18 research outputs found

    RF Photonic Vector Modulation and Demodulation Techniques for Millimeter-Wave Communications

    Get PDF
    RF photonic techniques for modulating and demodulating microwave and millimeter-wave signals on RF carriers are theoretically analyzed and experimentally demonstrated. The two demodulating configurations utilize cascaded electrooptic phase-modulation followed by optical filtering. The spurious free dynamic ranges of these configurations are measured and a technique to intrinsically linearize the latter system to fifth-order is experimentally confirmed. Measurements are then performed at frequencies between 7 and 70 GHz that verify RF photonic based downconversion using a harmonic of the electrical local oscillator (LO). Furthermore, this architecture is extended to allow for vector demodulation of digitally-encoded signals. Results of RF photonic demodulation of 4-quadrature amplitude modulation (QAM) and 16-QAM RF encoded millimeter-wave signals are presented. Two RF photonic techniques for generating and encoding millimeter-wave RF signals are analyzed and experimentally demonstrated. The first uses phase-modulation and optical filtering in an interferometric configuration. Phase-shift keyed encoded microwave and millimeter-wave signals are electrooptically synthesized using a harmonic of the electrical LO at data-rates of up to 6 Gbps and frequencies of up to 40 GHz. A second RF photonic scheme is developed to allow for vector modulation and upconversion using dual-drive Mach-Zehnder modulators. Vector modulation and upconversion are then shown at harmonics of the LO up to the fourth-order and at frequencies up to 60 GHz. Moreover, generation of 2.488 Gbps 4-QAM signals on a 36 GHz carrier using the second harmonic of the LO are demonstrated with this approach. Wired and wireless microwave and millimeter-wave transmission experiments are successfully conducted with the RF photonic systems detailed above in a laboratory environment

    Radio over fiber enabling PON fronthaul in a two-tiered cloud

    Get PDF
    Avec l’avènement des objets connectés, la bande passante nécessaire dépasse la capacité des interconnections électriques et interface sans fils dans les réseaux d’accès mais aussi dans les réseaux coeurs. Des systèmes photoniques haute capacité situés dans les réseaux d’accès utilisant la technologie radio sur fibre systèmes ont été proposés comme solution dans les réseaux sans fil de 5e générations. Afin de maximiser l’utilisation des ressources des serveurs et des ressources réseau, le cloud computing et des services de stockage sont en cours de déploiement. De cette manière, les ressources centralisées pourraient être diffusées de façon dynamique comme l’utilisateur final le souhaite. Chaque échange nécessitant une synchronisation entre le serveur et son infrastructure, une couche physique optique permet au cloud de supporter la virtualisation des réseaux et de les définir de façon logicielle. Les amplificateurs à semi-conducteurs réflectifs (RSOA) sont une technologie clé au niveau des ONU(unité de communications optiques) dans les réseaux d’accès passif (PON) à fibres. Nous examinons ici la possibilité d’utiliser un RSOA et la technologie radio sur fibre pour transporter des signaux sans fil ainsi qu’un signal numérique sur un PON. La radio sur fibres peut être facilement réalisée grâce à l’insensibilité a la longueur d’onde du RSOA. Le choix de la longueur d’onde pour la couche physique est cependant choisi dans les couches 2/3 du modèle OSI. Les interactions entre la couche physique et la commutation de réseaux peuvent être faites par l’ajout d’un contrôleur SDN pour inclure des gestionnaires de couches optiques. La virtualisation réseau pourrait ainsi bénéficier d’une couche optique flexible grâce des ressources réseau dynamique et adaptée. Dans ce mémoire, nous étudions un système disposant d’une couche physique optique basé sur un RSOA. Celle-ci nous permet de façon simultanée un envoi de signaux sans fil et le transport de signaux numérique au format modulation tout ou rien (OOK) dans un système WDM(multiplexage en longueur d’onde)-PON. Le RSOA a été caractérisé pour montrer sa capacité à gérer une plage dynamique élevée du signal sans fil analogique. Ensuite, les signaux RF et IF du système de fibres sont comparés avec ses avantages et ses inconvénients. Finalement, nous réalisons de façon expérimentale une liaison point à point WDM utilisant la transmission en duplex intégral d’un signal wifi analogique ainsi qu’un signal descendant au format OOK. En introduisant deux mélangeurs RF dans la liaison montante, nous avons résolu le problème d’incompatibilité avec le système sans fil basé sur le TDD (multiplexage en temps duplexé).With the advent of IoT (internet of things) bandwidth requirements triggered by aggregated wireless connections have exceeded the fundamental limitation of copper and microwave based wireless backhaul and fronthaul networks. High capacity photonic fronthaul systems employing radio over fiber technology has been proposed as the ultimate solution for 5G wireless system. To maximize utilization of server and network resources, cloud computing and storage based services are being deployed. In this manner, centralized resources could be dynamically streamed to the end user as requested. Since on demand resource provision requires the orchestration between the server and network infrastructure, a smart photonic (physical layer)PHY enabled cloud is foreseen to support network virtualization and software defined network. RSOAs (Reflective Semiconductor Optical Amplifier) are being investigated as key enablers of the colorless ONU(Optical Network Unit) solution in PON (Passive Optical Network). We examine the use of an RSOA in radio over fiber systems to transport wireless signals over a PON simultaneously with digital data. Radio over fiber systems with flexible wavelength allocation could be achieved thanks to the colorless operation of the RSOA and wavelength reuse technique. The wavelength flexibility in optical PHY are inline with the paradigm of software defined network (SDN) in OSI layer 2/3. The orchestration between optical PHY and network switching fabric could be realized by extending the SDN controller to include optical layer handlers. Network virtualization could also benefit from the flexible optical PHY through dynamic and tailored optical network resource provision. In this thesis, we investigate an optical PHY system based on RSOA enabling both analog wireless signal and digital On-Off Keying (OOK) transportation within WDM (Wavelength Division Multiplexing) PON architecture. The RSOA has been characterized to show its potential ability to handle high dynamic range analog wireless signal. Then the RF and IF radio over fiber scheme is compared with its pros and cons. Finally we perform the experiment to shown a point to point WDM link with full duplex transmission of analog WiFi signal with downlink OOK signal. By introducing two RF mixer in the uplink, we have solved the incompatible problem with TDD (Time Division Duplex) based wireless system

    Digital Doppler-cancellation servo for ultra-stable optical frequency dissemination over fiber

    Full text link
    Progress made in optical references, including ultra-stable Fabry-Perot cavities, optical frequency combs and optical atomic clocks, have driven the need for ultra-stable optical fiber networks. Telecom-wavelength ultra-pure optical signal transport has been demonstrated on distances ranging from the laboratory scale to the continental scale. In this manuscript, we present a Doppler-cancellation setup based on a digital phase-locked loop for ultra-stable optical signal dissemination over fiber. The optical phase stabilization setup is based on a usual heterodyne Michelson-interferometer setup, while the Software Defined Radio (SDR) implementation of the phase-locked loop is based on a compact commercial board embedding a field programmable gate array, analog-to-digital and digital-to-analog converters. Using three different configurations including an undersampling method, we demonstrate a 20 m long fiber link with residual fractional frequency instability as low as 101810^{-18} at 1000 s, and an optical phase noise of 70-70 dBc/Hz at 1 Hz with a telecom frequency carrier.Comment: 11 pages, 6 figure

    Linear and Spectrally Agile Integrated Microwave Photonic Devices and Subsystems

    Get PDF
    The goal of this research is to advance analog photonic communication systems through three major efforts: 1) to develop high performance microwave photonic filters, 2) to intrinsically linearize the integrated photonic component that contributes most to nonlinearities, i.e. the photonic modulator, and 3) to demonstrate microwave frequency tunable functions using integrated photonic platforms, e.g. frequency conversion. The first effort addresses a major need for microwave photonics, namely few-GHz or less optical filters. The second effort enhances the performance of current integrated modulators to achieve metrics suitable for demanding applications in defense, cellular fronthaul networks, and traditional telecom. The third effort provides necessary groundwork to enable the commercialization or implementation of next generation communication systems while advancing the understanding of such complex microwave photonic systems. The demonstration of microwave frequency tunable (“spectrally agile”) architectures includes the design, simulation, characterization, and intuitive understanding of such systems. Overall, this work addresses current and future needs in microwave photonics related industries by investigating both device-level and system-level solutions to achieve greater performance using integrated photonic technologies.Ph.D

    High Capacity Radio over Fiber Transmission Links

    Get PDF

    Analog Radio-over-Fiber for 5G/6G Millimeter-Wave Communications

    Get PDF

    Millimetre-Wave Fibre-Wireless Technologies for 5G Mobile Fronthaul

    Get PDF
    The unprecedented growth in mobile data traffic, driven primarily by bandwidth rich applications and high definition video is accelerating the development of fifth generation (5G) mobile network. As mobile access network evolves towards centralisation, mobile fronthaul (MFH) architecture becomes essential in providing high capacity, ubiquitous and yet affordable services to subscribers. In order to meet the demand for high data rates in the access, Millimetre-wave (mmWave) has been highlighted as an essential technology in the development of 5G-new radio (5G-NR). In the present MFH architecture which is typically based on common public radio interface (CPRI) protocol, baseband signals are digitised before fibre transmission, featuring high overhead data and stringent synchronisation requirements. A direct application of mmWave 5G-NR to CPRI digital MFH, where signal bandwidth is expected to be up to 1GHz will be challenging, due to the increased complexity of the digitising interface and huge overhead data that will be required for such bandwidth. Alternatively, radio over fibre (RoF) technique can be employed in the transportation of mmWave wireless signals via the MFH link, thereby avoiding the expensive digitisation interface and excessive overhead associated with its implementation. Additionally, mmWave carrier can be realised with the aid of photonic components employed in the RoF link, further reducing the system complexity. However, noise and nonlinearities inherent to analog transmission presents implementation challenges, limiting the system dynamic range. Therefore, it is important to investigate the effects of these impairments in RoF based MFH architecture. This thesis presents extensive research on the impact of noise and nonlinearities on 5G candidate waveforms, in mmWave 5G fibre wireless MFH. Besides orthogonal frequency division multiplexing (OFDM), another radio access technology (RAT) that has received significant attention is filter bank multicarrier (FBMC), particularly due to its high spectral containment and excellent performance in asynchronous transmission. Hence, FBMC waveform is adopted in this work to study the impact of noise and nonlinearities on the mmWave fibre-wireless MFH architecture. Since OFDM is widely deployed and it has been adopted for 5G-NR, the performance of OFDM and FBMC based 5G mmWave RAT in fibre wireless MFH architecture is compared for several implementations and transmission scenarios. To this extent, an end to end transmission testbed is designed and implemented using industry standard VPI Transmission Maker® to investigate five mmWave upconversion techniques. Simulation results show that the impact of noise is higher in FBMC when the signal to-noise (SNR) is low, however, FBMC exhibits better performance compared to OFDM as the SNR improved. More importantly, an evaluation of the contribution of each noise component to the overall system SNR is carried out. It is observed in the investigation that noise contribution from the optical carriers employed in the heterodyne upconversion of intermediate frequency (IF) signals to mmWave frequency dominate the system noise. An adaptive modulation technique is employed to optimise the system throughput based on the received SNR. The throughput of FBMC based system reduced significantly compared to OFDM, due to laser phase noise and chromatic dispersion (CD). Additionally, it is shown that by employing frequency domain averaging technique to enhance the channel estimation (CE), the throughput of FBMC is significantly increased and consequently, a comparable performance is obtained for both waveforms. Furthermore, several coexistence scenarios for multi service transmission are studied, considering OFDM and FBMC based RATs to evaluate the impact inter band interference (IBI), due to power amplifier (PA) nonlinearity on the system performance. The low out of band (OOB) emission in FBMC plays an important role in minimising IBI to adjacent services. Therefore, FBMC requires less guardband in coexistence with multiple services in 5G fibre-wireless MFH. Conversely, OFDM introduced significant OOB to adjacent services requiring large guardband in multi-service coexistence transmission scenario. Finally, a novel transmission scheme is proposed and investigated to simultaneously generate multiple mmWave signals using laser heterodyning mmWave upconversion technique. With appropriate IF and optical frequency plan, several mmWave signals can be realised. Simulation results demonstrate successful simultaneous realisation of 28GHz, 38GHz, and 60GHz mmWave signals

    Semiconductor Optical Amplifiers and mm-Wave Wireless Links for Converged Access Networks

    Get PDF
    Future access networks are converged optical-wireless networks, where fixed-line and wireless services share the same infrastructure. In this book, semiconductor optical amplifiers (SOA) and mm-wave wireless links are investigated, and their use in converged access networks is explored: SOAs compensate losses in the network, and thereby extend the network reach. Millimeter-wave wireless links substitute fiber links when cabling is not economical

    High-precision optical and microwave signal synthesis and distribution

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 135-148).In this thesis, techniques for high-precision synthesis of optical and microwave signals and their distribution to remote locations are presented. The first topic is ultrafast optical pulse synthesis by coherent superposition of mode-locked lasers. Timing and phase synchronization of ultrabroadband Ti:sapphire and Cr:forsterite mode-locked lasers is studied. Subfemtosecond (1 h) 3-mrad level phase stability of a 10.225 GHz microwave signal extracted from a mode-locked laser is demonstrated. The third topic is timing stabilized fiber links for large-scale timing distribution. Precise optical timing distribution to remote locations can result in synchronization over long distances. In doing so, acoustic noise and thermal drifts introduced to the fiber links must be canceled by a length-correction feedback loop. A single type-II phase-matched PPKTP crystal is used to construct a compact and self-aligned balanced optical cross-correlator for precise timing detection.(cont.) Using this correlator, a 310 m long fiber link is stabilized with long-term sub-10 fs accuracy. The final topic is photonic analog-to-digital conversion of high-frequency microwave signals. Sampling of high-frequency (>10 GHz) microwave signals is challenging due to the required aperture jitter below 100 fs. An optical subsampling down- converter for analog-to-digital conversion of narrowband high-frequency microwave signals is studied. The measured signal to noise-and-distortion ratio of 1-Mbps signals at 9.5 GHz carrier frequency is 22 dB over 2 MHz bandwidth. By integrating the demonstrated techniques, large-scale femtosecond-precision timing distribution and synchronization systems can be implemented.by Jungwon Kim.Ph.D
    corecore