
ptv, wettbewerb, wagons, 

electric, riders, carpark 

lightrail, quartermile, 

junctions, junction, prek, 
parent, permissions, 

crossings, wildfire, housed, 

tubes, grades, ridgeline, 
srilanka, sfpd, landfills, 

spdes, kgra, paths, trains 

a train or tram, train and road, a railway 

centreline, stops, ride, train stations, bus, 
rail station pnt, tube, railway, major bike 

facilities, commuter, a gazetted railway, 

trains, trains or trams, the bus lines, tram, 
rails, station point locations, centreline 

marine marine, legacy, 
areas, zones, line, 

habitat, 

conservation, 
points, licences, 

distribution, 

consents, point, 
licenses, hawaii, 

applications, data, 

algae, polygon, 
species, ocean 

doñana, psac, mussel, 
detecting, hab, breeding, 

whale, birds, mss, 

habour, frithjof, 
reintroduction, stock, 

sjølve, harbours, argo, 

fjords, undercover, 
sightings, namibian 

ecological, major threats, 
restore, environment, 

wildlife, reserves, 

applications, managed, 
reserve, nature, 

communities, sometimes, 

community, importance, 
vulnerable, scotland, 

generations, enhancement, 

programme, trophic 

discontinued marine, marine beacons, this 
marine refuge, marine obstruction, capad 

2012 marine, marine turtles, marine polys, 

the marine portions, the marine ecoregions, 
marine faunal distributions, the marine 

portion, the marine animals, marine 

mammal, marine mammals, marine 
biogeographic patterns, benthic marine, the 

marine reserves, marine components, 

marine plants, marine biology 

coastline ne, data, admin, 

natural, earth, 
features, new, 

zealand, 

boundaries, nz, 
linz, areas, 

provided, 

graticules, abstract, 

coastlines, portions, 

margins, estuaries, 
navigable, cliffs, lakes, 

ridges, depicting, 

extends, shelves, 
surrounding, segments, 

submerged, lines, 

continent, lagoons, 

regions, all, geodatabase, 

graves, reflects, located, 
various, damaged, simply, 

nwhi, were, specified, one, 

intended, represents, under, 
imcra, aggressors, 

inhabited, possibly 

the victorian coastline, shoreline and 

coastline, indonesia coastline, the coastline 
definition, coastlines, 10m minor islands 

coastline, portions, the coastline 

component, island polygons, osm 
coastlines, submerged portions, provinces 

lakes, ponds lakes and dam boundaries, a 

man made coastline, gbrmpa reefs gbr 
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govt, http, marine, 

information, land 

shoreline, beaches, 

continents 

features coast, glacial lake boundary, 

coastal lines, 0 boundary lines, boundary 

lines, the boundary lines 

rice geotiff, wcs, 
features, ton, 

biomass, billion, 

update, energy, 
area, dry, county, 

global, btu, 

national, nrel, data, 
wind, program, 

office, crops 

wheat, millet, yield, 
smallholder, pasture, 

crops, cassava, maize, 

migration, potatoes, 
sorghum, oats, crop, 

farmers, barley, 

agriculture, urbanization, 
tilapia, livelihoods, 

miraca 

wheat, maize, production, 
cassava, residues, 

sugarcane, demand, yield, 

cereal, severity, wood, 
crop, cereals, sugarbeets, 

corn, potatoes, total, 

worldwind, ha, phl 

rice or maize, maize rice and wheat, rice 
maize cassava and sweet potatoes, wheat 

rice maize barley oats rye millet sorghum 

buckwheat, wheat, millet, cereal yield, 
crops or crop varieties, cereal crops, yield, 

smallholder, pasture, crops, cassava, maize, 

in migration minus out migration, 
migration, potatoes, sorghum, oats 

forest land, cover, poly, 
alb, features, wcs, 

areas, geotiff, 

landuse, data, 
forest, globcover, 

gc, flood, adg, 

regional, abstract, 
provided, en, aus 

pasture, deciduous, 
deforestation, crops, 

coniferous, forests, 

conifers, timber, fires, 
grassland, growing, 

rangeland, grasslands, 

peatlands, cropland, 
wildland, vegetation, 

trees, evergreen, 

agricultural 

cropland, pasture, sparsely, 
evergreen, broadleaved, 

dominantly, irrigated, 

filling, local, sddc, tenure, 
deciduous, croplands, acts, 

vegetated, suited, forests, 

dominant, enhancement, 
irrigation 

a dense swamp forest, forest reserves, forest 
cover indicator, forest cover, denr ncr mini 

forest established, forest category, forest 

types, forest interior habitat, dry land forest, 
forest and snow areas, forest conservation 

easements, ecps fdps forest conservation 

plats, pasture, deciduous, deforestation, 
natural vegetation, crops, coniferous, forest 

areas data, forests 

earthquake provided, abstract, 

baikalgis, data, 

ocean, level, 
coastal, water, rise, 

sea, pacific, earth, 
inundation, hawaii, 

science, model, 

global, area, 
mhhw, high 

seismology, 

complementary, 

tsunamis, landslide, 
landslides, epicenters, 

fatalities, wales, quake, 
liquefaction, aftershocks, 

tsunami, experienced, 

spontaneous, southern, 
iceland, kyriopoulos, 

cyclones, intense, floods 

mw, frequency, post, chile, 

risks, kamchatka, localised, 

1952, 1960, 8 2 mw, 
liquefaction, events, 

mortality, hazard, cyclone, 
philippines, volcano, 9 5 

mw, 9 0 mw, 1957 aleutian 

earthquake 

earthquake epicenters, the kaikoura 

earthquake 2016, the christchurch 

earthquake, 1957 aleutian earthquake, i 1 
the 1946 aleutian earthquake 8, the 1964 

alaska earthquake, significant earthquake, 
the recent earthquake, the 22 february 2011 

earthquake, earthquake hazard, post 

earthquake, seismology, complementary, 
global earthquake hazard, earthquake 

mortality loss estimates, landslide fatalities, 

tsunamis, global earthquake hazard 
frequency, landslide and drought, landslide 

rain forecast, 

precipitation, 
geotiff, wcs, 

article, land, 

probability, global, 
lightning, radar, 

hourly, model, 

panam, map, 
landuse, unit, 

climatestop, 

temperature, 
system, rain 

cloudiness, observations, 

numbers, rains, torrential, 
nuuksio, snowfall, 

lightning, qpf, 

overflowing, europe, 
auroras, finland, 

precipitation, inches, 

rainy, flash, temp, 
thunderstorms, winds 

wheat, maize, cereal, fed, 

satiation, cereals, total, 
hectare, harvested, ago, 

rainfed, precipitations, 

worldwind, kilograms, 
accum, ferman, sweet, rice, 

ha, m3 

freezing rain, cloudiness, rain count, rain 

days, rain std error, observations, levelling 
observations, buffalo numbers, reduced 

observations, other reduced observations, 

most reduced observations, the daily 
precipitation observations, zebra numbers, 

wildebeest numbers, elephant numbers, 

numbers, giraffe numbers, rains, odd 
numbers, the adjusted reduced observations 

road roads, england, 

road, noise, data, 
lden, national, 

laeqh, lnight, 

network, rail, 
features, nz, 

reserves, special, 

linz, topo, ortho, 
muni, layer 

railway, roads, vehicular, 

roundabout, rail, street, 
highway, frontage, 

footpaths, muswell, 

pedestrians, euston, 
crossing, patrols, hgv, 

lanes, lane, bus, archway, 

lawn 

roads, mot, addresses, 

name, locality, identifier, 
logistics, railroad, id, 

street, landonline, records, 

electoral, network, wfp, 
railway, connections, 

places, centreline, 

referencing 

the road distant, the road markings, a road 

embankment, road shapes, frederick road, a 
road centreline, some road centreline 

geometries, the electoral road, addressing 

road, electoral road subsection, these road 
centrelines, the road centrelines, train and 

road, road layout, road and railway 

centrelines, road labels, a road or track, 
road sections, some road sections, 

seasonability road condition and 

practicability 

road network roads, railway, 

interchange, wayfinding, 

rail, euston, lanes, 
patrols, bus, hgvs, 

railroad, odenton, 

markings, roundabout, 
resurfacing, lighting, 

trains, entrances, cyclists, 

railways 

roads, mot, logistics, 

subsections, practicability, 

openstreetmap, geometries, 
landonline, wfp, 

transportation, places, 

tracks, electoral, thana, 
addresses, code, identifier, 

cadastral, mooring, 

railways 

the road network, road network, this road 

network, constrained road network, the wfp 

road network, madagascar road network, 
cameroon road network, the main road 

network, nigeria road network, the railway 

network, strategic road network, roads 
network, nepal road network, the railways 

network, addressing road, the emerald 

network, the road markings, the road 
distant, a road embankment, road and hydro 

parking space car, servicing, doors, 

freight, cars, 
unreasonable, dropped, 

fema, nal, corridors, 

neighborhoods, retail, 
schemes, works, mot, 

parking signes, paved parking, no parking 

signs, paved parking lots, residential 
parking, other open space, open space, open 



29 

 

taxi, spaces, kerb, cpz, 

lighting, entrances, 

commuter, buses, trains, 

passengers, suspension, 
walls, railings 

frontage, strategy, paths, 

necessarily, aeronautics, 

fod, walking, food, locally, 

england, opsnatgs, 
transportation 

space comprising, controlled parking zones, 

parking features, car, passengers or freight, 

open space uses, servicing, doors, time and 

space, freight, cars, unreasonable, dropped 

wild fire  micronutrient, 

populations, insects, 
tissue, mussels, pose, 

breeding, farmed, milk, 

regime, juveniles, 
survival, animals, 

protein, crustaceans, 

farms, eggs, mixtures, 
feeding, hippoglossus 

drp, leisure, dist, tracts, 

hbc, cen, tenure, appl, fod, 
comprised, gateshead, 

polling, mixed, recycling, 

cockles, ebtjv, centres, rst, 
1977, frontage 

fire hydrants, selman fire, starbuck fire, fire 

arms practise, fire districts, the fire districts, 
fire and rescue, fire districts centroids, live 

fire training, the fire departments, cots 

populations, fire stations, micronutrient, 
wild areas, fish farm poly, shellfish farms, 

livestock and wildlife, populations, regime 

breakdown, plant or wildlife 

remote sensing sens, proximal, ieee, 

spaceborne, 
satellitbilleder, longterm, 

networks, xlinks, fibers, 

geosci, sensors, μm, situ, 
sensed, remotely, 

multispectral, xiaoguang, 

challegens, anvendelser, 
optical 

authorities, gamma, drsrs, 

consquences, health, 
action, stewardship, late, 

surveys, government, 

department, cleanup, ecl, 
help, serviceprovider, 

reduce, environmental, 

conservation, requires, 
responders 

remote sensing, semi automated methods 

and remote sensing images, satellite remote 
sensing products, its remote location, 

remote areas, the most remote areas, sens, 

proximal, the most remote coral atolls, ieee, 
spaceborne, satellitbilleder, longterm, 

networks, xlinks, fibers, geosci, optical 

sensors, sensors, μm 

satellite imagery multispectral, worldview, 

avhrr, panchromatic, 
hyperspectral, 

microwave, radiometer, 
acquired, landsat, 

rapideye, polarimetric, 

orthorectified, rectified, 
orthoimagery, sensors, 

gsd, ikonos, aerial, 

mosaic, eo 

interpretation, retrievals, 

utilizes, supplied, aqua, 
derives, worldview, robust, 

transverse, instrument, 
ikonos, visual, sensor, solar 

model, visible, 

wavelengths, ann, 
meteorology and solar 

energy global data, 

mercator, photography 

orthorectified satellite imagery, the satellite 

imagery, quickbird satellite imagery, recent 
satellite imagery, an high resolution satellite 

imagery, the worldview 2 satellite, satellite 
retrievals, multipectral ikonos satellite data, 

the 2006 quickbird imagery, a imagery was 

captured fo, a imagery was captured for t, a 
imagery was captured for, t imagery was 

captured for the, s imagery was captured for 

the, high spatial resolution satellite 
imagery, aerial imagery, visible imagery, 

hourly satellite, the satellite era, the 

supplied imagery 
surface temperature salinity, temperatures, °c, 

depth, calculated, 

measured, emitted, 
vertically, anomalies, 

constant, relative, cooler, 

simulated, variations, 
wavelength, velocity, 

concentration, swe, 

humidity, assuming 

pressure, global summer, 

maximum, runoff, 

forecasts, daytime, skin, 
downward, salinity, 

optical, winds, nighttime, 

celsius, mph, flux, mbar, 
humidity, instru, ‰, plays 

surface temperature, minimum surface 

temperature, maximum surface velocity, 

temperature and salinity, surface 
gravitational acceleration, average summer 

daytime maximum surface temperature, a 

quantitative surface, measuring 
temperature, skin temperature, the surface 

craft, sufficient temperature, surface 

roughness, temperature isolines, the 
maximum daytime land surface 

temperature, temperature and depth ranges, 

surface pressure, surface cells, the 
minimum nighttime land surface 

temperature, smu temperature, sea surface 

temperature 

 

2.4.4 System Implementation for the Geospatial Data Search Engine 

The Geospatial data search engine is implemented and integrated into our 

cyberinfrastructure portal – GeoCI. Figure 7 demonstrates the architecture of the search 

engine and how it interacts with other components of the system. 

In GeoCI, users can provide their search keywords and filtering conditions to find 

specific geospatial datasets. While the user is typing, the semantically related terms of 
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those keywords will be quickly retrieved and presented to users for selection. Through 

such interaction between user and GUI, more detailed and unambiguous searching 

keywords will be produced. Once the user is satisfied with their searching keywords, the 

keywords and their semantically relevant terms will be calculated based on the additive 

model and delivered to a full-text matching engine to find their related geospatial data 

records. Elastic search3  is employed here for the full-text matching task. When the 

metadata records are discovered, the filtering conditions such as boundary box and data 

collecting time range will be applied to the datasets. Those records that do not meet the 

filtering condition will be removed. After the filtering, the record will be ranked 

according to their similarity distance to the query keywords. The cosine similarity 

distance will be used here for calculating the value. Finally, the ranked records will be 

returned to the user as geospatial data layer candidates. Figure 8 demonstrates the 

interactive data search GUI implemented in GeoCI. 

Note that till this step, the returned candidates are still metadata records. When the user 

selects some of these candidates and adds them to his/her working space in GeoCI, the 

system will automatically go to the data providing services to acquire the real datasets 

on-the-fly. After the real datasets are transmitted to the web portal, they can be used for 

visualization and conducting exploratory spatial-temporal data analysis. Figure 9 

demonstrates a snow depth statistic scenario in the north polar region by using the 

discovered dataset and built-in spatial analysis tool in GeoCI. 

                                                 
3 https://www.elastic.co/products/elasticsearch 

https://www.elastic.co/products/elasticsearch
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Figure 7 Architecture of the semantic search system 
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Figure 8 GUI for semantic enhanced geospatial data search 

 

Figure 9 Exploratory spatial-temporal analysis with discovered dataset 

2.5 Discussion and Conclusion 

With the technological advancement, numerous geospatial datasets are being collected 

and shared on the Internet by different organization scattered around the world. These 

massive geospatial datasets introduce great research opportunities to the GIScience field. 

Faced with the data ocean, there exists a critical but challenging task to develop a 

geospatial data discovery mechanism to help researchers and public users efficiently and 

conveniently find appropriate datasets from millions of data records. 
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This chapter is focused on developing a semantically enhanced data discovery system to 

assist users in finding geospatial datasets from hundreds of thousands of geospatial data 

layers provided by thousands of organizations. The state-of-art word and phrase 

representation methodologies from the NLP filed are adopted to automatically extract 

semantic relationships among individual words and phrases in our metadata. A 

metadata enrichment strategy is adopted to improve the data quality and enhance the 

model training results. The data discovery system is implemented and integrated into a 

cyberinfrastructure portal named GeoCI for providing the search functionalities to public 

users.  

Future research could be focused on the implementation of a more effective evaluation 

system for comparing the precision and recall rates of our system with the baseline 

system based on full-text match search and LSI method. In this research, the POS 

method is adopted for extracting phrases from our metadata. In the future, more 

sophisticated entity recognition methods based on the neural network models could be 

adopted to improve the search result. Besides, adopting the high-quality geospatial 

ontology knowledgebases (e.g. GCMD) in the result filtering and ranking stages could 

potentially improve the search result. 
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3 WHEN PYSAL MEETS GEOCI: TOWARDS AN 

INTEROPERABLE AND REPLICABLE 

CYBERINFRASTRUCTURE FOR ONLINE SPATIAL-

STATISTICAL-VISUAL ANALYTICS 

3.1. Introduction 

The Geographic Information Science (GIScience) has ushered tremendous development 

in recent decades. Meanwhile it continuously contributes to multidiscipline by means of 

providing modern theories, methodologies, softwares and tools to help solve scientific 

problems and improve decision-making practices (Shaowen Wang, 2013). With the 

advancement of GIScience, there exist numbers of vibrant GIScience teams working on 

integrating the most advanced algorithms and methodologies into open source libraries 

or software toolkits (Li, Di, Han, Zhao, & Dadi, 2010; Steiniger & Hunter, 2013; Swain et 

al., 2015), such as Python Spatial Analysis Library (PySAL) (Luc Anselin & Rey, 2014; 

Sergio J. Rey, 2014; S. J. Rey & Anselin, 2007), GeoDa (L. Anselin, Syabri, & Kho, 2010), 

GDAL, GRASS GIS, GeoTools, GeoPython, spaceime (Pebesma, 2012), STARS (Sergio J. 

Rey & Janikas, 2006), spdep (Bivand et al., 2011) etc. These toolkits play a critical role in 

promoting the innovation in GIScience.  

Among various working modes in the GIScience field, there are two typical types. The 

first one is “single-user” oriented, which is most suitable for individual researchers who 

possess professional domain knowledge. They generally conduct research and 

experiment from the exploratory perspective and in the back-and-forth manner. Since 

this working mode gives researchers absolute control on what data and materials to 

https://paperpile.com/c/FABtJO/ZPNL
https://paperpile.com/c/FABtJO/nAc1+Rrnm+3VBs
https://paperpile.com/c/FABtJO/nAc1+Rrnm+3VBs
https://paperpile.com/c/FABtJO/NGWI+Sxny+XU2w
https://paperpile.com/c/FABtJO/NGWI+Sxny+XU2w
https://paperpile.com/c/FABtJO/Wpen
https://paperpile.com/c/FABtJO/Rsxc
https://paperpile.com/c/FABtJO/fBZD
https://paperpile.com/c/FABtJO/fBZD
https://paperpile.com/c/FABtJO/Zdqy
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prepare, as well as what analytical methods and software to adopt, it is very popular 

among individual researchers. 

On the other hand, with the advancement of technologies, the “single-user” working 

mode in a localized computing environment is infeasible in scenarios including: 

● For those very large projects that require the collaboration of participants from 

different domains and physical locations, the dataset, documents and knowledge 

must be simultaneously shared among the team in an efficient way (Rinner, 

Keßler, & Andrulis, 2008; Sun & Li, 2016). 

● In the time critical and data intensive scenarios, e.g. when nature disaster happens, 

massive dataset including basic terrain, hydrology, transportation data and real-

time observation data need to be gathered for spatial-analysis on-the-fly, the 

results should be required to decision makers to make sure that rapid response and 

evacuation plans could be executed(Huang, Cervone, Jing, & Chang, 2015; Wu, 

Convertino, Ganoe, Carroll, & Zhang, 2013). 

● In the cases of mobile working or field investigation, the architecture of system 

could be distributed: the server side is responsible for data storage and 

computation, while the tasks of client side for mobile phones and tablets could 

just be data collection and visualization(Cerón, Fernández-Carmona, Urdiales, & 

Sandoval, 2018). 

● For the scenario of demonstration and education, e.g. for the cases of dashboard 

system to visualize live stream data and display the patterns of these data, or to 

educate the usage of very complicated dataset or newly developed data analysis 

methods through demonstration, the web based application could be the 

https://paperpile.com/c/FABtJO/2Vp2+xcQ3
https://paperpile.com/c/FABtJO/2Vp2+xcQ3
https://paperpile.com/c/FABtJO/h6C8+wIZM
https://paperpile.com/c/FABtJO/h6C8+wIZM
https://paperpile.com/c/FABtJO/jEdT
https://paperpile.com/c/FABtJO/jEdT
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appropriate choice (Harris, 2003; Purves, Medyckyj-Scott, & Mackaness, 2005; 

Veenendaal, 2015). 

The rapid development of geospatial technologies in recent decades enables scientists to 

gather massive high-quality georeferenced data from the physical world, society, 

economy, social-media, web pages, etc. Such data deluge introduces GIScience 

researchers the great opportunity to obtain a closer and deeper insight into the 

phenomena happening in nature and human-society. Consequently, the development 

and achievement of theories, methods, softwares and discoveries are in an accelerating 

rate driven by the richness of data in the last few decades. 

In addition to the big data deluge, the high-performance computing (HPC) theories and 

technologies have been greatly developed recently, and numerous commercial or 

academic HPC products and platforms have been widely accepted, such as Amazon 

Cloud, Microsoft Azure, Google Earth Engine, Hadoop, Apache Spark, NoSQL database, 

Cloud storage etc. These HPC facilities are capable of hosting big data sets and 

conducting large scale analysis and simulations which are infeasible on an individual 

desktop. All these factors together make the second “collaborative” working mode 

increasingly popular nowadays (Rinner et al., 2008). 

Harnessing these open source toolkits on the big data and HPC environment and making 

them accessible to the “collaborative” working mode could bring immediate benefits to 

the GIScience community. Nevertheless, most of the aforementioned open source 

libraries are initiated merely for the desktop environment, instead of the “collaborative” 

working mode. Developing sophisticated web-based middleware to wrap these libraries 

and expose their analysis functionalities as geoprocessing services could be a feasible 

solution. However, four challenges need to be addressed in the integration process: 

https://paperpile.com/c/FABtJO/Rzja+l4Vt+nyVd
https://paperpile.com/c/FABtJO/Rzja+l4Vt+nyVd
https://paperpile.com/c/FABtJO/2Vp2
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1) Interoperability between components and services: the deployed toolsets should 

be compatible with the mainstream software and other services, and meanwhile 

could be easily exploited by users under the network environment. 

2) Provenance and metadata for spatial analytical workflows: this could be one of 

the most critical factors under the “collaborative” working mode, referring to all 

the information ranging from how the spatial data is produced, to how the 

geoprocessing steps are chained and conducted, and to how to obtain the results - 

the key for quality control and reproduction of geospatial analysis (Luc Anselin & 

Rey, 2012).  

3) Granularity of the functionalities to be exposed as Application Programming 

Interfaces (APIs): many open source libraries are designed for the “single-user” 

working mode, in which the functionalities of each method and class are usually 

designed to be atomic, facilitating users to combine various methods for the 

exploratory analysis in a flexible manner. However, when deploying the functions 

on the server side, the communication cost between the client side and the server 

side needs to be taken account of. The most intuitive way to reduce the 

communication cost is to combine the atomic APIs into non-atomic ones which 

accomplish a sophisticated operation by accepting several parameter inputs from 

users at one shot (e.g. the inference about Local Indicators of Spatial Association 

(LISAs) (Luc Anselin, 1995)). 

4) Documentations and supporting materials: many open source projects serve as a 

pioneer in implementing and introducing newly developed methodologies of 

spatial analysis. When deploying these methodologies, how to provide adequate 

https://paperpile.com/c/FABtJO/ZW1D
https://paperpile.com/c/FABtJO/ZW1D
https://paperpile.com/c/FABtJO/bhhW
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documentation and materials to educate users to appropriately use the APIs, 

should be carefully considered as well. 

This article addresses these challenges and introduces our research in developing an 

interoperable and replicable cyberinfrastructure for online spatial-statistical-visual 

analytics. More specifically, we focus on the widely used open source python library - 

PySAL, the functions/classes of which are published as geoprocessing services - 

WebPySAL. Meanwhile, a friendly graphic user interface (GUI) is implemented in a 

Geospatial CyberInfrastructure named GeoCI. The client side is capable of integrating 

any open geospatial data shared based on OGC’s WFS/WMS standards, and invoking the 

geoprocessing services from WebPySAL for on-the-fly spatial analysis, which endows 

great flexibility to users. 

The rest of the chapter is organized as follows: Section 3.2 introduces related research in 

this field, the background of PySAL, Web Processing Service (WPS) - the standard 

employed in our platform for publishing services, and GeoCI. Section 3.3 introduces the 

architecture of WebPySAL and a GUI of WebPySAL on GeoCI. How the aforementioned 

challenges were addressed in our practice will be particularly elucidated. Section 3.4 uses 

two case studies of exploratory spatial/spatiotemporal data analysis to demonstrate how 

the server side and the client side could be coordinated to assistant users for 

accomplishing spatial analytical tasks. We conclude our work with future directions in 

Section 3.5. 

3.2. Related Work and Background 

3.2.1 The development of PySAL and its submodules 

PySAL is an open source library of spatial analytical functions written in Python 

intended to support the development of high level applications (Sergio J. Rey & Anselin, 

https://paperpile.com/c/FABtJO/ndee
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2010). PySAL was initially released in July 2010 and has been continually updated under 

a 6 month release cycle under the BSD-3 License (Sergio J. Rey et al., 2015). Core team 

of PySAL is in a vibrant status implementing newly developed or widely adopted 

geospatial and space-time analytics in PySAL to benefit the scientific community.  

Since late 2016, the PySAL team has initialized the code base refactoring process, which 

aims to reorganize PySAL’s functionalities into submodules. Each submodule is/will be 

released as an independent python package which accomplishes a specific set of spatial 

analytical tasks. The purpose of the code base refactoring is 1) to better expose the 

various spatial analytical functionalities of PySAL to the general public, making them 

clearer and easier to be understood and utilized from a user’s perspective; 2) to relieve 

the developers from the burden of maintaining a giant metapackage as it is much easier 

to introduce new features to and maintain the much smaller submodules from a 

developer’s perspective. After the refactoring, the submodules (or packages) of PySAL 

can be roughly classified into four groups:  

1. Lib: provides core functionality used by other submodules to work with spatial 

data in Python, including libpysal4; 

2. Explore: contains exploratory spatial data analysis of clusters, hotspots, and 

spatial outliers, plus spatial statistics on graphs and point patterns, including 

esda, giddy, pointpats, inequality, region and spaghetti;  

3. Model: contains spatial modeling tools including spreg, mgwr, spvcm, spint, 

and spglm; 

4. Viz: provides methods for visualizing spatial datasets as well as the output of 

spatial statistics, including mapclassify, splot and legendgram. 

                                                 
4
 https://github.com/pysal/libpysal 

https://paperpile.com/c/FABtJO/ndee
https://paperpile.com/c/FABtJO/u5qt
https://github.com/pysal/libpysal
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Many different derivative forms of PySAL’s application have been implemented, 

including desktop applications such as Crime Analytics in Space-Time (CAST), Space-

Time Analysis of Regional Systems (STARS) (Sergio J. Rey & Janikas, 2006) and 

GeoDaSpace (Luc Anselin & Rey, 2014), PySAL toolkits and plugins for Desktop GIS 

such as ArcMap and QGIS, interactive computing tool such as Jupyter Notebook. 

3.2.2 Web Process Service (WPS) standards 

The Open Geospatial Consortium (OGC) Web Processing Service (WPS) interface 

standard provides rules in terms of how to provide inputs (requests) and handle outputs 

(responses) for geospatial processing services. It defines an interface that facilitates the 

publishment of geospatial processes from a developer’s side, the discovery of and 

binding to those processes from a client’s side, and the invocation and monitor of the 

geoprocessing APIs. The input/output of a WPS execution can be raster, vector, coverage 

and/or non-spatial data.  

The three most important operations of WPS are:  

● GetCapabilities: provides a human- and machine-readable xml file depicting details of 

the service, including service metadata and metadata describing the available processes. 

● DescribeProcess: provides detailed description of the processes available on the service 

and the definitions of the inputs/outputs of each process. 

● Execute: the operation to invoke the processes with specified input values and required 

output data items. The requests are mainly HTTP POST with xml request documents,  

since the requests usually have complex structures. 

The WPS standards are widely accepted across the geospatial science community. Many 

software, libraries, web portals and services adopt the WPS as their geoprocessing 

standards, such as ArcMap, QGIS, GeoTools, GeoServer, 52° North, and Zoo-Project. To 

ensure the interoperability between WebPySAL and other existing platforms and 

https://paperpile.com/c/FABtJO/fBZD
https://paperpile.com/c/FABtJO/XU2w
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components, the geoprocessing services of WebPySAL are published according to WPS 

standards as well. 

3.2.3 The GeoCI Portal 

Initiated in 2012, the GeoCI web portal plays the role of testbed for hosting and 

demonstrating all the cutting-edge technologies and methodologies developed by our 

research team. A spatial data search engine is integrated into GeoCI, enabling it to 

discover a huge number of open geospatial data shared on the Internet. Rich data 

visualization and exploration functions have been integrated into GeoCI as well. In this 

article, we will develop several spatial analytical components on GeoCI as study cases. 

These components will exploit the geoprocessing APIs provided by WebPySAL.  

3.2.4 Related works 

Coupling spatial analysis models with HPC resources to support collaborative research 

under the web environment could bring immediate benefits in accelerating solving 

complex spatial problems and supporting decision making process. 

A number of related research and practices have been done recently with different 

emphasis (Luc Anselin & Rey, 2012). Some of them are dedicated to deploying 

sophisticated spatial analysis models on a HPC environment to solve specific issues 

related to hydrology (Rajib et al., 2016), ecology (Dubois, Schulz, Skøien, Bastin, & 

Peedell, 2013; Sugumaran, Meyer, & Davis, 2009), environment (Delipetrev, Jonoski, & 

Solomatine, 2014; Swain et al., 2015) and natural disaster (Huang et al., 2015) et al, 

while others focus on technical solutions such as the design and implementation of 

GyberInfrastructure (CI) working environment to handle and manipulate big geospatial 

and conduct analysis and simulations (Astsatryan et al., 2015; Mihon, Colceriu, Bacu, & 

Gorgan, 2013; Shaowen Wang & Liu, 2009), or the development of the parallel 

https://paperpile.com/c/FABtJO/ZW1D
https://paperpile.com/c/FABtJO/X1L9
https://paperpile.com/c/FABtJO/sfOW+yKGJ
https://paperpile.com/c/FABtJO/sfOW+yKGJ
https://paperpile.com/c/FABtJO/ksgV+3VBs
https://paperpile.com/c/FABtJO/ksgV+3VBs
https://paperpile.com/c/FABtJO/wIZM
https://paperpile.com/c/FABtJO/JBqw+vyKS+ohdx
https://paperpile.com/c/FABtJO/JBqw+vyKS+ohdx
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computing capacity of a HPC environment(Laura, Li, Rey, & Anselin, 2015; F. Z. Wang et 

al., 2009; S. Wang & Armstrong, 2009). 

In this article, we target at the popular and advanced spatial data analysis library – 

PySAL. We first enable its spatial analysis functionalities under the web environment 

based on the widely accepted processing API standard, and then seamlessly adopt and 

integrate these APIs into a GeoCI portal so that the advanced spatial analysis 

functionalities are combined with abundant geospatial data (as well as time series data) 

shared on the internet. The deployment strategy and the architecture of various 

components will make our system extremely interoperable from the users’ perspective 

and extensible from the developers perspective. 

3.3. Methodology and System Implementation  

3.3.1 The architecture of WebPySAL 

The WebPySAL platform is aimed at providing PySAL’s core spatial and spatiotemporal 

analytical functionalities as services on the server side. Figure 10 shows the system 

architecture of WebPySAL. The classes and functions from PySAL family’s submodules 

including libpysal, pointpats, giddy, mapclassify and esda are extracted and 

reorganized as the geoprocessing APIs of WebPySAL. In the following we will expound 

on how the aforementioned challenges are addressed in the system design and 

implementation for providing spatial analysis functionalities as services. 

https://paperpile.com/c/FABtJO/bQTi+VXYz+VPVE
https://paperpile.com/c/FABtJO/bQTi+VXYz+VPVE
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Figure 10 The architecture of WebPySAL 

3.3.1.1 Interoperability 

The WPS standard is adopted for providing the geoprocessing services which ensures the 

interoperability between WebPySAL and other existing systems.  

The python implementation of the WPS standard - PyWPS5(Čepický, 2007) is employed 

for the platform development. PyWPS is an open source project for utilizing OGC’s WPS 

standard on the server side. In the implementation, PyWPS acts as the middleware for 

transforming the functionalities from PySAL into WebPySAL. Each spatial analysis 

functionality is wrapped into an individual class with predefined inputs and outputs 

according to the rules of PyWPS. Additional documentation, configuration and metadata 

are provided to PyWPS as well. Then PyWPS will publish these functionalities as 

geoprocessing APIs through the WPS standards. During this process, we do not change 

                                                 

5
 http://pywps.org/ 

https://paperpile.com/c/FABtJO/EuXq
http://pywps.org/


44 

 

the original codebase in PySAL, on purpose of guaranteeing the code consistencies of 

PySAL on one hand, and facilitating the rapid development of WebPySAL one the other 

hand. 

In WebPySAL, the execution operations are capable of accepting a wide range of inputs, 

including 1) literal data such as numbers, strings, booleans; 2) complex data such as 

GML, JSON, text file, etc; 3) file references such as URLs (the system will automatically 

go fetch the data set according to the URLs on the server side for geoprocessing); and 4) 

the result/output of other operations. This provides the flexibility for users to chain 

multiple operations together to make up and execute a complex geoprocess task at one 

time. 

Table 4 displays a simplified execution request form for the statistical inference about 

the widely adopted global spatial autocorrelation statistic - Moran’s I on the first column. 

Four input parameters (highlighted in orange background) are assigned to the API, 

where the first parameter ‘spatial_data’ is assigned with a URL reference, which is 

actually a WFS service. WebPySAL system will download the data set at the backend 

before executing the process. The second parameter ‘weights’ is assigned with the result 

of another execution, that is, constructing a 𝑘 -nearest-neighbor (KNN, 𝑘 = 4  here) 

spatial weight matrix (highlighted in green background). Hence the data section for 

‘weights’ is another independent execution request form instead of a value. WebPySAL 

will execute this process firstly, get the result and use the result as the input of the 

‘weights’ parameter. The third and fourth parameters are assigned with a string and an 

integer respectively. The result of the processing result is presented on the second 

column of Table 1. 

Table 4 Example WPS POST request for the statistical inference about Moran’s I 

<wps:Execute 
xmlns:wps="http://www.opengis.net/wps/1.0.0" … 
xmlns:wfs="http://www.opengis.net/wfs > 
  <ows:Identifier>esda:Moran</ows:Identifier> 

{ 
    "I": { 
        "value": 0.45036780970104806, 
        "title": "I", 

http://www.opengis.net/wps/1.0.0
http://www.opengis.net/wfs
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  <wps:DataInputs> 
    <wps:Input> 
      <ows:Identifier>spatial_data</ows:Identifier> 
      <wps:Reference 
xlink:href="http://cici.lab.asu.edu/geoserver910/wfs?serv
ice=WFS&amp;version=1.1.0&amp;request=GetFeature&amp;type
Name=it.geosolutions%3Aus48&amp;srsName=urn%3Ax-
ogc%3Adef%3Acrs%3AEPSG%3A3857&amp;outputFormat=json" 
method="GET" mimeType="application/vnd.geo+json" /> 
    </wps:Input> 
    <wps:Input> 
      <ows:Identifier>weights</ows:Identifier> 
      <wps:Reference 
xlink:href="http://cici.lab.asu.edu:5002/wps" 
method="POST" mimeType="application/gal"> 
        <wps:Body> 
          <wps:Execute 
xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 
http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd" 
version="1.0.0" service="WPS"> 
            <ows:Identifier>libpysal:KNN</ows:Identifier> 
            <wps:DataInputs> 
              <wps:Input> 
                <ows:Identifier>data</ows:Identifier> 
                <wps:Reference 
xlink:href="http://cici.lab.asu.edu/geoserver910/wfs?serv
ice=WFS&amp;version=1.1.0&amp;request=GetFeature&amp;type
Name=it.geosolutions%3Aus48&amp;srsName=urn%3Ax-
ogc%3Adef%3Acrs%3AEPSG%3A3857&amp;outputFormat=json" 
method="GET" mimeType="application/vnd.geo+json" /> 
              </wps:Input> 
              <wps:Input> 
                <ows:Identifier>k</ows:Identifier> 
                <wps:Data> 
                  <wps:LiteralData>4</wps:LiteralData> 
                </wps:Data> 
              </wps:Input> 
            </wps:DataInputs> 
            <wps:ResponseForm> 
              <wps:RawDataOutput 
mimeType="application/gal"> 
                <ows:Identifier>weights</ows:Identifier> 
              </wps:RawDataOutput> 
            </wps:ResponseForm> 
          </wps:Execute> 
        </wps:Body> 
      </wps:Reference> 
    </wps:Input> 
    <wps:Input> 
      <ows:Identifier>column_name</ows:Identifier> 
      <wps:Data> 
        <wps:LiteralData>y2009</wps:LiteralData> 
      </wps:Data> 
    </wps:Input> 
    <wps:Input> 
      <ows:Identifier>permutations</ows:Identifier> 
      <wps:Data> 
        <wps:LiteralData>99</wps:LiteralData> 
      </wps:Data> 
    </wps:Input> 
  </wps:DataInputs> 
</wps:Execute> 

        "abstract": "value of Moran's 
I" 
    }, 
    "EI": { 
        "value": -0.02127659574468085, 
        "title": "EI", 
        "abstract": "expected value 
under normality assumption" 
    }, 
    "VI_norm": { 
        "value": 0.008391070042774918, 
        "title": "VI_norm", 
        "abstract": "variance of I 
under normality assumption" 
    }, 
    "seI_norm": { 
        "value": 0.09160278403397419, 
        "title": "seI_norm", 
        "abstract": "standard deviation 
of I under normality assumption" 
    }, 
    "z_norm": { 
        "value": 5.148799901876373, 
        "title": "z_norm", 
        "abstract": "z-value of I under 
normality assumption" 
    }, 
    "p_norm": { 
        "value": 2.621583647943737e-7, 
        "title": "p_norm", 
        "abstract": "p-value of I under 
normality assumption" 
    }, 
    "VI_rand": { 
        "value": 0.006250746750777324, 
        "title": "VI_rand", 
        "abstract": "variance of I 
under randomization assumption" 
    }, 
    "seI_rand": { 
        "value": 0.07906166422974743, 
        "title": "seI_rand", 
        "abstract": "standard deviation 
of I under randomization assumption" 
    }, 
    "z_rand": { 
        "value": 5.9655258972941, 
        "title": "z_rand", 
        "abstract": "z-value of I under 
randomization assumption" 
    }, 
    "p_rand": { 
        "value": 2.4384736452276456e-9, 
        "title": "p_rand", 
        "abstract": "p-value of I under 
randomization assumption" 
    } 
} 
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3.3.1.2 Provenance and metadata 

Tracking the provenance of operations is a key factor of guaranteeing analysis result 

quality and ensuring the full replicability of data analysis and interoperability with other 

systems, which are critical under the increasingly popular collaboration context 

nowadays (Luc Anselin, Rey, & Li, 2014). Two strategies for keeping the provenance are 

adopted in WebPySAL’s implementation: geoprocessing API version and execution form.  

In WebPySAL, since each geoprocessing API wraps some specific functionalities from the 

submodules of PySAL, the development version of these submodules will be 

automatically extracted and used by WebPySAL. In terms of the open source libraries 

which are developed and upgraded rapidly, this strategies can help users get a better 

sense about which version of libraries they are using and whether they can obtain 

identical results to the older versions. At the time of writing, the version of submodules 

integrated into WebPySAL are libpysal 3.0.56, esda 1.0.1.dev07, giddy 1.1.18, pointpats 

1.1.09, and mapclassify 1.0.110. 

The API description form of WebPySAL contains the version info and all the essential 

parameters needed to execute the API. After specific parameters and configurations are 

provided from user side, they will be injected into the execution request form and 

submitted to the server side to initialize the analysis process. These forms are in XML 

format, which are designed to be both human- and  machine- readable. Properly saving 

all the relevant metadata could guarantee the provenance of an geoprocessing execution, 

so that users can replicate the process anytime later to get the identical results.  

                                                 

6
 https://pypi.org/project/libpysal/3.0.5/ 

7
 https://pypi.org/project/esda/1.0.1.dev0/ 

8
 https://pypi.org/project/giddy/1.1.1/ 

9
 https://pypi.org/project/pointpats/1.1.0/ 

10
 https://pypi.org/project/mapclassify/1.0.1/ 

https://paperpile.com/c/FABtJO/cmgd
https://pypi.org/project/libpysal/3.0.5/
https://pypi.org/project/esda/1.0.1.dev0/
https://pypi.org/project/giddy/1.1.1/
https://pypi.org/project/pointpats/1.1.0/
https://pypi.org/project/mapclassify/1.0.1/
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Let’s take the spatial weight construction, which is essential to many spatial analytical 

tasks, as an example. WebPySAL provides 6 different types of spatial weights, which are 

distinguished by the identifier of the execution. Table 5 shows the API description form 

for KNN spatial weight construction, which is extracted from libpysal 3.0.5. The 

requirements for the input parameter “Data” as well as two optional input parameters 

“Number of nearest neighbors” and “Id Variable” with default values are listed in the 

description form. In the execution form (Table 6), the input geometry data is provided to 

get the result weights. Once storing this execution form, users can re-submit it anytime 

later to get the identical results. 

Table 5 Example API description form for KNN spatial weight construction 

<wps:ProcessDescriptions … service="WPS" version="1.0.0" xml:lang="en-US"> 
  <ProcessDescription wps:processVersion="3.0.5" storeSupported="true" 
statusSupported="true"> 
    <ows:Identifier>libpysal:KNN</ows:Identifier> 
    <ows:Title>K Nearest Neighbor Weights Calculation</ows:Title> 
    <ows:Abstract>Calculate the KNN weights object from a collection of geometries. Classes 
and functions used in this API include libpysal.weights.Distance.KNN. For more information, 
see the metadata</ows:Abstract> 
    <ows:Metadata xlink:title="KNN" 
xlink:href="https://github.com/pysal/libpysal/blob/master/libpysal/weights/Distance.py" 
xlink:type="class"/> 
    <DataInputs> 
      <Input minOccurs="1" maxOccurs="1"> 
        <ows:Identifier>data</ows:Identifier> 
        <ows:Title>Data</ows:Title> 
        <ComplexData> 
          <Default> 
            <Format><MimeType>application/vnd.geo+json</MimeType></Format> 
          </Default> 
          <Supported> 
            <Format><MimeType>application/vnd.geo+json</MimeType><Format> 
            <Format><MimeType>application/gml+xml</MimeType><Format> 
          </Supported> 
        </ComplexData> 
      </Input> 
      <Input minOccurs="0" maxOccurs="1"> 
        <ows:Identifier>k</ows:Identifier> 
        <ows:Title>Number of nearest neighbors</ows:Title> 
        <ows:Abstract>Number of nearest neighbors for querying, default value is 
2</ows:Abstract> 
        <LiteralData> 
          <ows:DataType 
ows:reference="urn:ogc:def:dataType:OGC:1.1:integer">integer</ows:DataType> 
          <ows:AnyValue/> 
        </LiteralData> 
      </Input> 
      <Input minOccurs="0" maxOccurs="1"> 
        <ows:Identifier>idVariable</ows:Identifier> 
        <ows:Title>Id Variable</ows:Title> 
        <ows:Abstract>The name of the column to use as IDs. If nothing is provided, the 
dataframe index is used. (Note: the ids should be unique and Integer type is 
preferred.)</ows:Abstract> 
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        <LiteralData> 
          <ows:DataType 
ows:reference="urn:ogc:def:dataType:OGC:1.1:string">string</ows:DataType> 
          <ows:AnyValue/> 
        </LiteralData> 
      </Input> 
    </DataInputs> 
    <ProcessOutputs> 
      <Output> 
        <ows:Identifier>weights</ows:Identifier> 
        <ows:Title>Result Bundle</ows:Title> 
        <ows:Abstract>The calculated weights by using this method.</ows:Abstract> 
        <ComplexOutput> 
          <Default> 
            <Format><MimeType>application/json</MimeType></Format> 
          </Default> 
          <Supported> 
            <Format><MimeType>application/json</MimeType></Format> 
            <Format><MimeType>application/gal</MimeType></Format> 
            <Format><MimeType>application/gwt</MimeType></Format> 
            <Format><MimeType>application/swm</MimeType></Format> 
          </Supported> 
        </ComplexOutput> 
      </Output> 
    </ProcessOutputs> 
  </ProcessDescription> 
</wps:ProcessDescriptions> 

 

Table 6 Example API  execution form for KNN spatial weight construction 

<wps:Execute … version="1.0.0" service="WPS"> 
    <ows:Identifier>libpysal:KNN</ows:Identifier> 
    <wps:DataInputs> 
        <wps:Input> 
            <ows:Identifier>data</ows:Identifier> 
            <wps:Reference mimeType="application/vnd.geo+json" xlink:href= 
"http://sedac.ciesin.columbia.edu/geoserver/wfs?service=WFS&amp;version=1.1.0&amp;request=GetFeatu
re&amp;typeName=epi%3Aepi-environmental-performance-index-2010_climate-change&amp;srsName=urn%3Ax-
ogc%3Adef%3Acrs%3AEPSG%3A4326&amp;outputFormat=application%2Fjson" method="GET"/> 
        </wps:Input> 
    </wps:DataInputs> 
</wps:Execute> 

 

3.3.1.3 Abstraction and aggregation of PySAL functions to provide synthetical APIs 

PySAL was originally designed for the desktop working environment. During the 

implementation, the object-oriented strategy is adopted meaning that class objects are 

widely used for hosting analysis functions and relevant variables. When users are 

exploring the library under the desktop environment (e.g. in a Jupyter notebook), 

intermediate results such as class instances and variables can be easily stored in the 

RAM and re-used for the next-step analysis. Consequently, it is appropriate to make each 

method atomic which is only responsible for performing a single task since this enable 
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users flexibly combine different methods in the exploratory analysis. Nevertheless, 

WebPySAL will be mainly used under the internet working environment, interacting and 

transforming data between the server and client side will be much more time consuming 

than under a local environment, and this will also bring more burden to the UI design on 

the client side. Therefore, for WebPySAL, the data transmitted between the server and 

client sides via network should not be too fragmented and the interaction should not be 

too frequent. During the implementation of WebPySAL, we adopt a “synthetical” strategy 

which enables each WebPySAL API to take combined input parameters, conduct the 

whole geoprocessing workflow and return complete results that can be directly used for 

visualization and interpretation on the client side.  

 

Figure 11 Comparison of the interaction modes with PySAL and WebPySAL under the 
desktop environment vs. web environment 

Figure 11 illustrates the difference of interaction modes with PySAL and WebPySAL for 

calculating the Moran’s I statistic. Under the desktop environment, the user needs to 

invoke three functions sequentially in order to read the geospatial file, generate weight 



50 

 

matrix, and initialize the Moran’s I class. Different parameters should be provided to 

these functions separately during the process. Results concerning Moran’s I are assigned 

to the Moran object as attributes. All the intermediate results are temporarily stored in 

the local computer’s memory for quick access. Under the web environment, the 

“synthetical” API takes the inputs of all the parameters needed to produce the final 

results at one shot. After the parameter inputs are submitted through the execution 

request form to the server side, they will be assigned to atomic functions separately to 

execute the process chain. When the process is finished, the resulted attributes will be 

extracted and injected into the result bundle (usually a JSON object) and returned to the 

user or stored on the server side as files for later access. After the results are returned, 

the memory for preserving the intermediate results will be freed on the server side. From 

the graph we can see that the user only needs to interact with WebPySAL once for 

invoking the API and she/he still has the flexibility of providing different values of 

parameters. 
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Figure 12 WebPySAL demonstrations 

3.3.1.4 Documentations and supporting materials 

Adequate documentation and materials are highly necessary to educate users 

appropriately take advantage the APIs and interpret the geoprocessing results, especially 

for the open source libraries which release frequently and continuously introduce new 

functionalities. In WebPySAL, the documentation and supporting materials are provided 

to users through the following 3 approaches. 

● There are many use case demonstration pages created for the functionalities of 

PySAL. When these functionalities are wrapped into WebPySAL, the URLs 

pointing to the demonstration page and source code will be automatically 

injected into the metadata sections of each API. 
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● Adequate description information is presented as abstraction sections for 

WebPySAL’s APIs, the input parameters of each API and the result variables of 

each output JSON object. 

● A GUI portal of the WebPySAL is implemented. In the portal, metadata about 

WebPySAL is presented, all the APIs are listed. For each API, there is at least one 

execution request example to demonstrate how to invoke the API. 

The GUI and documentation of WebPySAL are presented in Figure 12. 

3.3.2 Implementation of spatial analysis modules in GeoCI 

Nowadays, a large number of organizations are collecting and sharing geospatial datasets 

on the Internet through OGC’s WFS and WMS standards for public and scientific use. In 

our previous work, we developed a geospatial data discovery engine named PolarHub, 

which is capable to collect hundreds of thousands of geospatial dataset’s metadata 

information. The metadata information is stored in a relationship database and 

integrated into GeoCI’s system. An geospatial data search engine is implemented in 

GeoCI to help users conveniently find their desired datasets by using keywords and/or 

spatial extent filtering. The selected datasets can be easily included into GeoCI under 

user’s account for later visualization and analysis.  

WebPySAL’s geoprocessing APIs have been fully integrated into GeoCI. Specific 

exploratory data analysis modules are designed and implemented to help users take 

advantage of WebPySAL’s spatial analysis models (SAM) and functionalities. The 

architecture of the integrated systems is presented in Figure 13. The data analysis 

modules/functions include esda (exploratory spatial data analysis), Rose (directional 

analysis of dynamic LISAs in giddy), Markov analysis (spatially explicit Markov methods 

in giddy), and Rank Based Analysis (rank based methods in giddy). 
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A typical working flow for a user in GeoCI is as follows:1) Browse the datasets in GeoCI, 

select the interested ones which are stored in GeoCI under specific workspace; 2) Select a 

spatial analysis module in GeoCI, provide the spatial dataset and other input parameters 

in the GUI; 3) Invoke the geopossing API in WebPySAL and obtain the results; 4) 

Visualize and demonstrate the spatial analysis results through interactive maps, graphic 

charts and reports and meanwhile store the provenance information for later use. 

 

Figure 13 The architecture of GeoCI 

Figure 14 illustrates the user interface implemented in GeoCI for setting parameters for 

the Markov analysis module. The abstract description of the module is presented below 

the analysis method, followed by the metadata tags. Each of the tags are URLs pointing 

to the original documentation of PySAL library. There are four parameters requested for 

this analysis method. Those starting with star (*Time Periods Data, *The name of 

columns as input) are required. The rest are optional meaning that a default value will be 

supplied if the user leaves them blank. After setting the parameters, the user can click 

the EXECUTE button to trigger the execution. Results of the reports and charts will be 

automatically appended below the EXECUTE button after the calculation is finished. 
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While newly calculated variables of the geometries will be attached to the spatial dataset 

for later visualization. The execution form been submitted can be opened by clicking the 

button at the upper-right corner for viewing and later reusing. 

 

Figure 14 Graphic user interface for the Markov chain analysis module 

3.4. Illustration and Experiments on Spatial & Spatiotemporal 

Statistics 

In this section, we use two case studies to illustrate how GeoCI and WebPySAL are 

tightly coupled to help users fulfil spatial analytical tasks with visual aid in a convenient 

and efficient fashion. Both cases utilize Exploratory Spatial Data Analysis (ESDA) 

methods which is an extension to Exploratory Data Analysis (EDA) to uncover 

underlying structures in spatial data. EDA is a concept proposed 40 years ago which 

postpones assumptions about the underlying theory/model followed by the data with a 

wide array of quantitative methods and statistical graphics (Tukey, 1977). ESDA extends 

https://paperpile.com/c/FABtJO/m9S9
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EDA to incorporate spatial attributes (location). While the first case represents a general 

first step in exploring global and local spatial patterns of lattice data at a time point, the 

second case explores the role of space in shaping the evolution of a variable over time.  

3.4.1 Global and Local indicators of spatial association 

Global and local indicators of spatial association are the most important tool for 

exploring the spatial distribution of a given variable at a time point. Both pertain to the 

question of spatial randomness by examining whether or to what degree location 

similarity and attribute similarity coincide. While the global indicators operate at the 

global level, meaning that a single summary statistic is produced, the local indicators 

operate at the local level by decomposing the global ones to provide insights in the local 

patterns such as hot and cold spots, as well as the instability of spatial associations (Luc 

Anselin, 1995).    

The PySAL submodule esda implements a wide array of global indicators including 

Moran’s I, Geary’s c, Getis-Ord G and join count statistics together with their respective 

local decompositions. All of them have also been integrated in WebPySAL and GeoCI. 

Here, we detail the usage of Moran’s I and local Moran’s I which are the most widely 

used in empirical settings as an illustration. 

Given  spatial observations with attribute , the global indicator of spatial association, 

Moran’s I (Cliff & Ord, 1981), is defined in Equation (1): 

𝐼 =
𝑛

𝑆0

∑ ∑ 𝑧𝑖𝑤𝑖,𝑗𝑧𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧𝑖𝑧𝑗
𝑛
𝑖=1

 (1) 

where 𝑧𝑖 = 𝑦𝑖 − 𝑦 is the deviation from the global mean, 𝑊 is the (𝑛, 𝑛) spatial weight 

matrix formalizing the spatial relationship between any pair of spatial units and  𝑆0 =

∑ ∑ 𝑤𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1 . Inference could be made under the normality assumption or based on 

spatial permutations. For the proper estimation and inference of this statistic, it is 

required that the user supplies the attribute, the spatial weight matrix, and the number 

https://paperpile.com/c/FABtJO/bhhW
https://paperpile.com/c/FABtJO/bhhW
https://paperpile.com/c/FABtJO/8UNB
about:blank
about:blank
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of permutations if the randomization-based inference is desired. We shall see that 

WebPySAL provide options for setting these parameters in a convenient fashion.  

Local Moran’s I is a spatial decomposition of Moran’s I shown in Equation (2) which has 

a value for each spatial unit. As suggested by (Luc Anselin, 1995), a pseudo p-value could 

be obtained for 𝐼𝑖  based on conditional randomization. The required parameters are 

similar to the global indicator. 

𝐼𝑖 =
(𝑛−1)𝑧𝑖∑ 𝑤𝑖,𝑗𝑧𝑗

𝑛
𝑗=1

∑ 𝑧𝑗
2𝑛

𝑗=1

 (2) 

3.4.1.1 Data 

We applied the global and local indicators of spatial association to the U.S. county 

average median household incomes in 2016. The county boundaries were acquired from 

U.S. Census Bureau’s MAF/TIGER geographic database11 and the “Unemployment and 

median household income for the U.S., States, and counties, 2007-17” which included 

the county-level median household incomes 2016 were downloaded from the U.S. 

Department of Agriculture (USDA)’s website12. These two datasets are joined and hosted 

on our testbed as a standard WFS data service for public use13. The spatial distribution of 

the median household incomes can be conveniently visualized in GeoCI as shown in 

Figure 15. It seems that similar values tend to be geographically closer to each other.  

                                                 

11
 https://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html (data accessed by Aug/09/2018) 

12
 https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/ (data accessed by 

Aug/09/2018) 

13
 http://cici.lab.asu.edu/geoserver910/wfs?service=WFS&version=1.1.0&request=GetCapabilities 

https://paperpile.com/c/FABtJO/bhhW
https://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html
https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
http://cici.lab.asu.edu/geoserver910/wfs?service=WFS&version=1.1.0&request=GetCapabilities
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Figure 15 Map of the U.S. county-level median household incomes in 2016 

3.4.1.2 Empirical Results and Visualization 

Global and local Moran’s Is are applied to the U.S. 2016 county-level median household 

incomes to explore its spatial distribution, or more specifically, whether the observed 

incomes are spatially random and whether there are hot spots of high incomes or cold 

spots of low incomes which deserves further investigation. We start with global Moran’s I. 

As displayed in the left of Figure 16(a), GeoCI provides a GUI for selecting values for all 

the relevant parameters. There are two ways to specify the spatial weight matrix 𝑊: 

choose a weight type (queen/rook contiguity, KNN, etc) so that a spatial weight matrix is 

constructed for the GEOJSON geometries using functions in libpysal, or supply a spatial 

weight file. Users also have the option to leave them blank so that the default value is 

used which builds a row-normalized rook contiguity weight matrix where spatial units 

sharing an edge are considered neighbors. Here, we use the default value for the spatial 
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weight. 999 permutations are selected for randomization-based inference. The same 

values are selected for the inference about the local Moran’s Is as shown in the left of  

Figure 16(b).  

 

             (a)                                                                       (b) 

Figure 16 Moran’s I and Local Moran’s I in WebPySAL and GeoCI 

Results about Moran’s I will be appended to the analysis method window once the 

calculation is completed (Figure 16 (a)). The visual impression of spatial clustering of 

similar values is confirmed by the positive and significant Moran’s I of 0.707 with p-

value of 0 under the normality assumption and pseudo p-value of 0 based on the 999 

spatial permutations. Since results about local Moran’s Is are almost always -

dimensional (a list of results are shown in Figure 16(b)), they are appended to the 

original data set to facilitate geovisualization in GeoCI. Figure 17 displays the spatial 

clusters of cold spots (low-low) and hot spots (high-high) of county-level mean 

household incomes.  

about:blank
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Figure 17 Visualization of Local Moran’s Is in GeoCI 

  

3.4.2 Spatial Markov Tests  

The first-order discrete Markov chains model is a widely used stochastic model in which 

the current status is only dependent on its status at the immediately preceding time 

period. It has been widely applied to provide insights into the underlying dynamics of 

land use and land cover change, crime patterns and income distribution dynamics 

(McMillen & McDonald, 1991; Quah, 1993; Sergio J. Rey et al., 2014). By further 

assuming time homogeneity, the transitional dynamics for the whole study time span 

could be summarized in a (𝑘, 𝑘) stochastic matrix 𝑃 in which each element 𝑝𝑖,𝑗 presents 

the probability of transitioning from state 𝑖  to 𝑗 over two consecutive time periods. The 

maximum likelihood estimator 𝑝̂𝑖𝑗 is displayed in Equation (3): 

𝑝̂𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
𝑘
𝑗=1

 (3) 

where 𝑛𝑖𝑗  is the number of transitions from state 𝑖  to 𝑗  across two consecutive time 

periods. The conventional application of the Markov chains model to a spatial setting 

assumes that the dynamics are identical across all spatial units. Thus, 𝑃 is estimated 

from the pooled data. However, the ignorance of space in shaping the dynamics could 

lead to false conclusions. The spatial Markov tests which tests for spatial dependence in 

the discrete Markov chains framework have been proposed and their properties have 

been evaluated for the study of regional income distribution dynamics (Bickenbach & 

https://paperpile.com/c/FABtJO/GPZH+sFv3+zjdG
https://paperpile.com/c/FABtJO/XUEN+ww2X+pwUZ+DHF4
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Bode, 2003; Kang & Rey, 2018; Sergio J. Rey, Kang, & Wolf, 2016; S. J. Rey, 2001). The 

alternative of spatial Markov tests contends that the underlying dynamics is too complex 

to be summarized in a single transition probability matrix. Rather, the transition 

probability is context-sensitive in that it is also dependent on the current status of 

neighbors. The so-called spatial lag shown which is the weighted average of neighbors’ 

values (e.g. income) in Equation (4) is usually used to quantify neighbors’ status: 

𝑧𝑡 = 𝑊𝑦𝑡(4) 

where 𝑧𝑡  is the 𝑛 -dimensional spatial lag at 𝑡 . Following the similar discretization 

strategy to the original time series, the time series of spatial lags could also be discretized 

into 𝑘 categories on which transition probabilities are conditional, resulting in 𝑘 spatially 

dependent transition probability matrices. The likelihood ratio (LR), 𝜒2 and Kullback 

information-based (Kullback, Kupperman, & Ku, 1962) tests can be formed by 

comparing them with the single matrix estimated from the pooled data.  

To conduct a spatial Markov test, the longitudinal data, the spatial weight matrix, and 

the quantile number (for discretization) 𝑘 are required. We shall see how WebPySAL and 

GeoCI provide convenient interface for the user to setting the parameters. 

3.4.2.1 Data 

The average per capita incomes for the lower 48 U.S. states from year 1929 to 2009 are 

used for demonstration. The data set was acquired from Bureau of Economic Analysis, 

U.S. Department of Commerce. The state-level cartographic boundary data was 

downloaded from United States Census Bureau’s MAF/TIGER geographic database. 

These two datasets are bound together and hosted on our testbed as a standard WFS 

data service. The map of U.S. state per capita incomes in 2009 can be easily visualized in 

GeoCI. We can also interactively explore the time dimension with the help of the time 

series plot shown in  

https://paperpile.com/c/FABtJO/XUEN+ww2X+pwUZ+DHF4
https://paperpile.com/c/FABtJO/i74L
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Figure 18: as the user move the vertical dotted line in the time series plot, the map on the 

right will be updated to the chosen year (e.g. 1973) and the colors of the time series plot 

will be updated to match the color scheme of the map.  

 

Figure 18 Interactive visualization of average per capita income series for the lower 48 

U.S states 1929-2009 
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Figure 19 Output of Spatial Markov Tests 

3.4.2.2 Empirical Results and Visualization 

The default value for the discretization, year-specific quintiles, are used as the cutoffs to 

discretize the continuous per capita incomes and their spatial lags, giving rise to a (5,5) 

transition probability matrix under the null of spatial randomness of dynamics and 5 

(5,5)  transition probability matrices under the alternative of spatially dependent 

dynamics.  

Analysis results are appended to the interface of the analysis method once the calculation 

is completed. We display part of the results here for illustration purpose. As shown in the 

right of Figure 19, the transition probability matrix estimated from the pooled data and 

the 5 matrices estimated from the spatial lag - conditioned subsamples are visualized 
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where red represents high probability and purple low probability. As “Spatial Lag 1” is 

the first quintile (poor) of the spatial lags, the probability of staying poor is 0.934, which 

is higher than 0.857 where the neighbors are rich (“Spatial Lag 5”). All of the three test 

statistics are strongly significant (LR test: 93.96 (p-value: 0.003), 𝜒2 test: 96.07 (p-value: 

0.002), Kullback test: 127.01 (p-value: 0.0006)), confirming the role of space in shaping 

the U.S. state per capita income dynamics. This could also have important regional 

policy implications. 

3.4.3 Comparison of Computational Time between WebPySAL and PySAL 

Compared with the desktop-based data analysis working mode, there is an overhead of 

communication time between server side and client side when conducting the analysis 

on WebPySAL. In this section, we conduct some experiments to see if the overhead of 

communication time will significantly affect WebPySAL’s performance in terms of 

computational time. 

We conducted a series of experiments to compare the performance under different 

working environments: the desktop-based PySAL against server-client WebPySAL. The 

variations of the experiment include: 1. Different analysis methods: Local Moran’s I and 

interregional and intraregional indicators of exchange mobility – the inter-and intra-

regional Tau statistics (Rey, 2016); 2. Different datasets: a dataset of 48 U.S. states and a 

dataset of 3,141 U.S. counties; 3. Different numbers of permutations for the inference: 

[99, 499, 999]. 

The performance of the experiments is obtained under the computing environment as 

follows: the WebPySAL is hosted on a server machine with two 12-core 2.1 GHz 64-bit 

Xeon CPUs and 64 GB RAM running Ubuntu 16.04.4. The client side is tested on a 

laptop machine with a 4-core 2.50 GHz 64-bit Intel i-7 CPU and 8GB RAM running 

Windows 10. The Internet speed environment for experiment is relatively high (50Mbps). 
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The geospatial datasets used for PySAL are stored locally in the same laptop, while the 

datasets for WebPySAL are provided as a WFS service hosted on the same server.  

A series of tests are conducted with the combinations of different methods, datasets and 

simulation times. For the PySAL calculation, since the data loading time is very short, we 

only record the total time in each calculation. For WebPySAL, we record 1. the total 

calculation time and 2. the time used for communication and data transmission. Figure 

20 presents the comparison results. The orange solid lines represent time consumption 

in PySAL, the blue solid lines and dash lines represent total calculation time and 

communication time respectively in WebPySAL. From the graphs we can find that: 

• For the small state-based dataset (the first column), all the calculation can be 

finished very quickly within 1 second. Hence the differences of time consumption 

won’t be noticed by users. 

• When calculating Local Moran’s I with the large county-based dataset (top-right), 

the total time cost on WebPySAL is a little bit longer, which are mainly resulted 

from the communication between the server and client sides. 

• When calculating the more complex Regional Tau with county-based data, since 

the time been used for simulation is very long, the communication time is 

negligible in such cases. To be noted, since the Numpy library is adopted for the 

matrix calculations, which is parallelized, hence, the calculation time will be 

much shorter on a powerful machine. 

In summary, for all the experiments, the communication time is stable and relatively 

short (contingent on the data size) while the calculation time in WebPySAL environment 

will be much shorter due to its high computing performance. Hence, putting all factors 

together, we can see that WebPySAL could be a feasible solution for handling complex 

computing tasks.   
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Figure 20 Comparison of time consuming on PySAL against WebPySAL in different 
experiments 

 

3.5. Discussion and Conclusion 

Nowadays, there are a number of vibrant teams focusing on introducing and 

implementing newly developed and advanced spatial analysis methodologies in open 

source libraries, which contribute a lot to the GIScience field and related disciplines. This 

article introduces our research in designing and implementing an interoperable and 

replicable cyberinfrastructure for online spatial-statistical-visual analytics - WebPySAL 

based on the popular open source library - PySAL. Many popular and advanced spatial 

analysis functionalities are provided through the standard WPS APIs. A CyberGIS portal 

- GeoCI -  is bridged with WebPySAL in order to harness the spatial analysis modules 
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with massive geospatial data and the HPC environment to address the research 

challenges in the real world.  

The contributions of our research include: 1) Established the WebPySAL as a working 

instance instead of a prototype to benefit the GIScience community; 2) Presented 

strategies and methodologies about how to guarantee the interoperability and 

replicability in the practice of implementing a standard geospatial web processing service; 

3) Implemented an interactive and user-friendly GUI in our web portal GeoCI to assist 

users in conducting exploratory spatial/spatiotemporal data analysis with massive open 

access geospatial data sets. In addition to potential benefits this work brings by bridging 

spatial analysis toolkits with CyberInfrastructure, the design and implementation of this 

system could potentially help users who are lack of GIScience background knowledge or 

programming skills to better understand and adopt advanced spatial analytical 

methodologies.  

The WebPySAL will be published as a member of PySAL’s family on GitHub14, and the 

integration work of PySAL’s advanced spatial analysis functionalities will be continued. 

An active instance of WebPySAL is currently available at http://cici.lab.asu.edu:5002. 

Parallel spatial analysis modules will be integrated into WebPySAL to leverage the HPC 

resources in CyberInfrastructure to help solve more challenging tasks in the future.   

                                                 

14
 https://github.com/pysal 

http://cici.lab.asu.edu:5002/
https://github.com/pysal
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4 A COMPREHENSIVE OPTIMIZATION STRATEGY FOR 

REAL-TIME SPATIAL FEATURE SHARING AND VISUAL 

ANALYTICS IN CYBERINFRASTRUCTURE 

4.1 Introduction 

With the advancement of Earth Observation (EO) technologies, a massive amount of EO 

data including remote sensing data and other sensor observation data such as 

earthquake, climate, ocean, hydrology, volcano, glacier etc. are being collected on a daily 

basis by a wide range of organizations and shared through the Internet. These datasets 

act as fundamental materials to help scientists study and understand various geophysical 

and social phenomena. The emerging geospatial cyberinfrastructure (GCI) rapidly 

increases our capacity for handling such massive data with regard to data collection, 

management, high-performance computing (HPC), data integration and interoperability, 

data transmission and visualization, etc. (Zhang et al., 2009; Yang et al., 2010; Wright et 

al., 2011; Rey et al., 2015; Li et al., 2016a; Li et al., 2016b; Li et al., 2016c; Song et al., 

2016). These advancements of GCI make it a promising instrument for building science 

gateways under the environment of Internet to handle the time-critical tasks such as 

real-time environment monitoring, disaster management and decision-making (Zhang et 

al., 2005; Stollberg et al., 2012; Li et al., 2013). 

Web service is a key element in GCI to foster interoperation of data from disparate 

sources. In these GCI enabled web services, the ability of rapidly transmitting and 

sharing spatial data over the Internet is critical to meet the demands of real-time change 

detection, response, and decision-making. In terms of geospatial data sharing, there exist 

many community-driven data sharing standards, among which the Open Geospatial 

Consortium’s (OGC) Web Map Service (WMS; de La Beaujardiere, 2006) and Web 
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Feature Service (WFS; Vretanos, 2004) are mostly adopted in GCI applications. WMS is 

the standard protocol for serving georeferenced map images through the Internet while 

WFS is the standard protocol for serving geographical features (vector) data. Raster 

datasets such as remote sensing imageries are usually shared through the WMS protocol; 

while vector datasets could be shared through either WMS or WFS. If shared through 

WMS, the vector datasets will be pre-rendered as static images before being transmitted 

to users. If shared through WFS, the geometries and properties of the vector dataset will 

be directly disseminated with no information loss. 

In many real-world data-driven applications, original vector datasets are essential for 

developing flexible, expressive and interactive data visualization and analysis 

functionalities to help users better understand the context of events and make decisions 

(Zhang et al., 2005; Stollberg et al., 2012). For example, in scenarios of disaster 

management, i.e. earthquake or flood, researchers need to retrieve multiple datasets 

including DEM (Digital Elevation Model), road networks, hydrology flow, population 

distribution, real-time observation data etc. from distributed Spatial Data 

Infrastructures (SDIs) and then conduct analysis immediately for developing evacuation 

and rescue plans.  In other scenarios of real-time environment monitoring and traffic 

flow monitoring, massive real-time and historical environmental and traffic monitoring 

data in vector format need to be retrieved continuously. Then, such datasets will be used 

for analysis at the backend, in the cloud for example, and providing animated and 

interactive data visualization functionalities at the frontend, i.e. any browser which has 

an Internet connection. 

Although sharing vector datasets through WFS brings a lot of benefits, it can also 

introduce serious performance issues: the data processing time through WFS mainly 

depends on original data sizes – if a vector layer is large, the data processing time in each 

stage of WFS will increase accordingly, including data preparation and encoding on the 
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server side, data transmission through the Internet and data decoding and visualization 

on the client side. Comparatively, for WMS, no matter how complex the original vector 

datasets are, they will be pre-rendered into static images and cached on the server side in 

advance. Once the preparation work is finished, the WMS processing time will be stable 

and irrelative to the original data size. This makes WMS a very efficient data sharing 

strategy. Such performance bottlenecks have hindered the widespread integration of 

WFS into a cyberinfrastructure, especially for those time-critical and data-massive 

applications. Currently, although many of datasets have been shared by different SDIs, 

only a small proportion of them are published through WFS.  

In this study, we introduce our design and implementation of a comprehensive 

optimizing strategy for high-efficiency vector data sharing through WFS. The strategy 

consists of (1) Combination of pre-generalization and real-time generalization for 

multiple layers; (2) Separated data transmission processes of features’ geometries and 

attributes; (3) Dynamic adoption of data compression/ decompression methods 

according to the network status. Significant improvements are achieved after applying 

this optimization strategy to conventional WFS approaches. The rest of this article is 

organized as follows: section 2 introduces the related work of this topic. Section 3 

discusses the optimization strategies in detail. Section 4 introduces our experiments for 

performance comparison. In the last section, the conclusion and directions of future 

work are given. 

4.2 Related work 

Geospatial data sharing is now becoming a popular trend along with the increase in 

people’s capability in collecting all kinds of EO data. Well-known organizations and 

agencies including the Global Earth Observation System of Systems (GEOSS; Christian, 

2005), the INSPIRE geoportal of Europe (Bernard et al., 2005), National Snow & Ice 
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Data Center (NSIDC), the Geospatial Platform of U.S. Federal Geospatial Data Comittee, 

National Oceanic and Atmospheric Administration (NOAA), The Oak Ridge National 

Laboratory Distributed Active Archive Center (ORNL DAAC) etc. are continually 

collecting and providing a wide range of geospatial datasets to users. On the other hand, 

the developments of standards and technologies in recent decades have profoundly 

promoted the process of data sharing. The OGC Web Services (OWS) standardize how 

geospatial data and processing services could be published and shared through the 

internet. Service Oriented Architectures (SOA) are developed for wrapping 

functionalities into independent, interoperable, loosely-coupled and standard interfaces 

in purpose of sharing and reusing (Papazoglou et al., 2007; Giuliani et al., 2013). The 

revolution of Internet technologies such as Web 2.0, AJAX (Asynchronous JavaScript 

and XML) and HTML5 make it possible to build context-rich, interactive and user-

friendly web applications which empowered the process of information transmission, 

data visualization, user communication and collaboration (Sayar et al., 2006; Rinner et 

al., 2008; Pierce et al., 2009; Boulos et al., 2010; Hall et al., 2010; Longueville et al., 

2010; Li et al., 2011b).  

Consequently, the number of SDIs and geospatial services has been increased rapidly 

(Sahin et, al. 2008) for providing various datasets, computation services and 

visualization tools for different user groups (Giuliani et al., 2013). Li et al. (2011a) 

developed a virtual Arctic SDI that introduces cross-catalog data harvesting, service 

chaining and online visualization to enhance understanding of the Arctic climate and 

ecosystem. Han et al. (2012a) developed an SDI which can help users conveniently 

retrieve DEM data of a customized region and conduct related data analysis on these 

datasets on the server side. Granell et al., (2010) introduced a web application designed 

under the principle of SOA for providing reusable hydrological models. Han et al. (2012b) 

introduced a web application which provides US conterminous geospatial cropland data 
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to users. Corresponding statistics and analysis tools are integrated to support decision 

making. Ames et al., (2012) built a web services-based software aiming at discovering, 

retrieving and analyzing hydrologic and climate data. Kulawiak et al., (2010) developed a 

web GIS application for serving the scenario of marine oil pollution monitoring, 

simulating and decision-making support. Raup et al., (2007) introduced a project named 

GLIMS (Global Land Ice Measurement from Space) which is the collaboration result of 

many institutions across the world. This project could provide rich glacier datasets, 

analyzing tools and services. Wang et al., (2016) developed a web application which is 

capable to identify polar cyclones and provide interactive 3D visualization tools for the 

cyclones.  

As noted before that the original data size could greatly affect the performance of WFS 

process, many attempts have been made trying to resolve such issue. Yang et al. (2005) 

introduced interesting methods for improving the performance of web-based GIS, 

including data caching, multi-thread processing on the server side, and dynamic data 

requesting on the client side. Michaelis et al. (2012) introduced their implementation of 

WMS and WFS in a desktop application where some optimizations were tested, 

including data querying by the envelop and feature complexity reduction operations. 

Data generalization was suggested and implemented for providing map service through 

WMS and Web Processing Services (WPS, Schut et al., 2007; Foerster et al., 2010). 

Zhang et al. (2013) designed a parallel data query method to reduce the data retrieval 

time on the server side. Li et al. (2015) introduced the optimization strategy of data 

compression and decompression on the server and client sides to reduce the time for 

data transmission. However, this method can only be used for some specific scenarios. 

Although progress has been made, a comprehensive study in improving WFS 

performance is still lacking. In our research, a comprehensive optimization strategy 

which contains multiple independent optimization steps will be introduced and 
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embedded into a WFS processing pipeline for performance enhancement. These 

independent optimization steps can be dynamically combined to fulfill requirements of 

different application scenarios. 

 

4.3 Methodology 

In general, a WFS processing involves the following workflow: when a web server 

receives a WFS request, it will first parse the request. Then, according to the parameters 

provided by the client, the WFS server accesses the required data source and conducts 

data processing. For example, a spatial filter operation will be applied to the raw data to 

derive a subset within the desired bounding box. After these processing steps, resultant 

features will be encoded into specific output format before being sent back to the client 

side. When the client side receives the response stream, it will decode the stream, parse 

the result, and convert it into a feature collection which could be used for visualization, 

statistics, and analysis. Figure 1 demonstrates the main components for WFS processing. 

In this workflow, we propose to integrate three stacked optimization strategies to further 

enhance its real-time performance: (1) Combination of data pre-generalization and real-

time generalization to reduce the data complexity; (2) Separated data transmission 

processes of features’ geometries and attributes; (3) Dynamic adoption of data 

compression and decompression methods according to various network conditions 

(boxes with orange borders in Figure 1 showcase where the integrations happen) 

4.3.1 Geometry generalization for vector data  

The most critical factor affecting the performance of WFS is the size of the data source. 

The larger the dataset is, the longer time it will take for data processing at each stage. On 

the other hand, one of the main purposes of WFS data retrieval is for visualization. If a 

complex geometry (e.g. the boundary of U.S.) containing tens of thousands of vertices is 
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drawn on the screen with a fixed resolution, many adjacent vertices will fall into the 

same pixel. This process not only burdens computation but also becomes less helpful in 

feature understanding. This means in practice it is unnecessary to draw very complex 

geometries for visualization. Therefore, it becomes an involuntary idea to simplify the 

geometries of vector layers for WFS processing. 

Indeed, the topic of map generalization itself has long been studied by scholars (Weibel, 

1997; Oosterom, 2009). Much effort has been dedicated to developing new 

generalization methods to present clear and accurate maps to audiences at different 

spatial scales. The implementation of our optimizing strategy is not restricted to any 

specific generalization methods. Users should select the appropriate algorithm according 

to their application requirements. For demonstration and experiments, we chose two 

efficient and robust algorithms -- Douglas-Peucker (DP; Douglas et al., 1973; Shen et al., 

2008) and Topology Preserving (TP; Bajaj et al., 1998) in this research. Both algorithms 

simplify a line by recursively deleting some of its containing points while keeping the 

main shape of the line. A distance tolerance could be specified for controlling the 

simplicity of the result. The difference between DP and TP algorithm is DP executes 

much faster than TP, but TP preserves the topology relationship for features in a map.  
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Figure 21. WFS workflow with optimization strategies 

Finding the appropriate criterion for layer generalization is important: If the layer is 

generalized to be too simple, it will bring significant visual changes to the map; on the 

other extreme, it will impose unnecessary computing and transmitting burden to the 

system. In this research, we introduce the Appropriate Distance Tolerance (ADT) 

calculating method for a vector layer. The principle of ADT is maximizing the distance 
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tolerance for generalization but not significantly affecting the visualization results, 

meanwhile considering the web application’s computing and transmitting capacity. The 

following factors should be considered for deciding the ADT: 

• The scale of each pixel in the target visualization screen: this is the key factor for 

the generalization. If adjacent points of a line fall into the same pixel when 

presented, one of them can be safely deleted without affecting the visualization 

result.  

• Symbolization scheme: considering the width of lines and polygon boundaries 

that are presented, large width means a coarse requirement of accuracy, then the 

distance tolerance can be loosened accordingly. 

• Network speed and data processing capacity of the client side: under the 

circumstance of low network bandwidth or limited computing speed on the client 

side, the distance tolerance can be increased as well. 

Respecting these three factors, we define the formula for calculating the ADT for a vector 

layer: 

𝐴𝐷𝑇 = 𝛼 ⋅ 𝑃𝑖𝑆 ⋅ min
𝑓∈𝐿

(𝓌(𝑓)) 

In this formula, 𝛼 denote the coefficient for controlling the ADT according to network 

speed, data processing capacity of the client side and users’ preference of geometries’ 

detail – the smaller 𝛼 is, the more detail will be kept. Empirically 𝛼 could be set between 

the range of [0.3, 2.0].  𝑃𝑖𝑆 denote the scale of each pixel in monitor’s canvas. 𝑃𝑖𝑆 is 

decided by both the area of map for presenting (visible region) and the resolution of 

canvas. That says, if the resolution of canvas is 𝑁ℎ (horizontal) by 𝑁𝑣(vertical) and the 

visible region in map is 𝐷ℎ (horizontal) by 𝐷𝑣(vertical), then 𝑃𝑖𝑆 = min(
𝐷ℎ

𝑁ℎ
,
𝐷𝑣

𝑁𝑣
). Finally, if 

the layer 𝐿 adopts specific symbolization scheme, e.g. setting the width of roads with a 

certain width or setting varying widths according to the traffic-flow attribute, this 
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formula will use the minimum value of every feature 𝑓 ’s symbol width 𝓌  in 𝐿  for 

calculating the ADT.  

Although generalizing vector layers for WFS brings substantial benefits to the system, 

layer generalization itself could be time-consuming, especially when dealing with large 

datasets or processing frequent incoming requests from multiple clients. To solve this 

problem, we propose a two-step data generalization strategy – pre-generalization plus 

on-the-fly generalization. For a given data layer, generalization is performed using a 

sequence of distance tolerances (DTs) and the results are preserved locally. Upon 

receiving a request, the server will first calculate the ADT and select the pre-generalized 

layer whose DT is closest to but no greater than the ADT. Then on-the-fly generalization 

is further conducted on top of the selected pre-generalized data layer. Through this way, 

the entire generalization process can be greatly accelerated. 

Note that DT sequence should be carefully selected for pre-generalization. Narrowing the 

interval of DTs could help improve the performance of on-the-fly generalization 

component. However, this will lead to the side-effect of consuming much storage space 

on the server side. Considerations on deciding the appropriate DT sequence include: (1) 

DT sequence should be designed according to map’s varying presentation scales, which 

begins with the value that could fit the whole layer into the visible region. (2) Due to the 

limitation of visible region in the monitor, small map scale means that a large number of 

features in a layer will be presented. Therefore, more pre-generalized layers should be 

prepared for small scales. When it comes to large scales, a small number of features will 

be left after the spatial filtering by the visible region, therefore it will not take much time 

to finish the job of on-the-fly generalization. Then, fewer pre-generalized layers are 

needed in such case. 3) The smaller the DT is given, the fewer points in the features will 

be deleted during the generalization process. When deleted points are fewer than 20% of 
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total points in the original dataset, or too many layers have been created, the pre-

generalization procedure will be ceased.  

In summary, following is the criterion for determining layer pre-generalization DT 

sequence: 

𝐷𝑇 =

{
 
 

 
 
𝐴𝐷𝑇𝐿                      … 𝑙 = 1            
𝐴𝐷𝑇𝑀                     … 𝑙 = 2            
𝐴𝐷𝑇𝐹
2𝑙−3

                     … 3 ≤ 𝑙 ≤ 7   

𝐴𝐷𝑇𝐹
4𝑙−5

                     … 8 ≤ 𝑙 ≤ 10

 

Here 𝐷𝑇 is calculated at different levels by using the formula of ADT. 𝐴𝐷𝑇𝑥 means the 

calculated ADT value for a layer been fitted into a monitor with specific resolution, with 

𝛼 = 0.5 and minimum symbol width equals 1. Here 𝐴𝐷𝑇𝐿, 𝐴𝐷𝑇𝑀 and 𝐴𝐷𝑇𝐹 represent the 

ADT for monitor with low (800 × 600), medium (1280 × 720) and full (1920 × 1080) 

resolutions respectively. 𝑙  denotes different levels. According to this formula, the DT 

sequence has an accelerated descending trend, which is set as 2  after level 2, and 

becomes 4 after level 7. The pre-generalization procedure will stop at the 10th level, or the 

level where total deleted points do not exceed 20% of the original data points. 

4.3.2 Attribute filtering according to users’ demands 

Both the geometry and attribute information of vector layers can be provided through 

WFS. While the attribute information of a vector layer is informative, it inevitably 

increases the data size. In many situations not all attributes are necessary, and different 

users have different preferences about the attributes. Therefore, the performance of WFS 

request could be improved by filtering out unnecessary attributes.  

In this proposed implementation of a new WFS workflow, in order to avoid transmitting 

unnecessary attributes of vector layer, the metadata and statistical information of vector 

layer’s attributes are provided by an independent API (Application Programming 

Interface). Such information is much smaller than the original attributes and is 
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accessible for users at any time. At the first time of a WFS request, only geometries and 

specified attributes of a vector layer will be returned. After reviewing the metadata, if 

users need any specific attributes for exploratory visualization or analysis, they can 

retrieve them separately by using the attribute filtering. When additional attributes 

arrive the client side, they could be added to the existing vector layer by matching their 

unique ids. 

Table 7 demonstrates the examples of WFS request with different filtering strategies: the 

spatial filtering uses a boundary box to request features inside of a certain region, which 

is widely adopted; the attribute filtering specifies a certain list of attributes (i.e. the 

geometry and “STATE_NAME” in this example) for retrieval. These two filtering 

strategies can be applied in a joint way as well. 

Table 7 Example of WFS request with different filtering strategies 

Query Type Example 

Query with 
spatial 
filtering 
(use 
boundary 
box) 

<wfs:GetFeature service="WFS" version="1.1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="http://www.opengis.net/wfs" xmlns:wfs="http://www.opengis.net/wfs" 
xsi:schemaLocation="http://www.opengis.net/wfs" xmlns:gml="http://www.opengis.net/gml" 
xmlns:ogc="http://www.opengis.net/ogc" > 

<wfs:Query typeName="wps_pattern:NAT" srsName="urn:x-ogc:def:crs:EPSG:4326"> 

    <ogc:Filter><BBOX> 

        <ogc:PropertyName>the_geom</ogc:PropertyName> 

        <Envelope srsName="urn:x-ogc:def:crs:EPSG:4326"> 

              <lowerCorner>32.1 -125.1</lowerCorner> 

              <upperCorner>42.0 -114.7</upperCorner> 

        </Envelope> 

    </BBOX></ogc:Filter> 

</wfs:Query></wfs:GetFeature> 

Query with 
attribute 
filtering 
(use 
attribute 
names) 

<wfs:GetFeature service="WFS" version="1.1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="http://www.opengis.net/wfs" xmlns:wfs="http://www.opengis.net/wfs" 
xsi:schemaLocation="http://www.opengis.net/wfs" xmlns:gml="http://www.opengis.net/gml" 
xmlns:ogc="http://www.opengis.net/ogc"> 

    <wfs:Query typeName="wps_pattern:NAT" srsName="urn:x-ogc:def:crs:EPSG:4326"> 

        <wfs:PropertyName>the_geom</wfs:PropertyName> 

        <wfs:PropertyName>STATE_NAME</wfs:PropertyName> 

    </wfs:Query> 

</wfs:GetFeature> 
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4.3.3 Data compression/decompression of encoded vector data  

For data exchange and interoperability across different platforms, some commonly used 

vector layer output formats are supported by WFS, including GML (Geography Markup 

Language; Cox et al., 2002), KML (Keyhole Markup Language), GeoJSON (Butler et al., 

2008), CSV (Comma-Separated Values) etc. Among these formats, GML and GeoJSON 

are the most commonly used. GeoJSON is designed based on the JSON (JavaScript 

Objective Notation) format. In GeoJSON, each feature is encoded into an object which 

consists of a list of key-value pairs that correspond to the name and value of feature 

attributes. GML (Geography Markup Language) is defined by the OGC to express 

geographic features. Inside of the GML document, the features are organized as a list of 

XML (eXtensible Markup Language) nodes, where the geometry and attribute 

information are stored in different tags.  

Table 8 demonstrates how a single polygon feature is encoded into GeoJSON and GML 

formats. This feature has 3 attributes, viz., “Land”, “CFCC” and “LANAME”. The polygon 

of the feature consists of 4 vertices. Both of GeoJSON and GML are text based and 

contain many duplicated tags in their output files. Therefore, applying compression 

processes to the output data can reduce their size, and further reduce the time for data 

transmission. 

Table 8 Example of using different output formats to encode a feature 

GeoJSON GML 

{"type": "Feature", 

"id": "poly_landmarks.1", 

"geometry": { 

  "type": "MultiPolygon", 

  "coordinates": [[[ 

  [40.730647,-73.996035], 

  [40.72999,-73.996449], 

  [40.730437,-73.997356], 

  [40.730834,-73.998047], 

  [40.730647,-73.996035]]]] 

}, 

<tiger:poly_landmarks gml:id="poly_landmarks.1"> 

<tiger:the_geom> 

<gml:MultiSurface srsDimension="2" srsName="urn:x-
ogc:def:crs:EPSG:4326"> 

<gml:surfaceMember> 

<gml:Polygon srsDimension="2"> 

 <gml:exterior> 

  <gml:LinearRing srsDimension="2"> 

   <gml:posList>40.730647 -73.996035 
40.72999 -73.996449 40.730437 -73.997356 40.730834 -
73.998047 40.730647 -73.996035</gml:posList> 

  </gml:LinearRing> 
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"geometry_name": "the_geom", 

"properties": { 

  "LAND": 2, 

  "CFCC": "D85", 

  "LANAME": "Washington  

  Square Park"}} 

 </gml:exterior> 

</gml:Polygon></gml:surfaceMember></gml:MultiSurface> 

</tiger:the_geom> 

<tiger:LAND>2.0</tiger:LAND> 

<tiger:CFCC>D85</tiger:CFCC> 

<tiger:LANAME>Washington Square Park</tiger:LANAME> 

</tiger:poly_landmarks> 

 

Text data compression itself is a very active research topic. Classic data compression 

algorithms include: Run-length encoding (RLE; Robinson et al., 1967), Burrows–

Wheeler transform (Burrows et al., 1994), Huffman coding (Huffman, 1952), Prediction 

by partial matching (PPM; Cleary et al., 1984), LZ77 (Ziv et al., 1977), LZ78(Ziv et al., 

1978) etc. Currently, there are dozens of available data compression methods and 

toolkits derived from these algorithms. In consideration of the requirements for data 

interoperability and performance optimization, the target data compression methods for 

WFS should possess the characteristics of (1) robust and well performed in terms of 

compression speed and compression ratio; (2) widely adopted; (3) have available 

software development kits (SDK) for both server and client sides integration. The 

DEFLATE (Deutsch, 1996) and LZMA (Lempel–Ziv–Markov chain; Pavlov, 2007) 

algorithms are selected for integration and testing in this research as both are widely 

adopted. The DEFLATE algorithm is a combination of LZ77 and Huffman encoding. 

While the LZMA algorithm is a derivation of LZ77. Generally, the DEFLATE method 

compresses files faster than LZMA, but the generated files have less compression ratio 

(Li et al., 2015). 

For a WFS-supported web application, the time (∆𝑡) been saved by integrating the 

compression process equals to the time reduced on data transmission subtracts time 

used for compression and decompression. ∆𝑡 can be expressed as: 

∆𝑡 =
𝑆𝑖𝑧𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑  

𝑡𝑠
− (

𝑆𝑖𝑧𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑐𝑠
+
𝑆𝑖𝑧𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑑𝑠
) 
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Here 𝑆𝑖𝑧𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 means uncompressed data size, 𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 means compressed data 

size. 𝑐𝑠  denotes data compressing speed on the server side, 𝑑𝑠  denotes data 

decompressing speed on the client side. 𝑡𝑠 denotes data transmitting speed through the 

Internet. In this formula, 𝑆𝑖𝑧𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 can be expressed as 𝑆𝑖𝑧𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ×

(1 − 1/𝑐𝑟) , where 𝑐𝑟  denotes compression ratio of the algorithm, which equals to 

𝑆𝑖𝑧𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
. For this formula, as long as ∆𝑡 > 0 , it is worthy to integrate the 

compression/decompression component. 

In practice, factors like the computing capacity of the server system, network speed and 

the performance of compression algorithm could all affect ∆𝑡. Once the data is prepared, 

the system can adaptively select one compression algorithm with the maximum ∆𝑡:  

max ({0, ∆𝑡1, ∆𝑡2, … ∆𝑡𝑛}) 

here 0 means no compression method is needed, ∆𝑡𝑖 means saved time by using a certain 

compression method. 

 

4.4 Experiments and Performance Comparison 

We implemented the proposed optimization strategies into the WFS component of the 

open source software GeoServer. A geospatial cyberinfrastructure portal is developed for 

data retrieval and visualization. The performance of the experiments is obtained under 

such computing environment: the GeoServer and the CI portal are hosted on a server 

machine with a 6-core 3.39 GHz 64-bit Xeon CPU and 8 GB RAM running Ubuntu 

14.04.2. The client side is tested in the FireFox browser (version 51.0.1) on a laptop 

machine with a 4-core 2.90 GHz 64-bit Intel i-7 CPU and 8GB RAM running Windows 

10. The screen resolution is 1920×1080. Additionally, the experiments are conducted 

under a high Internet speed environment (50Mbps).  
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Table 9 Statistics of the datasets for experiments 

I
D Dataset name Data type 

Number 
of 
attributes 

Total 
feature 
number 

Total 
vertex 
number 

Table 
size 
before 
pre-gen 
(MB) 

Table 
size 
after 
pre-gen 
(MB) 

1 Census tract polygon 12 8057 2903671 53 136 

2 WBDHU12 polygon 19 5315 6941774 118 320 

3 NHDWaterbody polygon 12 111653 4091652 94 284 

4 NHDArea polygon 11 11790 3047995 54 140 

 

Four relatively complex geospatial datasets in the region of California State, U.S. are 

selected for the experiments. These datasets are (1) Census tract regions; (2) Watershed 

Boundary Dataset (WBD) at the level of 6 (the most detailed level in which the sub-

watersheds are recorded); (3) Areal hydrographic waterbody (NHDWaterbody) features 

and (4) Areal (NHDArea) hydrographic landmark features (U.S. Geological Survey and 

U.S. Department of Agriculture, Natural Resources Conservation Service, 2013). Details 

of the datasets are listed in Table 9 All the datasets are of polygon type and contain 

multiple attributes. The number of features in each dataset ranges from a few thousand 

(dataset 2) to hundreds of thousands (dataset3). The total number of vertices in each 

dataset exceeds one million. Each dataset is stored in a database table.  The last two 

columns of Table 3 list the data table size before and after pre-generalization. Figure 22 

visualized these four datasets. 

The proposed optimization strategies could be directly embedded into the WFS process 

pipeline as shown in Figure 21. In the pipeline, each stage’s output becomes the input of 

its following stage. In the rest of this section, we will introduce the experiments as per 

their sequential order in the pipeline.  
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Figure 22. Geospatial data layers for experiments. 1.census track polygons, 2. Watershed 
Boundary Dataset (WBD), 3. Areal hydrographic waterbody (NHDWaterbody), 4. Areal 

(NHDArea) hydrographic landmark features 

The experiments were conducted on varying scales, which correspond to different zoom 

levels in the browser: if the zoom level increases by 1, the scale of the map will double, 

and the visible region in the browser will be reduced to ¼ of the previous level. In our 

experimental environment, level 6th is the minimum level to fit the whole study area into 

the visible region. While at higher levels the client side only needs to request partial 

dataset inside of the visible region to support visualization. To keep the conciseness of 

the article, we will only introduce our experiments at the 6th level, which is the worst case 

since the entire datasets will be processed. At the end of this section, we will compare the 

WFS performance with and without optimizations on the dimension of varying scales. 

4.4.1 Generalization 

The pre-generalization is conducted by following the rules in section 0 and using the DP 

algorithm. The original geometries, attributes and generalized geometries of a dataset 

1 2 

4 3 
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are stored as a single data table in a spatial database, i.e. PostGIS. The advantage of 

using a database table to store such information is to avoid duplicated storage of 

attribute data when they are stored in independent files.  

 

Figure 23. Comparison of vector layer generalization results by using different distance 
tolerances and different generalization algorithms 

Figure 23 demonstrates the generalized census tract layer by using different distance 

tolerances and generalization algorithms. The ADT is calculated with 𝛼 = 0.6 and the 

polygon boundaries’ width are set to 1 pixel.  Figure 23 (a) presents the original layer. In 

Figure 23(b), the layer is generalized with ADT using DP algorithm. Barely any 

(a) 
Original 
Total point count: 2903671 
File size: 137.26MB 

(b) 
Generalization: DP 
Distance tolerance: ADT 
Total point count: 46053 
File size: 7.91MB 

(c) 
Generalization: DP 
Distance tolerance: 2×ADT 
Total point count: 19537 
File size: 6.69MB 

(d) 
Generalization: TP 
Distance tolerance: 2×ADT 
Total point count: 47734 
File size: 7.99MB 
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difference could be observed from the graphics, but the data size is significantly 

decreased after the generalization: total points number in Figure 23(b) is only 1.59% of 

the original data (from 2903671 to 46053) and the file size is only 5.76% of the original 

file (from 137.26 Mb to 7.91 MB, GeoJSON format). If we increase the DT for DP 

generalization from 𝐴𝐷𝑇  to 2𝐴𝐷𝑇 , there will be some obvious differences in the 

metropolitan areas of California State, including San Francisco, Los Angeles and San 

Diego – the reason for the hollow areas is because some polygons are deleted entirely 

due to their tiny size. Figure 23 (d) demonstrates the layer generalized by using TP with 

2ADT. The map is comparable with the original one in Figure 23 (a). Since small 

polygons are preserved after the generalization, the result is suitable for spatial analysis 

on the client side. However, the tradeoff is time consumption for the TP algorithm is 

longer than the DP algorithm. Users could select appropriate generalization according to 

their application requirements. We will mainly use DP for the rest experiments.  

Figure 24 demonstrates the decrease of vertex number in each layer by the two stages of 

generalization: there are very significant vertex reductions in the first stage of pre-

generalization (Figure 24(A)); then in the second stage of on-the-fly generalization, it 

could also achieve approximately 30% points reduction. 
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Figure 24. Comparison of total points reduction in two stages of generalization. A: pre-
generalization; B: on-the-fly generalization 

4.4.2 Attributes filtering 

As we discussed in section 0, although the attributes of layer features are informative, it 

is not always necessary to provide all of them at the first time of a data request. For the 

purpose of presenting data faster, only the geometries and another one or two key 

attributes need to be initially retrieved. Other attributes can then be gradually 

transmitted upon users’ demands. Figure 25 demonstrates the comparison of file size 

before and after the attributes filtering optimization. For all the four testing datasets, the 

file sizes dropped for more than 60% after the attributes filtering. Indeed, the number of 

attributes in each layer decides how much of the size could be reduced – significant data 

size reduction can be achieved in this experiment because all these layers contain more 

than 10 attributes (Table 9). The experimental results also indicate that the file sizes 

encoded by GeoJSON are smaller than those encoded by GML. 
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Figure 25. Comparison of file sizes before and after attribute filtering 

4.4.3 Data compression 

 

Figure 26. Comparison of file sizes before and after compression 

After the last stage of attribute filtering, the content of the layers has been prepared. 

Before sending those layers back to the client side, compression is conducted on the data 

files to reduce data size and save network transmission time. Figure 26 presents the file 

sizes before and after the compression. As the graphic shows, both the DEFLATE and 

LZMA could achieve very good compression rate, while the LZMA method does a better 

job in getting smaller compressed files. Another interesting finding is, for the same 
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dataset and same compression method, the compressed files have approximately the 

same size, for either GML or GeoJSON encoding. Finally, no matter which encoding 

method or compression method is used, the file sizes of all 4 layers are less than 1 MB 

after the compression. 

4.4.4 Overall performance comparison 

This section introduces the overall performance improvements in terms of time 

consumptions and file sizes after applying all optimization strategies. The experiments 

were conducted on varying scales, which begin from zoom level 6th and ends at zoom 

level 16th in the map. 

In a complete a WFS request-response cycle, the raw feature data will go through eight 

processing stages, including: (1) data preparation (e.g. read original data from driver or 

database); (2) on-the-fly generalization; (3) encoding the features into specific formats 

(e.g. GML or GeoJSON); (4) data compression; (5) data transmission through the 

internet; (6) data decompression on the client side; (7) feature decoding and (8) layer 

rendering in browser.  

Among these stages, the 3rd, 4th and 5th are coupled: At stage 3, the features of a layer are 

sequentially encoded into an output stream in the memory. While for the compression 

component at stage 4, it could begin the compressing work as long as there is content in 

the output stream of stage 3, instead of wait until stage 3 finishes all its work. In other 

words, the encoding and compression process could work simultaneously. The data 

transmission component works in the same mode. Consequently, the time used for these 

three steps cannot be separated from each other. The total time for WFS process could 

be calculated as: 

𝑇 = 𝑡𝑝𝑟𝑒 + 𝑡𝑔𝑒𝑛 + 𝑡𝑒𝑐𝑡 + 𝑡𝑑𝑐𝑜𝑚 + 𝑡𝑑𝑐𝑜𝑑 + 𝑡𝑟𝑑 
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Here, 𝑡𝑝𝑟𝑒  denotes time for data preparing, 𝑡𝑔𝑒𝑛 denote on-the-fly generalization time, 

𝑡𝑒𝑐𝑡 means the times used for encoding, compression and transmission. 𝑡𝑑𝑐𝑜𝑚 and 𝑡𝑑𝑐𝑜𝑑 

represent decompression and decoding time. And 𝑡𝑟𝑑 denotes time for layer rendering. 

 

Figure 27. Comparison of time consumption at different zoom levels before and after 
applying the optimization strategies 

 

Figure 27 demonstrates the total time consumption for WFS processing at different 

zoom levels. In the graphic, different data layers are presented with different colors. 

Three types of processing methods are compared: (1) process with no optimization (lines 

with solid dots); (2) process with all optimization strategies and use DEFLATE for 

compression (lines without dot); (3) process with all optimization strategies and use 

LZMA for compression (lines with hollow dots). According to the graphic, as the zoom 

level increases, since the area of visible region decreases, performance of all processing 

methods get better. But at low zoom levels, WFS performances are significantly 

improved after applying the optimization strategies. Especially for the cases using 

DEFLATE for compression, the WFS process time is controlled under 10 seconds for any 

dataset at any zoom level. 
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Figure 28 shows the details of time consumption at different stages of WFS processing at 

zoom level 6 – where the whole datasets are processed. Obviously, 𝑡𝑝𝑟𝑒, 𝑡𝑒𝑐𝑡, 𝑡𝑑𝑐𝑜𝑑 and 𝑡𝑟𝑑 

are much shorter after applying the optimization strategies. Benefiting from the pre-

generalization process, 𝑡𝑔𝑒𝑛 is very short as well. Time been used for compression and 

decompression by LZMA are longer than DEFLATE, which should be the main reason 

that optimization with DEFLATE performs better than with LZMA. According to the 

experimental results, DEFLATE is a better choice than LZMA for compression in time-

critical application scenarios, such as real-time environemnt monotoring or public data 

service.  

 

Figure 28. Details of time consumption at different stages of WFS processing (level 6th) 

 Figure 29 demonstrates how the sizes of layers for transmission are reduced after 

applying the optimization strategies. The data package for transmission is controlled 

within 1 MB for any dataset at any zoom level. In fact, for the two compression methods, 

LZMA could achieve better compression ratio than DEFLATE. Therefore, for the 
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application scenarios with low or limited network bandwidth, i.e. emergency rescue or 

field investigation, LZMA is a preferred optmization strategy for compression. 

 

 

 Figure 29. Comparison of data sizes at different zoom levels for transmission 

 

4.4.5 An extension to a nation-wide dataset 

In this section, we use a much larger dataset – census tract polygons of the entire United 

States – to test the capability of our methods. Figure 30 demonstrates the profile of the 

dataset, which originally contains 73682 polygons and 35.8 million vertices. If all the 53 

properties are considered, the original file is larger than 1GB in GML format. Under the 

former experiment environment, level 4 is the minimum level to fit the layer into a 

visible region.  
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Figure 30 Census tract data of United States 

Figure 31 summarizes the experimental results at each data processing stage on the 

server side for visualization at level 4th. We can observe that in every step the data size 

gets significantly reduced. The final compressed data files for transmission through the 

Internet are less than 2 MB. 

 

Figure 31 Experiment summary on testing the US census tract data 

Figure 32 shows the comparison of overall performance in time consumption. If the WFS 

model is not optimized (as shown in blue color), at lower zoom levels where many 

geometries will be returned, it will cause the “memory over flow” exceptions in browser. 

The data can only be visualized at 8th level or higher. However, after our optimization, 

the data can be successfully visualized at any level while the time is controlled under a 
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reasonable range (less than 15 seconds for the worst case by using DEFLATE 

compression). 

 

 

Figure 32 Time consumptions at different zoom levels and using different optimization 
strategies for US census tract data. 

The results show that our optimization methods also work well with large datasets. The 

main reason is, no matter how large the original datasets are, the size of screen for 

visualization on the client side is fixed. Larger regions will result in greater ADTs, which 

means we can use a loosen distance tolerance for data generalization. After 

generalization, the size of resultant file will be greatly reduced. Since a two-step 

generalization strategy is adopted, the most time-consuming part is the first step but this 

is already finished at the data preparing stage. The time used for on-the-fly 

generalization will not become significant. Hence, this strategy guarantees the efficiency 

for processing large datasets.  
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4.5 A cyberinfrastructure implementation and graphic user interface 

 

Figure 33. GUI of the CI portal for feature data visualization 

Figure 33 demonstrates our GCI web portal. This portal could retrieve, manage and 

visualize any map or vector layers published by OGC’s WMS and WFS standards. The 

proposed optimization strategies and rich interactive functionalities have been 

implemented in this portal for feature visualization and analysis. For the WFS server 

which hosts all the experiment data at the backend, the light-weighted metadata 

information of all its vector layers will be retrieved and made available to users. 

According to this metadata information and current computing and network status, the 

system will calculate the best WFS request parameters. Users could customize the 

parameters as well. After the features of a layer are requested and delivered, they will be 

presented in the map immediately. Besides, users could browse the attribute information 
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of the layer; customize layer’s symbology scheme according to their attributes and 

conduct statistics on the features.  

The Watershed Boundary Dataset for the experiment is presented in the map. After 

applying the optimization strategies, the data layer could be retrieved and visualized 

rapidly. The color of each feature in the layer is set according to their hydrologic unit 

type. The “table data analysis” component provides the function of attribute value 

browsing for each feature (Figure 33, up-right corner). The component could also 

conduct statistics on a layer’s attributes and present the results to users in graphic 

(Figure 33, bottom-right corner). 

 

4.6. Conclusion 

To achieve the goal of supporting real-time spatial feature sharing and visual analytics 

for massive datasets, this chapter introduces a comprehensive optimization strategy to 

improve the performance of WFS. The following optimization strategies are introduced 

and embedded in the WFS process pipeline: 1) Combination of pre-generalization and 

real-time generalization for multiple layers; 2) Separated data transmission processes of 

features’ geometries and attributes; 3) Dynamic adoption of data 

compression/decompression methods according to the network status. We have 

successfully integrated these optimization strategies into a WFS server and conduct 

corresponding comparison experiments on 4 relatively complex datasets for California 

area and a large dataset for the U.S. According to the experimental results, significant 

performance improvements are achieved: in the worst case when the whole dataset is 

requested, the total WFS processing time is reduced by 90% in general. 

Major advantages of the proposed methodology include that all these strategies are 

independent of each other and can be flexibly assembled. In addition, the data 
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processing pipeline does not rely on any specific dataset or generalization algorithm or 

compression algorithm: data providers could select appropriate generalization methods 

and compression algorithms to be integrated into the pipeline to address different needs. 

Data consumers could also select the combination of the optimization strategies 

according to their demands and the network/system environment. For example: in the 

application scenario in which visualization is the main purpose of data querying, i.e. to 

develop a real-time water quality visualization and monitoring system, DP generalization 

algorithm and DEFLATE compression method could be employed. Meanwhile, 

interactive and user-friendly web portals can be designed and implemented as well to 

help users better understand and use the vector datasets. On the other hand, if data 

analyses are needed in addition to visualization, users can choose more rigorous 

generalization algorithms like topology preserving algorithm, or directly use the non-

generalized dataset for their analyses on the client side. Another more feasible way is by 

taking advantage of geo-cyberinfrastructure, spatial analyses can be conducted on the 

server side or on cloud with more powerful CPUs and well-designed algorithms. Then 

analysis results with generalized layer can be returned to the client side using our current 

proposed strategies for visualization and decision making (Li et al., 2016a; Yang et al., 

2010, 2017; Wright et al., 2011). 

To leverage the usage of our work, more research will be conducted on the two directions 

of: (1) employ cloud computing platform and parallel computing strategies to enhance 

the WFS service capacity and deal with synchronously requests from different users. (2) 

design and implement interactive and user-friendly web application to help users better 

understand and use the vector datasets. As the importance of data sharing is well-

recognized by scientific community, the demand for building interactive and intelligent 

geospatial web applications is becoming more urgent in both the fields of scientific 
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research and daily use. In this context, we expect our work to widen the interoperability 

of vector data and the adoption of WFS in future. 
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5 GEOCI: THE COMPREHENSIVE CYBERGIS PLATFORM 

THAT INTEGRATES ALL THE COMPONENTS TOGETHER 

The three research topics of my dissertation have all been successfully implemented and 

integrated into the comprehensive CyberGIS platform – GeoCI. These components are 

tightly combined with the basic GIS functionalities in the platform, making it capable of 

helping users to accomplish a wide range of analysis tasks, such as geospatial data 

discovery, data integration, data management, user account and workspace management, 

spatial data visualization, exploratory data visual analytics, spatial and spatial-temporal 

data analysis, high-volume spatial transmission and visualization etc. Besides these 

functionalities, rich documentation, tutorials, and well-designed spatial analysis study 

cases are provided as well to help the beginners to get familiar with the system. 

Figure 34 demonstrates the architecture of the GeoCI and how different components 

interact with each other, including the primary components of 1. User management, 2. 

Semantic enhanced geospatial data search engine 3. High-performance feature data 

transmission component and 4. WebPySAL on the server side and the interactive GCI 

portal on the client side. 

Firstly, a complete user management tool is implemented in GeoCI. Each user needs to 

apply for a user account. In their own account, users can create and manipulate multiple 

workspaces for different research topics, and specific its spatial reference system. Then, 

users will be able to add and delete data layers in each workspace. Besides the workspace 

management functions, users can also customize the system's behaviors and save them 

to their own configuration file.  
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All the information will be stored into the relational database on the server side, making 

the working environment available to users anywhere and anytime as long as they have 

access to the Internet. Figure 35 demonstrates the workspace management tool (Figure 

35 (a)) and data layer management tool (Figure 35 (b)) in GeoCI. 

 

Figure 35 The workspace management tool (a) and layer management tool (b) in GeoCI 

One of the most important resources of GeoCI is the metadata dataset collected from 

thousands of open geospatial data servers around the world. These metadata records are 

stored in the local database and act as the building concrete of the semantic data search 

engine (Chapter Two). When the user provides the searching keywords and filtering 

conditions, the search engine will find the most related geospatial data records and 

return them to the client side. The metadata information and thumbnail of the data 

layers will be presented to in an interactive dialogue for the user to select (Figure 8). 

When the user selects the layers of interest, they will be added to the current workspace 

for later visualization and analysis (Figure 9). 

This platform also provides fused social economic and natural disaster datasets for the 

spatial analysis showcases. OGC's open geospatial data sharing standards such as WFS 

and WMS are adopted for sharing the high volume geospatial datasets, making them 

discoverable in our semantic search engine just like other datasets. More than that, the 

data publishing service in GeoCI harnesses the optimized spatial feature sharing and 
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visual analytics technologies developed in Chapter Three in order to transmit, visualize 

and process large volume geospatial datasets rapidly (Figure 32, Figure 33). 

After the steps of data search and management, users can then go further to conduct 

exploratory visual analytics and spatial/space-time analyses on their selected datasets by 

using the analysis modules provided by GeoCI. Figure 36 (a) demonstrates one of the 

basic visual analysis function in GeoCI. Figure 36 (b) presents the advanced space-time 

analysis modules integrated into GeoCI as a list, including the modules in WebPySAL 

(Chapter Four). Most of the analysis modules are implemented as standard WPS service, 

which means they can be seamlessly integrated into third-party GIS platforms as long as 

they support WPS as well. For these integrated spatial analysis modules, interactive and 

sophisticated UIs are meticulously designed to help users interpret and understand the 

analysis results (Figure 17, Figure 18, Figure 19). 

 

Figure 36 basic visual analysis functions (a) and the list of advanced space-time analysis 
functions in GeoCI 

Finally, abundant documentation, tutorials, and additional functionalities are provided 

in GeoCI to help users quickly get familiar with the system and educate them to use the 

spatial analysis modules step by step. Figure 37 (a) presents the static help document 

introducing the general functions of GeoCI. Figure 37 (b) demonstrates an interactive 

tutorial which guides users to conduct the geospatial data search step by step.  
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Figure 37 Static help documentation (a) and interactive tutorial (b) provided by GeoCI 

As I mentioned before, integrating all the components together as a synthetic system 

could help enhance the capacity of each other in helping users accomplishing complex 

tasks. A working instance of GeoCI is hosted on http://cici.lab.asu.edu/gci2. The system 

is still under development and more functionalities are going to be integrated in near 

future. 

  

 

   

http://cici.lab.asu.edu/gci2
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6 CONCLUSION 

This dissertation is mainly dedicated to addressing some critical issues or improving the 

performance of existing methodologies and systems in the field of CyberGIS. Main 

findings and achievements are listed below. 

There are oceans of open geospatial data been shared on the Internet in nowadays, 

however, the disconnected and heterogeneous nature of the datasets have greatly limited 

their usage to the potential data consumers. In chapter 2, I designed and implemented a 

semantic enhanced data discovery system which adopts the state-of-art word and phrase 

representation methodologies from the natural language processing (NLP) filed to 

automatically extract semantic relationships among individual words and phrases in the 

metadata. At the same time, multiple metadata enrichment strategies and result ranking 

methods are introduced into the system to improve the quality of the data searching 

result. With the help of this data discovery system, 1. The semantic relationship between 

words and phrases in the metadata could be extracted and stored into the semantic 

database. 2. This semantic database could help significantly improve the recall rate of the 

data search results. 3. With the help of metadata quality enhancement methods and 

result ranking methods, the precision of data searching result could also been improved. 

4. Most of the working flow could be conducted automatically without much labor inputs, 

making it very suitable to handle large dataset. The data discovery system is 

implemented and integrated into the GeoCI cyberinfrastructure portal for providing the 

search functionalities to public users.  

Besides the increasement of available geospatial datasets, the GIScience has also ushered 

tremendous development in recent decades that numerous new methodologies and 

algorithms have been invented. Meanwhile there exist numbers of vibrant GIScience 

teams working on integrating the most advanced algorithms and methodologies into 
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open source libraries or software toolkits. Harnessing these open source toolkits on the 

big data and HPC environment and making them accessible to public users could bring 

immediate benefits to the GIScience community. In chapter 3, I established the 

WebPySAL as a working instance instead of a prototype to fulfill such task. Much efforts 

are dedicated to introducing the strategies and methodologies to guarantee the 

interoperability and replicability in the practice of implementing a standard geospatial 

web processing service. An interactive and user-friendly GUI is developed to assist users 

in conducting exploratory spatial/spatiotemporal data analysis with massive open access 

geospatial data sets. In addition to potential benefits this work brings by bridging spatial 

analysis toolkits with CyberInfrastructure, the design and implementation of this system 

could potentially help users who are lack of GIScience background knowledge or 

programming skills to better understand and adopt advanced spatial analytical 

methodologies.  

Feature dataset which contains both geometries and attributes information of the study 

objects is the most popular data types for visualizations and analyses in scientific 

research. However, the huge volume nature of the feature datasets has hindered their 

wide adoption in the web-based working environment, especially in those time critical 

application scenarios. In chapter 4, I introduce a comprehensive optimization strategy to 

improve the performance of feature sharing methods through the internet. The following 

optimization strategies are introduced and embedded in the WFS process pipeline: 1. 

Combination of pre-generalization and real-time generalization for multiple layers; 2. 

Separated data transmission processes of features’ geometries and attributes; 3. 

Dynamic adoption of data compression/decompression methods according to the 

network status. These optimization strategies are successfully integrated into a WFS 

server and corresponding comparison experiments conducted on different complex 

datasets. According to the experimental results, significant performance improvements 
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are achieved: in the worst case when the whole dataset is requested, the total WFS 

processing time is reduced by 90% in general. 

Besides the findings and achievements in each individual work, a CyberGIS portal 

named GeoCI is established during my Ph.D. period. All the components result from the 

individual research have been integrated into GeoCI and work as a well-integrated 

system. In the system, the individual components could interact with each other and 

enhance each other’s capacity in helping users accomplish tasks from geospatial data 

discovery to exploratory spatial and spatial-temporal analyses. The system 

implementation work is introduced in chapter 5. Putting all these together, I believe my 

work possess the great potential in helping users take advantage of the advanced 

technologies and spatial analysis methods in GIScience field. And a step further, this 

work could also help leverage the collaboration work among researchers from different 

discipline in future. 

The future working directions of my research will include the following points: 

In terms of data discovery, 1) A more precise evaluation system should be implemented 

to measure the improvement of precision and recall rate of the geospatial data searching 

system compared with the baseline system based on full-text match search and LSI 

method. 2) In this research, the POS method is adopted for extracting phrases from our 

metadata. In future, some more sophisticated entity recognition methods based on the 

neural network models will be introduced into the system to improve the searching 

result. 3) There exist a few high-quality geospatial ontology knowledgebases (e.g. GCMD). 

Introducing these knowledgebases into the result filtering and ranking stages in the 

system could potentially improve the searching result as well. 
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For the WebPySAL work. Firstly, WebPySAL will be published as a member of PySAL’s 

family on GitHub15, and the integration work of PySAL’s advanced spatial analysis 

functionalities will be continued. An active instance of WebPySAL is currently available 

at http://cici.lab.asu.edu:5002. Parallel spatial analysis modules will be integrated into 

WebPySAL to leverage the HPC resources in CyberInfrastructure to help solve more 

challenging tasks in the future.  

To leverage the usage of data transmission optimization work, more research will be 

conducted on the two directions of: 1) employ cloud computing platform and parallel 

computing strategies to enhance the WFS service capacity and deal with synchronously 

requests from different users. 2) design and implement interactive and user-friendly web 

application to help users better understand and use the vector datasets. As the 

importance of data sharing is well-recognized by scientific community, the demand for 

building interactive and intelligent geospatial web applications is becoming more urgent 

in both the fields of scientific research and daily use. In this context, I expect my work to 

widen the interoperability of vector data and the adoption of WFS in future. 

  

                                                 

15
 https://github.com/pysal 

http://cici.lab.asu.edu:5002/
https://github.com/pysal
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