
LINEAR AND SPECTRALLY AGILE INTEGRATED MICROWAVE 

PHOTONIC DEVICES AND SUBSYSTEMS 

 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Christian G. Bottenfield 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Electrical & Computer Engineering 

 

 

 

 

 

 

 

Georgia Institute of Technology 

December 2021 

 

 

Copyright © 2021 by Christian G. Bottenfield 

 



LINEAR AND SPECTRALLY AGILE INTEGRATED MICROWAVE 

PHOTONIC DEVICES AND SUBSYSTEMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:  

  

Dr. Stephen E. Ralph, Advisor 

School of Electrical & Computer 

Engineering 

Georgia Institute of Technology 

Dr. Madhavan Swaminathan 

School of Electrical & Computer 

Engineering 

Georgia Institute of Technology 

  

Dr. John D. Cressler 

School of Electrical & Computer 

Engineering 

Georgia Institute of Technology 

Dr. Peter J. Delfyett 

College of Optics & Photonics 

University of Central Florida 

  

Dr. Sorin Tibuleac 

School of Electrical & Computer 

Engineering 

Georgia Institute of Technology 

Date Approved:  September 1, 2021 

  

  

  

  



 

iii 

ACKNOWLEDGMENTS 

I thank my parents, my first teachers, who by their exemplary work ethic, 

cultivation of curiosity, and sacrifices deserve the highest praise, for as the great Michel 

Eyquem de Montaigne wrote some 500 years ago, “the greatest and most important 

difficulty of human science is the education of children.” All successes I have been so 

blessed with during my doctoral work are hence shared by my parents.  

Then, there are those who endured the weight of this undertaking alongside me, 

namely my wife, Stephanie, and now three children Hazel, Landon, and Paul. Without the 

sacrifices of my wife to forego her own career and take on that greatest of sciences 

according to Montaigne, I would have abandoned this work long ago. Without belittling 

the difficulty of the Ph.D., her burden and sacrifice has been infinitely greater. I thank my 

two brothers, Brent and Adam, who throughout childhood and adulthood have shaped my 

imagination, resilience, and motivation necessary for success in this work. 

I thank my advisor Dr. Stephen Ralph for his guidance, constructive criticisms, 

refreshing honesty, and an infectious motivation that has inspired me to do my best work.  

Next, I would like to thank Dr. Sorin Tibuleac, Dr. John Cressler, Dr. Madhavan 

Swaminathan, and Dr. Peter Delfyett for serving generously on the defense committee. 

I also thank all my colleagues that have provided endless help, ideas, and 

inspiration. These include  Dr. Varghese A. Thomas, Dr. Jerrod Langston, Dr. Siddharth 

Varughese, Dr. Justin Lavrencik, Dr. Alirio Melgar Evangelista, Dr. HyungJoon Park, Dr. 

Andrew Stark, Dr. Ben Yang, Dr. Patrick Goley, Gareeyasee Saha, Daniel Lippiatt, Daniel 



 iv 

Garon, Alec Hammond, Michael Hoff, Stephen Hurst, George Tzintzarov, Milad Frounchi, 

and Glen Vinson. 

Additionally, I thank all the industrial collaborators who supported this work 

throughout my Ph.D., including Richard DeSalvo from L3Harris, Rick Stevens from 

Lockheed Martin, the Georgia Tech Research Institute, AIM Photonics, and 

Globalfoundries. 

Lastly, I thank all those innumerable individuals, who by sacrificing their lives to 

defend our country, by dedicating their lives to their craft, and by standing up for what is 

true and good have produced the opportunities that allowed me to work on the tiny, 

interesting corner of God’s universe that I present here. 

 

 

 

 

 

 

 

 

 



 v 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................... iii 

LIST OF TABLES ........................................................................................................... ix 

LIST OF FIGURES .......................................................................................................... x 

NOMENCLATURE ...................................................................................................... xvii 

SUMMARY OF WORK................................................................................................... 1 

CHAPTER 1. The Merging of Two Fields ..................................................................... 2 

1.1 Integrated Photonics ............................................................................................ 2 

1.2 Microwave Photonics .......................................................................................... 4 

1.3 Integrated Microwave Photonics ........................................................................ 5 

CHAPTER 2. Microwave Photonic Metrics .................................................................. 7 

2.1 Gain ..................................................................................................................... 7 

2.2 Noise Metrics ...................................................................................................... 7 

2.3 Dynamic Range and Linearity Metrics ............................................................... 8 

CHAPTER 3. RF Photonic Links ................................................................................. 12 

3.1 Metric Expressions ............................................................................................ 12 

CHAPTER 4. Silicon Photonic Power Handling ......................................................... 17 

4.1 SiP Component Power Handling Measurements .............................................. 17 

CHAPTER 5. Sub-GHz Optical Filters Using Nonlinear Rings ................................ 21 



 vi 

5.1 Narrowband Optical Filters ............................................................................... 21 

5.2 Nonlinear Optical Effects .................................................................................. 21 

5.3 Nonlinear Ring Resonator Model ..................................................................... 24 

5.4 Nonlinear Ring Based Edge Filters ................................................................... 26 

5.4.1 Single Ring Variant .............................................................................. 27 

5.4.2 Concentric Ring Variants ..................................................................... 30 

5.5 Bandpass Optical Filters ................................................................................... 33 

5.6 Practical Considerations .................................................................................... 38 

CHAPTER 6. Synthetic Pockels Effects in Silicon ...................................................... 41 

6.1 Integrated Photonic Modulators/Transmitters for Analog Applications ........... 41 

6.2 DC Kerr Effect Theory ..................................................................................... 43 

6.3 SiP Transmitter Linearization ........................................................................... 45 

6.3.1 DC Characterization and Simulations .................................................. 47 

6.3.2 SiP Transmitter Linearity ..................................................................... 51 

6.4 Pure DC Kerr Effect Modulators ...................................................................... 60 

6.4.1 DC Performance ................................................................................... 62 

6.4.2 Expectations on AC Performance ........................................................ 65 

6.4.3 Resonant Enhancement ........................................................................ 66 

6.4.4 Experiments.......................................................................................... 69 

6.4.5 Applications of the Synthetic Pockels Modulator ................................ 73 

CHAPTER 7. Photonic Frequency Conversion & Design Equations ....................... 77 

7.1 Photonic Frequency Converters in the Literature ............................................. 77 

7.2 Photonic Frequency Converter Operating Principles ........................................ 81 



 vii 

7.3 Design Equations .............................................................................................. 83 

7.3.1 Frequency Converter Architectures ..................................................... 83 

7.3.2 Derivation of DC Photocurrent and Gain ............................................ 86 

7.3.3 Derivation of Linearity Metrics ........................................................... 94 

7.3.4 Derivation of Noise Metrics ............................................................... 101 

7.3.5 Accounting for Dual-Drive and Balanced Detection Cases ............... 104 

7.3.6 Summary of Simplified Equations ..................................................... 106 

7.3.7 Generalized Equations ....................................................................... 109 

7.3.8 Performance Trends ........................................................................... 111 

7.3.9 Idealized Results ................................................................................ 116 

7.3.10 Comparison to RF Photonic Links ..................................................... 120 

7.3.11 Phase Sensitivities .............................................................................. 121 

7.4 Summary ......................................................................................................... 123 

CHAPTER 8. Silicon Photonic Frequency Converters ............................................ 124 

8.1 Characterization & Simulations ...................................................................... 124 

8.1.1 System-Level Simulations ................................................................. 126 

8.1.2 Experimental and Simulation Results ................................................ 127 

8.2 Predictions for High Performance Architectures ............................................ 134 

CHAPTER 9. Indium Phosphide Photonic Frequency Converters ........................ 138 

9.1 Architecture and Fabrication ........................................................................... 138 

9.2 Experimental Results and Discussion ............................................................. 139 

9.3 Comparing Experiment to Theory .................................................................. 145 

9.4 Improving Performance .................................................................................. 148 



 viii 

9.5 Comparing InP and Silicon for Photonic Frequency Converters .................... 150 

CHAPTER 10. Publications & Summary of Contributions to the Field .............. 153 

10.1 First-Authored Publications ............................................................................ 153 

10.2 Other Publications ........................................................................................... 153 

10.3 Prior Publications ............................................................................................ 154 

10.4 Contributions to the Field ............................................................................... 155 

REFERENCES .............................................................................................................. 156 

 



 ix 

LIST OF TABLES 

Table 1– Summary of Nonlinear Single Ring (1-ring) and Nonlinear Concentric Ring (2-

5 ring) Edge Filter Performance ....................................................................................... 32 

Table 2– Comparison of Optical Edge Filters in Literature ............................................. 32 

Table 3– Summary of Nonlinear Concentric Ring Bandpass Filter Performance ............ 38 

Table 4– Comparison of Pockels, plasma-dispersion, and DC Kerr effects. .................... 44 

Table 5– Summary of SiP Modulator DC Performance. .................................................. 51 

Table 6– Summary of SiP Modulator RF Performance. ................................................... 59 

Table 7– Comparison of Common Phase Shifter Technologies ....................................... 74 

Table 8– Summary of Frequency Converter Link Factors. ............................................ 108 

Table 9– Summary of InP Frequency Converter Component Metrics and Parameters. . 112 

Table 10– Summary of Experimental and Simulation Results for Architectures I & II. 137 

Table 11– Summary of InP Downconverter Performance for Different Operating 

Conditions. ...................................................................................................................... 145 

Table 12– Summary Comparing SiP and InP Platforms ................................................ 152 

 

 

 

 

 

 

 

 

 



 x 

LIST OF FIGURES 

Figure 1 – Illustration showing the relationship and cross-over points between microwave 

engineering, photonics, and integration/electronics. Integrated microwave photonics lies 

at the center of these three regions. ..................................................................................... 6 

Figure 2 – Illustration summarizing the primary dynamic range and linearity metrics for a 

third-order limited system. ................................................................................................ 11 

Figure 3 – Schematic of an intensity-modulated, direct detect RF photonic link. ............ 12 

Figure 4 – Calculated externally modulated IMDD link metrics for various RIN values: 

(a) gain, (b) noise figure, (c) 𝑆𝐹𝐷𝑅. All metrics increase with DC photocurrent and hence 

optical power. Upper limits on performance are due to RIN-dominated noise, at which 

point higher optical power does not improve noise figure and 𝑆𝐹𝐷𝑅 metrics. ................ 16 

Figure 5 – (a) Waveguide optical power handling. Nonlinear absorption onsets at 

+11.7±0.2 dBm on-chip optical power at λ=1550 nm. (b) Modulator optical power 

handling. Nonlinear absorption onsets at 11.3±0.2 dBm on-chip optical power at λ=1550 

nm. On-chip powers cite the estimated optical power immediately after the input edge 

coupler. Fitted lines (dotted) to linear absorption regions and nonlinear absorption regions 

are indicated, with their intersection defining an approximate onset of nonlinear 

absorption. Discrete derivatives Δ𝑃𝑜𝑢𝑡/Δ𝑃𝑖𝑛 are calculated for the right axis, and raw 

optical power responses are shown for the left axis. The calculated lines in (a) indicate 

responses due to TPA and TPA-induced FCA, yielding preliminary evidence that the 

power handling limitations are due to these processes. .................................................... 19 

Figure 6 – Photodetector responsivity demonstrating a strong dependence on reverse bias; 

linearity and responsivity are both bias dependent. Note the device was damaged after 

testing at -3V for an on-chip power of 32 mW. ................................................................ 20 

Figure 7 – Schematic illustrating locations of the calculated fields 𝐸1, 𝐸2, 𝐸3, and 𝐸4. 25 

Figure 8 – Schematic of the experimental setup for characterizing the ring filters. ......... 28 

Figure 9 – Measured ring resonator transmission responses at (a) -9 dBm and (b) -3 dBm 

laser launch powers. At low powers, the ring response exhibits slight asymmetry due to 

nonlinear phase and absorption in the ring cavity. At higher powers, the response exhibits 

dramatic asymmetries due to strong nonlinear effects. This highly asymmetric response is 

useful as an edge filter, exhibiting 15.7 dB optical extinction over <0.001 nm, or <126 

MHz. The edge exhibits an optical 3 dB bandwidth of <24.3 MHz. Finer laser step sizes 

likely reveal a spectrally finer edge, as later results indicate. ........................................... 29 

Figure 10 – Measured single ring resonator transmission responses at +0 dBm optical 

launch power, demonstrating no measurable insertion losses. ......................................... 30 



 xi 

Figure 11 – Measured concentric ring edge filter transmission responses for (a) 2-ring, (b) 

3-ring, (c) 4-ring, and (d) 5-ring variants. ......................................................................... 31 

Figure 12 – Schematic of the 2-ring concentric field device with electric fields defined. 35 

Figure 13 – (a) Calculated transmission response using the simple concentric ring model 

derived previously. The transmission response resembles a Vernier effect, whereby the 

alignment of two ring resonances with slightly different FSRs enables a narrow bandpass 

response. (b) Zoomed view of the bandpass response near 𝜆 = 1532 nm. ....................... 36 

Figure 14 – Measured concentric ring bandpass filter transmission responses for (a) 2-

ring, (b) 3-ring, (c) 4-ring, and (d) 5-ring variants. Performance of each filter is 

summarized in Table 3. ..................................................................................................... 37 

Figure 15 – (a) Cross-sectional schematic of phase modulator structure with simulated 

mode profile. Wi is the width of the undoped intrinsic region. The PN MZM has Wi = 0 

nm, and the PiN MZM has Wi = 200 nm. (b) Top-down image of the fabricated MZM. 

The PN and PiN modulators are identical except for a difference in Wi. ......................... 46 

Figure 16 – Measured IV curves for PN and PiN phase shifters. Breakdown voltages limit 

the range of useful reverse bias voltages. ......................................................................... 48 

Figure 17 – Simulation workflow between Lumerical DEVICE, MODE and custom 

MATLAB code to calculate both plasma-dispersion and DC Kerr effects generated by a 

phase modulator. ............................................................................................................... 48 

Figure 18 – (a) Biasing scheme for measuring the transfer functions of the SiP MZMs. 

Thermo-optic phase shifters adjust the relative phase between Mach-Zehnder arms to set 

the MZM bias point. The DC electrical-optical responses are shown in (b) for the PN 

modulator and (c) for the PiN modulator. The x-axis represents reverse bias. The transfer 

functions without voltage-dependent absorption are shown by using the extracted index 

changes only. This illustrates how voltage-dependent absorption affects, albeit weakly, 

the MZM transfer functions. ............................................................................................. 49 

Figure 19 – Extracted effective index response and absorption decrease for (a) PN 

junction and (b) PiN junction based SiP phase shifters, demonstrating strong DC Kerr 

effects as the PD effect alone cannot account for the near-linear index response of (a) and 

the negative curvature or quadratic response of (b). ......................................................... 51 

Figure 20 – Link configuration for IMD and 𝑆𝐹𝐷𝑅 measurements along with the SiP 

MZM biasing (DC) and driving (RF) scheme. The parameter 𝑉𝑏𝑖𝑎𝑠 controls the strength 

of the DC Kerr effect and (weakly) the amount of absorption in the phase shifters. The 

parameter 𝑉ℎ𝑒𝑎𝑡𝑒𝑟 adjusts the relative phase between the two arms of the MZM. ........ 53 

Figure 21 – Two-tone experimental results and measured optical responses measured vs. 

MZM bias point (heater power) for the (a) PN modulator and (b) PiN modulator. 

Sweeping MZM bias point (heater power) on one arm reveals a shift between 



 xii 

fundamental and IMD3 minima. The optimal heater power and reverse bias combinations 

are made clear in Figure 23 and Figure 24 for PN and PiN modulators, respectively. .... 54 

Figure 22 – Two-tone experimental results and measured optical responses measured vs. 

reverse bias for (a) the PN modulator and (b) the PiN modulator. Sweeping reverse bias 

voltage on both arms simultaneously exhibits optical loss and IMD2 reduction, with 

minor variations in fundamental and IMD3 powers. The optimal heater power and 

reverse bias combinations are made clear in Figure 23 and Figure 24 for PN and PiN 

modulators, respectively. .................................................................................................. 54 

Figure 23 – Contour plots for the PN MZM of the (a) measured fundamental RF power, 

(b) measured IMD3 power, (c) extracted link 𝑆𝐹𝐷𝑅 showing optimal performance at 

high reverse biases (-4 V to -6 V) and MZM bias points between the first Q and Min, (d) 

extracted link gain, and (e) extracted link noise figure. Metrics are defined in detail in 

Chapter 2. .......................................................................................................................... 55 

Figure 24 – Contour plots for the PiN MZM, shown versus phase modulator reverse bias 

(equally applied to both arms) and MZM bias point: (a) measured fundamental RF power, 

(b) measured IMD3 power, (c) extracted link 𝑆𝐹𝐷𝑅 showing optimal performance at 

high reverse biases (-5 V to -9 V) and MZM bias points between the second Q and Min, 

(d) extracted link gain, and (e) extracted link noise figure. The input RF power is +4 

dBm. The white boxes marked in (c), (d), and (e) indicate the optimal biasing space. 

Metrics are defined in detail in Chapter 2. ........................................................................ 56 

Figure 25 – (a) Multi-point link 𝑆𝐹𝐷𝑅 measurement with the PN MZM, showing 𝑆𝐹𝐷𝑅 

= 110±2 dB·Hz2/3 at an MZM bias point just before the second quadrature point and for -

5 V PN junction reverse bias. Adjustment for excess EDFA gain yields an 𝑆𝐹𝐷𝑅 = 103±2 

dB·Hz2/3.  (b) Zoomed view of data points and fits. ......................................................... 58 

Figure 26 – Comparison of 𝑆𝐹𝐷𝑅 from the single RF input power (single-point) two-tone 

measurement and multi-point measurement versus MZM bias point for a fixed reverse 

bias on both phase modulators of -5 V. Optical power and fundamental RF power are also 

shown for reference. (a) the PN MZM and (b) the PiN MZM. Input RF power is +4 dBm 

for all measurements. ........................................................................................................ 59 

Figure 27 – (a) Calculated 𝑟𝑒𝑜 (left axis) and 𝜒𝑒𝑓𝑓2 (right axis) as functions of the 

applied DC bias field. ....................................................................................................... 62 

Figure 28 – (a) Calculated absorption in dB/cm (left axis) and 𝑉𝜋𝐿 in V∙cm (right axis) 

versus effective electrode spacing 𝑑 for DC Kerr effect phase modulators. (b) Calculated 

𝑉𝜋𝐿𝛼 products for phase modulators (or single-drive MZMs) in solid lines and dual-drive 

MZMs in dashed lines versus the effective electrode spacing 𝑑 on the x-axis. 

Interestingly, there is a clear optimum for 𝑑 ≈ 0.19 𝜇𝑚. This optimum point best 

balances phase shifting efficiency with insertion loss. Note the 𝛼 within the product 

accounts for both scattering loss and free-carrier absorption. .......................................... 64 



 xiii 

Figure 29 – (a) Calculated efficiency enhancement factor (colored axis), which indicates 

the reduction of the intrinsic phase shifter 𝑉𝜋 due to resonant enhancement for a ring 

resonator with coupling factor 𝑟 and loss factor 𝑎. Contours of the ring’s finesse (solid 

lines) and extinction ratio (dashed lines) are also plotted. The enhancement factor 

calculations assume a fixed active electrode length. (b) Calculated contours of 𝑉𝜋𝑒𝑞 

(black, solid) and 3 dB bandwidth (red, dotted) over the space consisting of reasonable 

coupling factors 𝑟 and electrode lengths 𝐿. These calculations used the optimal electrode 

spacing 𝑑 and corresponding loss factor 𝑎 (related to 𝛼) determined for lowest 𝑉𝜋𝐿𝛼 in 

Figure 28(b). ..................................................................................................................... 67 

Figure 30 – Schematic of the experimental setup for DC characterization of the pure DC 

Kerr effect modulator. ....................................................................................................... 69 

Figure 31 – Experimental extraction of the index (left axis) and absorption (right axis) 

responses. The total simulated index response, comprised of plasma-dispersion and DC 

Kerr contributions, matches well with the experimentally extracted index response. The 

simulated absorption response is also shown alongside its experimental counterpart. .... 70 

Figure 32– Schematics of experimental setups for AC characterization. ......................... 72 

Figure 33 –(a) Experimental RF gain vs. reverse bias for a 1 GHz tone and calculated 

gain curve based on analog link gain (Eq. 3-1) and a simulated depletion width (a 

function of reverse bias) using Lumerical DEVICE. (b) 𝑔 ∝ 𝑉𝑜𝑢𝑡 where 𝑔 = gain in 

arbitrary linear units vs. reverse bias, demonstrating the linearity of AC modulation of 

synthetic Pockels effect as compared to a linear fit of the data. The experimental data is 

not perfectly linear since there is still residual depletion width modulation with increasing 

reverse bias........................................................................................................................ 72 

Figure 34 – Timeline highlighting the major integrated photonic mixers reported in the 

literature. The material systems on which frequency converters have been demonstrated 

here include silica, silicon-on-insulator, GeSi, and InP. Over the past decade, the 

integrated photonics foundry ecosystem has emerged and enabled full integration of 

frequency converters. ........................................................................................................ 80 

Figure 35 – Schematic of a commonly employed photonic frequency converter using 

electrical LO source and dual parallel modulators fed by a single laser. Blue indicates 

electrical signals or connections, and red indicates optical signals or connections. ......... 83 

Figure 36 – Schematics of frequency converting architectures investigated, which are 

differentiated by the drive and detection configurations: (a) single-drive, single detection, 

(b) single-drive, balanced detection, (c) dual-drive, single detection, and (d) dual-drive, 

balanced detection. ............................................................................................................ 84 

Figure 37 – Schematics defining (a) single drive and (b) dual drive modulator operation.

........................................................................................................................................... 85 

Figure 38 – Schematic of generic photonic frequency converter with electric fields 

indicated to aid in the derivation of the gain, linearity, and noise metrics. ...................... 86 



 xiv 

Figure 39 – Calculated (a) gain, (b) 𝐼𝐷𝐶, (c) 𝑁𝑜𝑢𝑡, (d) 𝑁𝐹, and (e) 𝑆𝐹𝐷𝑅 versus optical 

launch power for the four frequency converter architectures and a RF photonic link, all 

assuming component performance consistent with an InP platform. Additionally, 

Lumerical-simulated points are indicated for the single drive, single detection, and the RF 

photonic link architectures, demonstrating fidelity with the calculated results. SDr = 

single drive, DDr = dual drive, SDet = single detection, BDet = balanced detection. ... 114 

Figure 40 – Calculated (a) gain, (b) 𝑁𝐹, and (c) 𝑆𝐹𝐷𝑅 versus launch power (𝑃0) 

modified by optical link gain or loss (𝐺𝑜𝑝𝑡) for idealized implementations of the four 

frequency converter architectures of Figure 36 and a simple RF photonic link. 

Assumptions include no RIN, no optical loss (or gain), and a modulator 𝑉𝜋 = 1 V. The 

x-axis enables a designer, knowing the optical power available to them along with an 

estimate of link loss, to estimate performance of an architecture of interest. ................. 118 

Figure 41 – Calculated trade space for the idealized (a) single drive, single detection and 

(b) dual drive, single detection architectures, illustrating the effects of increased optical 

power and 𝑉𝜋 on achievable 𝑆𝐹𝐷𝑅 and 𝑁𝐹. Dashed lines indicate contours of constant 

𝑉𝜋 while solid lines indicate contours of constant optical power, in terms of launch 

power 𝑃0 and the link’s optical gain or loss, 𝐺𝑜𝑝𝑡. Viable design points for explicitly 

shown 𝑉𝜋 and 𝑃0 + 𝐺𝑜𝑝𝑡 combinations exist where dashed and solid lines intersect. . 120 

Figure 42 – Schematics of MWP mixer subsystems for (a) architecture I, consisting of a 

single MZM with separate LO and RF arms and off-chip single-ended detection, and (b) 

architecture II, consisting of nested MZMs, each single-driven and using on-chip 

balanced photodetection. PM = Phase modulator, Δ𝜙 = thermal phase shifter, PD = 

photodiode. Optimum bias of each MZM must be carefully considered. ...................... 125 

Figure 43 – (a) Top-down image of the fabricated custom-designed modulator using the 

AIM Photonics platform. (b) Schematic cross-section of the electrode and dopant 

structure of the designed modulator. ............................................................................... 126 

Figure 44 – Schematics of the test setups for (a) architecture I and (b) architecture II. The 

test setup for architecture II includes an external balun since the balanced detector 

outputs were not subtracted on-chip to enable characterization of each detector 

separately. ....................................................................................................................... 127 

Figure 45 – Measured spectra demonstrating downconversion for (a) architecture I and 

for (b) architecture II. The 1 GHz lowpass filter strongly attenuates signals beyond 2 

GHz. Relative comparison of IF power between (a) and (b) are not straightforward in 

these uncalibrated results. The calibrated RF-to-IF gains are -5.0 dB and -19.5 dB for (a) 

and (b), respectively. ....................................................................................................... 128 

Figure 46 – Measured IF gain of architecture I as a function of thermal phase shifter 

heater power, which alters the macro-interferometer bias point. Useful bias points 

including peak, quadrature, and null bias are indicated. For this architecture, the IF gain is 

maximized at both peak and null modulator bias points. ................................................ 129 



 xv 

Figure 47 – IF gain response of architecture I and discrete derivative of the IF gain 

indicating nonlinear absorption at 9.9±0.25 dBm on-chip optical power at λ=1550 nm.

......................................................................................................................................... 130 

Figure 48 – (a) Measured and simulated frequency responses of architecture I. The 

measured and simulated 3 dB electrical-electrical downconversion bandwidths were 5.1 

GHz and 8.8 GHz, respectively. The measured upconversion bandwidth was 6.4 GHz. (b) 

Measured and simulated downconversion frequency responses of architecture II. The 

measured and simulated electrical-electrical 3 dB bandwidths were 11.2 GHz and 10.7 

GHz, respectively. ........................................................................................................... 132 

Figure 49 – Measured 𝑆𝐹𝐷𝑅s by an equal-amplitude two-tone test for fundamental 

frequencies at 1.4 GHz and 1.5 GHz and a 1.0 GHz LO for (a) architecture I and (b) 

architecture II. The noise floors of -111 dBm/Hz in (a) and -130 dB/Hz in (b) are largely 

due to the post-photodetection electrical amplification of output thermal noise. ........... 133 

Figure 50 – Schematic of mixers for updated (a) architecture I and (b) architecture II; 

both architectures now implement on-chip balanced photodetection for noise suppression, 

an input RF amplifier, and a TIA post-photodetection. Architecture II now uses a dual-

drive configuration for both LO and RF MZMs. ............................................................ 135 

Figure 51 – Monolithically integrated system-on-chip photonic integrated circuit 

schematic of a downconverter architecture, comprised of on-die laser, two MZMs in 

parallel followed by SOAs and phase shifters, high-speed photodetector, and multiple 

low speed detectors for monitoring optical power and bias. .......................................... 139 

Figure 52 – (a) IF gain and DC photocurrent versus the macro interferometer bias point, 

controlled by heater power. (b) Downconversion RF bandwidth of 10.0 GHz, measured 

by sweeping RF and LO frequencies for a fixed 100 MHz IF. Note this downconversion 

bandwidth includes the responses of both RF and LO modulators; hence, the 6 dB point 

indicates the InP modulators exhibit 3 dB bandwidths of ~13.6 GHz. ........................... 141 

Figure 53 – Two-tone experiments near (a) 1 GHz and (b) 10 GHz. In (a) RF tones at 1.4 

GHz and 1.5 GHz and an LO tone at 1.0 GHz demonstrated a 99 dB∙Hz2/3 𝑆𝐹𝐷𝑅 over an 

RF input power range of roughly -15 dBm to 0 dBm. In (b) RF tones at 10.4 GHz and 

10.5 GHz and an LO tone at 10.0 GHz demonstrated a 98 dB∙Hz2/3 𝑆𝐹𝐷𝑅 over an RF 

input power range of roughly -8 dBm to 0 dBm, a smaller range than in (a) since the 

IMD3 tones are more difficult to measure due to their proximity to the noise floor. Both 

experiments yielded fundamental IFs at 400 MHz and 500 MHz, and IMD3 tones at 300 

MHz and 600 MHz. Both used SOA drive currents of 120 mA. The 𝑆𝐹𝐷𝑅 degraded very 

little over the 10 GHz 3 dB bandwidth. .......................................................................... 144 

Figure 54 – Two-tone experiments with RF tones at 1.4 GHz and 1.5 GHz and LO tone at 

1.0 GHz, yielding fundamental IFs at 400 MHz and 500 MHz, and IMD3 tones at 300 

MHz and 600 MHz. (a) The downconverter achieved a 104 dB∙Hz2/3 𝑆𝐹𝐷𝑅 with SOAs 

driven with 150 mA. (b) The downconverter achieved a -0.8 dB gain and maintained a 

100 dB∙Hz2/3 𝑆𝐹𝐷𝑅 when a 26 dB RF amp was added to the detector output. .............. 145 



 xvi 

Figure 55 – Calculated, simulated (via Lumerical), and experimental (a) gain and (b) DC 

photocurrent 𝐼𝐷𝐶 versus laser launch power for the InP downconverter. ...................... 146 

Figure 56 – Calculated, simulated (via Lumerical), and experimental noise floor 𝑁𝑜𝑢𝑡 

versus laser launch power for the InP downconverter. ................................................... 147 

Figure 57 – Calculated, simulated (via Lumerical), and experimental (a) noise figure and 

(b) 𝑆𝐹𝐷𝑅 versus laser launch power for the InP downconverter. .................................. 148 

Figure 58 – Calculated, simulated (via Lumerical), and experimental (a) noise figure and 

(b) 𝑆𝐹𝐷𝑅 versus laser launch power for single-drive with single detection (dashed black), 

single-drive with balanced detection (solid black), and dual-drive with balanced detection 

implementations (solid red). ........................................................................................... 149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xvii 

NOMENCLATURE 

BW Bandwidth (RF) 𝑆𝐹𝐷𝑅 Spur-Free Dynamic Range 

CW Continuous Wave SOI Silicon On Insulator 

EDFA Erbium-Doped Fiber Array SWaP Size, Weight, & Power 

FCA Free carrier absorption TIA Transimpedance Amplifier 

IF Intermediate Frequency TPA Two Photon Absorption 

𝐼𝐼𝑃3 3rd Order Intercept Point Vπ Phase shifter half-wave 

voltage 

IMD Intermodulation Distortion 

Product 

VOA Variable optical attenuator 

IMD2 2nd Order Intermodulation 

Distortion Product 

𝛽𝑇𝑃𝐴 Two photon coefficient 

IMD3 3rd Order Intermodulation 

Distortion Product 

Δα Change in absorption 

IMDD Intensity Modulated Direct 

Detect 

Δn Change in refractive index 

IMWP Integrated Microwave Photonics χ(3) 3rd Order nonlinear 

susceptibility 

LO Local Oscillator λ Wavelength 

MZI Mach-Zehnder Interferometer   

MZM Mach-Zehnder Modulator   

MWP Microwave Photonics   

𝑁𝐹 Noise Figure   

Nout Noise Power Spectral Density   

𝑂𝐼𝑃3 Output-referred 3rd Order 

Intercept Point 

  

PD Plasma-Dispersion   

PDK Process Design Kit   

PIC Photonic Integrated Circuit   

RF Radio Frequency   



 1 

SUMMARY OF WORK 

The goal of this research is to advance analog photonic communication systems through 

three major efforts: 1) to develop high performance microwave photonic filters, 2)  to 

intrinsically linearize the integrated photonic component that contributes most to 

nonlinearities, i.e. the photonic modulator, and 3) to demonstrate microwave frequency 

tunable functions using integrated photonic platforms, e.g. frequency conversion. The first 

effort addresses a major need for microwave photonics, namely few-GHz or less optical 

filters. The second effort enhances the performance of current integrated modulators to 

achieve metrics suitable for demanding applications in defense, cellular fronthaul 

networks, and traditional telecom. The third effort provides necessary groundwork to 

enable the commercialization or implementation of next generation communication 

systems while advancing the understanding of such complex microwave photonic systems. 

The demonstration of microwave frequency tunable (“spectrally agile”) architectures 

includes the design, simulation, characterization, and intuitive understanding of such 

systems.  

Overall, this work addresses current and future needs in microwave photonics related 

industries by investigating both device-level and system-level solutions to achieve greater 

performance using integrated photonic technologies. 
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CHAPTER 1. THE MERGING OF TWO FIELDS 

A pattern in the emergence of new fields is the merging of two previous areas of research; 

this is the mode by which the field of integrated microwave photonics developed. When 

the microwave photonics community recognized the utility of miniaturization offered by 

integration, integrated microwave photonics was born. Following is a summary of the 

parent fields and how they intersected to create integrated microwave photonics. 

1.1 Integrated Photonics 

Integrated photonics has successfully risen, in a manner often compared to analog ICs, 

from a mere research topic to a full-fledged commercial technology. Integrated photonics 

is the miniaturization of discrete optical components onto a chip, just as bulky electronic 

components were miniaturized by the first ICs; thus, integrated photonics is the fusion of 

discrete optics with integration, or integrated circuits (ICs). This integration yields the 

primary benefits of low size, weight and power (SWaP), low cost and high-volume 

manufacturing, better phase matching between optical paths, the ability to fabricate more 

complex optical systems on-chip, and the ability to shorten the physical distance between 

optical and electrical components for increased bandwidths. In the last decade, the rise of 

silicon photonic (SiP) foundries has contributed to a design, fabrication, and test ecosystem 

resembling the CMOS electronics environment. Foundries enable convenient and 

relatively affordable access to reliable SiP processes with mature process design kits 

(PDKs) for user-friendly photonic circuit design. Indium phosphide (InP) technologies also 

enjoy these benefits, though for lower volumes due to relatively small InP wafer sizes. 
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Integrated photonics, particularly silicon photonics, emerged in late 1980s and early 1990s 

from fundamental work on waveguiding structures and modulation methods. More 

broadly, integrated photonics began as early as the 1970s, through work with other 

optically interesting materials, including lithium  niobate (LiNbO3) and III-V materials. 

Motivation to merge electronics and photonics, however, led to the intense research of 

micro-optics in silicon-based material platforms, such as silicon-on-insulator (SOI) [1]. 

Other silicon-based material platforms include Si3N4, SiON, SiO2, SiGe, and SiC. In fact, 

some of these materials have been successfully integrated many years later into modern 

silicon photonic foundry processes, particularly Si3N4 as a second optical layer and SiGe 

in the realization of monolithic BiCMOS circuitry [2-4]. 

Today, most discrete devices have been successfully integrated and offered by various 

foundry PDKs: high-speed modulators, photodetectors, optical phase tuners (e.g. thermo-

optic heaters), combiners, splitters, spot-size converters, grating couplers, ring resonator 

filters, Bragg waveguide filters, multiplexers and demultiplexers, couplers between Si and 

SiN optical waveguides, polarization control elements, and arrayed-waveguide gratings. 

Devices that have eluded successful integration by silicon photonic foundries include on-

chip lasers and circulators due to the silicon’s indirect bandgap and weak magnetic 

properties, respectively. Currently, foundries are exploring workarounds to laser 

integration on silicon through heterogeneous attachment of lasers to interposers or to the 

die itself. 
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1.2 Microwave Photonics 

Microwave photonics (MWP) is a field that uses photonics to augment the control, 

transmission, and processing of RF or microwave signals. Again, MWP is another example 

of the convergence of two fields: microwave engineering and optics. Microwave photonics 

encompasses methods and situations where both digital and analog signals need to be 

processed at some level. One of the primary benefits of photonics for RF transport is its 

efficiency, as the photonic loss through fiber is far lower than by the free-space 

transmission of RF/microwave signals suffering Friis path loss and atmospheric 

absorption. Photonics also offers large bandwidths, immunity to electromagnetic 

interference, good isolation between electrical signals, and a reduction in need for bulky 

RF cables [5]. Additionally, microwave photonic systems often leverage higher broadband 

linearity than purely analog electronic microwave systems. 

The motivating roots of the field, particularly in communications, reach back to the era of 

the telegraph and grew quickly as modern electronic warfare techniques emerged from the 

technological innovations made during WWII. A specific motivation for RF engineers to 

consider optics was the need for a low-loss delay line. The development of practical lasers, 

wide (GHz) bandwidth modulators, fast detectors, and low loss optical fiber [6], which 

conceptually is an extension of previous metal RF waveguides, fit this need. RF engineers 

began merging RF and optical engineering to meet system requirements. Thus, microwave 

photonics was born as a formal discipline in the late 1980s and early 1990s [7]. 

Since its inception, the primary technological advantages offered by MWP are low-loss 

and wide bandwidth operation of opto-electronic systems. This has enabled MWP to 
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impact applications including fiber-based links for antenna remoting, radar, cellular, 

wireless, and satellite communications links. It has also expanded to radio-astronomy, 

cable TV delivery, signal processing, switched networks, beamforming, and defense-

related applications [6,8,9]. 

1.3 Integrated Microwave Photonics 

The merging of the decades-long integrated photonics and MWP fields has born a new, 

21st century field called integrated microwave photonics (IMWP). It may be regarded as 

the intersection of microwave engineering, photonics, and integration technologies, as 

suggested in Figure 1. Integrated microwave photonics is the use of integrated photonic 

components to accomplish microwave photonic functions, such as modulation and 

detection, frequency translation or conversion, filtering, and other signal processing 

functions. The nascent field of IMWP has already demonstrated several functions 

important to RF engineering needs: frequency conversion [10,11], reconfigurable MWP 

processing [12], arbitrary waveform generation [13], high quality signal source generation 

[14-16], tunable true time delays [17], and optical beamforming [18,19]. These IMWP 

technologies make possible the dramatically expanded deployment of otherwise discrete 

(non-integrated) MWP systems. For example, IMWP can leverage size, weight, power 

(SWaP), and cost advantages over non-integrated technologies to benefit airborne and 

spaceborne platforms, as well as applications of scale such as for processing data from 

large phased arrays. With the integration of MWP functions also comes distinct challenges. 

Power limitations of on-chip waveguides and relatively lossy fiber-chip coupling make 

high power systems and hence high performance difficult to achieve. Furthermore, 

integrated photonic filters lag behind their discrete counterparts in performance. 
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Commercially fabricated integrated modulators do not yet achieve the efficiency, loss, and 

bandwidth metrics of discrete LiNbO3 modulators. Nonetheless, the advantages presented 

by novel integrated architectures and devices, programmable analog chips, new 

applications and deployment opportunities, broad support from related technologies and 

applications, and high throughput fabrication capabilities make the pursuit of integration 

well worthwhile.  

 

Figure 1 – Illustration showing the relationship and cross-over points between microwave 

engineering, photonics, and integration/electronics. Integrated microwave photonics lies at 

the center of these three regions. 
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CHAPTER 2. MICROWAVE PHOTONIC METRICS 

There are several metrics common to RF/microwave electronics and photonics that are 

foreign to the digital world. These metrics tend to be agnostic to particular data formats 

and hence are useful for characterizing devices and systems for a broad range of 

applications. The primary metrics for characterizing a microwave photonic link include 

gain, noise, and dynamic range, each of which can be assessed in multiple ways. Following 

are the metrics and their definitions used throughout this work.  

2.1 Gain 

The first metric is the RF power gain, the ratio of the output RF (electrical) power to the 

input (electrical) power. In the case of frequency converters and other frequency-tunable 

systems, whereby the output is not at the same frequency as the input, the definition is 

altered, such that the ratio of the output intermediate frequency (IF) power is compared to 

the input RF power. Through this work the gain 𝐺 is primarily evaluated in dB, but the 

linear form of the gain, denoted by lower case 𝑔, is employed as well. The gain is easily 

measured through a vector network analyzer as a function of frequency, or by using an 

electrical spectrum analyzer and swept signal generator.  

2.2 Noise Metrics 

The next metric is the noise, which is quantified in several useful forms. The first is the 

noise power spectral density, 𝑁𝑜𝑢𝑡 measured commonly in dBm/Hz and colloquially called 

the “noise floor”. This noise floor is readily measured by most electrical spectrum 

analyzers and is measured close to the output signal frequency. The noise power spectral 
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density is necessary to quantify other metrics, such as the dynamic range. Other noise 

metrics include the noise factor (unitless) and its decibel form, the noise figure.  The noise 

factor and noise figure both represent the relative noise added by a system to the input 

noise. An important point to highlight is that these metrics do not quantify the inherent 

increase or decrease of the output noise due strictly to the system gain. For example, a 

system with 𝑁𝐹 = 0 dB would exhibit the same output signal-to-noise ratio (SNR) as its 

input SNR. In a system with 𝑁𝐹 > 0 dB, the output SNR is smaller than the input SNR. 

Assuming a thermal noise limited input signal, the noise factor is a function of the output 

noise floor, system gain, and  thermal noise, per the following relation [5] : 

𝐹 =
𝑁𝑜𝑢𝑡

𝑔𝑘𝐵𝑇𝑠
, 2-1 

 where 𝑇𝑠 is the standard noise temperature, and 𝑘𝐵 is the Boltzmann constant. In decibel 

form, the noise figure at room temperature (300 K) is explicitly given as 

𝑁𝐹 = 174 + 𝑁𝑜𝑢𝑡 − 𝐺. 2-2 

Thus, these two expressions can be used to quantify a system’s 𝐹 and 𝑁𝐹 given careful 

measurement of the noise power spectral density and system power gain.  

2.3 Dynamic Range and Linearity Metrics  

Lastly, the dynamic range of a system describes the input and output signal levels over 

which the system remains perceivably linear. In other words, the dynamic range indicates 

the range of input signal powers usable before nonlinearities appear in the output. The most 
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common dynamic ranges references in RF systems are the compression dynamic range 

(CDR) and the spur-free dynamic range (𝑆𝐹𝐷𝑅). This work focuses on the latter metric but 

also references the nth order input and output intercept points, defined next. 

This nth order output intercept point (𝑂𝐼𝑃𝑛) is another useful metric, not only for calculating 

the spur-free dynamic range, but also to assess linearity itself. The output intercept point is 

the point (an output power) where extrapolations of the fundamental and a distortion 

product as functions of RF input power meet. Likewise, this intercept point can be 

referenced to the input power, rather than the output power, to yield what is called the nth-

order input intercept point (𝐼𝐼𝑃𝑛). This input intercept point is one of the best metrics of 

linearity for devices, such as modulators, because it is not a function of system noise or 

gain like the 𝑆𝐹𝐷𝑅. The 𝑂𝐼𝑃𝑛 is similarly independent of system noise but reflects the 

system gain. The third-order limited input and output intercept points are calculated: 

𝑂𝐼𝑃3 = (
𝑃Ω

3

𝑃3
)

(
1
2

)

 2-3 

𝐼𝐼𝑃3 =
𝑂𝐼𝑃3

𝑔
 2-4 

where 𝑃Ω is the fundamental output (electrical) power, and 𝑃3 is the power in the third-

order distortion. The 𝑆𝐹𝐷𝑅 is the range of input (or output powers) over which the 

intermodulation distortion products (the “spurs”) remain below the noise floor. Typically, 

the intermodulation distortion products (IMDs) are dominated by either second-order or 

third-order effects. Hence, the 𝑆𝐹𝐷𝑅 is usually specified as either the second-order limited 

𝑆𝐹𝐷𝑅 (𝑆𝐹𝐷𝑅2) or third-order limited 𝑆𝐹𝐷𝑅 (𝑆𝐹𝐷𝑅3). Often the second order spurs remain 
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out-of-band of the RF spectrum of interest, and the IMD2 is typically generated near the 

second harmonics in sub-octave systems. Additionally, many RF photonic links bias the 

modulator near quadrature, which reduces second-order distortions originating from 

modulation. Hence, this work focuses on the 𝑆𝐹𝐷𝑅3 metric, as the IMD3s are generated 

within even very small RF bands and are generally unable to be filtered. Per the definition 

offered in [5], the nth order 𝑆𝐹𝐷𝑅 is conveniently given in terms of the 𝑂𝐼𝑃𝑛, the nth order 

output intercept point: 

𝑆𝐹𝐷𝑅𝑛 = (
𝑂𝐼𝑃𝑛

𝑁𝑜𝑢𝑡𝐵
)

(𝑛−1)/𝑛

 2-5 

Hence, the 𝑆𝐹𝐷𝑅3 is 

𝑆𝐹𝐷𝑅3 = (
𝑂𝐼𝑃3

𝑁𝑜𝑢𝑡𝐵
)

2/3

=
𝑃Ω

𝑃3

1
3

 (
1

𝑁𝑜𝑢𝑡𝐵
)

2/3

 2-6 

The 𝑆𝐹𝐷𝑅3, 𝑂𝐼𝑃3, and 𝐼𝐼𝑃3 metrics are summarized graphically in Figure 2. Note that, 

because the slope of the 𝑃Ω versus input RF power is unity, the 𝑆𝐹𝐷𝑅3 may be quantified  

experimentally by the range of input RF powers or the range of output RF powers with 

equal validity.  

There is significant inconsistency in the literature regarding which linearity metrics are 

most meaningful for a given system or device. Generally, however, the definitions given 

here provide insight into where each metric is best cited. For example, because the 𝑆𝐹𝐷𝑅𝑛 

metric includes information about noise and bandwidth, it is best considered a system or 

link metric. Applying the 𝑆𝐹𝐷𝑅𝑛 metric to devices is only useful in a comparative case, 

where different devices’ impact on system linearity is measured by 𝑆𝐹𝐷𝑅𝑛  using the same 
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link or surrounding hardware. The 𝑆𝐹𝐷𝑅𝑛 metric can obscure a particular device’s linearity 

by compensating through reduced noise or increased optical power. On the other hand, the 

𝑂𝐼𝑃𝑛 is relatively better for assessing device linearity, since it is not a function of system 

noise. Further, the 𝐼𝐼𝑃𝑛 is likely the best candidate for assessing device linearity, since it is 

agnostic to both a system’s gain and noise. 

Figure 2 – Illustration summarizing the primary dynamic range and linearity metrics for a 

third-order limited system. 
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CHAPTER 3. RF PHOTONIC LINKS 

While standard RF photonic links are not the focus of this work, discussing them is useful 

for several reasons: 1) demonstrating the application of the metrics in Chapter 2 to 

microwave photonic systems, 2) understanding many of the working principles for 

frequency converting systems of Chapters 7-9, and 3) motivating the need for improved 

power handling in Chapter 4 and linearization of Chapter 6. Frequency converting links 

share many similarities with these “fixed-frequency” RF photonic links, with a full 

comparison given in Chapter 7. 

The RF photonic link discussed here is an intensity modulated, direct detect (IMDD) link 

employing a dual-drive (push-pull) MZM, Figure 3. The primary metrics of gain, noise 

figure, and 𝑆𝐹𝐷𝑅 are presented as analytic functions of component metrics, with 

derivations found in [5].  

 

Figure 3 – Schematic of an intensity-modulated, direct detect RF photonic link. 

3.1 Metric Expressions 

For RF photonic links, the DC photocurrent 𝐼𝐷𝐶 is a key metric because it directly reflects 

the available optical power and link loss. As will be seen later, this is not the case for many 

frequency converting links, because null biased MZMs obfuscate a clear relationship 

between the 𝐼𝐷𝐶 and the optical power budget without further investigation of the 
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modulation extinction ratio. Hence, the frequency converters of Ch. 7 substitute available 

optical power and total link optical gain (or loss) for 𝐼𝐷𝐶. On the other hand, RF photonic 

links usually employ quadrature bias, allowing a clear relationship between laser power, 

optical gain or loss, and generated DC photocurrent. In the equations of this section and 

Ch. 7, the variable 𝐼𝐷𝐶 is used for both single detection and balanced detection links. In the 

single detection case, the 𝐼𝐷𝐶 is simply the measurable photocurrent. In the balanced case, 

because balanced detection subtracts the photocurrents generated by the individual 

detectors and hence yields no measurable DC photocurrent, 𝐼𝐷𝐶 represents the sum of the 

individual detector photocurrents. This summed 𝐼𝐷𝐶, though not reflective of the physical 

reality of balanced detection, is a convenient method for accounting for the improved gain 

and additional noise generated by the detector pair. For RF photonic links using quadrature 

bias, the photocurrent of a single detector is 𝐼𝐷𝐶 =
𝑅𝑔𝑜𝑙𝑀𝑍𝑀𝑃𝑜

2
, where 𝑅 is the photodiode 

responsivity; 𝑔𝑜 is the net optical gain (or loss) between MZM and detector; 𝑙𝑀𝑍𝑀 is the 

MZM insertion loss factor; and 𝑃𝑜 is the optical launch power.  

The gain of the link depicted in Fig. 3 is  

𝑔 =
𝐼𝐷𝐶

2

𝑉𝜋
2

𝜋2𝑅𝑖𝑅𝑜|𝐻𝑝𝑑|
2

 . 3-1 

Here, 𝑉𝜋 is the modulator half wave voltage; 𝑅𝑖 is input impedance to the MZM; 𝑅𝑜 is the 

photodetector output impedance; and 𝐻𝑝𝑑 is the photodetector filter response, which 

typically has a value of ½ due to a matching circuit on the photodetector output. 

Concerning the noise metrics, 𝑁𝑜𝑢𝑡 is 
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𝑁𝑜𝑢𝑡 =
𝐼𝐷𝐶

2

𝑉𝜋
2

𝜋2𝑅𝑖𝑅𝑜|𝐻𝑝𝑑|
2

𝑘𝐵𝑇𝑠 + 𝑘𝐵𝑇𝑠 + 2𝑞𝐼𝐷𝐶𝑅𝑜|𝐻𝑝𝑑|
2

+ 𝑅𝐼𝑁 𝐼𝐷𝐶
2 𝑅𝑜|𝐻𝑝𝑑|

2
 

3-2 

where 𝑘𝐵 is Boltzmann’s constant; 𝑇𝑠 is the standard noise temperature; 𝑞 is the 

fundamental charge; 𝑅𝐼𝑁 is the relative intensity noise. The first term of the 𝑁𝑜𝑢𝑡 

expression is the input thermal noise translated to the link output by the gain. The second 

term is the output thermal noise, typically -174 dBm/Hz at room temperature. The third 

term is the shot noise, and the final term is the 𝑅𝐼𝑁, which may be composed of common-

mode and non-common mode-components, the former which may be ignored in links using 

balanced detection. Using the definition of noise factor 𝐹 in Ch. 2, the noise factor for the 

RF photonic link is 

𝐹 = 1 +
𝑉𝜋

2

𝜋2𝑅𝑖
(

1

𝐼𝐷𝐶
2 𝑅𝑜|𝐻𝑝𝑑|

2 +
2𝑞

𝐼𝐷𝐶𝑘𝐵𝑇𝑠
+

𝑅𝐼𝑁

𝑘𝐵𝑇𝑠
). 3-3 

Lastly the third-order spur-free dynamic range (𝑆𝐹𝐷𝑅3) is 

𝑆𝐹𝐷𝑅3 = (
4𝑉𝜋

2

𝜋2𝑅𝑖𝑘𝐵𝑇𝑠𝐵
)

2
3

(
1

𝐹
)

2
3
 3-4 

where 𝐵 is the bandwidth. While the 𝑆𝐹𝐷𝑅 expression seems to show a strong dependence 

on the modulator 𝑉𝜋, note this 𝑉𝜋 dependence only manifests when the link is input thermal 

noise limited, as determined upon substitution of the 𝐹 expression. These metrics of gain, 

noise factor/figure, and 𝑆𝐹𝐷𝑅 are calculated versus 𝐼𝐷𝐶 in Figure 4 for three 𝑅𝐼𝑁 values:  
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-145 dBc/Hz, -155 dBc/Hz, and -165 dBc/Hz. These calculations assumed room 

temperature operation of an RF photonic link with 𝑉𝜋=4V, 𝑅𝑖 =30 Ω (common for 

integrated transmitters), 𝑅𝑜=50 Ω, and 𝐻𝑝𝑑=1/2. Figure 4(a) demonstrates that 𝑔 ∝ 𝑃0
2 

since 𝐼𝐷𝐶 ∝ 𝑃0; hence, maximizing optical power 𝑃0 is key to maximizing the RF gain of 

the link. From Figure 4(b), the RIN limits the 𝑁𝐹 despite increasing 𝐼𝐷𝐶; thus, increasing 

optical power can only benefit the 𝑁𝐹 until the RIN limited regime onsets. Reducing 𝑅𝐼𝑁 

enables lower 𝑁𝐹. 

Likewise, 𝑅𝐼𝑁 sets the limit on maximum 𝑆𝐹𝐷𝑅 per Figure 4(c). Lower 𝑅𝐼𝑁 enables 

higher 𝑆𝐹𝐷𝑅. Again, increasing optical power is vital to increasing the 𝑆𝐹𝐷𝑅, but only 

until RIN sets the ceiling. Hence, minimizing RIN by using low noise optical sources and 

amplifiers or through balanced detection is a key method to improve microwave photonic 

system linearity.   
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Figure 4 – Calculated externally modulated IMDD link metrics for various RIN values: (a) 

gain, (b) noise figure, (c) 𝑆𝐹𝐷𝑅. All metrics increase with DC photocurrent and hence 

optical power. Upper limits on performance are due to RIN-dominated noise, at which 

point higher optical power does not improve noise figure and 𝑆𝐹𝐷𝑅 metrics. 
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CHAPTER 4. SILICON PHOTONIC POWER HANDLING 

As highlighted in the previous chapter, the primary microwave photonic metrics of interest 

all improve with increased optical power, barring certain conditions on the system’s 

linearity and dominant noise source. Under linear conditions, the gain scales as the square 

of the optical power, and 𝑆𝐹𝐷𝑅 and 𝑁𝐹 benefit from increasing optical power until the 

𝑅𝐼𝑁 limits further improvement. While discrete components can often handle optical 

powers up to and exceeding 1 W (+30 dBm), the optical power handling capacity of 

integrated photonics components remains largely unknown. Herein, the limits of optical 

power handling for one foundry’s (AIM Photonics, using PDK v.1.5 [3]) silicon photonic 

waveguides, modulators, and photodetectors are investigated experimentally. Silicon and 

InP platforms are expected to exhibit lower power handling capacity than lithium niobate 

due to their lower two photonic absorption coefficients 𝛽𝑇𝑃𝐴, leading to increased two 

photon absorption (TPA) and subsequent free carrier absorption (FCA). Hence, 

ascertaining when the power handling of SiP components transitions from linear to 

nonlinear regimes is important for performance predictions of integrated MWP systems. 

4.1 SiP Component Power Handling Measurements 

The experimental setup consisted of a 1550 nm laser, an EDFA capable of outputting 1 W, 

a variable optical attenuator (VOA) to control the input power, and an optical power meter. 

The most reliable method of testing the input/output optical transfer function is by 

sweeping the attenuation of the VOA, rather than sweeping laser power or EDFA drive 

current since these do not act linearly under the test conditions. For example, increasing 

the laser output power will eventually lead to saturation of the EDFA, which will result in 

measurements indistinguishable from the onset of nonlinear absorption in the device under 
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test. Hence, the laser power and EDFA output power are fixed, while the attenuator linearly 

controls the power launched to the device under test. 

First, the waveguide response (output vs. input optical power) of an edge-coupled loopback 

was measured and exhibits the onset of nonlinear absorption, Figure 5(a). The discrete 

derivative Δ𝑃𝑜𝑢𝑡/Δ𝑃𝑖𝑛 (right axis) most clearly indicates this onset of nonlinear absorption, 

as Figure 5(a) exhibits two distinct regimes: 1) the linear response with Δ𝑃𝑜𝑢𝑡/Δ𝑃𝑖𝑛 ≈ 1, 

and 2) the nonlinear response with Δ𝑃𝑜𝑢𝑡/Δ𝑃𝑖𝑛 < 1. To approximate the optical power at 

which the nonlinear absorption onsets, the two regimes are linearly fitted and extrapolated 

until their intersection point, which indicates nonlinear absorption begins at 11.7±0.5 dBm.  

The output power 𝑃𝑜𝑢𝑡 is a function of both the loss induced by TPA and by FCA. Hence, 

𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛𝑒−(𝛼𝑇𝑃𝐴+𝛼𝐹𝐶𝐴)𝐿 4-1 

where  𝑃𝑖𝑛 is the input optical power; 𝛼𝑇𝑃𝐴  and 𝛼𝐹𝐶𝐴 are the two photon and free carrier 

absorption (in Np/m); and 𝐿 is the waveguide length. The calculation of both nonlinear loss 

and nonlinear refractive index responses are covered in detail in section 5.2, though the 

methods are incorporated here for calculating the expected power response of the 

waveguide. 

Informed by Lumerical simulations of the foundry-specified waveguide geometry, 

silicon’s  𝛽𝑇𝑃𝐴 of 0.7 cm/GW, and estimated carrier lifetimes of ~30 ns, calculations model 

the measured responses well, indicating significant nonlinear absorption is due to free-

carrier absorption [20-22]. Hence, the onset of TPA is particularly detrimental, as 

generation of carriers from TPA causes additional loss due to FCA. 
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Next, the optical power response of a SiP MZM fabricated in the AIM Photonics process 

was investigated for varied reverse bias on the MZM phase shifters, Figure 5(b). 

Presumably, the high dopant concentrations in SiP phase shifters may reduce the power 

handling of these devices as compared to undoped waveguides due to bandgap 

renormalization or enhanced free carrier absorption. Per Figure 5(b), nonlinear absorption 

onsets at 11.3±0.5 dBm on-chip optical power, slightly lower power than for the simple 

loopback (waveguide) structure, though well within its uncertainty bounds. Hence, the SiP 

MZM handles optical power nearly as well as undoped waveguides, though perhaps only 

due to moderate doping levels within the phase shifters. Because the MZM employs a 3 dB 

splitter at its input, the phase modulators receive 3 dB less optical power; hence, the phase 

modulator exhibit TPA and resultant FCA for optical power >+8.3 dBm. 

 

Figure 5 – (a) Waveguide optical power handling. Nonlinear absorption onsets at 

+11.7±0.2 dBm on-chip optical power at λ=1550 nm. (b) Modulator optical power 

handling. Nonlinear absorption onsets at 11.3±0.2 dBm on-chip optical power at λ=1550 

nm. On-chip powers cite the estimated optical power immediately after the input edge 

coupler. Fitted lines (dotted) to linear absorption regions and nonlinear absorption regions 

are indicated, with their intersection defining an approximate onset of nonlinear absorption. 

Discrete derivatives Δ𝑃𝑜𝑢𝑡/Δ𝑃𝑖𝑛 are calculated for the right axis, and raw optical power 

responses are shown for the left axis. The calculated lines in (a) indicate responses due to 

TPA and TPA-induced FCA, yielding preliminary evidence that the power handling 

limitations are due to these processes. 

(a)

(b)

(a)

(b)
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Lastly, the optical power handling of the AIM Photonics photodiodes was evaluated for 

varied reverse biases, Figure 6. Rather than investigating optical nonlinearities in the 

photodetector, the most useful information is the combination of reverse bias and optical 

power that results in device failure. At 30 mW of optical power for -3V reverse bias, the 

photodiode was irreparably damaged. The current vs. optical power measurements exhibit 

supra-linear, nearly linear, and sub-linear responses for increasing reverse bias; these 

responses suggest system linearity may be affected by the photodetector input optical 

power and reverse bias conditions [23]. Further work should investigate the impact of 

reverse bias on link linearity, e.g. 𝑆𝐹𝐷𝑅 vs. photodetector reverse bias. Though these 

photodetectors failed at only moderate optical power, higher power handling is possible 

through parallelization (arrays) [24].   

This brief chapter has introduced the idea of optical power handling in SiP components 

and provided measurement-informed estimations on device power limitations. The next 

chapter expands on the nonlinear effects mentioned here and demonstrates how these 

perceived power limitations may be turned to an advantage for microwave photonic signal 

processing. 

Figure 6 – Photodetector responsivity demonstrating a strong dependence on reverse bias; 

linearity and responsivity are both bias dependent. Note the device was damaged after 

testing at -3V for an on-chip power of 32 mW. 
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CHAPTER 5. SUB-GHZ OPTICAL FILTERS USING 

NONLINEAR RINGS 

5.1 Narrowband Optical Filters 

A major hurdle in IMWP is the achievement of narrowband filtering to accomplish sub-

GHz RF filtering in the optical domain, particularly in a commercial silicon photonic 

process. Phased array antennas, RF photonic channelizers, and related technologies all 

require the ability to identify, select, and process data among a wide band of received 

signal. The most common integrated photonic filters include single and cascaded ring 

resonators and Bragg waveguides; yet these filters generally struggle to achieve the metrics 

required for many IMWP applications.  

Here is presented an integrated optical filter based on single ring resonator and concentric 

ring resonator architectures coupled with TPA and free carrier effects to engineer filters 

with unprecedented performance in terms of both insertion loss and narrowband, fast roll-

off responses.  

5.2 Nonlinear Optical Effects 

First, the nonlinear index and absorption effects are overviewed, culminating with a simple 

yet powerful model of nonlinear ring resonators in section 5.3 that will identify the 

nonlinear effects present in later experimental results. 
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The first nonlinear effect to consider is the (AC) Kerr effect, a result of silicon’s relatively 

large 𝜒(3) parameter. The induced index perturbation Δ𝑛𝐾𝑒𝑟𝑟 is proportional to the optical 

intensity 𝐼 by the Kerr coefficient 𝑛2~3x10-18 m2/ W [25, 26], 

Δ𝑛𝐾𝑒𝑟𝑟 = 𝑛2𝐼 5-1 

The Kerr effect also manifests as a small perturbation in the silicon’s absorption response, 

by a proportionality constant 𝑟𝐾𝑒𝑟𝑟, such that 

Δ𝛼𝐾𝑒𝑟𝑟 = 𝑛2𝑟𝐾𝑒𝑟𝑟𝐼 5-2 

Additionally, two photon absorption (TPA) induces further loss into the waveguide as a 

function of the optical intensity 𝐼 by the TPA coefficient 𝛽𝑇𝑃𝐴, 

Δ𝛼𝑇𝑃𝐴 = βTPA𝐼 5-3 

However, with TPA comes the generation of free carriers, in turn inducing further index 

and absorption perturbations via the plasma-dispersion effect. Hence, the free carrier 

induced index perturbation Δ𝑛𝐹𝐶  [25, 26] is  

Δ𝑛𝐹𝐶 = −
𝜇𝑙𝑤

2𝑘𝑝
Δ𝛼𝐹𝐶 , 5-4 

where 𝑢𝑙𝑤 is the linewidth enhancement factor with value ~7.5 at 𝜆 = 1550 nm; 𝑘𝑝 is the 

propagation constant 𝑘𝑝 = 2𝜋/𝜆; and Δ𝛼𝐹𝐶 is the free carrier induced absorption 

perturbation, given by 
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Δ𝛼𝐹𝐶 = 𝜎𝑁𝑐, 5-5 

where 𝜎 is the carrier cross-section with value 1.45x10-21 m2, and 𝑁𝑐 is the carrier density 

given by  

𝑁𝑐 =
𝜏𝑐𝛽𝑇𝑃𝐴𝐼2

2ℎ𝜔
 5-6 

Here, 𝜏𝑐 is the carrier lifetime; ℎ is Planck’s constant; and 𝜔 is the optical frequency [25, 

26]. The optical intensity 𝐼 is related to the electric field by 

𝐼 =
1

2
√

𝜖

𝜇
|𝐸|2 5-7 

This is useful because the calculation of the ring resonator responses at high optical powers 

will require quantification of the intra-ring intensity to account for nonlinear effects. Lastly, 

the thermo-optic effect is included, which manifests as an index perturbation Δ𝑛𝑡ℎ 

proportional to the change in temperature Δ𝑇. 

Δ𝑛𝑡ℎ =
𝑑𝑛

𝑑𝑇
Δ𝑇 5-8 

Here, the thermo-optic coefficient  
𝑑𝑛

𝑑𝑇
 for silicon near 𝜆 = 1550 nm is 1.84x10-4 K-1. The 

approximate Δ𝑇 may be estimated [27] by  

Δ𝑇 =
𝜏𝑡ℎ𝛼𝐼

𝜌𝐶𝑡
, 5-9 
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where 𝜏𝑡ℎ is a thermal dissipation time constant; 𝜌 is the mass density of Si of 2.3x103 

kg/m3; and 𝐶𝑡 is the specific heat capacity of Si, 705 J/(kg∙K).  

The total index [28, 29] is then: 

𝑛𝑒𝑓𝑓 = 𝑛𝑒𝑓𝑓,0 + Δ𝑛𝐾𝑒𝑟𝑟 + Δ𝑛𝐹𝐶 + Δ𝑛𝑡ℎ 5-10 

𝛼 = 𝛼0 + Δ𝛼𝐾𝑒𝑟𝑟 + Δ𝛼𝑇𝑃𝐴 + Δ𝛼𝐹𝐶 5-11 

The low intensity effective index 𝑛𝑒𝑓𝑓,0 is calculated by a finite-difference element 

simulation  of the fabricated waveguide geometry using Lumerical MODE. The baseline 

absorption 𝛼0 is based on loss metrics given in the Globalfoundries PDK. 

5.3 Nonlinear Ring Resonator Model 

To include all the nonlinear effects, a simple model incorporating the nonlinear index and 

absorption effects was developed, following the methods of [31]. A pseudo-time domain 

method is used based on recursively calculating the electric fields inside the ring and output 

from the ring; the time dependence is normalized in terms of the number of circulations. 

This allows the user to understand both the steady-state response (after many iterations), 

or to observe the time evolution of the fields in the ring.  

The input electric field to the ring is 𝐸1 = √
2𝑃𝑖𝑛

𝐴𝑒𝑓𝑓
(

𝜇

𝜖
)

1

4
, where 𝑃𝑖𝑛 is the input average optical 

power, and 𝐴𝑒𝑓𝑓 is the effective optical mode area. The input light is coupled to the ring 

with coupling coefficient 𝜅, such that the initial electric field in the ring is 𝐸4 = 𝜅𝑒𝑗𝜋/2𝐸1 +

𝑟𝐸3. Here, 𝑟 is the “reflection” or self-coupling coefficient, 𝑟 = √1 − 𝜅2. The field 𝐸3 is 
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the propagated 𝐸4 around the total ring circumference and hence is modified by phase 𝜙 

and absorption 𝛼, such that 𝐸3 = 𝑒−𝑗𝜙𝑒−𝛼𝐿𝐸4.  

The phase 𝜙 and absorption 𝛼 within the ring contain the nonlinearities described in the 

previous section; hence,  

𝜙 =
2𝜋(𝑛𝑒𝑓𝑓,0 + Δ𝑛𝐾𝑒𝑟𝑟 + Δ𝑛𝐹𝐶 + Δ𝑛𝑡ℎ)𝐿

𝜆
 5-12 

and 𝛼 = 𝛼0 + Δ𝛼𝐾𝑒𝑟𝑟 + Δ𝛼𝑇𝑃𝐴 + Δ𝛼𝐹𝐶, as defined previously. 

Finally, the output field 𝐸2 is the sum of the throughput 𝐸1 and coupled 𝐸3 fields, 𝐸2 =

𝑟𝐸1 + 𝜅𝑒
𝑗𝜋

2 𝐸3. The power transmission response 𝑇(𝜔) is calculated via 𝑇(𝜔) =
|𝐸2(𝜔)|2

|𝐸1(𝜔)|2. 

Figure 7 illustrates the locations of the referenced fields. The electric fields are calculated 

algorithmically using a MATLAB script, with the nonlinear index and absorption effects 

included from the previous section. This ring model is employed in the next section to 

compare to experiment and determine the primary nonlinear effects. 

 

Figure 7 – Schematic illustrating locations of the calculated fields 𝐸1, 𝐸2, 𝐸3, and 𝐸4. 
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5.4 Nonlinear Ring Based Edge Filters  

While optical bandpass filters have received the largest attention to date, numerous 

applications require only a spectrally sharp edge. For example, filtering out a sideband to 

produce single-sideband modulation or filtering out both carrier and a single sideband to 

isolate a carrier-less signal are two cases where only a sharp edge and high extinction are 

required. Furthermore, larger architectures of multiple edge filters can perform highly 

complex functions, such as channelization.  

Previously, edge filters have been demonstrated using multimode subwavelength Bragg 

gratings, yielding a high-pass edge filter with 118 dB/nm roll-off and >40 dB extinction 

[30]. The same group later demonstrated another edge filter based on apodized sub-

wavelength gratings, demonstrating 3.5 dB/nm roll-off, 40 dB extinction, and low insertion 

loss of 0.5 dB [31]. Another edge filter based on phase-shifted Bragg grating filters 

demonstrated 41.5 dB extinction over 18 GHz, corresponding to a roll-off of 2.3 dB/GHz 

or 288 dB/nm [32]. The roll-offs demonstrated shortly will be shown to exceed the previous 

literature by several orders of magnitude. 

The edge filter presented in this section is based on nonlinear effects, particularly TPA and 

free-carrier (FC) effects described in the section 5.2. Although previous literature has 

demonstrated how nonlinear effects alter silicon-based ring responses and in particular 

cause highly asymmetric features at high optical powers [27, 29, 33, 34], no literature was 

found using such nonlinear rings for filtering, as is presented here in the context of filtering 

microwave photonic signals. Previous applications include using nonlinear effects in ring 

resonators for photon pair generation [27], all-optical modulation [35], and logic for all-
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optical routing [36]. While traditional integrated filtering methods, such as by ring 

resonators or integrated Bragg gratings, must chase ever higher Qs through larger and 

lower loss structures to achieve high spectral resolution, the filtering method presented here 

does not require such stringent optical performance. 

5.4.1 Single Ring Variant 

A ring resonator with 20 µm radius using 500 nm wide strip waveguides and a 300 nm 

coupling gap was fabricated using the Globalfoundries 9WG (90 nm) silicon-on-insulator 

process. The single ring resonator was characterized by sweeping the laser wavelength and 

measuring the output response, Figure 8. For a launch power maintained at -9 dBm, the 

response of Figure 9(a) was obtained, showing very little asymmetry due to nonlinear 

effects. When the input optical power was increased to -3 dBm, the highly asymmetric 

response of Figure 9(b) was obtained. The calculated responses were obtained by varying 

the 𝜅, 𝜏𝑐, 𝛼0, and 𝜏𝑡ℎ parameters described in section 5.2. Though unknown, these 

parameters are well bounded. For example, the 𝛼0 is assumed to remain within a factor of 

2 of the PDK-provided absorption metrics of a standard waveguide, and the carrier lifetime 

𝜏𝑐 is assumed to be on the same order of magnitude (~10-8 s) as those cited in relevant 

literature, using similar SiP processes [34]. The calculated responses, which include Kerr, 

thermal, TPA, and FC effects indicate that plasma-dispersion due to free carriers is the 

dominant nonlinearity. Further, the ring asymmetry is plainly due to plasma-dispersion 

effects from TPA-generated free carriers, since this is the only effect of section 5.2 with a 

negative index perturbation, which causes blue-shifting of the resonance. All other effects 

(Kerr and thermal) exhibit positive index perturbations that result in red-shifts in resonance. 
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Figure 8 – Schematic of the experimental setup for characterizing the ring filters. 

 

The sharp resonator asymmetry occurs as follows. As the input wavelength approaches the 

resonance, optical power begins to build in the resonator cavity. If this optical power is 

above the TPA threshold (~50 mW for SiP waveguides), TPA induced loss will occur, 

causing a generation of free carriers inside the ring waveguide. These free carriers then 

decrease the effective index via the plasma-dispersion effect, causing the resonance to 

blueshift. This begins a positive feedback loop whereby more optical power is coupled into 

the resonance, more TPA occurs to generate more free carriers, hence causing the index of 

refraction to further blue-shift until the resonant wavelength shifts lower than the input 

wavelength. At this point the positive feedback reaches its limit, and the process reaches 

steady state [36]. While a blue-shifted asymmetry leading to a sharp low-pass edge filter is 

here demonstrated, a red-shifted asymmetry leading to a sharp high-pass edge filter is also 

conceivable by engineering a ring with either dominant Kerr or thermal nonlinearities. In 

fact, in several transmission responses found in the literature, the high-pass edge filter is 

achieved, through presumably thermal effects [27, 34]. 
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Figure 9 – Measured ring resonator transmission responses at (a) -9 dBm and (b) -3 dBm 

laser launch powers. At low powers, the ring response exhibits slight asymmetry due to 

nonlinear phase and absorption in the ring cavity. At higher powers, the response exhibits 

dramatic asymmetries due to strong nonlinear effects. This highly asymmetric response is 

useful as an edge filter, exhibiting 15.7 dB optical extinction over <0.001 nm, or <126 

MHz. The edge exhibits an optical 3 dB bandwidth of <24.3 MHz. Finer laser step sizes 

likely reveal a spectrally finer edge, as later results indicate. 

Figure 9(b) indicates the FC plasma-dispersion effect leads to an extraordinary edge filter 

response, exhibiting 15.7 dB optical extinction over <0.001 nm, or <126 MHz. This 

translates to a roll-off rate of 15,700 dB/nm or 124.6 dB/GHz. Later measurements using 

a finer laser step will characterize optical filters with even faster, record-setting roll-offs of 

over 103 dB/GHz. The optical 3 dB bandwidth is < 24.3 MHz, and the resolution of the 

laser step (0.001 nm here) limits further reduction of this estimate. The filter also exhibits 

very little loss, only 0.2 dB. However, the edge filter exhibits an optical extinction > 5 dB 

over a band of only 2.3 GHz. Hence, it is considered an edge filter over a narrow band.  

Another resonance was measured at a slightly higher power, demonstrating no measurable 

insertion loss, Figure 10. As the input optical power increases, the nonlinearities onset 

faster as the input wavelength approaches the resonance, such that even a small fraction of 

coupled power will build up enough power in the ring to onset TPA. Hence, the insertion 
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loss effectively decreases for higher input optical power until there is virtually no insertion 

loss as in the case of Figure 10. This filter response demonstrates 24.0 dB maximum 

extinction and a roll-off rate > 155x103 dB/nm or 1230 dB/GHz. This roll-off rate is a 

minimum since the step size here of 0.1 pm could not capture any intermediate points. The 

ring filter operates as a low pass edge filter with extinction > 5 dB over a 3.0 GHz wide 

band. This work demonstrates record-setting (to the best of the author’s knowledge as of 

this writing) edge filter performance using nonlinear TPA-induced free carrier plasma-

dispersion effects in simple ring resonators.  

 

Figure 10 – Measured single ring resonator transmission responses at +0 dBm optical 

launch power, demonstrating no measurable insertion losses. 

5.4.2 Concentric Ring Variants 

Next, concentric rings were placed inside a single ring resonator identical to the ring of 

section 5.4.1 to modify the transmission response. To the authors’ best knowledge, such 

concentric ring filters have only been previously reported for biosensing applications [37, 

38]; these filters may be understood to be a special case of cascaded ring resonators, where 
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the ring-ring coupling length is extended to its limit as the average path length of the two 

coupled rings. Concentric rings include 2-ring, 3-ring, 4-ring, and 5-ring variants with the 

outermost ring radius 𝑅1 = 20 µm. Inner concentric rings with a common center have radii 

𝑅2 … 𝑅5 such that 𝑅𝑛 = 𝑅𝑛−1 − 0.8 µm, resulting in nominally identical coupling gaps of 

0.3 µm between each ring. The strip waveguide coupled to the concentric ring structure 

also had a 0.3 µm coupling gap. The responses were similarly measured as before, with 

highlighted results in Figure 11. 

Figure 11 – Measured concentric ring edge filter transmission responses for (a) 2-ring, (b) 

3-ring, (c) 4-ring, and (d) 5-ring variants. 

The primary metrics of interest for each variant include the optical and effective RF 3 dB 

bandwidths, the roll-off rate, the peak optical extinction, and the band over which the filter 

behaves like and edge filter, here defined as the bandwidth over which the optical 

 

 

(a) (b) 

(c) (d) 
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extinction is > 5 dB. These metrics are quantified for both the single ring variant and the 

concentric ring variants in Table 1. 

The best performing variants (single ring and 5-ring) are compared to the literature 

performance in Table 2. The edge filter performance here greatly outperforms previous 

literature known to the author in terms of roll-off, often by over three orders of magnitude. 

Table 1– Summary of Nonlinear Single Ring (1-ring) and Nonlinear Concentric Ring (2-5 

ring) Edge Filter Performance 

 

Table 2– Comparison of Optical Edge Filters in Literature 

  

 

 

 

 

 

 

 
Optical 3 dB 

BW (MHz) 

Effective RF 

3 dB BW 

(MHz) 

Roll-off 
Rate 

(dB/GHz) 

Roll-off 
Rate 

(dB/nm) 

Peak Optical 
Extinction 

(dB) 

Optical 
Insertion 
Loss (dB) 

Band for 
Extinction > 5 

dB (GHz) 

1-ring <2.4 <1.2 >1230 >155x103 24.0 <0.1 3.0 

2-ring <3.8 <1.9 >790 >99.1 x103 10.5 <0.1 7.3 

3-ring <3.7 <1.9 >817 >103 x103 10.3 0.26 4.5 

4-ring <2.9 <1.5 >1020 >128 x103 15.5 0.13 4.9 

5-ring <2.0 <1.0 >1470 >186 x103 18.7 0.20 2.9 

 
Optical 3 dB 

BW (MHz) 

Roff-off 

Rate 

(dB/GHz) 

Roff-off Rate 

(dB/nm) 

Peak Optical 

Extinction (dB) 

Optical 

Insertion 

Loss (dB) 

This work, 

single ring 
<2.4 >1230 >155x103 24.0 <0.1 

This work, 5-

ring 
<2.0 >1470 >186 x103 18.7 0.20 

[30] 3.2x103 0.94 118 >40 - 

[31] 10x104 ~0.03 3.5 40 0.5 

[32] 1.3x103 2.3 288 41.5 - 
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While the benefits of adding concentric rings for edge filters are yet unclear from the results 

of Table 1, the next subsection describes how such concentric ring filters in conjunction 

with the TPA-induced FC plasma-dispersion effect can be used to engineer superb 

bandpass filters. 

5.5 Bandpass Optical Filters 

The same concentric filters of the previous subsection also demonstrated bandpass 

responses at specific resonances. Generally, the resonances were edge filter responses, 

except where the resonances of inner rings aligned in a specific manner near the outermost 

ring resonance. The inner ring resonances (those corresponding to rings with radii 𝑅2 … 𝑅5) 

must align slightly red-shifted within the tail end of the outmost ring resonance, such that 

a significant fraction of power can be transferred into both the 𝑅1 ring and inner rings 

simultaneously. If the inner ring resonances are too far from this condition, insignificant 

power will enter the inner rings, resulting in very shallow transmission responses. Because 

the inner rings have different free-spectral ranges (FSRs) than the outer ring, this may be 

considered a Vernier effect, as the bandpass responses require the correct alignment of 

multiple resonances with different frequency spacings. This behavior is verified by a 

simple model of the 2-ring filter. Following the same approach as in 5.3, the ring model is 

modified by adding a second ring inside the first with a finite ring-ring coupling length 𝐿2. 

The following electric fields are identified in the schematic of Figure 12. These fields are 

written: 
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𝐸1 = √
2𝑃𝑖𝑛

𝐴𝑒𝑓𝑓
(

𝜇

𝜖
)

1
4
 5-13 

𝐸2 = 𝑟1𝐸1 + 𝜅1𝑒𝑗𝜋/2𝐸3 5-14 

𝐸3 = 𝑟2𝑒−𝑗𝜙1𝑒−𝛼𝐿1𝐸4 + 𝜅2𝑒
𝑗𝜋
2 𝐸6 5-15 

𝐸4 = 𝜅1𝑒
𝑗𝜋
2 𝐸1 + 𝑟1𝐸3 5-16 

𝐸5 = 𝜅2𝑒
𝑗𝜋
2 𝐸4 + 𝑟2𝐸6 5-17 

𝐸6 = 𝑒−𝑗𝜙2𝑒−𝛼2𝐿2𝐸5 5-18 

where 𝑟1 and 𝜅1 are the self-coupling and cross-coupling coefficient of the ring-bus 

waveguide coupling region, and 𝑟2 and 𝜅2 are the coupling coefficients of the ring-ring 

coupling region. Likewise, 𝜙1 and 𝛼1 are the excess phase and absorption of the outer ring, 

while 𝜙2 and 𝛼2 are the excess phase and absorption of the inner ring. Solving the above 

system of equations for 𝐸2 yields the following expression: 

𝐸2 = 𝐸1 [cos(𝛽𝐿1) +
sin2(𝛽𝐿1)𝑒𝑗𝜋

1
𝑄 − cos(𝛽𝐿1)

] 5-19 

where  

𝑄 = cos(𝛽𝐿2)𝑒−𝑗𝜙1 𝑒−𝛼1𝐿1 +
sin2(𝛽𝐿2)𝑒𝑗𝜋𝑒−𝑗𝜙2𝑒−𝛼2𝐿2

1 − 𝑒−𝑗𝜙2𝑒−𝛼2𝐿2 cos(𝛽𝐿2)
. 5-20 
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Here, the coupling coefficients 𝑟1,2 and 𝜅1,2 are replaced with functions dependent on the 

coupling length 𝐿1,2: 𝑟1,2 = 𝑐𝑜𝑠(𝛽𝐿1,2) and 𝜅1,2 = 𝑠𝑖𝑛(𝛽𝐿1,2), where 𝛽 is a coupling 

strength constant, dependent on the index mismatch between coupled waveguides and the 

coupling gap. 

 

Figure 12 – Schematic of the 2-ring concentric field device with electric fields defined. 

 

Lastly, the depiction of Figure 12 is not quite a concentric ring configuration, since the two 

rings are not coupling along their entire length and do not yet share a common center. 

Hence, the ring-ring coupling length 𝐿2 is now set equal to the average roundtrip path 

lengths of the two rings, which forces the configuration to be truly concentric. Hence, 𝐿2 =

2𝜋(𝑅1 + 𝑅2)/2 = 𝜋(𝑅1 + 𝑅2). 

The transmission response 𝑇 = |
𝐸2

𝐸1
|

2

 is then calculated using assumed values of 𝛼1 =

𝛼2 =120 Np/m, 𝐴𝑒𝑓𝑓 = 0.15 µm x 0.3 µm, 𝜅1 = 0.12, and 𝛽 = 25𝜋(n2 − n1)/𝜆 where 𝑛1 

and 𝑛2 are the Lumerical MODE calculated effective indices for rings 𝑅1 and 𝑅2, 

respectively. These are generally based on the assumptions used in 5.4.1, but are used only 
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to illustrate the generally operation of the concentric ring filter rather than to match 

experiment here. 

 

Figure 13(a) demonstrates how the concentric ring filter operates similarly to any second 

order ring configuration (e.g. two rings cascaded) with slightly different roundtrip path 

lengths between the rings. The two sets of FSRs, when aligned, form a bandpass filter 

response. 

Figure 13(b). This agrees with the explanation provided for forming a bandpass filter 

response given earlier in this subsection. When misaligned, insignificant optical power is 

coupled into the inner ring, leading to only small transmission notches due to the inner 

ring. However, the outer ring continues to demonstrate large notch filter responses at all its 

resonance frequencies. 

Figure 13 – (a) Calculated transmission response using the simple concentric ring model 

derived previously. The transmission response resembles a Vernier effect, whereby the 

alignment of two ring resonances with slightly different FSRs enables a narrow bandpass 

response. (b) Zoomed view of the bandpass response near 𝜆 = 1532 nm. 

 

 

(a) (b) 
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Next, the bandpass responses for 2-ring, 3-ring, 4-ring, and 5-ring concentric filters are 

measured, Figure 14. These responses were measured with an input optical power of 0 

dBm; hence, the bandpass responses also exhibit the nonlinear effects present in section 

the single rings of section 5.4. Table 3 summarizes the performance metrics of each 

bandpass filter. The filters demonstrate optical 3 dB bandwidths between 930 MHz and 2.2 

GHz with fairly flat bandpass responses (variations between 0.2 dB and 1.7 dB). The 

bandpass filters also demonstrate quite low insertion losses, approximately 1 to 2 dB. 

 

Figure 14 – Measured concentric ring bandpass filter transmission responses for (a) 2-ring, 

(b) 3-ring, (c) 4-ring, and (d) 5-ring variants. Performance of each filter is summarized in 

Table 3.  

 

 

(a) (b) 

(c) (d) 
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Table 3– Summary of Nonlinear Concentric Ring Bandpass Filter Performance 

 

Using Lumerical MODE, the group indices 𝑛𝑔 for the modes in rings of radii 𝑅1 … 𝑅5 were 

calculated to estimate the FSR produced by each ring resonance. Using 𝐹𝑆𝑅 =
𝜆2

𝑛𝑔𝐿
, where 

𝜆  is the optical wavelength and 𝐿 is the ring’s roundtrip path length, the FSRs for rings 

with radii 𝑅1 … 𝑅5 were estimated to be 𝐹𝑆𝑅1=4.90 nm, 𝐹𝑆𝑅2=5.09 nm, 𝐹𝑆𝑅3=5.31 nm, 

𝐹𝑆𝑅4=5.56 nm, and 𝐹𝑆𝑅5=5.82 nm. Experimentally and by observation of Figure 14, the 

innermost ring resonances of the higher order filters (𝑅3, 𝑅4, 𝑅5) likely contribute little to 

the filter response, since it is unlikely that any one wavelength satisfies all the resonance 

conditions – even partially – of the outer rings (𝑅1 … 𝑅2) and inner rings simultaneously. 

Hence, the experimentally observed FSRs are compared to the calculations for these outer 

rings only, since no discernible and verifiable resonances were identified as corresponding 

to the inner ring resonances. The experimental FSRs for 𝑅1 and 𝑅2 were 4.78 nm and 4.97 

nm, respectively, both slightly lower but in general agreement with the calculated FSRs. 

5.6 Practical Considerations 

While the filters presented in this chapter have demonstrated superb performance, practical 

issues in the fabrication, tuning, and deployment of such filters should be addressed. Such 

 
Optical 3 dB 

BW (GHz) 

Effective RF 

3 dB BW 

(GHz) 

Optical 6 
dB BW 
(GHz) 

Flatness 
(dB)  

Peak Optical 
Extinction 

(dB) 

Optical 
Insertion 
Loss (dB) 

Band for 
Extinction > 5 

dB (GHz) 

2-ring 2.0 1.5 2.3 1.7 17.6 1.4 7.5 

3-ring 0.93 0.75 1.4 0.6 15.8 2.9 8.8 

4-ring 2.2 1.6 2.5 1.4 18.4 1.3 4.9 

5-ring 0.98 0.67 ~2.5 0.2 11.0 1.1 3.8 
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filters will be at least as sensitive as ordinary add-drop ring filters, if not somewhat more 

sensitive due to the ultra-sharp edges demonstrated by measurement. The filters measured 

here demonstrated stability in frequency within 0.01 nm over a 10 minute period in a 

largely uncontrolled laboratory environment. In frequency, these variations correspond to 

shifts on the order of 1.3 GHz, which could be detrimental for many sensitive filtering 

applications. Hence thermal tuners with control circuitry should be implemented for 

deployment, as is the case for many high Q optical filters. Regarding hysteresis effects, 

none were observed for the filters presented here; sweeping the wavelength in the forward 

and reverse directions produced the same results. 

Another challenge for high-performance optical filters is the variation among devices due 

to fabrication errors. Using the Globalfoundries 90 nm SiP process, identical filters 

fabricated on different parts of the chip varied in resonant wavelength by approximately 

+/-0.1 nm for a sample size of four. Hence, for a target resonant wavelength of 1545.5 nm, 

the same design could exhibit resonances between 1545.4 nm and 1545.6 nm. While 

thermal tuning can easily adjust the resonant wavelength, smaller process nodes like those 

offered by the Globalfoundries 45CLO (45 nm) process could significantly reduce the 

resonant wavelength variation from device-to-device. 

One aspect of these filters yet to be decisively demonstrated is how the filters interact with 

high-speed signals, as these signals may reveal filter features imperceivable to single-tone 

sweeps. It is possible that the optical filters here preliminarily characterized could show 

time-variant features that are less desirable in a filter. For example, [36] indicated such 

TPA and free carrier plasma-dispersion effects enable all-optical modulation with 

bandwidths limited on the order of 10 GHz. However, a filter need not demonstrate high-
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speed modulation characteristics to be useful. The time limitation of the all-optical 

modulator in [36] arises from the relatively long lifetime of the free carriers, which can 

range anywhere picosecond to nanosecond regimes in silicon waveguides. However, 

filtering with TPA-induced free carrier plasma-dispersion effects only requires the 

maintenance of a high free carrier density within the ring in order to achieve the high-

performance filter metrics characterized previously. If these free carriers are not present as 

a high-speed signal impinges on the filter, the signal will pass before significant free carrier 

concentrations can be generated to induce the high spectral roll-off desired. Hence, a simple 

method of overcoming the “startup time” for the filter is to introduce a pilot tone (a CW 

pump) at the resonance to maintain a constant flux of TPA-generated free carriers in the 

ring. The pilot tone should have a high average power, significantly larger than that of the 

signal to be filtered, because these filters are functions of optical power. A high-power pilot 

tone can help stabilize the filter from responding to variations in average signal power. 

This chapter has described edge filters with the sharpest roll-offs of any integrated photonic 

filters to date (to the author’s knowledge) as well as bandpass filter variants, all leveraging 

TPA induced free carrier plasma-dispersion effects. These filters could herald the next 

generation in optical filters for microwave photonics, enabling narrowband RF 

channelization, system linearization by removing unwanted sidebands, carrier suppression, 

single-sideband modulation schemes, and more. 
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CHAPTER 6. SYNTHETIC POCKELS EFFECTS IN SILICON 

6.1 Integrated Photonic Modulators/Transmitters for Analog Applications 

While integrated photonic modulators have been successfully commercialized after two 

decades of research, they remain largely optimized for digital applications, such as those 

for datacenter and long-haul networks. Many IMWP applications require the modulation 

of analog signals, requiring attention to distinct link metrics, such as noise figure, gain, and 

spur-free dynamic range (𝑆𝐹𝐷𝑅), as well as other linearity metrics. Linearization of 

integrated photonic modulators is key to enabling IMWP technologies to compete with 

discrete MWP systems and for adoption in new deployment opportunities, such as 

aerospace communications and modern warfighter systems. 

Though the Pockels effect used by LiNbO3 modulators is near-perfectly linear, the intrinsic 

transfer function of the Mach-Zehnder interferometer is nonlinear – sinusoidal to be 

precise. The need for highly linear MWP systems spurred many efforts in the 1990s to 

linearize the LiNbO3 Mach-Zehnder modulator (MZM) response by a variety of methods, 

including the use of series and parallel dual MZM architectures [39, 40], dual wavelength 

and polarization schemes [41], and feedforward and predistortion methods. Because these 

methods addressed nonlinearities generated by the MZM architecture, they were 

immediately applicable to integrated MZMs as well and provided a nice starting point as 

integrated modulators emerged in the 21st century.  

However, the previous linearization methods of LiNbO3 were insufficient, since new 

integrated modulators relied on the plasma-dispersion effect, in which the index of 

refraction is modulated by depletion (or injection) of free carriers by a voltage [42]. Despite 

the relatively good efficiency of the plasma-dispersion effect, it is unfortunately non-linear, 

being roughly square-root-like or natural log-like in its index vs. voltage response, resulting 
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in the need for intrinsic device linearization. Dopant placement and active length 

optimization [43-46] are demonstrated methods of linearization. Other methods augment 

the interferometer structure, such as by ring-assisted MZMs [47, 48] or through 

parallelization of the MZM structure [49, 50]. 

A third strategy for linearizing integrated modulators lies in their operation. Driving the 

integrated modulators differentially has demonstrated improved linearity [51, 52].  Other 

works have used pn junction reverse bias and MZM bias point optimizations to reduce 

nonlinearities [43, 46, 53-56]. The MZM bias point can compensate for fabrication errors 

in MZM length and pn junction characteristics [45, 46]. Particularly, Sorace-Agaskar et al. 

demonstrated that active length optimization can reduce nonlinearities by careful control 

of the nonlinearity-generating mechanisms, namely i) the inherent MZM transfer function 

shape, ii) the nonlinear refractive index response, and iii) the optical loss response [43, 56]. 

These three mechanisms generate intermodulation distortion products (IMDs).  

Typically, the linearity of MWP systems spanning less than an octave is limited by these 

IMDs (as opposed to harmonics). The MZM (apart from external electronics) is often the 

limiting component and generates third-order IMD (IMD3) that are difficult to filter out 

given their proximity to the signal of interest. Thus, linearization efforts often use metrics 

based on measurements of the IMD3 and its relative strength to the fundamental signal. 

Highlighted in this work is the exploitation of silicon’s 𝜒(3) effect for the linearization of 

SiP MZMs and as a standalone linear effect for pure phase modulation, i.e. a “synthetic” 

Pockels effect in silicon. 
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6.2 DC Kerr Effect Theory 

The DC Kerr effect onsets when a strong electric field breaks of the intrinsic centro-

symmetry of silicon (or similar crystals). This strong DC electric field 𝐸𝐷𝐶 induces a third-

order polarizability to the silicon of the form: 

𝑃𝑥, 𝑡𝑜𝑡
3  (𝜔𝑜) = 12𝜀0𝜒𝑥𝑥𝑥𝑥

(3)
𝐸𝑜𝑝𝑡 𝐸𝐷𝐶

2 𝑒−𝑗𝜔𝑜𝑡 6-1 

where 𝜒𝑥𝑥𝑥𝑥
(3)

= 2.45 × 10−19 m2 V−2 is the third-order nonlinear susceptibility [57, 58]; 𝜀𝑆𝑖 is 

the relative permittivity of silicon; and 𝜔𝑜 is the optical angular frequency. Here, 𝐸𝐷𝐶 is 

the DC applied field magnitude, and 𝐸𝑜𝑝𝑡 is the optical electric field magnitude. Upon 

adding an AC modulating field 𝐸𝐴𝐶 with angular frequency 𝜔𝐴𝐶 in addition to the DC field, 

the third-order polarizability of the silicon has new components governed by 

𝑃𝑥, 𝑡𝑜𝑡
3  (𝜔𝑜 + 𝜔𝐴𝐶) = 12𝜀0𝜒𝑥𝑥𝑥𝑥

(3)
𝐸𝑜𝑝𝑡 𝐸𝐷𝐶 𝐸𝐴𝐶 𝑒

−𝑗(𝜔𝑜+𝜔𝐴𝐶)𝑡. 6-2 

Each of these third-order polarizabilities lead to an index change governed by the two 

equations (for DC fields and DC+AC fields, respectively): 

∆𝑛𝐷𝐶 ≈
6𝜒𝑥𝑥𝑥𝑥

(3)
𝐸𝐷𝐶

2

√𝜀𝑆𝑖

 
6-3 

∆𝑛𝐴𝐶 ≈
6𝜒𝑥𝑥𝑥𝑥

(3)
𝐸𝐷𝐶𝐸𝐴𝐶

√𝜀𝑆𝑖

 

6-4 

While the linear electro-optic effect, or “Pockels” effect, exhibits a linear index response 

with respect to voltage or electric field, the plasma-dispersion (PD) effect exhibits an index 

response roughly proportional to √𝑉 because of the junction depletion width’s √𝑉 
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dependence. See Table 4 for a summary of Pockels, plasma-dispersion, and DC Kerr 

effects.  

Table 4– Comparison of Pockels, plasma-dispersion, and DC Kerr effects. 

 Pockels 
Plasma-

Dispersion 
DC Kerr 

(DC) 
DC Kerr (DC+AC) 

Material 

Polarization 
𝜖0𝜒(1)𝐸 N/A 𝜖0𝜒(1)𝐸𝐸𝐸 𝜖0𝜒(1)𝐸𝑜𝑝𝑡𝐸𝐷𝐶𝐸𝐴𝐶  

Δ𝑛𝑒𝑓𝑓 ∝ 𝑉𝐷𝐶|𝐴𝐶  ∝ √𝑉𝐷𝐶|𝐴𝐶   ∝ 𝑉𝐷𝐶
2  ∝ 𝑉𝐷𝐶𝑉𝐴𝐶  

Δ𝛼 ~0 ∝ −√𝑉𝐷𝐶|𝐴𝐶  ~0 ~0 

Control 

Parameter 

DC or AC 

Voltage 

DC or AC 

Voltage 

DC 

Voltage 
DC+AC Voltages 

 

For both PD and Pockels effects, both DC and AC voltages modulate the phase according 

to the same function; e.g. for a LiNbO3 phase shifter, a DC field and an AC field both 

theoretically induce a linear change in optical phase. However, DC Kerr effects exhibit 

functionally different behaviors in the DC and AC cases since the DC Kerr effect is 

dependent on the strength and frequency of the third field (besides the optical field and the 

modulating field). In the DC case, the third field is degenerately 𝐸𝐷𝐶, and the index change 

response with electric field in quadratic. Thus, in practice, the optical carrier phase can be 

tuned quadratically with the applied voltage. However, when DC+AC fields are applied to 

a phase shifter, the relevant index response to the signal is not quadratic, but proportional 

to 𝐸𝐴𝐶, enabling near-perfect linear phase modulation. To further clarify this distinction, 

the strength of the optical sideband generated by modulating a phase shifter with DC+AC 

fields is a function of 𝐸𝐷𝐶𝐸𝐴𝐶; however, the carrier phase is tuned by 𝐸𝐷𝐶
2 . Hence, the DC 

Kerr effect is unique in that DC voltages do not equally affect both signal and carrier, as is 
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typically true in Pockels and plasma-dispersion effects. Intrinsically, the voltage required 

for a π phase change will be different in the DC and AC cases. 

One may wonder whether there is a case where 𝐸𝐴𝐶 is degenerate and leads to a useful 

quadratic AC index response. Indeed, this component occurs and exhibits a third order 

polarizability of the form 

𝑃𝑥, 𝑡𝑜𝑡
3  (𝜔𝑜 + 2𝜔𝐴𝐶) = 12𝜀0𝜒𝑥𝑥𝑥𝑥

(3)
𝐸𝑜𝑝𝑡 𝐸𝐴𝐶 

2 𝑒−𝑗(𝜔𝑜+2𝜔𝐴𝐶)𝑡 
6-5 

However, this degenerate 𝐸𝐴𝐶 case does not produce index modulation at the fundamental 

frequency of interest, but rather at a second harmonic, 2𝜔𝐴𝐶 [59].  

6.3 SiP Transmitter Linearization 

An important distinction to make is that the goal for an intensity-modulated analog link, 

like that described in Chapter 3, is not to engineer a perfectly linear phase shifter. While a 

perfectly linear phase shifter is exactly what is desired for phase-modulated links, intensity 

modulated links require that the amplitude modulation is linear rather than the phase 

modulation. Practically, this means the goal for intensity modulated links is to engineer a 

phase shifter response that compensates the Mach-Zehnder interfometer response to yield 

linear amplitude modulation. In silicon, this phase shifter engineering can be accomplished 

through careful control of plasma-dispersion (PD) effects, loss responses, and as shown 

here, the DC Kerr effect. 

Though largely ignored until recently, silicon exhibits a 𝜒(3) effect [57-59] strong enough 

to significantly modulate the refractive index in silicon photonic modulators. The 

incorporation of the DC Kerr effect in SiP modulators adds a degree of control over the 

phase shifter index response, since DC Kerr and plasma-dispersion effects exhibit different 

functional forms of refractive index with respect to electric field (or voltage). Hence, the 
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DC Kerr effect can be used cooperatively with PD effects to engineer a more linear phase 

shifter, or a more linear overall MZM. As will be shown, a combination of PiN junction 

design and tunable reverse bias can vary the relative contributions of PD and DC Kerr 

effects, which together determine the overall modulator transfer function (electrical to 

optical conversion). At the time this work was performed, previous analyses of SiP MZM 

nonlinearities had not sufficiently included the DC Kerr effect. In this section, a 

combination of experiments and simulations demonstrate how judicious choice of PiN 

junction design, phase modulator reverse bias, and MZM bias point can improve modulator 

and hence system linearity, i.e. link 𝑆𝐹𝐷𝑅. 

Two MZMs were fabricated in the AIM Photonics process, each using custom-designed 

phase shifter cross-sections (PN and PiN junctions) depicted in Figure 15. The PiN junction 

modulator is expected to demonstrate a greater ratio of DC Kerr effects to plasma-

dispersion effects than the PN modulator. The MZMs use thermo-optic phase shifters to 

set the bias points in one of the MZM arms. Because the thermally tuned refractive index 

responses vary nearly linearly with heater power, the electrical power consumed by the 

thermo-optic phase shifters acts as a proxy for the MZM bias point.  

 

 

Figure 15 – (a) Cross-sectional schematic of phase modulator structure with simulated 

mode profile. Wi is the width of the undoped intrinsic region. The PN MZM has Wi = 0 

nm, and the PiN MZM has Wi = 200 nm. (b) Top-down image of the fabricated MZM. The 

PN and PiN modulators are identical except for a difference in Wi. 
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6.3.1 DC Characterization and Simulations 

First, the current-voltage (IV) responses of PN and PiN junction diodes specified in Figure 

15 were measured, which yields important information regarding the range of useable 

reverse biases. The IV curve data, Figure 16, exhibit breakdown voltages of -8.1±0.1 V 

and -10.5±0.1 V for the PN and PiN structures, respectively. Hence, the DC bias voltages 

should remain below these breakdown voltages to avoid generating high nonlinearities, as 

is demonstrated later in this section. 

Because the DC Kerr effect has been largely ignored until recently, commercial tools were 

augmented with custom MATLAB code to account for its contribution to index 

modulation. The plasma-dispersion index and absorption responses were calculated using 

Lumerical DEVICE and MODE [60]. Lumerical DEVICE, a 2D/3D charge transport 

solver, handles the electrical carrier perturbations with voltage in the PN or PiN junction 

geometry, and separately MODE calculates the optical properties of the waveguide as a 

function of the voltage, informed from the carrier dynamics from the DEVICE simulation. 

While MODE (which simulates optical modes, effective indices, and free carrier 

absorption) calculates the plasma-dispersion effect well based on the Soref/Bennet model 

[42], it does not yet (as of this writing) include DC Kerr effects in a convenient manner. 

Hence, custom Matlab code was developed to use the applied and optical electric fields 

from DEVICE and MODE, respectively, to calculate the contribution of DC Kerr effects 

as a function of voltage for both PN and PiN junction designs [59]. Because the DC Kerr 

effect incurs negligible loss, simulations assume plasma-dispersion (free carrier) 

absorption dominates the loss response. The simulation workflow is depicted schematically 

in Figure 17. 
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Figure 16 – Measured IV curves for PN and PiN phase shifters. Breakdown voltages limit 

the range of useful reverse bias voltages. 

 

Figure 17 – Simulation workflow between Lumerical DEVICE, MODE and custom 

MATLAB code to calculate both plasma-dispersion and DC Kerr effects generated by a 

phase modulator. 

SiP platforms hence have two modulation effects with different index vs. voltage functions 

at disposal. As a result, transfer function engineering can be accomplished by combining 

PD and DC Kerr effects through PiN junction design and tunable DC bias on phase shifters. 

reverse breakdown
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The index responses for both PN and PiN based MZMs were measured by sweeping the 

bias voltage applied 𝑉𝑏𝑖𝑎𝑠 to one phase shifter and measuring both bar and cross optical 

outputs (optical powers 𝑃𝑏𝑎𝑟 and 𝑃𝑐𝑟𝑜𝑠𝑠, respectively). The optical transmission was 

measured per the biasing scheme of Figure 18(a), yielding measured transfer functions of 

both PN and PiN modulators in Figure 18(b) and Figure 18(c).  

 

  

Figure 18 – (a) Biasing scheme for measuring the transfer functions of the SiP MZMs. 

Thermo-optic phase shifters adjust the relative phase between Mach-Zehnder arms to set 

the MZM bias point. The DC electrical-optical responses are shown in (b) for the PN 

modulator and (c) for the PiN modulator. The x-axis represents reverse bias. The transfer 

functions without voltage-dependent absorption are shown by using the extracted index 

changes only. This illustrates how voltage-dependent absorption affects, albeit weakly, the 

MZM transfer functions. 

Because both optical outputs are measured simultaneously as a function of 𝑉𝑏𝑖𝑎𝑠, the index 

response Δ𝑛𝑒𝑓𝑓 and absorption response Δ𝛼𝐿 can be uniquely extracted per the following 

equations: 
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𝛥𝑛𝑒𝑓𝑓 =
𝝀

2𝜋𝐿
cos−1 (−

𝑃𝑏𝑎𝑟 − 𝑃𝑐𝑟𝑜𝑠𝑠

𝑒−2𝛼0𝐿𝑒−∆𝛼𝐿|𝐸𝑖|2
) 6-6 

∆𝛼𝐿 =
−1

2
𝑙𝑛 (

2(𝑃𝑏𝑎𝑟 + 𝑃𝑐𝑟𝑜𝑠𝑠)

𝑒−2𝛼0𝐿|𝐸𝑖|2
− 1) 6-7 

where 𝜆 is the optical wavelength; 𝐿 is the phase shifter active length, 𝛼 is the absorption 

per unit length (hence 𝛼𝐿 is total phase shifter loss in dB); 𝛼0𝐿 is the zero-bias phase shifter 

loss or insertion loss; and 𝐸𝑖 is the input optical electric field. While the Δ𝑛𝑒𝑓𝑓 response 

can be uniquely extracted, experimentally determining the contributions to this total index 

response is challenging. Hence, simulations are used to estimate the relative contributions 

of the DC Kerr effect and plasma-dispersion effect to the extracted Δ𝑛𝑒𝑓𝑓. Given limited 

knowledge of the foundry’s process, the index and absorption responses are fit in 

simulation, allowing for variation of only two uncertain parameters: dopant concentration 

and junction depth (spread). Varying these two parameters within the relatively narrow 

ranges common to SiP foundry capabilities and phase shifter designs, the Δ𝑛𝑒𝑓𝑓 and Δ𝛼𝐿 

responses were matched well for both PN and PiN modulators, both using the same process 

assumptions (because they are from the same silicon die). Both simulated and 

experimentally extracted responses for PN and PiN modulators are shown in Figure 19. 

Figure 19(a) demonstrates a nearly linear index response with voltage, indicating DC Kerr 

effects are significantly augmenting the PD effect’s √𝑉 dependence. In  

Figure 19(b) the DC Kerr effect is even more apparent, as its quadratic response inverts the 

curvature of the total index response, given a higher ratio of DC Kerr to PD effect in the 

PiN modulator. Note that, even when simulated for wide variations in extracted parameters, 

the plasma-dispersion effect alone cannot achieve the index/absorption responses of Figure 

19. In the next subsection, this DC Kerr effect used to linearize the MZM response. 
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Figure 19 – Extracted effective index response and absorption decrease for (a) PN junction 

and (b) PiN junction based SiP phase shifters, demonstrating strong DC Kerr effects as the 

PD effect alone cannot account for the near-linear index response of (a) and the negative 

curvature or quadratic response of (b). 

The DC performance metrics, including 𝑉𝜋𝐿, insertion loss, the avalanche breakdown 

voltage, and the DC extinction ratio, are summarized for both PN and PiN modulators in 

Table 5. 

Table 5– Summary of SiP Modulator DC Performance. 

6.3.2 SiP Transmitter Linearity 

A useful first step in assessing the linearity of an RF electronic or optical component or 

system is the measurement and observation of the intermodulation distortion products 

(IMDs), typically the second and third order IMDs (IMD2s and IMD3s), since these are 

the distortions which often limit the system 𝑆𝐹𝐷𝑅. The IMDs are measured for the PN and 

 

METRICS PiN MZM PN MZM 

VπL (V·cm) 

 

2.08±0.02 1.56±0.02 

Insertion Loss (dB) 
 

7.5±1 10.5±1 

Breakdown Voltage (V) 

 

-10.5±0.1 -8.1±0.1 

DC Extinction Ratio (dB) >17 >20 
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PiN modulators using a setup depicted in Figure 20. Here, two RF tones close in frequency 

(100 MHz apart) are added electrically and input to the modulator. The fundamental, 

IMD2, and IMD3 RF powers and average output optical power were tracked 

simultaneously as a function of MZM bias point (set by thermo-optic phase shifter) with 

PN and PiN junctions reverse biased at -5V,  Figure 21. For modulators with nearly 

perfectly linear phase shifters, e.g. lithium niobate modulators, the fundamental and IMD3 

align and behave functionally similar versus bias point, while the IMD2 and all other even-

ordered distortions behave oppositely. For the PN and PiN silicon photonic responses of 

Figure 21, the RF fundamental and IMDs appear to roughly follow the behavior of MZMs 

with linear phase shifters: the fundamental/IMD3 are minimized where the optical 

transmission is at its extremes. The IMD2 is minimized near the -3 dB optical transmission 

points, what would nominally be called the quadrature point for lithium niobate 

modulators. Upon closer inspection, however, these behaviors are imprecisely manifested 

due to the nonlinear index responses of the SiP phase shifters. From Figure 21(a), the 

fundamental null (e.g. at ~45 mW) is misaligned or shifted horizontally from the IMD3 

null (e.g. at ~40 mW). Given these results were measured simultaneously, there is no error 

in the position of the nulls due to bias point drift over time. Hence, these results demonstrate 

how the nonlinear index responses of SiP phase shifters can result in decoupling of the 

fundamental from the IMD3, opening the door to modulator linearization. In modulators 

with perfectly linear phase shifters, the ratio of the fundamental to the IMD3 is theoretically 

constant vs. bias point; hence, counterintuitively, introducing nonlinearities into the phase 

shifter can enhance the fundamental-IMD3 ratio and hence increase device and system 

linearity as quantified by 𝑆𝐹𝐷𝑅.  
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Figure 20 – Link configuration for IMD and 𝑆𝐹𝐷𝑅 measurements along with the SiP MZM 

biasing (DC) and driving (RF) scheme. The parameter 𝑉𝑏𝑖𝑎𝑠 controls the strength of the 

DC Kerr effect and (weakly) the amount of absorption in the phase shifters. The parameter 

𝑉ℎ𝑒𝑎𝑡𝑒𝑟 adjusts the relative phase between the two arms of the MZM. 

Unlike lithium niobate MZMs, silicon photonic MZMs possess two distinct types of bias: 

reverse bias on the phase shifters and the MZM bias point that sets the relative phase 

between MZM arms. In lithium niobate MZMs, applying a DC field to one arm of the 

MZM can set the bias point in a way indistinguishable from applying the DC field to a 

separate phase shifter, apart from the RF modulation electrodes. In SiP modulators, the 

interferometer bias point is typically set by thermal phase shifters, while reverse biases are 

applied to the RF electrodes to prevent the PN or PiN junctions from swinging into the 

forward bias regime when modulated by a signal. This reverse bias improves modulation 

speed by reducing junction capacitance and avoiding the perturbation of large carrier 

concentrations. Hence, silicon photonic MZMs possess an additional degree of freedom 

through the reverse bias of the PN/PiN junctions. Hence, the IMDs are explored as a 

function of reverse bias as well. 
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Figure 21 – Two-tone experimental results and measured optical responses measured vs. 

MZM bias point (heater power) for the (a) PN modulator and (b) PiN modulator. Sweeping 

MZM bias point (heater power) on one arm reveals a shift between fundamental and IMD3 

minima. The optimal heater power and reverse bias combinations are made clear in Figure 

23 and Figure 24 for PN and PiN modulators, respectively. 

 

Figure 22 – Two-tone experimental results and measured optical responses measured vs. 

reverse bias for (a) the PN modulator and (b) the PiN modulator. Sweeping reverse bias 

voltage on both arms simultaneously exhibits optical loss and IMD2 reduction, with minor 

variations in fundamental and IMD3 powers. The optimal heater power and reverse bias 

combinations are made clear in Figure 23 and Figure 24 for PN and PiN modulators, 

respectively. 

The two-tone results of Figure 22 demonstrate the change in linear and nonlinear behaviors 

of the (a) PN and (b) PiN based phase modulators versus reverse bias. As the reverse bias 

in increased, the interplay of the PD effect, DC Kerr effect, and absorption response 

changes the transfer function shape and hence the magnitudes of the linear (fundamental) 
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and nonlinear (IMD2 and IMD3) terms. These results hint at a complex bias space 

(comprised of two free variables: reverse bias and MZM bias point), which is fully explored 

next. 

To explore the bias space fully, the RF fundamentals, IMD3s, and optical power are tracked 

while the reverse bias is swept for fixed heater powers, incremented from 0 to 150 mW. 

From the measured fundamentals and IMD3s are calculated the approximate gain, 𝑁𝐹, and 

𝑆𝐹𝐷𝑅 across the entire bias space for both links employing the PN and PiN based 

modulators, Figure 23 and Figure 24, respectively. Here, the 𝑆𝐹𝐷𝑅s are estimated by using 

a single pair of fundamental and IMD3 data points, assuming slopes of one and three with 

increasing RF input power, and extrapolating the data to the measured noise floor (noise 

power spectral density). Here the noise floor was limited by the electrical spectrum 

analyzer to -152 dBm/Hz.  

 

Figure 23 – Contour plots for the PN MZM of the (a) measured fundamental RF power, 

(b) measured IMD3 power, (c) extracted link 𝑆𝐹𝐷𝑅 showing optimal performance at high 

reverse biases (-4 V to -6 V) and MZM bias points between the first Q and Min, (d) 

extracted link gain, and (e) extracted link noise figure. Metrics are defined in detail in 

Chapter 2.  
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Figure 24 – Contour plots for the PiN MZM, shown versus phase modulator reverse bias 

(equally applied to both arms) and MZM bias point: (a) measured fundamental RF power, 

(b) measured IMD3 power, (c) extracted link 𝑆𝐹𝐷𝑅 showing optimal performance at high 

reverse biases (-5 V to -9 V) and MZM bias points between the second Q and Min, (d) 

extracted link gain, and (e) extracted link noise figure. The input RF power is +4 dBm. The 

white boxes marked in (c), (d), and (e) indicate the optimal biasing space. Metrics are 

defined in detail in Chapter 2.  

Commentary is limited to the contour plot measurements for the PN modulator results of 

Figure 23 for simplicity; the PIN modulator results of Figure 24 demonstrate similar 

features. These contour plots demonstrate many of the behaviors exhibited in the 2D cuts 

through the bias space, such as the shifts in the IMD3 null away from the fundamental nulls 

and the general periodic nature of the fundamentals and IMDs versus MZM bias point. 

From both Figure 22(a) and Figure 23(b), the IMD3s rise significantly for reverse biases < 

1V due to voltage-dependent depletion capacitance and effects from the AC signal 

swinging into forward biased regimes. The voltage-dependent depletion capacitance scales 

approximately as 1/√𝑉 and can limit linearity performance; hence, high reverse bias is 

helpful beyond its usefulness in generating DC Kerr effects by reducing capacitance [61]. 

On the other end of the reverse bias extreme, as the diode avalanche breakdown voltage is 
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approached (by comparing to the IV curves of Figure 16), the nonlinearities rapidly 

increase beyond -7V to the detriment of the system linearity. 

For IMDD links using discrete components, the link 𝑆𝐹𝐷𝑅 is maximized when the  LiNbO3 

MZM bias point is set to its quadrature point (nominally the -3 dB transmission point) 

when limited optical power precludes the use of low-biasing techniques. However, in the 

case of the silicon photonic transmitters here, Figure 23 and Figure 24 indicate optimal 

𝑆𝐹𝐷𝑅 (as well as gain and 𝑁𝐹) are achieved at MZM bias points between the nominally 

quadrature (-3 dB transmission point) and null bias (minimum transmission). For example, 

in the PN modulator case of Figure 23(c), the 𝑆𝐹𝐷𝑅 is significantly increased at a bias 

lower than quadrature for a -5 V reverse bias.  

While the results here were tested using a tones near 1 GHz, the results were also verified 

for higher frequencies including two tone tests near 2 GHz, 5 GHz, and 10 GHz. Hence, 

the bias point optimization holds for wideband modulation over a range acceptable for S, 

C, and X band satellite communications (for example) Higher speed modulators are 

required for extending the application range to cover Ku, K, and Ka band communications. 

The PiN based modulator exhibited similar behaviors as those described here for the PN 

based modulator.  

From the fundamental and IMD3 data measured in Figure 23(a,b) and Figure 24(a,b), the 

𝐼𝐼𝑃3s and 𝑂𝐼𝑃3s can be estimated (see section 2.3 for 𝐼𝐼𝑃3 and 𝑂𝐼𝑃3 definitions). Further, 

the ratio of  𝑂𝐼𝑃3 to 𝐼𝐼𝑃3 yields the approximate link gain 𝐺 (Figure 23(d) and Figure 

24(d)) across the bias space. Similarly, the noise figures (Figure 23(e) and Figure 24(e)) 

are estimated by 𝑁𝐹 = 174 + 𝑁𝑜𝑢𝑡 − 𝐺, where 𝑁𝑜𝑢𝑡 is the noise floor (dBm/Hz); 𝐺 is in 

dB; and 𝑁𝑜𝑢𝑡 is in dBm/Hz [5].  

Lastly, the single-point method of estimating the 𝑆𝐹𝐷𝑅 in Figure 23(c) and Figure 24(c) is 

compared to the multi-point method of measuring the 𝑆𝐹𝐷𝑅, where the extrapolation of 
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the fundamental and IMD3 tones are not based on assumed slopes of 1 and 3, respectively, 

but rather are fitted to fundamental and IMD3 data taken at multiple RF input powers. The 

multi-point assessment of the 𝑆𝐹𝐷𝑅 is exemplified by Figure 25(a). Here is shown the 

equal-amplitude, two-tone experimental results for the PN modulator, biased near slightly 

off quadrature with a reverse bias of -5 V. The filled circles indicate experimental data 

points for the fundamental (black) and IMD3 (red). These data points are fitted and 

extrapolated (solid black and red lines) to the measured noise floor of -152 dBm/Hz The 

dashed black and red extrapolations indicate the expected experimental results if the excess 

EDFA amplification is removed, resulting in a 103 dB∙Hz2/3 𝑆𝐹𝐷𝑅. 

 

Figure 25 – (a) Multi-point link 𝑆𝐹𝐷𝑅 measurement with the PN MZM, showing 𝑆𝐹𝐷𝑅 = 

110±2 dB·Hz2/3 at an MZM bias point just before the second quadrature point and for -5 V 

PN junction reverse bias. Adjustment for excess EDFA gain yields an 𝑆𝐹𝐷𝑅 = 103±2 

dB·Hz2/3.  (b) Zoomed view of data points and fits.  

Next, the single-point and multi-point results are compared by performing the multi-point 

𝑆𝐹𝐷𝑅 assessment for several MZM bias points with a -5 V reverse bias. The resulting 

(a)

(b)

IMD3

Fund.
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𝑆𝐹𝐷𝑅s are then compared to the single-point 𝑆𝐹𝐷𝑅s for both PN and PiN modulators, 

Figure 26. The single point 𝑆𝐹𝐷𝑅s provide reasonable estimation of the multi-point 

𝑆𝐹𝐷𝑅s; errors result from the deviation of multi-point extrapolations of fundamental and 

IMD3 data away from the ideal values of one and three, respectively.  

 

Figure 26 – Comparison of 𝑆𝐹𝐷𝑅 from the single RF input power (single-point) two-tone 

measurement and multi-point measurement versus MZM bias point for a fixed reverse bias 

on both phase modulators of -5 V. Optical power and fundamental RF power are also 

shown for reference. (a) the PN MZM and (b) the PiN MZM. Input RF power is +4 dBm 

for all measurements. 

Lastly, the PN and PiN modulator RF performance metrics, including bandwidths and 

𝐼𝐼𝑃3s are summarized in Table 6. Here, only the 𝐼𝐼𝑃3 is cited for quantifying device 

linearity, since 𝑂𝐼𝑃3 and 𝑆𝐹𝐷𝑅 depend heavily on the link parameters and other 

components. 

Table 6– Summary of SiP Modulator RF Performance. 
 

METRICS PiN MZM PN MZM 

3 dB Electrical-Electrical 

Bandwidth (GHz) 

 

12.9±0.5 10.9±0.5 

3dB Electrical-Optical 

Bandwidth (GHz) 

 

> 20 > 20 

IIP3 (dBm) +24±1 +23±1 
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Here, the DC Kerr effect and plasma-dispersion effects were judiciously combined along 

with an appropriate bias point to linearize the SiP MZM transfer function and hence 

optimize the link 𝑆𝐹𝐷𝑅. Additionally, this work highlights the importance of including the 

DC Kerr effect in the simulation and characterization of SiP modulators at higher reverse 

biases due to silicon’s large 𝜒(3). Comments on the power consumption of using DC Kerr 

effects are included later section 6.4.5. 

6.4 Pure DC Kerr Effect Modulators 

Silicon has emerged as a leading optical material despite silicon’s indirect bandgap and 

centrosymmetry that intrinsically prohibit optical gain and the Pockels effect, respectively. 

To achieve optical gain and a practical Pockels effect on silicon – while maintaining 

compatibility with CMOS processes – is the holy grail of silicon photonics and would 

enable a new generation of SiP circuitry. The former would greatly improve power budgets, 

ease optical packaging, and reduce cost, while a SiP Pockels effect would forego the need 

for heterogeneous modulators, reduce cost, and enable highly linear all-silicon photonic 

integrated circuits (PICs). Herein, the potential of using the DC Kerr effect, a demonstrated 

phenomenon in SiP modulators [62-63], as a synthetic Pockels effect for optical modulation 

is investigated. This terminology is used to distinguish this electric-field induced Pockels 

effect from mechanically strained Pockels effects in silicon [64]. Based on underlying 

validated DC Kerr effect theory [59, 62], here simple expressions for the basic figures of 

merit (FOMs) for synthetic Pockels effect silicon modulators are presented along with 

characterization of a fabricated DC Kerr effect modulator. Through simulations, the 

modulator efficiency is optimized as a function of the effective electrode spacing. Using 

the optimized phase shifter design, the tradeoff in modulation bandwidth associated with 
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using resonant enhancement of the modulation efficiency is explored. Finally, an analysis 

of the likely usage scenarios for these synthetic Pockels effect modulators is presented and 

compared to existing state-of-the-art SiP modulation methods. 

To clarify the behavior of the DC Kerr effect as a synthetic Pockels effect, the index 

response equations are cast into an effective linear electro-optic coefficient 𝑟𝑒𝑜 and an 

effective 𝜒(2) nonlinearity, 𝜒𝑒𝑓𝑓
(2)

: 

𝜒𝑒𝑓𝑓
(2)

= 6𝜒(3)𝐸𝐷𝐶  6-8 

𝑟𝑒𝑜 = −
2𝜒(2)

𝑛𝑖
4 = −

12𝐸𝐷𝐶𝜒(3)

𝑛𝑆𝑖
4  

6-9 

In the above two expressions, 𝐸𝐷𝐶 is the applied DC electric field across the waveguide to 

induce the synthetic Pockels effect. The 𝜒𝑒𝑓𝑓
(2)

 and effective 𝑟𝑒𝑜 are shown versus 𝐸𝐷𝐶 in 

Figure 27, up to a maximum bias field equal to silicon’s breakdown electric field of 3x105 

V/cm. The 𝜒(3) value of silicon used in this work is 2.45x10-19 m2/V [57]. The maximum 

effective 𝑟𝑒𝑜 and 𝜒(2) achievable before the field breakdown of silicon are 0.6 pm/V and 

44.1 pm/V. With these parameters, a direct comparison to lithium niobate and other 

Pockels materials is possible. Notably, the index of refraction (and thus the optical phase) 

can be near perfectly linearly modulated with an AC voltage, just as in natural Pockels 

materials. 
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Figure 27 – (a) Calculated 𝑟𝑒𝑜 (left axis) and 𝜒𝑒𝑓𝑓
(2)

 (right axis) as functions of the applied 

DC bias field. 

6.4.1 DC Performance 

The first FOM to quantify is the absorption and efficiency (per unit length) of the synthetic 

Pockels effect in silicon to shift the optical phase. When assessing the potential 

performance of a modulator based on the synthetic Pockels effect, a reasonable (and easily 

fabricated) design is assumed. The general design of the phase shifter looks quite similar 

to most pn junction based SiP phase shifters: metal electrodes connect electrically to highly 

doped silicon regions to concentrate the voltage over a small region containing the optical 

mode. However, in contrast to plasma-dispersion modulators, a pure synthetic Pockels 

effect modulator should not have significant dopants in the waveguide region for three 

reasons: 1) the dopants in the waveguide will cause unintended phase shifting from the 

plasma-dispersion effect; 2) the dopants will increase the insertion loss, and 3) the pn 

junction will increase the capacitance of the device and reduce bandwidth. The 𝑉𝜋𝐿 for a 

pure DC Kerr effect (synthetic Pockels effect) phase modulator is written as 

𝑉𝜋𝐿 =
𝜆𝑛𝑆𝑖𝑑

12𝐸𝐷𝐶𝜒(3)Γ
. 

6-10 
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Here, 𝐿 is the active length of the phase shifter, 𝑑 is the effective electrode spacing (the 

distance between the n++ and p++ doped regions), 𝜆 is the optical wavelength and Γ is the 

overlap factor between the applied electric field and the optical mode. The overlap factor 

Γ is best simulated via Lumerical or other commercial tools, and its value was simulated 

as a function of the electrode spacing 𝑑. This 𝑉𝜋𝐿 expression provides a convenient means 

for calculating the phase shifting efficiency and mimics the same form of the expression 

for a Pockels effect modulator.  

The insertion loss for the phase shifter is calculated through finite-element mesh 

simulations using Lumerical DEVICE and MODE [60], which directly calculates the 

absorption 𝛼 in dB/cm. This 𝛼 accounts only for free-carrier absorption due to the mode 

overlap with doped silicon; thus, the calculated 𝛼 is added to a baseline 2 dB/cm loss 

commensurate with state-of-the-art waveguide loss dominated by optical scattering. The 

Lumerical simulations assume a phase shifter cross-section matching custom designed 

phase shifters using the Globalfoundries 9WG SiP process. Lumerical MODE was also 

used to calculate the overlap factor Γ. The phase shifter 𝑉𝜋𝐿 (right axis) and 𝛼 (left axis) 

metrics are calculated as functions of electrode spacing 𝑑, Figure 28. 



 64 

Figure 28 – (a) Calculated absorption in dB/cm (left axis) and 𝑉𝜋𝐿 in V∙cm (right axis) 

versus effective electrode spacing 𝑑 for DC Kerr effect phase modulators. (b) Calculated 

𝑉𝜋𝐿𝛼 products for phase modulators (or single-drive MZMs) in solid lines and dual-drive 

MZMs in dashed lines versus the effective electrode spacing 𝑑 on the x-axis. Interestingly, 

there is a clear optimum for 𝑑 ≈ 0.19 𝜇𝑚. This optimum point best balances phase shifting 

efficiency with insertion loss. Note the 𝛼 within the product accounts for both scattering 

loss and free-carrier absorption. 

 

Because a common figure-of-merit also considers the phase shifting efficiency and loss 

together in a single product, the 𝑉𝜋𝐿𝛼 product in Figure 28(b) versus 𝑑 is also calculated. 

In the same figure, the 𝑉𝜋𝐿𝛼 product is shown for both a phase modulator or single-drive 

Mach-Zehnder modulator (MZM) (solid black) and a dual-drive MZM (dashed red), the 

latter which generally exhibits twice the phase-shifting efficiency as a single phase 

modulator. Generally, reducing 𝑑 imparts a benefit in terms of overall efficiency; however, 

reducing 𝑑 also incurs a greater amount of plasma-dispersion index response, which may 

not be desired for linear phase modulation. 

The best dual-drive (single-drive) MZM 𝑉𝜋𝐿𝛼 product calculated was ~15V∙dB (~30 V∙dB) 

for 𝑑 = 0.19 µm. This efficiency-loss product is competitive with reported FOMs of other 

  

(a) (b) 
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plasma-dispersion silicon MZMs, including lateral pn junction MZMs with 𝑉𝜋𝐿𝛼 = 19.4 

V∙dB [65] and vertical pn junction modulators with 𝑉𝜋𝐿𝛼 = 20.0 V∙dB [66]. 

The experimental data points indicated in Figure 28 are from DC experiments performed 

in section 6.4.4. The experimental 𝛼 agrees well with theory, and the measured 𝑉𝜋𝐿 is 

within the calculated 𝑉𝜋𝐿 by approximately 20%. The deviation between experiment and 

theory is amplified in the 𝑉𝜋𝐿𝛼 metric by the compounded errors of the component 𝑉𝜋𝐿 and 

𝛼 measurements. 

6.4.2 Expectations on AC Performance 

In terms of modulation speed, the DC Kerr effect is expected to have fundamental 

limitations similar to lithium niobate, where the theoretical material maximum modulation 

speed is limited by the speed of the electronic polarizability of the constituent atoms. This 

leaves practical bandwidth limitations due to RC time constants and group velocity 

mismatch effects, both of which are specific engineering problems tackled through careful 

traveling wave electrode and junction design. In terms of RF phase velocity mismatches 

with optical group delays, lithium niobate modulators enjoy the advantage, as their 

generally low (~2.2) optical group index generally falls within an easily designable range 

of RF phase effective indices (2.0 – 2.4). SiP modulators generally have high optical group 

indices (~4.0) that make matching the electrode’s RF phase velocity more difficult. On the 

other hand, Si/SiO2 possesses an electric permittivity far lower than the permittivity of 

lithium niobate. Hence, SiP DC Kerr effect modulators should enjoy advantages of very 

low capacitance over lithium niobate modulators. Of course, adding dopants in the 

waveguide for plasma-dispersion based SiP modulators adds further capacitance. Thus, the 
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practical upper limit of the DC Kerr effect modulator will likely be more competitive with 

lithium niobate modulators when in an RC-limited bandwidth regime, rather than in an 

index mismatch regime. As integrated lithium niobate modulators have demonstrated 

bandwidths >100 GHz [67], similarly wide bandwidths may be achievable with silicon 

synthetic Pockels effect modulators.  

6.4.3 Resonant Enhancement 

Here, the pros and cons of using the synthetic Pockels effect in silicon to modulate within 

a resonant cavity, such as a ring resonator, are assessed. Resonant enhancement has 

demonstrated clear benefits in modulation efficiency, which is the largest hurdle for 

practical use of the DC Kerr effect for modulation. The main tradeoff for enhanced 

efficiency is a reduction of the modulation bandwidth. The balance between efficiency and 

modulation bandwidth will determine the modulator’s application as either a low-speed 

tuning device or a high-speed modulator.  

A useful way to assess the efficiency of a ring enhanced modulator is to develop an 

equivalent 𝑉𝜋. As found in [68], the equivalent 𝑉𝜋 for a phase modulator inside a resonant 

cavity is 

𝑉𝜋
𝑒𝑞 =

𝜋

2
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𝑑𝑇

𝑑𝑉
|

𝑚𝑎𝑥
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where 𝑑𝑇/𝑑𝑉 is the sensitivity of the transmission amplitude to voltage, 𝑑Θ/𝑑V is the 

sensitivity of the phase to voltage, and 𝑑𝑇/𝑑Θ is the sensitivity of the transmission 

amplitude to phase. The final expression shows a separation of the inherent phase shifter’s 

𝑉𝜋 and a resonant enhancement factor (𝐺𝑅): 



 67 

𝐺𝑅 =
1

2
(|

𝑑𝑇

𝑑Θ
|

𝑚𝑎𝑥
)

−1

 6-12 

Unfortunately, the enhancement factor does not yield a convenient analytic expression; 

thus, it is best calculated numerically. Here, the resonant enhancement factor for a ring as 

a function of its coupling factor 𝑟 and loss factor 𝑎 (where 𝑎 = 1 is lossless) is calculated; 

contours showing the ring’s finesse and extinction ratio were also calculated to indicate the 

ring characteristics. Calculations were done in three steps: 1) by calculating the first and 

second derivatives of the ring transfer function and 2) by numerically solving for the roots 

of the second derivative to find the maximum slope along the transfer function, and 3) 

evaluating the first derivative of the transfer function at the roots. See Figure 29(a).  

Figure 29 – (a) Calculated efficiency enhancement factor (colored axis), which indicates 

the reduction of the intrinsic phase shifter 𝑉𝜋 due to resonant enhancement for a ring 

resonator with coupling factor 𝑟 and loss factor 𝑎. Contours of the ring’s finesse (solid 

lines) and extinction ratio (dashed lines) are also plotted. The enhancement factor 

calculations assume a fixed active electrode length. (b) Calculated contours of 𝑉𝜋
𝑒𝑞

 (black, 

solid) and 3 dB bandwidth (red, dotted) over the space consisting of reasonable coupling 

factors 𝑟 and electrode lengths 𝐿. These calculations used the optimal electrode spacing 𝑑 

and corresponding loss factor 𝑎 (related to 𝛼) determined for lowest 𝑉𝜋𝐿𝛼 in Figure 28(b). 

 

  

(a) (b) 
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Next, the tradeoff of the ring modulator efficiency and bandwidth is considered. First, an 

optimal phase shifter design is chosen based on the results of Figure 28 Figure 28. 

Figure 28, which indicates 𝑑 = 0.19 µm to exhibit optimal efficiency-loss characteristics. 

This choice of specific phase shift design sets the loss factor 𝑎. Thus, the only major design 

parameters left to consider are the coupling factor 𝑟 (a function of the coupling gap) and 

the phase shifter length 𝐿. Following the approach in [69], the photon lifetime limiting the 

ring modulator bandwidth is given by 

𝜏𝑝 =
𝑛𝑔𝐿

2𝜋𝑐
𝐹 =

𝑛𝑔𝐿

2𝑐

√𝑟𝑎

1 − 𝑟𝑎
 6-13 

Where 𝐹 is the ring resonator finesse [70], 𝑛𝑔 is the optical group index, and 𝑐 is the speed 

of light in vacuum. This photon lifetime yields an upper limit on the ring modulator 3 dB 

bandwidth [69] of  

𝑓3𝑑𝐵 =
√√2 − 1

4𝜋𝜏𝑝
 6-14 

Using this expression for bandwidth and previous expressions for 𝑉𝜋
𝑒𝑞

, contours of 

bandwidth and 𝑉𝜋  are calculated over the design space of reasonable values for the 

coupling factor 𝑟 and the phase shifter length 𝐿, Figure 29(b).  

From the results of Figure 29(b), resonant enhancement is only suitable for low bandwidth 

modulation, as the voltage requirements become far too large for high-speed modulation. 

High speed modulation applications will thus best use Mach-Zehnder modulators along 

with careful traveling wave electrode design and longer electrode lengths. 
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6.4.4 Experiments 

To verify some of the major results of this work, custom MZMs were fabricated using 

Globalfoundries 9WG (90 nm) electronic-photonic SOI process. An MZM with 2.4 mm 

long phase shifters comprised of PIN junctions with an intended intrinsic region 500 nm 

wide was designed, fabricated, and tested. The design minimizes plasma-dispersion effects 

while still enabling a strong electric field to be applied transverse to the direction of 

propagation of a TE wave through the waveguide, enabling strong DC Kerr effects to be 

observed.  

 

Figure 30 – Schematic of the experimental setup for DC characterization of the pure DC 

Kerr effect modulator. 

 

The DC transfer function of the MZM was measured by sweeping the voltage applied to 

one arm of the MZM while ground the phase shifter electrodes on the second MZM arm. 

The optical response was captured by a power meter, and a multimeter recorded the 

response in terms of voltage, Figure 30. The measurement was then repeated for using the 

second optical output of the MZM to obtain two transfer functions corresponding to two 

outputs of the MZM’s output 2x2 directional coupler. This method, used in [62], enables 

the unambiguous extraction of both the index (or phase) and absorption responses of the 

MZM’s phase shifter, Figure 31.  
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The experimental index response of Figure 31 indicates a clear DC Kerr effect dominated 

response, as the curvature is negative due to the square dependence of the index on the 

electric field. Typically, a plasma-dispersion response exhibits a positive curvature. 

Simulations can determine reasonable estimates for the contributions of the DC Kerr effect 

and plasma-dispersion effects to the total index response. 

 

Figure 31 – Experimental extraction of the index (left axis) and absorption (right axis) 

responses. The total simulated index response, comprised of plasma-dispersion and DC 

Kerr contributions, matches well with the experimentally extracted index response. The 

simulated absorption response is also shown alongside its experimental counterpart. 

 

Using Lumerical DEVICE to simulate the carrier concentrations in response to an electric 

field and Lumerical MODE to calculate the optical mode and index response resultant from 

the carrier concentrations, the simulated plasma-dispersion response was obtained, Figure 

31. To include DC Kerr effects, the applied electric field distributions were calculated by 

Lumerical DEVICE, and the DC Kerr effect theory of section 6.2 was used to obtain the 

material index response. Following, the overlap integral between the optical and applied 

electric fields was calculated to yield the effective index response due to the DC Kerr effect. 

The total index response is the sum of the plasma-dispersion and DC Kerr index responses. 
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Figure 31 shows excellent matching between simulated and experimental index responses. 

The absorption response, due entirely to plasma-dispersion, was simultaneously calculated 

by Lumerical DEVICE and shows reasonable agreement with experiment. Dopant 

concentrations were assumed within typical ranges and found to provide good fits to the 

data for n and p concentrations in the low 1017 cm-3. Generally, the choice of different 

dopant concentrations cannot achieve similar index responses to the experiment. While 

small (<10%) tradeoffs in n and p dopant concentrations can still maintain a relatively good 

fit to the index response, such new concentrations cannot achieve a totally different total 

index response that would lead to vastly different conclusions. Furthermore, the shape of 

the experimental curve can only be achieved with significant DC Kerr effects present and 

cannot be explained by purely plasma-dispersion effects. 

Next, the gain of the link is measured as a function of the reverse bias. This experiment is 

performed to confirm the behavior of the DC+AC modulation response described in section 

6.2, which until now, has never been experimentally confirmed in the literature, to the 

authors’ best knowledge. The DC+AC modulation response, Δ𝑛𝐴𝐶 ∝ 𝐸𝐷𝐶𝐸𝐴𝐶, indicates 

that the index response is linearly proportional to the applied DC electric field. The 

experiment is not as straightforward as it initially appears, because the bias point of the 

modulator will also shift with index modulation following a quadratic response, as 

observed when measuring the MZM transfer function. Thus, for the AC experiment, the 

reverse bias is applied to both arms to not perturb the bias point, while a single arm is 

driven with the RF signal. Thus, the gain of the link vs. reverse bias is measured while 

accounting only for the increased modulation efficiency from the DC Kerr effect according 

to Δ𝑛𝐴𝐶 ∝ 𝐸𝐷𝐶𝐸𝐴𝐶. The experimental setup is given in Figure 32, and the results are shown 
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in Figure 33(a) along with the calculated gain response. Good accuracy in magnitude is 

confirmed along with generally similar curvature. The experimental curve appears flatter 

than in theory, indicating a truly sub-linear index response due to other junction effects. 

Depletion width modulation was accounted for according to basic semiconductor equations 

in the calculated curve of Figure 33(a). Comparison is highlighted over the range of reverse 

biases greater than 10 V to avoid any forward bias effects and because the gain is very 

small below 10 V reverse bias, such that small plasma-dispersion effects may dominate the 

response. 

Figure 32– Schematics of experimental setups for AC characterization. 

Figure 33 –(a) Experimental RF gain vs. reverse bias for a 1 GHz tone and calculated gain 

curve based on analog link gain (Eq. 3-1) and a simulated depletion width (a function of 

reverse bias) using Lumerical DEVICE. (b) √𝑔 ∝ 𝑉𝑜𝑢𝑡 where 𝑔 = gain in arbitrary linear 

units vs. reverse bias, demonstrating the linearity of AC modulation of synthetic Pockels 

effect as compared to a linear fit of the data. The experimental data is not perfectly linear 

since there is still residual depletion width modulation with increasing reverse bias. 
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Next, the linearity of the gain response is assessed qualitatively in relation to an ideal linear 

fit of the data, Figure 33(b). A decibel form of Eq. 3-1 is 

𝐺[𝑑𝐵] = −22.1 + 20 log10 𝐼𝐷𝐶[𝑚𝐴] − 20 log10 𝑉𝜋[𝑉] 6-15 

Inserting the DC Kerr 𝑉𝜋 expression from Eq. 6-10 and assuming 𝐸𝐷𝐶 ≈
𝑉𝐷𝐶

𝑑
 yields  

𝐺𝐷𝐶 𝐾𝑒𝑟𝑟[𝑑𝐵] = −22.1 + 20 log10 𝐼𝐷𝐶[𝑚𝐴] − 20 log10

𝜆𝑛𝑆𝑖𝑑2

12𝑉𝐷𝐶𝐿𝜒(3)Γ
[𝑉] 6-16 

From this expression, the gain 𝐺𝐷𝐶 𝐾𝑒𝑟𝑟 is a function of +20 log10 𝑉𝐷𝐶; hence, on a linear 

scale, 𝑔𝐷𝐶 𝐾𝑒𝑟𝑟 ∝ 𝑉𝐷𝐶
2 . Therefore in Figure 33(b),  √𝑔𝐷𝐶 𝐾𝑒𝑟𝑟 vs. 𝑉𝐷𝐶 is compared to a linear 

fit of the data to demonstrate the relative linearity of the AC modulation response of the 

synthetic Pockels effect. The measured data is not perfectly linear since residual depletion 

width modulation persists with increasing reverse bias, yielding a slightly sublinear 

response. 

6.4.5 Applications of the Synthetic Pockels Modulator 

Here, the DC Kerr effect was cast into an effective synthetic Pockels effect, through both 

an effective linear electro-optic coefficient 𝑟𝑒𝑜 and a 𝜒𝑒𝑓𝑓
(2)

, both dependent on the DC 

electric field strength. The performance of a proposed modulator based solely on the DC 

Kerr effect (a synthetic Pockels effect) was investigated in terms of modulation efficiency, 

loss, and bandwidth for standalone phase shifters, Mach-Zehnder modulators, and ring 

implementations. There are several strengths of the pure DC Kerr effect for modulation: 1) 

highly linear phase responses, 2) large modulation bandwidths due to low junction 
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capacitance and freedom from moving large electron/hole concentrations, 3) pure phase 

modulation and negligible amplitude modulation in phase shifters, 4) relative inertness to 

temperature and radiation effects. The strengths and weaknesses of the synthetic Pockels 

effect in Si is compared to state-of-the-art SiP plasma-dispersion, InP, and LiNbO3 phase 

shifters in Table 7. 

Table 7– Comparison of Common Phase Shifter Technologies 

Phase Shifter Type 𝑽𝝅𝑳𝜶 (V∙dB) Strengths 

 
Weaknesses 

SiP / plasma-dispersion 19 
Compact, moderate 𝑉𝜋, cost of 

integration 
Loss, bandwidth 

SiP / DC Kerr 30 
Low loss, linear, bandwidth, cost of 

integration 

𝑉𝜋𝐿, phase shifter 

length 

LiNbO3 6 
Low 𝑉𝜋𝐿, low loss, linear, bandwidth 

Cost of hybrid 

integration 

InP 20 
Compact, moderate 𝑉𝜋, cost of 

integration, optical gain 
Bandwidth, noise 

 

However, using the synthetic Pockels effect for modulation poses a few challenges: 1) the 

requirement for large reverse biases, typically 5-12 VDC, 2) relatively high current draw 

through resistive terminations and subsequent high DC power consumption, 3) modulation 

efficiency, i.e. the 𝑉𝜋. Of these drawbacks, the first drawback is mitigated through judicious 

junction design to reduce the required reverse bias voltages; practically, this is done by 

reducing the effective electrode spacing 𝑑. Generally, junctions that exhibit low breakdown 

voltages will similarly require low reverse biases to manifest strong DC Kerr effects. The 

large current draw derived from the reverse bias voltage difference over the modulator 

termination resistance (typically 35-50 Ω) may be solved by using capacitive terminations. 

When such capacitive terminations are implemented, the electrical power consumption 
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difference between SiP plasma-dispersion, SiP DC Kerr effect, InP, and LiNbO3 is 

determined by the signal power required for driving the modulator. As LiNbO3 modulators 

generally exhibit the best 𝑉𝜋𝑠 in the range of 1V to 5 V, these will consume the least power. 

On the other hand, a SiP plasma-dispersion modulator with a typical 𝑉𝜋 in the range of 4V 

to 8 V, will require a drive voltage proportionately larger in comparison with LiNbO3, 

Fortunately, linearization by DC Kerr effect costs very little extra power, as the strong DC 

field draws low current (<1 µA) if capacitive terminations are used. When capacitive 

terminations are used, the current is primarily drawn across the PiN junction. A pure DC 

Kerr effect modulator will similarly only require more electrical power insofar as the higher 

𝑉𝜋 requires a higher drive voltage. 

These strengths and challenges to synthetic Pockels modulators indicate three main 

applications areas of interest: microwave photonics, digital transmitters, and computing. 

The DC Kerr modulator’s high linearity and large expected bandwidths could greatly 

benefits microwave photonic deployments, including phased arrays, next-gen fronthaul 

links, intra-vehicular RF photonic links, and frequency converting systems. Further, the 

DC Kerr effect’s relative resilience to temperature and radiation effects bodes well for 

airborne and spaceborne photonic communication systems. Digital transmitters using high 

order modulation formats may similarly find benefit from the DC Kerr effect modulator’s 

inherent linearity and high-speed modulation characteristics. Lastly, the modulator’s pure 

phase modulation makes it a great candidate for use in quantum gates, while its relative 

resilience in temperature swings (due to its lack of need for carrier density perturbations) 

lends itself well to low temperature computing applications. In fact, the DC Kerr effect has 

been shown to operate more efficiently at 5 K compared to room temperature [71]. 
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Future work should pursue further optimization of the DC Kerr effect modulator through 

optimizing the PiN junction design, investigating pure metal electrode stacks, engineering 

high breakdown field junctions, and implementing push-pull (dual-drive) MZM schemes. 
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CHAPTER 7. PHOTONIC FREQUENCY CONVERSION & 

DESIGN EQUATIONS 

7.1 Photonic Frequency Converters in the Literature 

Frequency converters, also known as mixers, translate information to a new frequency, a 

function required in many communications systems and applications, including phased 

arrays, next-gen fronthaul links, intra-vehicular communications, inter- and intra-satellite 

communications, antenna remoting, metrology, test and measurement, and more. These 

applications leverage microwave photonics’ strengths in low loss transmission of RF 

signals, large optical bandwidths, increased immunity to electromagnetic interference, 

ability to reduce usage of bulky RF cables, high linearity over wide bands, and good 

isolation between electrical signals. Frequency conversion includes frequency translations 

to higher frequencies (upconversion) and to lower frequencies (downconversion). 

A mixer requires a nonlinear mechanism. In electronic mixers, the nonlinear mechanism is 

provided by the transistor. In photonic mixers, the nonlinear mechanism is typically 

provided by the square law behavior of the photodetector. However, other nonlinear 

mechanisms for mixing have been reported, such as the use of high Q optomechanical 

oscillations [72]. 

Focusing on methods using the detector as the nonlinear element, photonic frequency 

converters mix two optical signals: 1) the RF-modulated optical sideband and 2) the local 

oscillator (LO). For optical LO’s, the LO wavelength is simply tuned relative to the RF-

modulated optical sideband to upconvert or downconvert at the photodetector. For an 

electrical LO, an electro-optic modulator transduces the oscillator signal onto the same 

optical carrier that the RF data is modulated upon. In the optical frequency domain, 
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modulation generates sidebands on either side of the optical carrier, with amplitude and 

phase dependent on the type of modulation (e.g. phase or amplitude modulation) and the 

bias point. In photonic mixing using an electronic LO, the relative frequency offset between 

the LO-generated and RF-generated sidebands determines the final frequency of the RF 

data. This new frequency is called the intermediate frequency (IF) in most applications, 

and its power is a function of RF, LO, and optical powers. Hence, achieving high RF-to-

IF mixing gain requires sufficient optical and LO power. 

Photonic mixing has advantages over electronic mixers in instantaneous bandwidth, 

broadband linearity, and immunity to electromagnetic interference. Photonic mixers are 

also naturally compatible with existing fiber-optic links for efficient RF transport. 

Typically, such RF photonic links are single wavelength systems spanning anywhere from 

a few meters (e.g. for airborne platform signal routing and processing) up to a 10s of 

kilometers (e.g. for radioastronomy and remote antenna signal routing and processing). 

Photonic mixing is not a new subject and has benefited from more than two decades of 

research and has leveraged high quality discrete components [73-75]. Several mixer 

architectures have been reported over the years. High dynamic range methods include 

amplitude or phase modulation of two modulators in series (one for the RF, the second for 

the LO) [76-78]; however, these methods demonstrated reduced performance beyond 10 

GHz. The main weakness of series modulator implementations is a multiplicative behavior 

that inherently inhibits linearity; modulation by the second modulator will create sidebands 

on either side of any existing optical sidebands. Other methods, as mentioned, use a second 

laser for the LO along with an optical phase-locked loop (OPLL) [79, 80]; unfortunately, 

the phase noise of the lasers and the OPLL’s bandwidth limitations increase the system’s 

overall phase noise [81]. Narrowband optical filtering via fiber Bragg gratings lower the 

system phase noise [73, 82, 83]. Another approach uses phase modulators within a Sagnac 

interferometer to suppress the carrier and attain high conversion efficiency [84]. 
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A common frequency conversion architecture uses a single laser source along with two 

modulators nested in parallel within a larger Mach-Zehnder interferometer. This results in 

a highly linear architecture whereby the LO-generated sidebands and RF-generated 

sidebands add optically before photodetection. This architecture also naturally enables 

balanced photodetection by using a directional coupler to close the larger MZI after 

modulation. As measured in intensity-modulated, direct-detect (IMDD) fiber links, 

balanced detection has demonstrated dramatically reduced noise power spectral densities 

(i.e. “noise floors”) to enable higher dynamic range and reduced noise figures [85]. 

Balanced detection reduces common-mode noise, such as laser and optical amplifier noise 

added before modulation. Electrical noise and shot noise are not common-mode and thus 

are not reduced significantly by balanced detection. 

However, few have reported fully integrated photonic mixers. Moreover, among those 

reporting the use of any integrated components, most demonstrations only integrated a 

single component of the mixing architectures [53, 86-88]. For example, in [53, 86-87], only 

the modulators were integrated as part of a larger frequency converter architecture. 

Likewise [88] integrated the optical filter but not the modulators nor detectors. Integrated 

photonic mixers by S. Jin et al. have demonstrated the highest levels of integration in InP 

[10, 11, 89] to date along with the SiP work of Chapter 8. S. Jin’s result from [89] integrated 

the laser as well (given the InP platform) and achieved a 𝑆𝐹𝐷𝑅 of 112 dB∙Hz2/3, though 

with very limited (250 MHz) bandwidth. Together the works of Jin et al. and the work 

presented in Chapters 8-9 exemplify the current state-of-the-art in integrated photonic 

mixers. Figure 34 summarizes the evolution of integrated frequency converter work over 

the past decade. 
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Figure 34 – Timeline highlighting the major integrated photonic mixers reported in the 

literature. The material systems on which frequency converters have been demonstrated 

here include silica, silicon-on-insulator, GeSi, and InP. Over the past decade, the integrated 

photonics foundry ecosystem has emerged and enabled full integration of frequency 

converters. 

Initial target metrics for the adoption of integrated photonic mixers into phased array 

antennas (for example) include greater than 100 dB∙Hz2/3, 10s of GHz wide instantaneous 

bandwidths, and noise figures comparable to those of discrete mixers (<20 dB). To date, 

no single integrated photonic mixer has achieved all these metrics simultaneously, nor even 

two simultaneously. Later in this work, the architectures and device-level performance 

required to achieve this are identified. 

This chapter introduces frequency converter operation and design equations, detailing the 

main component metrics desired for high performance frequency converter systems. 

Chapter 8 demonstrates through experiment and calibrated simulations that state-of-the-art 

implementations of silicon photonic (SiP) IMWP mixers can achieve the performance 

required by most applications. The first silicon frequency converter with electrical RF-to-

IF conversion completely on-chip is also demonstrated. As of this writing, the frequency 

converter presented in Chapter 8 demonstrates  the widest RF bandwidth of any fully 

integrated frequency converter on any material platform. 
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Chapter 9 demonstrates a high-performance frequency converter using Infinera’s InP 

platform, exhibiting 𝑆𝐹𝐷𝑅s > 100 dB∙Hz2/3 and gains approaching unity. 

7.2 Photonic Frequency Converter Operating Principles 

Photonic frequency converters, like their electronic counterparts, require a nonlinear 

component to perform the mixing function. In electronics, this nonlinear component is a 

transistor operated in a nonlinear regime; similarly, the photonic mixing element is most 

commonly a diode – a photodiode. In fact, virtually all ordinary operation of photodiodes 

leverages its frequency mixing properties. In RF photonic links, for example the 

fundamental electrical signal is produced by the beating of the RF-generated optical 

sideband and the optical carrier. Even the DC photocurrent can be understood as the self-

beating of the optical carrier with itself. The generated photocurrent is 𝐼(𝑡) = 𝑅𝑃0, where 

𝑅 is the responsivity. 𝑃0 is the average optical power given by 

𝑃0 =
𝐴

2
(

𝜖

𝜇
)

1/2

𝐸𝑜𝑝𝑡𝐸𝑜𝑝𝑡
∗ , 7-1 

where 𝐴 is the fiber core or waveguide cross-sectional area; 𝜖 is the electric permittivity; 𝜇 

is the magnetic permeability; and 𝐸𝑜𝑝𝑡 is the optical electric field just before 

photodetection. Hence, the generated photocurrent is linear with average optical power, but 

the generated electrical signal power is quadratic. This square-law behavior of the 

photodetector is what enables the mixing of various optical signals. In photonic frequency 

converters, the mixed optical signals are typically 1) the RF signal modulated onto an 

optical carrier, and 2) a local oscillator (LO). This LO may be generated by the same or 

another laser (as that serving the RF modulation), or by an electrical source modulated onto 

an optical carrier. The new electrical carrier frequency generated at the photodetector is 
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called the intermediate frequency (IF). The IF power scales favorably with RF, LO, and 

optical powers provided linearity of the system is maintained. 

The following Chapters 7-9 will focus on photonic frequency converters employing 

electrical LO’s that drive an optical modulator. The operation of these frequency converters 

works generally as follows, per Figure 35. A laser’s output power is split evenly, with half 

the optical power modulated by the RF signal at frequency 𝑓𝑅𝐹 and the other half modulated 

by the electrical LO (by a separate modulator in parallel) at frequency 𝑓𝐿𝑂. The RF 

modulator transduces the RF signal onto the optical carrier at optical frequency 𝑓𝑐. The 

frequency content of the RF modulator output contains residual carrier power at 𝑓𝑐 plus the 

RF data modulated onto new optical carriers at 𝑓𝑐 ± 𝑓𝑅𝐹 , 𝑓𝑐 ± 2𝑓𝑅𝐹, 𝑓𝑐 ± 3𝑓𝑅𝐹 , …  

depending on the type and bias point of the modulator employed. Likewise, the LO 

modulator outputs 𝑓𝑐, 𝑓𝑐 ± 𝑓𝐿𝑂 , 𝑓𝑐 ± 2𝑓𝐿𝑂 , 𝑓𝑐 ± 3𝑓𝐿𝑂 , … The optical modulated outputs 

are then added and the sum optical power is photodetected, generating a DC current, the 

fundamental signals and their harmonics, and beat (sum and difference) frequencies. 

Typically, an electrical filter is employed to isolate the desired IF (𝑓𝑅𝐹 ± 𝑓𝐿𝑂) from other 

frequencies generated by the photodetector. The schematic of Figure 35 supposes a 

downconverting function, whereby 𝑓𝐼𝐹 = 𝑓𝑅𝐹 − 𝑓𝐿𝑜; hence, a low-pass filter (LPF) is 

indicated to isolate the IF from other generated frequencies. The IF is set by the proximity 

of the RF-generated and LO-generated optical sidebands. When using a single laser source 

for both RF and LO modulators, 𝑓𝐼𝐹 = 𝑓𝑅𝐹 − 𝑓𝐿𝑂 (assuming 𝑓𝑅𝐹 > 𝑓𝐿𝑂). However, if the 

two modulators employ different optical sources, the relative frequencies of the two lasers 

will also determine the IF. 
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Figure 35 – Schematic of a commonly employed photonic frequency converter using 

electrical LO source and dual parallel modulators fed by a single laser. Blue indicates 

electrical signals or connections, and red indicates optical signals or connections. 

7.3 Design Equations 

In this section, the key MWP metrics for several variants of dual-parallel MZM based 

photonic frequency converter architectures are derived and used to study performance 

trends.  

7.3.1 Frequency Converter Architectures 

The photonic frequency converters described here are all dual-parallel MZM-based 

architectures with combinations of single or dual-drive MZM operation and single or 

balanced detection schemes, Figure 36. The dual-parallel MZM architectures are the most 

common photonic frequency conversion architectures due to their high linearity, wide 

tunability, and ability to mitigate common-mode noise originating before the modulation 

stages, such as laser noise. Architectures like those in Figure 36 have been demonstrated 

numerously in the literature in both discrete [75, 80, 84] and integrated platforms [10, 11, 

23, 87, 89-91]; Chapters 8 and 9 characterize SiP and InP implementations, respectively. 
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All the architectural variants of Figure 36 use a single laser source, coupled via a 2x2 

splitter to a macro-interferometer consisting of an RF branch and an LO branch, each which 

identically consists of an MZM, optical amplifier, and DC phase shifter. The RF and LO 

branches are recombined by a 2x2 combiner, where the signal is photodetected and 

converted back to the electrical domain.  

 

Figure 36 – Schematics of frequency converting architectures investigated, which are 

differentiated by the drive and detection configurations: (a) single-drive, single detection, 

(b) single-drive, balanced detection, (c) dual-drive, single detection, and (d) dual-drive, 

balanced detection.  

The equations derived here are flexible beyond their applicability to the four architectural 

variants of Figure 36. For example, the optical amplifiers and their impact on system 

performance can also be treated as excess optical loss or ignored altogether. Likewise, the 

DC phase shifters may be implemented in a variety of ways, since the derived equations 

only consider the relative phase between the RF and LO branches. Hence, whether there is 
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a DC phase shifter in the top or bottom branch – or both – is irrelevant so long as the 

relative phase is referenced in the equations. Still further, the order of components within 

the macro-interferometer branches may be reconfigured as desired. Lastly, the 2x2 couplers 

may be replaced with Y-branch couplers without reducing the validity of the equations 

except for a simple replacement of the relative phase between RF and LO branches Δ𝜙𝑖𝑛𝑡 

with Δ𝜙𝑖𝑛𝑡 −
𝜋

2
. 

Throughout this work, single-drive modulation is defined as the application of a single 

voltage source over one arm of an MZM, Figure 37(a). On the other hand, dual-drive (also 

called push-pull) modulation is defined here as a driving scheme whereby the same voltage 

is applied equally and oppositely across the MZM arms to drive the modulator 

differentially, Figure 37(b). In both cases, a single source supplies a voltage of the same 

magnitude. 

 

Figure 37 – Schematics defining (a) single drive and (b) dual drive modulator operation. 
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7.3.2 Derivation of DC Photocurrent and Gain 

For brevity, only the single-drive, single detection architecture (Figure 36(a)) equations are 

derived explicitly here. Sufficient details are given for the reader to independently derive 

the equations for dual-drive and balanced detection scenarios. Nonetheless, the key metric 

equations are summarized for all four architectural variants at the end of this subsection. 

Mathematical notations generally follow the conventions found in [5]. The general 

derivation strategy is to calculate the electric fields as they propagate through the 

architecture until they are converted to electrical current and power by the photodetector. 

Subsequently, the definitions of the metrics covered in Chapter 2 are applied. 

 

Figure 38 – Schematic of generic photonic frequency converter with electric fields 

indicated to aid in the derivation of the gain, linearity, and noise metrics. 

A schematic with electric fields marked throughout a generic architecture is given in Figure 

42 to aid in the derivation. First the laser’s output electric field is  

𝐸1 = 𝛾𝑒𝑗𝜔𝑡, 
7-2 

where 𝜔 is the angular optical carrier frequency, 𝑡 is time, and 𝛾 is a constant defined as 
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𝛾 = √
2𝑔𝑜𝑝𝑡𝑃0

𝐴𝑀
(

𝜇

𝜖
)

1/4

. 7-3 

Here, 𝑃0 is the optical launch power; 𝜇 is the magnetic permeability; 𝜖 is the effective 

electric permittivity; and 𝐴𝑀 is the optical mode area. The parameter 𝑔𝑜𝑝𝑡 is the net optical 

gain or loss between the laser and the photodetector. When the gain or loss of components 

in one branch of the macro-interferometer are different than the gain or loss of components 

in the second branch, the average gain or loss may be used to calculate 𝑔𝑜𝑝𝑡. For example, 

for a photonic frequency converter using an RF MZM with 3 dB insertion loss and an LO 

MZM with 6 dB insertion loss, the loss factor contributing to the 𝑔𝑜𝑝𝑡 factor will be the 

average of 3 dB (0.5) and 6 dB (0.25) losses on a linear scale, i.e. 0.375 or 4.26 dB effective 

insertion loss. 

The 𝐸1 electric field of the laser output is then split by a 2x2 directional coupler with 

transfer function 

[
𝐸𝑜1

𝐸𝑜2
] =

1

√2
[
1 𝑗
𝑗 1

] [
𝐸𝑖1

𝐸𝑖2
]. 

7-4 

Here, 𝐸𝑜1 and 𝐸𝑜2 are the output electric fields of the 2x2 directional coupler for input 

electric fields 𝐸𝑖1 and 𝐸𝑖2. For these architectures, 𝐸𝑖1 = 𝐸1 is the input field from the laser, 

and 𝐸2𝑖 = 0. The output electric fields from the directional coupler are thus: 

𝐸2𝑎 =
𝛾

√2
𝑒𝑗𝜔𝑡 7-5 
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𝐸2𝑏 =
𝑗𝛾

√2
𝑒𝑗𝜔𝑡 

7-6 

Next, 𝐸2𝑎 propagates through the top branch of the macro-interferometer until it is 

modulated by the RF MZM. Likewise, 𝐸2𝑏 propagates through the bottom branch until it 

undergoes modulation by the LO MZM. The resultant electric fields output by the RF and 

LO MZMs are (respectively): 

𝐸3𝑎 =
𝛾

2√2
 𝑒𝑗𝜔𝑡 (𝑒𝑗𝜙𝐷𝐶 ∑ 𝐽𝑘(𝐴𝑅𝐹)𝑒𝑗𝑘𝛺𝑅𝐹𝑡

∞

𝑘=−∞

− 1) 7-7 

𝐸3𝑏 =
𝑗𝛾

2√2
 𝑒𝑗𝜔𝑡 (𝑒𝑗𝜙𝐷𝐶 ∑ 𝐽𝑘(𝐴𝐿𝑂)𝑒𝑗𝑘𝛺𝐿𝑂𝑡

∞

𝑘=−∞

− 1). 
7-8 

Here, 𝐽𝑘 is the 𝑘th order Bessel function of the first kind; 𝜙𝐷𝐶 is the bias phase of the 

MZMs; 𝐴𝑅𝐹 and 𝐴𝐿𝑂 are the input RF and LO amplitudes; and Ω𝑅𝐹 and Ω𝐿𝑂 are the RF 

and LO angular frequencies, treated as single tones here. Later, the RF input is explicitly 

derived with two RF tones to obtain linearity metrics, which require calculation of 

intermodulation distortion products (IMDs). 

The field 𝐸3𝑎 is comprised of a residual optical carrier (corresponding to the 𝐽0  and -1 

terms) and a theoretically infinite number of RF-generated optical sidebands corresponding 

to terms 𝐽𝑘 with nonzero 𝑘. The frequency spectrum is generally symmetric about the 

carrier frequency, since |𝐽𝑘| = |𝐽−𝑘|. Likewise, the field 𝐸3𝑏 consists of a residual optical 

carrier (corresponding to the 𝐽0  and -1 terms) and a series of LO-generated optical 

sidebands. Although the infinite sums appear to make compact, analytic descriptions of the 
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frequency converter unlikely, fortunately very few terms contribute to the IF, Ω𝐼𝐹 = Ω𝐿𝑂 −

Ω𝑅𝐹. To illustrate this, the 𝑘th optical sidebands generated by the RF and LO modulators 

are at frequencies 𝜔 + 𝑘𝛺𝑅𝐹 and 𝜔 + 𝑘𝛺𝐿𝑂, respectively. Upon mixing of these RF- and 

LO-generated sidebands, a signal at 𝑘Ω𝐿𝑂 − 𝑘Ω𝑅𝐹 = 𝑘(Ω𝐿𝑂 − Ω𝑅𝐹) = 𝑘Ω𝐼𝐹 is produced, 

which is simply the 𝑘th harmonic of the target IF. Hence, the higher order optical sidebands 

manifest primarily as harmonics of the IF, rather than at the IF. Hence, the infinite sums 

are truncated to retain only the 𝐽−1, 𝐽0, and 𝐽+1 terms for both RF and LO modulation. The 

harmonics of the IF are easily suppressed by low-pass filters on the photodetector output 

for downconversion applications.  

When considering linearity metrics, these IF harmonics could interfere with the IF of 

interest. However, later a small signal approximation is assumed for RF modulation that 

renders the RF-generated optical signals weak beyond the first or second order. Hence, 

when the LO-generated optical signals mix with a relatively weak RF-generated optical 

sideband, the resulting harmonic of the IF will be weak. Furthermore, mixing products such 

as those between LO-generated optical sidebands (e.g. 𝜔 + Ω𝐿𝑂 and 𝜔 + 2Ω𝐿𝑂) will 

produce frequencies generally out-of-band, particularly for downconverting applications 

where Ω𝐼𝐹 < Ω𝐿𝑂 by significant margin. The mixing between LO-generated (or RF-

generated) optical sidebands can be a severe problem in photonic upconverters on the other 

hand; optical filtering must be used to remove undesirable optical sidebands in such 

situations. 

Assuming the DC phase shift Δ𝜙𝑖𝑛𝑡 is applied only to the top branch to set the macro-

interferometer bias point, the top field expression simply gains a fixed phase term 𝑒𝑗𝛥𝜙𝑖𝑛𝑡 : 
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𝐸4𝑎 =
𝛾

2√2
 𝑒𝑗𝜔𝑡 𝑒𝑗𝛥𝜙𝑖𝑛𝑡 (𝑒𝑗𝜙𝐷𝐶 ∑ 𝐽𝑘(𝐴𝑅𝐹)𝑒𝑗𝑘𝛺𝑅𝐹𝑡

∞

𝑘=−∞

− 1) 
7-9 

Recall again that whether this  Δ𝜙𝑖𝑛𝑡 is physically applied to the top branch, bottom branch, 

or both differentially is irrelevant, as this Δ𝜙𝑖𝑛𝑡 merely represents the relative phase shift 

between top and bottom branches. The 𝐸3𝑏 and 𝐸4𝑎 fields are then added (with a phase 

shift) by the 2x2 directional coupler, yielding the electric field incident on the high-speed 

photodetector: 

𝐸5𝑎 =
𝛾

4
𝑒𝑗𝜔𝑡 [𝑒𝑗𝜙𝐷𝐶 (𝑒𝑗𝛥𝜙𝑖𝑛𝑡𝐽0(𝐴𝑅𝐹) + 𝑒𝑗𝛥𝜙𝑖𝑛𝑡𝐽1(𝐴𝑅𝐹)(𝑒𝑗𝛺𝑅𝐹𝑡 − 𝑒−𝑗𝛺𝑅𝐹𝑡)

− 𝐽0(𝐴𝐿𝑂) − 𝐽1(𝐴𝐿𝑂)(𝑒𝑗𝛺𝐿𝑂𝑡 − 𝑒−𝑗𝛺𝐿𝑂𝑡)) − 𝑒𝑗𝛥𝜙𝑖𝑛𝑡 + 1] 
7-10 

The generated photocurrent is a linear function of the incident optical power 𝑃𝑑, equal to 

1

2
𝐴𝑀 (

𝜖

𝜇
)

1/2

𝐸5𝑎𝐸5𝑎
∗ . Hence. The photocurrent is 

𝐼(𝑡) = 𝑅𝑃𝑑 =
𝑅

2
𝐴𝑀 (

𝜖

𝜇
)

1/2

𝐸5𝑎𝐸5𝑎
∗  

7-11 

where 𝑅 is the photodetector responsivity. Because the 𝐸5𝑎𝐸5𝑎
∗  product has many terms, 

the DC terms and IF terms are focused on separately, beginning with the DC terms.  
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𝐼𝐷𝐶 =
𝑅𝑔𝑜𝑝𝑡𝑃0

16
[𝐽0

2(𝐴𝑅𝐹) + 𝐽0
2(𝐴𝐿𝑂) + 2𝐽1

2(𝐴𝑅𝐹) + 2𝐽1
2(𝐴𝐿𝑂)

− 2𝑐𝑜𝑠(𝛥𝜙𝑖𝑛𝑡)𝐽0(𝐴𝑅𝐹)𝐽0(𝐴𝐿𝑂) + 2𝐽0(𝐴𝑅𝐹)𝑐𝑜𝑠(𝜙𝐷𝐶 + 𝛥𝜙𝑖𝑛𝑡)

+ 2𝑐𝑜𝑠(𝜙𝐷𝐶 − 𝛥𝜙𝑖𝑛𝑡)𝐽0(𝐴𝐿𝑂)

− 2(𝐽0(𝐴𝐿𝑂) + 𝐽0(𝐴𝑅𝐹))𝑐𝑜𝑠(𝜙𝐷𝐶) + −2𝑐𝑜𝑠(𝛥𝜙𝑖𝑛𝑡) + 2] 

7-12 

This 𝐼𝐷𝐶 is a general expression, with virtually no major assumptions made except the 

effective filtering out of optical sidebands beyond the first order. Here, further assumptions 

are made to yield simple equations, albeit for more limited use cases. General expressions 

are revisited in section 7.3.7. Null biased MZMs typically improve performance by 

minimizing carrier power and hence excess shot noise at the photodetector; hence 𝜙𝐷𝐶 =

0. Furthermore, the macro-interferometer bias Δ𝜙𝑖𝑛𝑡 = 0 is assumed as this optimizes the 

system gain, as shown later for the general expressions. Under small signal assumptions 

for the RF drive condition, i.e. 
𝑉𝑅𝐹

𝑉𝜋,𝑅𝐹
≪ 1, the Bessel functions with RF arguments are 

approximated as 𝐽0(𝐴𝑅𝐹) ≈ 1 and 𝐽1(𝐴𝑅𝐹) ≈
𝐴𝑅𝐹

2
. For LO modulation, a small signal 

approximation is inappropriate as the optimal LO drive voltage is a significant fraction 

relative to the LO modulator half-wave voltage, 𝑉𝜋,𝐿𝑂. The analysis proceeds by assuming 

the optimal drive condition for the LO modulator, since first-order Bessel functions of the 

first-kind exhibit a global maximum 𝐽1,𝑚𝑎𝑥 ≈ 0.5819 for an input amplitude of 𝐴𝐿𝑂 ≈

1.842. This amplitude is related to the input electrical power by 𝐴𝐿𝑂 = √
2𝜋2𝑃𝑖𝑛,𝐿𝑂𝑅𝑖,𝐿𝑂

𝑉𝜋.𝐿𝑂
2 , 

where 𝑅𝑖,𝐿𝑂 and 𝑉𝜋,𝐿𝑂 are the LO modulator input impedance and half-wave voltage, 

respectively. Optimizing the LO drive voltage is reasonable for modulators with low to 
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moderate 𝑉𝜋. For example, for 𝑉𝜋 = 4 V the optimal drive voltage has peak amplitude of 

2.35 V. With the aforementioned assumptions, the DC photocurrent simplifies to 

𝐼𝐷𝐶 =
𝑅𝑔𝑜𝑝𝑡𝑃0

16
[1.1455 +

𝜋2𝑃𝑖𝑛,𝑅𝐹𝑅𝑖,𝑅𝐹

𝑉𝜋.𝑅𝐹
2 ]. 

7-13 

The first term of the 𝐼𝐷𝐶 expression corresponds to the self-beating of the LO sidebands at 

the photodetector, while the second term corresponds to the self-beating of the RF 

sidebands at the photodetector. Note, there is no DC photocurrent contribution from the 

self-beating of the optical carrier at the photodetector since the null bias condition is 

assumed perfect, leaving no optical carrier power at the photodetector. In real 

implementations, however, the null bias condition will not be perfect due to limited 

modulator extinction ratio and imperfect bias point precision, resulting in a small 

contribution of the residual optical carrier power to the DC photocurrent. Nonetheless, as 

long as the magnitude of the residual optical carrier remains small compared to the 

magnitudes of the LO generated sidebands or RF generated sidebands, the contribution of 

residual optical carrier power to the DC photocurrent will be insignificant. 

Similarly, the 𝐼(𝑡) terms corresponding to the IF are grouped together to describe the 

strength of the IF current: 

𝐼𝛺𝐼𝐹
(𝑡) =

𝑅𝑔𝑜𝑝𝑡𝑃0

4
𝐽1(𝐴𝑅𝐹)𝐽1(𝐴𝐿𝑂)𝑐𝑜𝑠(𝛺𝐼𝐹𝑡)𝑐𝑜𝑠(𝛥𝜙𝑖𝑛𝑡) 7-14 

This 𝐼𝛺𝐼𝐹
(𝑡) expression explicitly shows the beating between the RF and LO generated 

optical sidebands through the Bessel function product, 𝐽1(𝐴𝑅𝐹)𝐽1(𝐴𝐿𝑂).  For the key MWP 
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metrics of interest, the IF electrical power 𝑃Ω𝐼𝐹
 is of greater interest than the IF 

photocurrent. The output IF electrical power of the photodetector is 𝑃𝛺𝐼𝐹
= ⟨𝐼𝛺𝐼𝐹

2 ⟩𝑅0|𝐻𝑝𝑑|
2
, 

where ⟨𝐼𝛺𝐼𝐹

2 ⟩ =
1

2
𝐼𝛺𝐼𝐹

2  is the time averaged square of the photocurrent at 𝛺𝐼𝐹; 𝑅0 is the 

photodetector output impedance; and 𝐻𝑝𝑑 is the photodetector filter function. Hence, the 

IF output power is 

𝑃𝛺𝐼𝐹
=

𝑅2𝑔𝑜𝑝𝑡
2 𝑃0

2𝑅0|𝐻𝑝𝑑|
2

32
𝐽1

2(𝐴𝑅𝐹)𝐽1
2(𝐴𝐿𝑂) cos2(𝛥𝜙𝑖𝑛𝑡). 7-15 

Applying the small signal approximation 𝐽1(𝐴𝑅𝐹) ≈
𝐴𝑅𝐹

2
 and substituting 𝐴𝑅𝐹 =

√
2𝜋2𝑃𝑖𝑛,𝑅𝐹𝑅𝑖,𝑅𝐹

𝑉𝜋.𝑅𝐹
2  yields 

𝑃𝛺𝐼𝐹
=

𝑅2𝑔𝑜𝑝𝑡
2 𝑃0

2𝑅0|𝐻𝑝𝑑|
2

64

𝜋2𝑃𝑖𝑛,𝑅𝐹𝑅𝑖,𝑅𝐹

𝑉𝜋.𝑅𝐹
2 𝐽1

2(𝐴𝐿𝑂) cos2(𝛥𝜙𝑖𝑛𝑡). 7-16 

Rearranging the terms and dividing by the input RF power 𝑃𝑖𝑛,𝑅𝐹 results in the RF-to-IF 

gain expression: 

𝑔𝐼𝐹 =
𝜋2𝑅2𝑔𝑜𝑝𝑡

2 𝑃0
2𝑅𝑖,𝑅𝐹𝑅0|𝐻𝑝𝑑|

2

64𝑉𝜋.𝑅𝐹
2 𝐽1

2(𝐴𝐿𝑂)𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡) 7-17 

The optimal LO drive condition further simplifies this to: 

𝑔𝐼𝐹 =
0.338𝜋2𝑅2𝑔𝑜𝑝𝑡

2 𝑃0
2𝑅𝑖,𝑅𝐹𝑅0|𝐻𝑝𝑑|

2

64𝑉𝜋.𝑅𝐹
2 𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡) 7-18 
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The factor of 0.338 arises from this optimal LO drive condition assumption since 𝐽1,𝑚𝑎𝑥 ≈

0.5819 and 𝐽1,𝑚𝑎𝑥
2 ≈ 0.58192 ≈ 0.338. 

7.3.3 Derivation of Linearity Metrics 

Next, the derivation of the third-order limited spur-free dynamic range (𝑆𝐹𝐷𝑅3) is derived 

for the single-drive, single detection photonic frequency converter architecture of Figure 

36(a). The analysis must begin again from the optical electric fields just prior to 

modulation. In the analysis of section 7.3.2, the intermodulation distortion products were 

not accounted for since the RF input was a single tone. Here, the RF input consists of two 

tones such that the mixing products between them may be calculated. Again, the derivation 

here is completed in detail for the single drive, single detection case to illustrate the 

methodology used for all single-drive/dual-drive and single/balanced detection 

combinations, with all results summarized in section 7.3.6. Luckily, the electric fields 

calculated within the LO branch of the macro-interferometer remain valid. Hence, attention 

is first directed toward recalculating the electric fields throughout the RF branch of the 

macro-interferometer. 

Now, the RF input 𝐴𝑅𝐹(𝑡) is: 

𝐴𝑅𝐹(𝑡) = 𝜙𝐷𝐶 + 𝐴1 sin(Ω1𝑡) + 𝐴2 sin(Ω2𝑡). 
7-19 

Here, the first term is a DC component; the second term is an RF tone at Ω1; and the third 

term is another RF tone at Ω2. Upon modulation by the RF MZM, the generated optical 

electric field is 
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𝐸3𝑎 =
𝛾

2√2
𝑒𝑗𝜔𝑡 (𝑒𝑗𝜙𝐷𝐶 ∑ 𝐽𝑘(𝐴1)𝑒𝑗𝑘𝛺1𝑡

∞

𝑘=−∞

∑ 𝐽𝑘(𝐴2)𝑒𝑗𝑘𝛺2𝑡

∞

𝑘=−∞

− 1) 
7-20 

Passing through the DC optical phase shift Δ𝜙𝑖𝑛𝑡 and truncating Bessel function terms with 

order higher than 2 results in 

𝐸5𝑎 =
𝛾

2√2
𝑒𝑗𝜔𝑡𝑒𝑗Δ𝜙𝑖𝑛𝑡(𝑒𝑗𝜙𝐷𝐶(𝐽2(𝐴1)𝑒−𝑗2𝛺1𝑡 − 𝐽1(𝐴1)𝑒−𝑗𝛺1𝑡 + 𝐽0(𝐴1) +

𝐽1(𝐴1)𝑒𝑗𝛺1𝑡 + 𝐽2(𝐴1)𝑒𝑗2𝛺1𝑡)(𝐽2(𝐴2)𝑒−𝑗2𝛺2𝑡 − 𝐽1(𝐴2)𝑒−𝑗𝛺2𝑡 + 𝐽0(𝐴2) +

𝐽1(𝐴2)𝑒𝑗𝛺2𝑡 + 𝐽2(𝐴2)𝑒𝑗2𝛺2𝑡) − 1).  

7-21 

Then 𝐸5𝑎 and 𝐸5𝑏 are added (with a phase shift) by the 2x2 directional coupler, yielding 

the optical field incident on the photodetector.  

𝐸6𝑎 =
𝛾

4
𝑒𝑗𝜔𝑡 (𝑒𝑗Δ𝜙𝑖𝑛𝑡(𝑒𝑗𝜙𝐷𝐶(𝐽2(𝐴1)𝑒−𝑗2𝛺1𝑡 − 𝐽1(𝐴1)𝑒−𝑗𝛺1𝑡 + 𝐽0(𝐴1)

+ 𝐽1(𝐴1)𝑒𝑗𝛺1𝑡 + 𝐽2(𝐴1)𝑒𝑗2𝛺1𝑡)(𝐽2(𝐴2)𝑒−𝑗2𝛺2𝑡

− 𝐽1(𝐴2)𝑒−𝑗𝛺2𝑡 + 𝐽0(𝐴2) + 𝐽1(𝐴2)𝑒𝑗𝛺2𝑡 + 𝐽2(𝐴2)𝑒𝑗2𝛺2𝑡) − 1)

+ 𝑗(𝑒𝑗𝜙𝐷𝐶 (𝐽0(𝐴𝐿𝑂) + 𝐽1(𝐴𝐿𝑂)(𝑒𝑗𝛺𝐿𝑂𝑡 + 𝑒−𝑗𝛺𝐿𝑂𝑡)) − 1)) 

7-22 

As the terms arising from modulation of Ω1 and Ω2 are multiplied out, proceeding yields 

unwieldy expressions. Hence, substitutions are made with temporary variables 𝑈 and 𝑉 to 

simplify the mathematics: 

𝐸6𝑎 =
𝛾

4
𝑒𝑗𝜔𝑡(𝑒𝑗Δ𝜙𝑖𝑛𝑡(𝑒𝑗𝜙𝐷𝐶(𝑈) − 1) + 𝑗(𝑒𝑗𝜙𝐷𝐶(𝑉) − 1)) 

7-23 



 96 

where,  

𝑈

= 𝐽2(𝐴1)𝐽2(𝐴2)𝑒−𝑗2(𝛺1+Ω2)𝑡 − 𝐽1(𝐴2)𝐽2(𝐴1)𝑒−𝑗(2𝛺1+Ω2)𝑡

+ 𝐽0(𝐴2)𝐽2(𝐴1)𝑒−𝑗2𝛺1𝑡 + 𝐽1(𝐴2)𝐽2(𝐴1)𝑒−𝑗(2𝛺1−Ω2)𝑡

+ 𝐽2(𝐴1)𝐽2(𝐴2)𝑒−𝑗2(−𝛺2+Ω1)𝑡 − 𝐽1(𝐴1)𝐽2(𝐴2)𝑒−𝑗(2𝛺2+𝛺1)𝑡

+ 𝐽1(𝐴1)𝐽1(𝐴2)𝑒−𝑗(Ω1+𝛺2)𝑡 − 𝐽0(𝐴2)𝐽1(𝐴1)𝑒−𝑗𝛺1𝑡 − 𝐽1(𝐴1)𝐽1(𝐴2)𝑒−𝑗(𝛺1−Ω2)𝑡

− 𝐽1(𝐴1)𝐽2(𝐴2)𝑒−𝑗(𝛺1−2Ω2)𝑡 + 𝐽0(𝐴1)𝐽2(𝐴2)𝑒−𝑗2𝛺2𝑡

− 𝐽0(𝐴1)𝐽1(𝐴2)𝑒−𝑗𝛺2𝑡+ 𝐽0(𝐴1)𝐽0(𝐴2)+ 𝐽0(𝐴1)𝐽1(𝐴2)𝑒𝑗𝛺2𝑡+ 𝐽0(𝐴1)𝐽2(𝐴2)𝑒𝑗2𝛺2𝑡

+ 𝐽1(𝐴1)𝐽2(𝐴2)𝑒−𝑗(2𝛺2−Ω1)𝑡 − 𝐽1(𝐴1)𝐽1(𝐴2)𝑒−𝑗(𝛺2−Ω1)𝑡 + 𝐽0(𝐴2)𝐽1(𝐴1)𝑒𝑗𝛺1𝑡

+ 𝐽1(𝐴1)𝐽1(𝐴2)𝑒𝑗(Ω1+𝛺2)𝑡 + 𝐽1(𝐴1)𝐽2(𝐴2)𝑒𝑗(Ω1+2𝛺2)𝑡

+ 𝐽2(𝐴2)𝐽2(𝐴1)𝑒𝑗2(𝛺1−Ω2)𝑡 − 𝐽1(𝐴2)𝐽2(𝐴1)𝑒𝑗(2𝛺1−Ω2)𝑡 + 𝐽0(𝐴2)𝐽2(𝐴1)𝑒𝑗2𝛺1𝑡

+ 𝐽1(𝐴2)𝐽2(𝐴1)𝑒𝑗(2𝛺1+Ω2)𝑡 + 𝐽2(𝐴1)𝐽2(𝐴2)𝑒𝑗2(𝛺1+Ω2)𝑡 

7-24 

and  

𝑉 = 𝐽0(𝐴𝐿𝑂) + 𝐽1(𝐴𝐿𝑂)(𝑒𝑗𝛺𝐿𝑂𝑡 + 𝑒−𝑗𝛺𝐿𝑂𝑡). 
7-25 

Hence, the conjugate of 𝐸6𝑎, necessary for calculating the detected photocurrent is 

𝐸6𝑎
∗ =

𝛾

4
𝑒−𝑗𝜔𝑡(𝑒−𝑗Δ𝜙𝑖𝑛𝑡(𝑒−𝑗𝜙𝐷𝐶(𝑈∗) − 1) − 𝑗(𝑒−𝑗𝜙𝐷𝐶(𝑉∗) − 1)) 

7-26 

Next, the product 𝐸6𝑎𝐸6𝑎
∗  is calculated: 
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𝐸6𝑎𝐸6𝑎
∗ =

𝛾2

16
[(𝑒𝑗Δ𝜙𝑖𝑛𝑡(𝑒𝑗𝜙𝐷𝐶(𝑈) − 1) + 𝑗(𝑒𝑗𝜙𝐷𝐶(𝑉)

− 1))(𝑒−𝑗Δ𝜙𝑖𝑛𝑡(𝑒−𝑗𝜙𝐷𝐶(𝑈∗) − 1) − 𝑗(𝑒−𝑗𝜙𝐷𝐶 (𝑉∗) − 1))] 
7-27 

Fortunately, from observation of the expressions for 𝑈, 𝑉, and their conjugates, the only 

terms relevant to the IF arise from products of 𝑉𝑈∗ and 𝑈𝑉∗.  

Hence the field product relevant to the 𝑆𝐹𝐷𝑅 is: 

𝐸6𝑎𝐸6𝑎
∗ (𝐼𝐹 𝑡𝑒𝑟𝑚𝑠 𝑜𝑛𝑙𝑦) =

𝑗𝛾2

16
[−𝑒𝑗Δ𝜙𝑖𝑛𝑡(𝑈𝑉∗) + 𝑒−𝑗Δ𝜙𝑖𝑛𝑡(𝑉𝑈∗)] 7-28 

𝑉𝑈∗(𝐼𝐹 𝑡𝑒𝑟𝑚𝑠 𝑜𝑛𝑙𝑦)

= 𝐽1(𝐴𝐿𝑂)(𝑒−𝑗𝛺𝐿𝑂𝑡 + 𝑒+𝑗𝛺𝐿𝑂𝑡)[𝐽1(𝐴2)𝐽2(𝐴1)(𝑒𝑗(2𝛺1−Ω2)𝑡

− 𝑒−𝑗(2𝛺1−Ω2)𝑡) + 𝐽0(𝐴2)𝐽1(𝐴1)(𝑒−𝑗𝛺1𝑡 − 𝑒𝑗𝛺1𝑡)

+ 𝐽1(𝐴1)𝐽2(𝐴2)(𝑒𝑗(2𝛺2−Ω1)𝑡 − 𝑒−𝑗(𝛺2−2Ω1)𝑡)

+ 𝐽0(𝐴1)𝐽1(𝐴2)(𝑒−𝑗𝛺2𝑡 − 𝑒𝑗𝛺2𝑡)] 

7-29 

𝑉𝑈∗(𝐼𝐹 𝑡𝑒𝑟𝑚𝑠 𝑜𝑛𝑙𝑦)

= 𝐽1(𝐴𝐿𝑂)𝐽1(𝐴2)𝐽2(𝐴1)(𝑒𝑗(2𝛺1−Ω2−𝛺𝑙𝑜)𝑡 − 𝑒−𝑗(2𝛺1−Ω2−𝛺𝑙𝑜)𝑡)

+ 𝐽1(𝐴𝐿𝑂)𝐽0(𝐴2)𝐽1(𝐴1)(𝑒−𝑗(𝛺1−𝛺𝑙𝑜)𝑡 − 𝑒𝑗(𝛺1−𝛺𝑙𝑜)𝑡)

+ 𝐽1(𝐴𝐿𝑂)𝐽1(𝐴1)𝐽2(𝐴2)(𝑒𝑗(2𝛺2−Ω1−𝛺𝑙𝑜)𝑡 − 𝑒−𝑗(2𝛺2−Ω1−𝛺𝑙𝑜)𝑡)

+ 𝐽1(𝐴𝐿𝑂)𝐽0(𝐴1)𝐽1(𝐴2)(𝑒−𝑗(𝛺2−𝛺𝑙𝑜)𝑡 − 𝑒𝑗(𝛺2−𝛺𝑙𝑜)𝑡) 

7-30 

As it turns out, for the IF terms 𝑉𝑈∗ = −𝑈𝑉∗, simplifying the 𝐸6𝑎𝐸6𝑎
∗  product relevant to 

the IF terms: 
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𝐸6𝑎𝐸6𝑎
∗ (𝐼𝐹 𝑡𝑒𝑟𝑚𝑠 𝑜𝑛𝑙𝑦) =

−𝑗𝛾2

8
𝑈𝑉∗cos (Δ𝜙𝑖𝑛𝑡)) 7-31 

Resubstituting in 𝑈 and 𝑉 expressions then yields: 

𝐸6𝑎𝐸6𝑎
∗ = −𝑗

𝛾2

8
𝑐𝑜𝑠(Δ𝜙𝑖𝑛𝑡)[𝐽1(𝐴𝐿𝑂)𝐽1(𝐴2)𝐽2(𝐴1)(𝑒−𝑗(2𝛺1−Ω2−𝛺𝐿𝑂)𝑡

− 𝑒𝑗(2𝛺1−Ω2−𝛺𝐿𝑂)𝑡)

+ 𝐽1(𝐴𝐿𝑂)𝐽0(𝐴2)𝐽1(𝐴1)(𝑒𝑗(𝛺1−𝛺𝐿𝑂)𝑡 − 𝑒−𝑗(𝛺1−𝛺𝐿𝑂)𝑡)

+ 𝐽1(𝐴𝐿𝑂)𝐽1(𝐴1)𝐽2(𝐴2)(𝑒−𝑗(2𝛺2−Ω1−𝛺𝐿𝑂)𝑡 − 𝑒𝑗(2𝛺2−Ω1−𝛺𝐿𝑂)𝑡)

+ 𝐽1(𝐴𝐿𝑂)𝐽0(𝐴1)𝐽1(𝐴2)(𝑒𝑗(𝛺2−𝛺𝐿𝑂)𝑡 − 𝑒−𝑗(𝛺2−𝛺𝐿𝑂)𝑡) ] 

7-32 

The fundamental and IMD3 frequencies can now be explicitly identified as the following. 

Assuming Ω2 > Ω1 > Ω𝐿𝑂, the “left” of carrier or lower frequency IF fundamental is 

Ω𝑓𝑢𝑛𝑑,𝐿 = Ω1 − Ω𝐿𝑂. The “right” of carrier or higher frequency IF fundamental is 

Ω𝑓𝑢𝑛𝑑,𝑅 = Ω2 − Ω𝐿𝑂. The “left” and “right” IF IMD3’s are similarly identified as 

Ω𝑖𝑚𝑑3,𝐿 = 2Ω1 − Ω2 − Ω𝐿𝑂 and Ω𝑖𝑚𝑑3,𝑅 = 2Ω2 − Ω1 − Ω𝐿𝑂. Applying these definitions 

and further simplifying terms yields: 

𝐸6𝑎𝐸6𝑎
∗ =

𝛾2

8
𝑐𝑜𝑠(Δ𝜙𝑖𝑛𝑡)[−2𝐽1(𝐴𝐿𝑂)𝐽1(𝐴2)𝐽2(𝐴1)𝑠𝑖𝑛(𝛺𝑖𝑚𝑑3,𝐿𝑡)

+ 2𝐽1(𝐴𝐿𝑂)𝐽0(𝐴2)𝐽1(𝐴1)𝑠𝑖𝑛(𝛺𝑓𝑢𝑛𝑑,𝐿𝑡)

− 2𝐽1(𝐴𝐿𝑂)𝐽1(𝐴1)𝐽2(𝐴2)𝑠𝑖𝑛(𝛺𝑖𝑚𝑑3,𝑅𝑡)

+ 2𝐽1(𝐴𝐿𝑂)𝐽0(𝐴1)𝐽1(𝐴2)𝑠𝑖𝑛(𝛺𝑓𝑢𝑛𝑑,𝑅𝑡)] 

7-33 
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Hence, four terms remain, each a function of the LO tone and the two RF input tones. 

Substituting 𝛾2 =
2𝑙𝑀𝑍𝑀𝑃0

𝐴
(

𝜇

𝜖
)

1/2

, the time averaged IF currents ⟨𝐼ΩIF

2 ⟩ = (
1

√2
)

2

𝐼ΩIF

2  

 are calculated for each term: 

⟨𝐼𝛺𝑖𝑚𝑑3,𝐿

2 ⟩ =
𝑅2𝑙𝑀𝑍𝑀

2 𝑃0
2

32
𝑐𝑜𝑠2(Δ𝜙𝑖𝑛𝑡)𝐽1

2(𝐴𝐿𝑂)𝐽1
2(𝐴2)𝐽2

2(𝐴1) 7-34 

⟨𝐼𝛺𝑓𝑢𝑛𝑑,𝐿

2 ⟩ =
𝑅2𝑙𝑀𝑍𝑀

2 𝑃0
2

32
𝑐𝑜𝑠2(Δ𝜙𝑖𝑛𝑡)𝐽1

2(𝐴𝐿𝑂)𝐽0
2(𝐴2)𝐽1

2(𝐴1) 7-35 

⟨𝐼𝛺𝑖𝑚𝑑3,𝑅

2 ⟩ =
𝑅2𝑙𝑀𝑍𝑀

2 𝑃0
2

32
𝑐𝑜𝑠2(Δ𝜙𝑖𝑛𝑡)𝐽1

2(𝐴𝐿𝑂)𝐽1
2(𝐴1)𝐽2

2(𝐴2) 7-36 

⟨𝐼𝛺𝑓𝑢𝑛𝑑,𝑅

2 ⟩ =
𝑅2𝑙𝑀𝑍𝑀

2 𝑃0
2

32
𝑐𝑜𝑠2(Δ𝜙𝑖𝑛𝑡)𝐽1

2(𝐴𝐿𝑂)𝐽0
2(𝐴1)𝐽1

2(𝐴2) 7-37 

Because ⟨𝐼𝛺𝑖𝑚𝑑3,𝐿

2 ⟩ = ⟨𝐼𝛺𝑖𝑚𝑑3,𝑅

2 ⟩ and ⟨𝐼𝛺𝑓𝑢𝑛𝑑,𝐿

2 ⟩ = ⟨𝐼𝛺𝑓𝑢𝑛𝑑,𝑅

2 ⟩ if the input amplitude 𝐴1 and 𝐴2 

are equal, as is the case in standard equal-amplitude two-tone experimental methods, the 

left fundamental/IMD3 pair and the right fundamental/IMD3 will each produce the same 

𝑆𝐹𝐷𝑅 and other linearity metrics. Hence, the derivations need only proceed with one pair, 

the left pair in this case. 

Converting to electrical power via 𝑃ΩIF
= ⟨𝐼ΩIF

2 ⟩𝑅0|𝐻𝑝𝑑|
2
 and applying the optimal LO 

drive condition assumption and the small signal approximations for both RF input tones 

then produces 
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𝑃𝛺𝑖𝑚𝑑3,𝐿
=

0.338𝑅2𝑙𝑀𝑍𝑀
2 𝑃0

2𝑅0|𝐻𝑝𝑑|
2

32
𝑐𝑜𝑠2(Δ𝜙𝑖𝑛𝑡)

𝐴2 
2

16

𝐴1
4

322
 7-38 

𝑃𝛺𝑓𝑢𝑛𝑑,𝐿
=

0.338𝑅2𝑙𝑀𝑍𝑀
2 𝑃0

2𝑅0|𝐻𝑝𝑑|
2

32
𝑐𝑜𝑠2(Δ𝜙𝑖𝑛𝑡)

𝐴1
2

16
, 7-39 

where 𝐴1
2 =

2𝜋2𝑃𝑖𝑛,1𝑅𝑖,𝑟𝑓

𝑉𝜋.𝑟𝑓
2  and 𝐴2

2 =
2𝜋2𝑃𝑖𝑛,2𝑅𝑖,𝑟𝑓

𝑉𝜋.𝑟𝑓
2 . 

Assuming an equal-amplitude test such that 𝑃𝑖𝑛,1 = 𝑃𝑖𝑛,2, the fundamental and third-order 

intermodulation distortion powers are 

𝑃𝛺𝑖𝑚𝑑3,𝐿
=

0.338𝜋6𝑅2𝑙𝑀𝑍𝑀
2 𝑃0

2𝑅0|𝐻𝑝𝑑|
2

2 ∙ 323
𝑐𝑜𝑠2(Δ𝜙𝑖𝑛𝑡)

𝑃𝑖𝑛,1
3 𝑅𝑖,𝑟𝑓

3

𝑉𝜋.𝑟𝑓
6  7-40 

𝑃𝛺𝑓𝑢𝑛𝑑,𝐿
=

0.338𝜋2𝑅2𝑙𝑀𝑍𝑀
2 𝑃0

2𝑅0|𝐻𝑝𝑑|
2

256
𝑐𝑜𝑠2(Δ𝜙𝑖𝑛𝑡)

𝑃𝑖𝑛,1𝑅𝑖,𝑟𝑓

𝑉𝜋.𝑟𝑓
2 . 

7-41 

Recalling the definition of the third-order output intercept point from Chapter 2, 𝑂𝐼𝑃3 =

(
𝑃𝛺𝑓𝑢𝑛𝑑

3

𝑃𝛺𝑖𝑚𝑑3

)

(
1

2
)

, the 𝑂𝐼𝑃3 expression is obtained. 

𝑂𝐼𝑃3 =
0.338𝑅2𝑙𝑀𝑍𝑀

2 𝑃0
2𝑅0|𝐻𝑝𝑑|

2

16
𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡) 7-42 

Subsequently, the 𝑆𝐹𝐷𝑅3 is derived from the 𝑂𝐼𝑃3: 
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𝑆𝐹𝐷𝑅3 = (
𝑂𝐼𝑃3

𝑁𝑜𝑢𝑡𝐵
)

2/3

= (
0.338𝑅2𝑙𝑀𝑍𝑀

2 𝑃0
2𝑅0|𝐻𝑝𝑑|

2

16𝑁𝑜𝑢𝑡𝐵
𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡))

2
3

 7-43 

 

7.3.4 Derivation of Noise Metrics 

Lastly, the metrics of noise power spectral density 𝑁𝑜𝑢𝑡 and noise factor 𝐹 are derived by 

beginning with the noise factor expression for the standard RF photonic link: 

𝑁𝑜𝑢𝑡,𝑅𝐹𝑜𝐹 = 𝑔𝑠𝑠𝑘𝐵𝑇𝑠 + 𝑘𝐵𝑇𝑠 + 2𝑞𝐼𝑑𝑐𝑅𝑜|𝐻𝑝𝑑|
2

+ 𝑅𝐼𝑁 𝐼𝑑𝑐
2 𝑅𝑜|𝐻𝑝𝑑|

2
 7-44 

The first term corresponds to the input thermal noise contribution to the output noise; the 

second term is the output thermal noise; the third term is the shot noise contribution; and 

the final term is the relative intensity noise (𝑅𝐼𝑁) contribution. Comparing the 

architectures of the photonic frequency converters here and the intensity-modulated, direct-

detection RF photonic link, the only new source of noise is the input noise to the LO 

modulator. Hence, the 𝑁𝑜𝑢𝑡 for the photonic frequency converting link simply includes an 

extra noise term for the input noise from the LO modulator, assumed to be thermally 

limited. 

𝑁𝑜𝑢𝑡 = 𝑔𝑅𝐹𝑘𝐵𝑇𝑠 + 𝑔𝐿𝑂𝑘𝐵𝑇𝑠 + 𝑘𝐵𝑇𝑠 + 2𝑞𝐼𝑑𝑐𝑅𝑜|𝐻𝑝𝑑|
2

+ 𝑅𝐼𝑁𝐼𝑑𝑐
2 𝑅𝑜|𝐻𝑝𝑑|

2
 7-45 
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Here, 𝑔𝑅𝐹 is the small signal gain of the photonic frequency converter, referred to the RF 

path, i.e. relating the ratio of IF output power to RF input power. The small signal 

approximation is used since the input noise equivalent voltages are assumed small in 

comparison to the modulator half-wave voltages. This 𝑔𝑅𝐹 is identical to the previously 

derived gain, simply denoted 𝑔𝐼𝐹. Here again, the 𝑔𝐼𝐹 expression assuming optimal LO 

drive conditions is employed. The new second term 𝑔𝐿𝑂𝑘𝐵𝑇𝑠 is the LO modulator input 

noise multiplied by the small signal LO-referred gain, 𝑔𝐿𝑂, which relates the ratio of the IF 

output power to the input LO power.  

𝑔𝐿𝑂 ≈ 
𝜋4𝑙𝑀𝑍𝑀

2 𝑅2𝑃0
2𝑅0|𝐻𝑝𝑑|

2

128

𝑅𝑖,𝐿𝑂

𝑉𝜋.𝐿𝑂
2

𝑃𝑖𝑛,𝑟𝑓𝑅𝑖,𝑟𝑓

𝑉𝜋.𝑟𝑓
2 𝑐𝑜𝑠2(Δ𝜙𝑖𝑛𝑡) 

7-46 

Besides this difference, the existing shot noise and 𝑅𝐼𝑁 noise contributions remain 

unchanged as these are written in terms of 𝐼𝐷𝐶 . From 𝑁𝑜𝑢𝑡, the noise factor 𝐹 is simply 

derived via 𝐹 =
𝑁𝑜𝑢𝑡

𝑔𝑘𝐵𝑇𝑠
: 

𝐹 =
1

𝑔𝑅𝐹𝑘𝐵𝑇𝑠
(𝑔𝑅𝐹𝑘𝐵𝑇𝑠 + 𝑔𝐿𝑂𝑘𝐵𝑇𝑠 + 𝑘𝐵𝑇𝑠 + 2𝑞𝐼𝐷𝐶𝑅𝑜|𝐻𝑝𝑑|

2

+ 𝑅𝐼𝑁𝐼𝐷𝐶
2 𝑅𝑜|𝐻𝑝𝑑|

2
) 
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Distributing the 𝑔𝑅𝐹𝑘𝐵𝑇𝑠 expression in the denominator and simplifying, the following is 

obtained, 

𝐹 = 1 +
𝑔𝐿𝑂

𝑔𝑅𝐹
+

1

𝑔𝑅𝐹
(1 +

2𝑞𝐼𝐷𝐶𝑅𝑜|𝐻𝑝𝑑|
2

𝑘𝐵𝑇𝑠
+

𝑅𝐼𝑁𝐼𝐷𝐶
2 𝑅𝑜|𝐻𝑝𝑑|

2

𝑘𝐵𝑇𝑠
). 

7-48 
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The second term, corresponding to the LO input’s thermal noise contribution, manifests as 

a ratio of the LO-referred gain to the RF-referred gain. An interesting conclusion from this 

is the slight advantage found in trading RF input power for increased LO input power. This 

is more directly observed by substituting in the expressions assuming both the RF and LO 

inputs are small signal, yielding the following result: 

𝐹 = 1 +
𝑃𝑖𝑛,𝑅𝐹

𝑃𝑖𝑛,𝐿𝑂
+

1

𝑔𝑅𝐹
(1 +

2𝑞𝐼𝐷𝐶𝑅𝑜|𝐻𝑝𝑑|
2

𝑘𝐵𝑇𝑠
+

𝑅𝐼𝑁𝐼𝐷𝐶
2 𝑅𝑜|𝐻𝑝𝑑|

2

𝑘𝐵𝑇𝑠
) 

7-49 

Hence, increasing the 𝑃𝑖𝑛,𝐿𝑂 and reducing 𝑃𝑖𝑛,𝑟𝑓 lowers the system’s noise factor, though 

this second term is typically small, since 𝑃𝑖𝑛,𝑅𝐹 < 𝑃𝑖𝑛,𝐿𝑂, especially when the LO 

modulator’s optimal drive condition is achieved. Note the above expression does not 

assume the optimal LO drive condition as the final gain expressions in previous sections 

have assumed. The gain expressions employed to achieve the above expression must 

assume small-signal inputs to both the LO and RF modulators. Under optimal LO drive 

conditions, the second term is more complex as many of the common terms of the 𝑔𝑅𝐹 and 

𝑔𝐿𝑂 expressions do not cancel, leaving the second term as: 
𝜋2𝑔𝑜𝑝𝑡𝑅𝑖,𝐿𝑂𝑃𝑖𝑛,𝑟𝑓

2∗0.338𝑉𝜋.𝐿𝑂
2 . Nonetheless, 

this second term is typically small compared to other noise sources, even smaller than the 

input RF noise. Hence, neglecting the input noise contribution from the LO modulator and 

substituting in the RF-to-IF gain 𝑔𝐼𝐹 assuming optimal LO drive conditions results in: 
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𝐹 = 1 +
64𝑉𝜋.𝑟𝑓

2

0.338𝜋2𝑅2𝑙𝑀𝑍𝑀
2 𝑃0

2𝑅𝑖,𝑟𝑓  

(
1

𝑅𝑜|𝐻𝑝𝑑|
2 +

2𝑞𝐼𝐷𝐶

𝑘𝐵𝑇𝑠
+

𝑅𝐼𝑁𝐼𝐷𝐶
2

𝑘𝐵𝑇𝑠
) 
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7.3.5 Accounting for Dual-Drive and Balanced Detection Cases 

For the sake of brevity, the dual-drive and balanced detection cases are not derived 

explicitly here in detail. Instead, the methodology is illustrated sufficiently such that a 

detailed derivation can be completed by the reader, if desired. 

The balanced detection case is easily derived with the single detection derivation on hand, 

beginning with the single detection photocurrents. Balanced detection subtracts the two 

single photodetector currents, resulting in theoretically zero DC photocurrent but double 

the current magnitudes for the IF currents. This selective behavior occurs because the DC 

terms output by both photodetectors share the name sign, but the IF terms have opposite 

signs. Hence, electrical subtraction eliminates the DC photocurrent while strengthening the 

IF currents. Nonetheless, for purposes of calculating the noise, the convention from [5] is 

adopted whereby the balanced detection 𝐼𝐷𝐶 is defined as the sum of the individual 

photodetector currents. While not reflecting the physical reality of balanced detection, this 

definition of the balanced detection photocurrent enables convenient calculation of noise 

terms, such as shot noise, using the previously derived 𝐹 and 𝑁𝑜𝑢𝑡 expressions. Hence, the 

balanced detection noise factor, assuming the LO input noise is small relative to the other 

noise sources, is: 
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𝐹 ≈ 1 +
1

𝑔𝐼𝐹,𝑏𝑎𝑙
(1 +

2𝑞𝐼𝑑𝑐,𝑏𝑎𝑙𝑅𝑜|𝐻𝑝𝑑|
2

𝑘𝐵𝑇𝑠
+

𝑅𝐼𝑁𝐼𝑑𝑐,𝑏𝑎𝑙
2 𝑅𝑜|𝐻𝑝𝑑|

2

𝑘𝐵𝑇𝑠
) 
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where 𝐼𝐷𝐶,𝑏𝑎𝑙 is the sum of the individual DC photocurrent, and 𝑔𝐼𝐹,𝑏𝑎𝑙 is the gain of the 

photonic frequency converter with balanced detection.  

Because the output IF photocurrent is doubled due to balanced detection, the output IF 

electrical powers of the IF and IMD3 terms are increased by a factor of four. This 

multiplicative factor thus impacts the system gain and 𝑆𝐹𝐷𝑅3, i.e. the gain is multiplied 

by four: 

𝑔𝐼𝐹,𝑏𝑎𝑙 =
0.338𝜋2𝑅2𝑔𝑜𝑝𝑡

2 𝑃0
2𝑅𝑖,𝑅𝐹𝑅0|𝐻𝑝𝑑|

2

16𝑉𝜋.𝑅𝐹
2 𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡) 7-52 

From the definitions of 𝑂𝐼𝑃3 and 𝑆𝐹𝐷𝑅3, this factor of four can be easily mapped to the 

new 𝑆𝐹𝐷𝑅 in comparison to the single-drive, single detection expressions. 

𝑂𝐼𝑃3𝑏𝑎𝑙 = (
𝑃𝛺𝑓𝑢𝑛𝑑,𝑏𝑎𝑙

3

𝑃𝛺𝑖𝑚𝑑3,𝑏𝑎𝑙

)

(
1
2

)

= (
(4𝑃𝛺𝑓𝑢𝑛𝑑

)
3

4𝑃𝛺𝑖𝑚𝑑3

)

(
1
2

)

= 4 ∙ 𝑂𝐼𝑃3 7-53 

𝑆𝐹𝐷𝑅3,𝑏𝑎𝑙 = (
4 ∙ 𝑂𝐼𝑃3

𝑁𝑜𝑢𝑡𝐵
)

2/3

= (
0.3382𝑅2𝑙𝑀𝑍𝑀

2 𝑃0
2𝑅0|𝐻𝑝𝑑|

2

4𝑁𝑜𝑢𝑡𝐵
𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡))

2
3
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Hence, balanced detection increases the 𝑆𝐹𝐷𝑅 by a factor 42/3 at first glance. However, 

note that the balanced detector 𝑁𝑜𝑢𝑡 must be substituted, which although identical when 
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cast in terms of 𝐼𝐷𝐶, is significantly lower in many cases due to balanced detection’s 

suppression of the DC photocurrent and common mode noise sources like 𝑅𝐼𝑁.  

Concerning dual-drive implementations, the derivation must return to the modulated 

electric fields 𝐸3𝑎 and 𝐸3𝑏 and include differential modulation of both phase shifters within 

the RF and LO MZMs. The new RF-modulated and LO-modulated electric fields are: 

𝐸3𝑎,𝐷𝐷 =
𝛾

2√2
𝑒𝑗𝜔𝑡  (𝑒

𝑗𝜙𝐷𝐶
2 ∑ 𝐽𝑘(𝐴𝑅𝐹)𝑒𝑗𝑘𝛺𝑅𝐹𝑡

∞

𝑘=−∞

− 𝑒
−𝑗𝜙𝐷𝐶

2 ∑ 𝐽𝑘(𝐴𝑅𝐹)𝑒−𝑗𝑘𝛺𝑅𝐹𝑡

∞

𝑘=−∞

) 
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𝐸3𝑏,𝐷𝐷 =
𝑗𝛾

2√2
𝑒𝑗𝜔𝑡  (𝑒

𝑗𝜙𝐷𝐶
2 ∑ 𝐽𝑘(𝐴𝐿𝑂)𝑒𝑗𝑘𝛺𝐿𝑂𝑡

∞

𝑘=−∞

− 𝑒
−𝑗𝜙𝐷𝐶

2 ∑ 𝐽𝑘(𝐴𝐿𝑂)𝑒−𝑗𝑘𝛺𝐿𝑂𝑡

∞

𝑘=−∞

) 
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The analysis continues as before to produce the dual-drive gain, 𝑆𝐹𝐷𝑅, 𝑁𝐹, and 𝑁𝑜𝑢𝑡.  

7.3.6 Summary of Simplified Equations 

In this section the equations describing the main metrics of interest for photonic frequency 

converters are summarized for architectures employing all combinations of single or dual 

drive and single or balanced detection schemes. Fortunately, the differences between the 

architectural variants are fully captured by mere multiplicative factors, except for the DC 

photocurrent. These multiplicative factors are introduced as 𝑋𝐺 for the gain expression, 

𝑋𝑆𝐹𝐷𝑅 for the 𝑆𝐹𝐷𝑅3, and 𝑋𝐼𝐷𝐶
 and 𝑌𝐼𝐷𝐶

 parameters for the DC photocurrent. Note that 𝐹 
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expressions are cast in terms of 𝑔𝐼𝐹 and hence do not require an independent multiplicative 

factor. The values for these factors are given in Table 8. 

𝑔𝐼𝐹 =
0.338𝑋𝐺𝜋2𝑅2𝑔𝑜𝑝𝑡

2 𝑃0
2𝑅𝑖,𝑅𝐹𝑅0|𝐻𝑝𝑑|

2

𝑉𝜋.𝑅𝐹
2 𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡) 7-57 

𝐹 = 1 +
𝑃𝑖𝑛,𝑅𝐹

𝑃𝑖𝑛,𝐿𝑂
+

1

𝑔𝐼𝐹
(1 +

2𝑞𝐼𝐷𝐶𝑅𝑜|𝐻𝑝𝑑|
2

𝑘𝐵𝑇𝑠
+

𝑅𝐼𝑁𝐼𝐷𝐶
2 𝑅𝑜|𝐻𝑝𝑑|

2

𝑘𝐵𝑇𝑠
) 7-58 

𝑆𝐹𝐷𝑅3 = (
0.338𝑋𝑆𝐹𝐷𝑅𝑅2𝑔𝑜𝑝𝑡

2 𝑃0
2𝑅0|𝐻𝑝𝑑|

2

𝑁𝑜𝑢𝑡𝐵
𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡))

2
3
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𝐼𝐷𝐶 = 𝑋𝐼𝐷𝐶
𝑅𝑔𝑜𝑝𝑡𝑃0 (𝑌𝐼𝐷𝐶

+
𝜋2𝑃𝑖𝑛,𝑅𝐹𝑅𝑖,𝑅𝐹

𝑉𝜋.𝑅𝐹
2 ) 
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Note while only 𝑔𝐼𝐹 and 𝑆𝐹𝐷𝑅3 expressions above appear to be functions of the macro-

interferometer phase Δ𝜙𝑖𝑛𝑡, the DC photocurrent 𝐼𝐷𝐶 and hence 𝐹 are also functions of 

Δ𝜙𝑖𝑛𝑡; here the assumption that  Δ𝜙𝑖𝑛𝑡 = 0 was applied to 𝐼𝐷𝐶 and hence 𝐹 since these 

equations would not simplify otherwise. The generalized expressions for 𝐼𝐷𝐶 are given in 

the next section. Likewise, 𝐼𝐷𝐶 and 𝐹  are functions of the MZM bias 𝜙𝐷𝐶, though the 

assumption here is that 𝜙𝐷𝐶 = 0 corresponding to null  bias, which is beneficial for noise 

reduction. Additionally, because 𝐼𝐷𝐶 determines 𝑁𝑜𝑢𝑡, the 𝑆𝐹𝐷𝑅3 (also dependent on 𝑁𝑜𝑢𝑡) 

is a more complex function of both Δ𝜙𝑖𝑛𝑡 and 𝜙𝐷𝐶; hence, the 𝑁𝑜𝑢𝑡 using the generalized 

𝐼𝐷𝐶 expressions of the next subsection should be used for assessing the 𝑆𝐹𝐷𝑅 when 

Δ𝜙𝑖𝑛𝑡 ≠ 0 or 𝜙𝐷𝐶 ≠ 0. Nonetheless, the most common bias condition will be when 

Δ𝜙𝑖𝑛𝑡 = 0 and 𝜙𝐷𝐶 = 0 since these conditions typically maximize the gain of the system. 
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Per the 𝑔𝐼𝐹 expression above, the gain is always a function of the macro-interferometer 

bias point Δ𝜙𝑖𝑛𝑡, but is only a function of 𝜙𝐷𝐶 for dual-drive implementations. In dual-

drive (push-pull) implementations, the fundamental sidebands generated by each phase 

shifter in an MZM can interact when coupled, i.e. add vectorially; however, in single-drive 

(push-only) implementations (with the DC phase control on the unmodulated arm) the 

fundamental sidebands generated by the modulated phase shifter have no signals to add 

interferometrically with, since the unmodulated phase shifter simply passes an un-

modulated carrier. Hence, only the dual-drive MZM’s output optical carrier amplitudes are 

affected by the MZM bias point 𝜙𝐷𝐶. The single-drive MZM simply acts as a phase 

modulator with excess carrier power recombined at its output; hence the gain of single-

drive MZM based frequency converters is independent of 𝜙𝐷𝐶. This feature means the 

MZM bias point for single-drive implementations should be determined solely by its 

impact on 𝑁𝑜𝑢𝑡 and 𝑆𝐹𝐷𝑅. See section 7.3.11 for more details on phase sensitivities. 

Table 8– Summary of Frequency Converter Link Factors. 

 Single Drive Dual Drive 

Factor 
Single  

Detection 

Balanced 

Detection 

Single 

Detection 

Balanced 

Detection 

𝑋𝐺 

1

64
 

 

1

16
 

 

1

4
𝑐𝑜𝑠2(𝜙𝐷𝐶) 

 

𝑐𝑜𝑠2(𝜙𝐷𝐶) 

 

𝑋𝑆𝐹𝐷𝑅 
1

16
 

1

4
 

1

4
𝑐𝑜𝑠2(𝜙𝐷𝐶) 𝑐𝑜𝑠2(𝜙𝐷𝐶) 

     

𝑋𝐼𝐷𝐶
 

1

16
 

1

8
 

1

4
 

1

2
 

     

𝑌𝐼𝐷𝐶
 1.146 0.677 

 

 



 109 

7.3.7 Generalized Equations 

Here the generalized 𝑔𝐼𝐹, 𝐹, 𝑆𝐹𝐷𝑅3, and 𝐼𝐷𝐶 expressions are given, without any 

assumptions on the RF or LO modulation strengths, nor on the Δ𝜙𝑖𝑛𝑡 and 𝜙𝐷𝐶 biases. 

Where present, the multiplicative factors retain their values given in Table 8. The gain 𝑔𝐼𝐹 

is: 

𝑔𝐼𝐹 = 𝑋𝐺

𝜋2𝑅2𝑔𝑜𝑝𝑡
2 𝑃0

2𝑅𝑖,𝑅𝐹𝑅0|𝐻𝑝𝑑|
2

64𝑉𝜋.𝑅𝐹
2 𝐽1

2(𝐴𝐿𝑂)𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡) 7-61 

Note this result still assumes the RF input voltage is small signal, as this is necessary to 

obtain an explicit gain equation. For large signal RF inputs, 7-61 should be recast in terms 

of 𝑃ΩIF
 and compared numerically to the input RF power. 

The noise metrics are left generally unchanged from the previous subsection: 

𝑁𝑜𝑢𝑡 = 𝑔𝑅𝐹𝑘𝐵𝑇𝑠 + 𝑔𝐿𝑂𝑘𝐵𝑇𝑠 + 𝑘𝐵𝑇𝑠 + 2𝑞𝐼𝑑𝑐𝑅𝑜|𝐻𝑝𝑑|
2

+ 𝑅𝐼𝑁𝐼𝑑𝑐
2 𝑅𝑜|𝐻𝑝𝑑|

2
 7-62 

𝐹 = 1 +
𝑔𝐿𝑂

𝑔𝑅𝐹
+

1

𝑔𝑅𝐹
(1 +

2𝑞𝐼𝑑𝑐𝑅𝑜|𝐻𝑝𝑑|
2

𝑘𝐵𝑇𝑠
+

𝑅𝐼𝑁𝐼𝑑𝑐
2 𝑅𝑜|𝐻𝑝𝑑|

2

𝑘𝐵𝑇𝑠
) 
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The 𝑆𝐹𝐷𝑅3 expression is more complex, containing multiple Bessel functions (of the first 

kind) of order 0, 1, and 2, though these are easily evaluated numerically.  

𝑆𝐹𝐷𝑅3 = (
𝑋𝑆𝐹𝐷𝑅𝑅2𝑔𝑜𝑝𝑡

2 𝑃0
2𝑅0|𝐻𝑝𝑑|

2
𝐽0

3(𝜙𝑅𝐹)𝐽1
2(𝜙𝑅𝐹)𝐽1

2(𝜙𝐿𝑂)

2𝑁𝑜𝑢𝑡𝐵𝐽2(𝜙𝑅𝐹)
)

2
3

 7-64 
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Lastly, the general photocurrent expressions contain the most terms, as these include both 

self-beat terms from RF and LO generated optical sidebands as well as the mixing terms 

contributing to the IF photocurrent. The single-drive photocurrents for single detection 

(𝐼𝐷𝐶,𝑆𝐷,𝑆𝐷𝑒𝑡) and balanced detection (𝐼𝐷𝐶,𝑆𝐷,𝐵𝐷𝑒𝑡) are: 

𝐼𝐷𝐶,𝑆𝐷,𝑆𝐷𝑒𝑡 =
1

16
𝑅𝑔𝑜𝑝𝑡𝑃0[2 + 𝐽0

2(𝐴𝑅𝐹) + 𝐽0
2(𝐴𝐿𝑂) + 2𝐽1

2(𝐴𝑅𝐹) + 2𝐽1
2(𝐴𝐿𝑂)

− 2𝑐𝑜𝑠(𝛥𝜙𝑖𝑛𝑡)(𝐽0(𝐴𝑅𝐹)𝐽0(𝐴𝐿𝑂) + 1)

+ 2𝐽0(𝐴𝑅𝐹)𝑐𝑜𝑠(𝜙𝐷𝐶 + 𝛥𝜙𝑖𝑛𝑡) + 2𝐽0(𝐴𝐿𝑂)𝑐𝑜𝑠(𝜙𝐷𝐶 − 𝛥𝜙𝑖𝑛𝑡)

− 2(𝐽0(𝐴𝐿𝑂) + 𝐽0(𝐴𝑅𝐹))𝑐𝑜𝑠(𝜙𝐷𝐶)] 
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𝐼𝐷𝐶,𝑆𝐷,𝐵𝐷𝑒𝑡 =
1

8
𝑅𝑔𝑜𝑝𝑡𝑃0[2 + 𝐽0

2(𝐴𝑅𝐹) + 𝐽0
2(𝐴𝐿𝑂) + 2𝐽1

2(𝐴𝑅𝐹) + 2𝐽1
2(𝐴𝐿𝑂)

− 2𝑐𝑜𝑠(𝛥𝜙𝑖𝑛𝑡)(𝐽0(𝐴𝑅𝐹)𝐽0(𝐴𝐿𝑂) + 1)

+ 2𝐽0(𝐴𝑅𝐹)𝑐𝑜𝑠(𝜙𝐷𝐶 + 𝛥𝜙𝑖𝑛𝑡) + 2𝐽0(𝐴𝐿𝑂)𝑐𝑜𝑠(𝜙𝐷𝐶 − 𝛥𝜙𝑖𝑛𝑡)

− 2(𝐽0(𝐴𝐿𝑂) + 𝐽0(𝐴𝑅𝐹))𝑐𝑜𝑠(𝜙𝐷𝐶)] 
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The dual-drive photocurrents for single detection (𝐼𝐷𝐶,𝐷𝐷,𝑆𝐷𝑒𝑡) and balanced detection 

(𝐼𝐷𝐶,𝐷𝐷,𝐵𝐷𝑒𝑡) are: 

𝐼𝐷𝐶,𝐷𝐷,𝑆𝐷𝑒𝑡 =
1

4
𝑅 𝑔𝑜𝑝𝑡𝑃0 ((𝐽0

2(𝐴𝑅𝐹) + 𝐽0
2(𝐴𝐿𝑂)

− 2𝑐𝑜𝑠(𝛥𝜙𝑖𝑛𝑡)𝐽0(𝐴𝑅𝐹)𝐽0(𝐴𝐿𝑂))𝑠𝑖𝑛2(𝜙𝐷𝐶)

+ 2(𝐽1
2(𝐴𝑅𝐹) + 𝐽1

2(𝐴𝐿𝑂))𝑐𝑜𝑠2(𝜙𝐷𝐶)) 

7-67 
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𝐼𝐷𝐶,𝐷𝐷,𝐵𝐷𝑒𝑡 =
1

2
𝑅 𝑔𝑜𝑝𝑡𝑃0 ((𝐽0

2(𝐴𝑅𝐹) + 𝐽0
2(𝐴𝐿𝑂)

− 2𝑐𝑜𝑠(𝛥𝜙𝑖𝑛𝑡)𝐽0(𝐴𝑅𝐹)𝐽0(𝐴𝐿𝑂))𝑠𝑖𝑛2(𝜙𝐷𝐶)

+ 2(𝐽1
2(𝐴𝑅𝐹) + 𝐽1

2(𝐴𝐿𝑂))𝑐𝑜𝑠2(𝜙𝐷𝐶)) 
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where subscripts for 𝐼𝐷𝐶 are defined as SD = single-drive, DD = dual-drive, SDet = single 

detection, and BDet = balanced detection. Substituting the appropriate 𝐼𝐷𝐶 equation above 

into the 𝐹 and 𝑁𝑜𝑢𝑡 expressions in the last subsection will yield the appropriate noise 

metrics (and hence 𝑆𝐹𝐷𝑅) for cases in which previous assumptions are invalid; e.g. non-

optimal LO drive conditions or Δ𝜙𝑖𝑛𝑡 ≠ 0 or 𝜙𝐷𝐶 ≠ 0. 

7.3.8 Performance Trends 

Using the equations of section 7.3.6, the gain, 𝑆𝐹𝐷𝑅3, and noise metrics are calculated as 

a function of optical power for the four architectures in Figure 36 to compare performance 

trends. The following results reflect component metrics (Table 9) of the InP downconverter 

experimentally characterized in Ch. 9, which validates experimentally the calculations of 

this section. Additionally, the frequency converter architectures and the RF photonic link 

are simulated in Lumerical INTERCONNECT for three different optical powers to verify 

the trends of this section; however, only the simulated data points (in diamonds) for the RF 

photonic link and the single-drive, single detection architecture are shown here for clarity. 

All simulations are in close agreement with the results using the derived analytic equations. 

First the RF power gain response vs. optical launch power is investigated, Figure 39(a), 

demonstrating the expected 𝑔𝐼𝐹 ∝ 𝑃𝑜𝑝𝑡
2  dependence, which manifests as a slope = 2 rise in 



 112 

gain with optical power on a dB scale. The frequency converter gain retains the square 

dependence on optical power since a single laser supplies both RF and LO branches. While 

the RF photonic link demonstrates the best gain, the dual-drive, balanced detection 

frequency converter’s gain is only 4.6 dB lower and is the best performing frequency 

converter architecture. The dual-drive, single detection frequency converter exhibits 6 dB 

less gain than its balanced detection counterpart. Likewise, the single-drive, balanced 

detection case exhibits 6 dB less gain than the previous. Finally, the single-drive, single 

detection case exhibits 6 dB less gain than its balanced detection counterpart. Hence, the 

frequency converter architectures exhibit gain performance benefits in increments of 6 dB. 

Table 9– Summary of InP Frequency Converter Component Metrics and Parameters. 

Metric Value Unit 

Laser Power, 𝑃0 13.5 dBm 

Laser RIN -150 dB/Hz 

SOA Gain 9 dB 

SOA NF 4 dB 

MZM 𝑉𝜋  4 V 

MZM Loss 5.4 dB 

𝑅𝑖,𝑅𝐹 = 𝑅𝑖,𝐿𝑂 = 𝑅𝑜 50 Ω 

𝑅 1 A/W 

Δ𝜙𝑖𝑛𝑡  0 rad 

𝜙𝐷𝐶 0 rad 

𝐻𝑝𝑑  1   

For all frequency converters and the RF photonic link, the DC photocurrent 𝐼𝐷𝐶 is a linear 

function of the optical power, Figure 39.  

Unlike gain and 𝐼𝐷𝐶, the noise power spectral density, 𝑁𝑜𝑢𝑡, (the “noise floor”) exhibits a 

complex relationship with optical power, Figure 39(c). At low powers < 0 dBm, 𝑁𝑜𝑢𝑡 is 

dominated by output thermal noise, which is not a function of the optical power. As the 

optical power increases above 0 dBm, the shot noise (∝ 𝑃𝑜𝑝𝑡) and RIN (∝ 𝑃𝑜𝑝𝑡
2 ) eventually 
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dominate the noise, depending on the architecture. Balanced detection removes common-

mode noise which can often be described as a RIN term; hence, balanced detection 

architectures are commonly shot-noise limited even for high optical powers. The single-

drive, single detection case of Figure 39(c) clearly illustrates the transition from output 

thermal to shot noise to RIN limited regimes for increasing optical power, while its 

balanced detection counterpart remains shot noise limited at high powers. In terms of the 

noise floor, the RF photonic link is outperformed for all optical powers (with the assumed 

component metrics of Table 9) by the balanced detection frequency converting links for 

two reasons: 1) the frequency converters employ null-biased MZMs that reduce shot noise 

at the detector, and 2) the balanced detection eliminates common-mode RIN, though the 

RF photonic link also assumes balanced detection. For single detection, the noise floor is 

only lower for low optical powers, i.e. when output thermal or shot noise limited. 

Note, as mentioned in section 7.3.5, the balanced detection DC photocurrents here are 

understood to be the sum of the DC photocurrents generated by the individual 

photodetectors to enable convenient calculation of noise metrics. The 𝐼𝐷𝐶 of the RF 

photonic link is largest since quadrature bias is typically employed, while the frequency 

converter architectures employ null bias, which suppresses the optical carrier and hence a 

large fraction of the DC photocurrent. These results do not account for photodetector 

saturation nor nonlinear absorption in fibers or waveguides; hence, the photocurrents (and 

other metrics) may not scale as indicated for high optical powers. Particularly, integrated 

platforms, such as SiP and InP, struggle to support optical powers >20 dBm without 

significant nonlinear effects, though discrete implementations may handle optical powers 

approaching 30 dBm.  
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Figure 39 – Calculated (a) gain, (b) 𝐼𝐷𝐶, (c) 𝑁𝑜𝑢𝑡, (d) 𝑁𝐹, and (e) 𝑆𝐹𝐷𝑅 versus optical 

launch power for the four frequency converter architectures and a RF photonic link, all 

assuming component performance consistent with an InP platform. Additionally, 

Lumerical-simulated points are indicated for the single drive, single detection, and the RF 

photonic link architectures, demonstrating fidelity with the calculated results. SDr = single 

drive, DDr = dual drive, SDet = single detection, BDet = balanced detection. 

 

 

 

(a) (b) 

(c) (d) 

(e) 
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Likewise, the 𝑁𝐹 reflects similar dependence on the dominant noise source, Figure 39(d). 

When output thermally limited, the architecture and RF photonic link 𝑁𝐹s drop quickly 

with increased optical power with slope = -2 on a decibel scale. The rate of 𝑁𝐹 

improvement drops as the shot noise regime (slope = -1) is entered, and when RIN becomes 

dominant a floor in the 𝑁𝐹 is formed (slope = 0) as the noise power increases at the same 

rate as the signal power. Hence, avoiding the RIN limited regime is vital to scale 

performance via high optical power. Although the noise floor for the balanced RF photonic 

link was typically worse than for frequency converters employing balanced detection, the 

RF photonic link’s 𝑁𝐹 is lower across all optical powers. The RF photonic link 𝑁𝐹 is 

overall superior despite a higher noise floor since its gain is higher. The dual-drive, 

balanced detection frequency converter architecture exhibits the best 𝑁𝐹 among the 

frequency converters, nearly as good as the standard RF photonic link for all optical 

powers. This architecture exhibits 𝑁𝐹s < 20 dB for optical launch powers ~17 dBm (50 

mW). Although the 𝑁𝑜𝑢𝑡 of single-drive schemes outperformed dual-drive schemes, the 

latter exhibits significantly better 𝑁𝐹s due to the effective halving of the MZM 𝑉𝜋, which 

improves gain.  

Lastly, 𝑆𝐹𝐷𝑅s exhibit similar limitations as the 𝑁𝐹 for RIN-dominant noise which forms 

a ceiling on achievable 𝑆𝐹𝐷𝑅 for single detection architectures, Figure 39(e). Increased 

optical power benefits the 𝑆𝐹𝐷𝑅 greatest in an output thermal noise limited regime, and to 

a lesser degree in the shot noise limited regime. Balanced detection architectures can 

achieve 𝑆𝐹𝐷𝑅s greater than 110 dB∙Hz2/3 with launch powers greater than +13 dBm. 
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For the single detection results of Figure 39(e), the single-drive 𝑆𝐹𝐷𝑅 exceeds the dual 

drive 𝑆𝐹𝐷𝑅 for high optical powers. The dual drive implementation exhibits a larger 𝐼𝐷𝐶, 

resulting in higher shot noise and RIN that lowers the ceiling on the RIN-limited 𝑆𝐹𝐷𝑅. 

Hence, the single drive implementation achieves a higher 𝑆𝐹𝐷𝑅 at high optical powers 

since it is less limited by RIN conveyed via the DC photocurrent. 

For all metrics, the simulated Lumerical data points match exceedingly well with the 

analytic results. The frequency domain simulations used component parameters that match 

those assumed by the analytic responses, Table 9. 

7.3.9 Idealized Results 

Next, the analytic equations are employed again to predict future performance of photonic 

frequency converters for a generalized x-axis, where the total link optical power budget 

𝑃0 + 𝐺𝑜𝑝𝑡 is introduced. Here,  𝐺𝑜𝑝𝑡 is 10 log10(𝑔𝑜𝑝𝑡) and is the dB scale version of the 

total link optical gain or loss from laser to detector. 𝑃0 is the optical launch power in dBm; 

hence the total optical power budget 𝑃0 + 𝐺𝑜𝑝𝑡 has units of dBm. This metric is useful 

because it enables simple determination of the optical launch power, optical amplifier gain, 

and loss budget required for target performance, or conversely the expected performance 

given those optical parameters. The following results assume otherwise ideal conditions 

and parameters, namely negligible 𝑅𝐼𝑁 and a modulator 𝑉𝜋 = 1 V; however, the following 

results are not strict upper limits on performance. For example, lower 𝑉𝜋’s may be available 

in the future. Also, perfectly linear modulator phase shifters are assumed here, which are 

suboptimal when using MZMs, since they do not counteract the cosine transfer function of 

the interferometer which generates performance-limiting nonlinearities. Ideally, these 
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phase shifter responses would be arccosine functions to yield an overall linear MZM 

response. Hence, modulator linearization schemes will violate the trends described shortly. 

The idealized gain, 𝑁𝐹, and 𝑆𝐹𝐷𝑅 results are given in Figure 40 and generally exhibit the 

same trends as previously noted. However, the effects of 𝑅𝐼𝑁 are not present, since the 

𝑅𝐼𝑁 is assumed small. The dual-drive, balanced detection architecture still maintains the 

best overall performance and achieves unity gain, a 𝑁𝐹 of 14 dB, and 109 dB∙Hz2/3 𝑆𝐹𝐷𝑅 

for 𝑃0 + 𝐺𝑜𝑝𝑡 = 10 dBm without any electrical amplification. This optical power budget 

is easily achieved in discrete implementations, and not out of reach of integrated platforms, 

particularly those with on-chip gain like InP. For example, if 𝑃0 = 13 dBm, MZM insertion 

loss is -5 dB, excess splitter and waveguide loss is -3 dB, and the optical amplifier gain is 

+5 dB, then 𝐺𝑜𝑝𝑡 =  −3 𝑑𝐵 and hence 𝑃0 + 𝐺𝑜𝑝𝑡 = 10 dBm. The most difficult component 

performance assumption for integrated platforms is the 1 V 𝑉𝜋 assumed here. Such low  𝑉𝜋 

is not yet feasible on silicon nor InP platforms while maintaining low insertion loss, a 

function of modulator length and absorption per unit length 𝛼. Typical high-performance 

SiP and InP modulators exhibit 𝑉𝜋𝐿𝛼 metrics of 20 V∙dB [65]. Therefore, a SiP or InP with 

𝑉𝜋 = 1 𝑉 would exhibit a high insertion loss (𝛼𝐿) of 20 dB without further innovation in 

phase shifter design. On the other hand, the LiNbO3 platform has demonstrated 𝑉𝜋𝐿𝛼 

metrics as low as 6 V∙dB, enabling 𝑉𝜋 = 1 V modulators with reasonable insertion losses 

of 6 dB [67]. Regardless, any reduction of 𝑉𝜋 is typically of benefit to both RF photonic 

links and frequency converters by improving 𝑁𝐹 and gain. 
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Figure 40 – Calculated (a) gain, (b) 𝑁𝐹, and (c) 𝑆𝐹𝐷𝑅 versus launch power (𝑃0) modified 

by optical link gain or loss (𝐺𝑜𝑝𝑡) for idealized implementations of the four frequency 

converter architectures of Figure 36 and a simple RF photonic link. Assumptions include 

no RIN, no optical loss (or gain), and a modulator 𝑉𝜋 = 1 V. The x-axis enables a designer, 

knowing the optical power available to them along with an estimate of link loss, to estimate 

performance of an architecture of interest. 

Lastly, mention of some apparent anomalies are explained. The single drive 𝑆𝐹𝐷𝑅s of 

Figure 40 exceed the 𝑆𝐹𝐷𝑅s of the dual drive cases for very high optical power budgets  

>25 dBm. Because there is no RIN, the explanation of a similar phenomenon in the 

previous subsection does not apply. Here, the higher gain of the dual drive architectures 

reaches a noise regime limited by input thermal noise, while the single drive architectures 

remain in the shot noise limited regime for the same optical power budget. Similar to RIN-

limited effects, dominant input thermal noise will flatten the 𝑆𝐹𝐷𝑅 and form a ceiling for 

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)
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the system dynamic range. Fortunately, only links with exceedingly large gain (very low 

modulator 𝑉𝜋 and high optical power) are likely to be input thermal noise limited.  

A useful method for assessing MWP system performance is the 𝑆𝐹𝐷𝑅 vs. 𝑁𝐹 design chart 

popularized by Urick et al. [85]. The 𝑆𝐹𝐷𝑅 is calculated for contours of modulator 𝑉𝜋 and 

link 𝐼𝐷𝐶 versus 𝑁𝐹. However, in the case of frequency converting links employing null-

biased MZMs, the 𝑆𝐹𝐷𝑅 is calculated for varied optical power budget 𝑃0 + 𝐺𝑜𝑝𝑡  (in dBm) 

instead of 𝐼𝐷𝐶.  

The design charts for single-drive and dual-drive architectures using single detection are 

shown in Figure 41, giving a designer the ability to quickly assess linearity and noise 

performance for a given 𝑉𝜋 and optical power budget. The possible 𝑆𝐹𝐷𝑅s and 𝑁𝐹s exist 

where 𝑉𝜋 and 𝑃0 + 𝐺𝑜𝑝𝑡 contours intersect. When RIN dominates the noise, the 𝑃0 + 𝐺𝑜𝑝𝑡 

contours will approach a ceiling, which thereby limits the achievable 𝑆𝐹𝐷𝑅. Close 

observation of these design charts concludes that while reducing 𝑉𝜋 indefinitely benefits 

𝑁𝐹, the system 𝑆𝐹𝐷𝑅 is unchanged except for extremely low 𝑉𝜋’s that can reduce 𝑆𝐹𝐷𝑅. 
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Figure 41 – Calculated trade space for the idealized (a) single drive, single detection and 

(b) dual drive, single detection architectures, illustrating the effects of increased optical 

power and 𝑉𝜋 on achievable 𝑆𝐹𝐷𝑅 and 𝑁𝐹. Dashed lines indicate contours of constant 𝑉𝜋 

while solid lines indicate contours of constant optical power, in terms of launch power 𝑃0 

and the link’s optical gain or loss, 𝐺𝑜𝑝𝑡. Viable design points for explicitly shown 𝑉𝜋 and 

𝑃0 + 𝐺𝑜𝑝𝑡 combinations exist where dashed and solid lines intersect. 

 

7.3.10 Comparison to RF Photonic Links 

Generally, the main performance trends for RF photonic links also hold for frequency 

converting links, namely how gain, 𝑆𝐹𝐷𝑅, and 𝑁𝐹 scale with optical power, loss, 

modulator 𝑉𝜋, and other component metrics. Nonetheless, RF photonic links generally 

outperform photonic frequency converting links for a given optical power, as evidenced by 

the results of Figure 40, where a dual-drive, balanced detection RF photonic link is 

compared with a dual-drive, balanced detection frequency converting link. Comparing the 

gain responses of Figure 40(a) indicates an inherent -4.6 dB gain penalty for frequency 

converting links. The frequency converter 𝑆𝐹𝐷𝑅 incurs a -6.7 dB∙Hz2/3 penalty in the 

thermal noise limit (low optical power); however, this penalty decreases to -4.1 dB∙Hz2/3 

in the shot noise limit (high optical power). These performance penalties largely originate 

(a)

(b)

(a)

(b)
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from the limited efficiency (gain) of the mixing process and limited optical LO magnitude 

due to the Bessel function dependence of modulation. After optimization of the LO input 

power, as was assumed for the derived results of subsection 7.3.6, achieving higher 

performance rests primarily on increasing optical power or reducing loss.  

RF photonic links exhibit 𝑁𝐹s no more than -5 dB better than comparable frequency 

converting links in the input thermal noise limited regime; however, the 𝑁𝐹s converge in 

the shot noise limit. Because the RF photonic link exhibits higher 𝑁𝑜𝑢𝑡 due its higher 𝐼𝐷𝐶 

and hence shot noise, the benefits imparted by its superior gain on 𝑁𝐹 are largely mitigated. 

7.3.11 Phase Sensitivities 

The phase sensitivities of these frequency converters are important to assess, as such 

architectures may be implemented in phased arrays and links susceptible to temperature 

and mechanical drift or shock. The equations of subsections 7.3.6 and 7.3.7 along with 

Table 8 yield many of the insights into phase sensitivities of the architectures. From these 

equations, the macro-interferometer phase Δ𝜙𝑖𝑛𝑡 affects all metrics for all four 

architectures. The gain scales as 𝑐𝑜𝑠2(𝛥𝜙𝑖𝑛𝑡)   because of a phenomenon at the 

photodetector arising from dual-sideband modulation. The photocurrent generated by 

mixing the upper sidebands (𝑒𝑗(𝜔𝑡+Ω𝑅𝐹) and 𝑒𝑗(𝜔𝑡+Ω𝐿𝑂)) adds with phase Δ𝜙𝑖𝑛𝑡 with the 

photocurrent generated by the lower sidebands (𝑒𝑗(𝜔𝑡−Ω𝑅𝐹) and  𝑒𝑗(𝜔𝑡−Ω𝐿𝑂)). Likewise, 

this 𝛥𝜙𝑖𝑛𝑡 is also important for the 𝐼𝐷𝐶 generated, and hence the shot noise, 𝑅𝐼𝑁, and 

𝑆𝐹𝐷𝑅. Note that using single-sideband modulation would eliminate this effect and increase 

the architectures’ immunity to phase-drift impairments.  
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Assuming RF and LO modulators are identical and identically biased, only the dual-drive 

architectures exhibit link gains dependent on 𝜙𝐷𝐶, the MZM bias point. The link gains 𝑔𝐼𝐹 

of single-drive architectures may or may not be functions of 𝜙𝐷𝐶 since single-drive MZMs 

are effectively phase modulators with excess carrier power routed and recombined around 

it. Hence, 𝜙𝐷𝐶 only affects the output optical carrier power, not the optical sidebands that 

produce the output IF. Though not affecting the gain, the MZM bias point will impact noise 

metrics and hence 𝑆𝐹𝐷𝑅 by somewhat complex functions, since the full 𝐼𝐷𝐶 expressions 

of section 7.3.7 are not simple functions of 𝜙𝐷𝐶. 

 If the RF and LO modulators are different, however, the single-drive gains may be 

functions of 𝜙𝐷𝐶. For example, if 𝜙𝐷𝐶 is applied in the same arm as the RF signal in the 

RF MZM, but 𝜙𝐷𝐶 is applied in the opposite arm as the LO in the LO MZM, the link gain 

will be tuned with 𝜙𝐷𝐶. This would occur because 𝜙𝐷𝐶 will shift the optical phases of the 

RF generated optical sidebands, but not the LO generated optical sidebands, resulting in a 

phenomenon similar to that described for the impact of Δ𝜙𝑖𝑛𝑡. However, as long as 𝜙𝐷𝐶 is 

applied in the same arm for both single-drive RF and LO MZMs, the gain will be agnostic 

to MZM bias point. 

For dual-drive architectures, the MZM bias point 𝜙𝐷𝐶 will affect the gain, no matter where 

the DC phase shift is applied in the MZM. This occurs because signal sidebands are 

generated in both arms of the MZMs; hence, these sidebands interact as a function of the 

relative phase when recombined, leading to 𝑔𝐼𝐹 ∝ 𝑐𝑜𝑠2(𝜙𝐷𝐶). Likewise, 𝜙𝐷𝐶 will affect 

all other metrics, including 𝑁𝑜𝑢𝑡, 𝑁𝐹, and 𝑆𝐹𝐷𝑅 according to 𝐼𝐷𝐶(𝜙𝐷𝐶) in section 7.3.7. 
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7.4 Summary 

In this chapter, the most comprehensive treatment of photonic frequency converters was 

presented. Here, an intuitive understanding of how frequency converters operate was given, 

followed by derivations of useful equations for the key MWP metrics of interest. These 

analytic equations serve to guide designers of both discrete and integrated photonic 

frequency converters and predict performance based on known component performance. 

The equations also yielded information on the scaling of performance with component 

performance metrics, parameters, and bias points for optimization of such architectures. 

Lastly, details on how frequency converters compare with intensity-modulated, direct-

detect RF photonic links and the phase sensitivities of the photonic frequency converters 

were expounded. In Chapters 8 and 9, frequency converters built on SiP and InP platforms 

are experimentally characterized. 
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CHAPTER 8. SILICON PHOTONIC FREQUENCY 

CONVERTERS 

In this chapter, two SiP frequency converters are simulated via Lumerical 

INTERCONNECT and experimentally characterized.  The simulated and experimentally 

characterized performance metrics are then compared, validating the simulation tool’s 

ability to accurately predict key photonic frequency converter metrics. The study of two 

architectures simultaneously instills greater confidence in the simulation methods as well 

as greater opportunity to assess distinct architectural advantages. Lastly, the two SiP 

architectures are modified and simulated to predict future performance capabilities of 

frequency converters on SiP platforms  [23]. 

8.1 Characterization & Simulations 

The two SiP architectures (“architecture I” and “architecture II”) investigated here are 

summarized in Figure 42. Architecture I comprises an off-chip laser, integrated phase 

modulators (PMs) within a larger macro-interferometer, thermal phase shifters to set the 

bias point of the macro-interferometer, and a photodetector off-chip. While the laser is 

inevitably off-chip for all SiP implementations, this architecture may be called “partially 

integrated” since its detection is also off-chip. The phase modulators of architecture I were 

custom-designed in the AIM Photonics SiP process; a top-down image of the integrated 

portions of architecture I and a schematic of the custom-designed phase shifter cross-

section are given in Figure 43 [3]. The 1 mm phase shifters employed PiN junctions shifted 

laterally such that P-dopants occupied 50% of the waveguide width compared to 40% for 

the N-dopants for greater phase-shifting efficiency and lower loss [42]. Further information 

on the performance of these phase shifters and the detector is given in [23]. 
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Architecture II, Figure 42(b), is comprised of a single off-chip laser, two MZMs within a 

macro-interferometer, thermal phase shifters for setting the macro-interferometer bias 

point, and on-chip balanced detection. This architecture is considered “fully integrated” 

since all components able to be integrated on silicon were integrated. Though the balanced 

detectors were integrated in architecture II, the electrical subtraction through a balun was 

accomplished off-chip such that each detector could be independently tested. Though 

architecture II was also fabricated in the AIM Photonics process, the modulators and 

detectors are not identical between the two architectures (e.g. the modulators are different 

in design and performance); hence, direct comparison of these two architectures is not 

useful. Instead, these two distinct architectures with their unique components are 

characterized and simulated to prove the predictive capabilities of the simulation tools. 

Following, these validated simulations predict the performance for improved architectures, 

informed by the beneficial aspects and drawbacks of the two architectures of Figure 42. 

 

Figure 42 – Schematics of MWP mixer subsystems for (a) architecture I, consisting of a 

single MZM with separate LO and RF arms and off-chip single-ended detection, and (b) 

architecture II, consisting of nested MZMs, each single-driven and using on-chip balanced 

photodetection. PM = Phase modulator, Δ𝜙 = thermal phase shifter, PD = photodiode. 

Optimum bias of each MZM must be carefully considered. 
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Figure 43 – (a) Top-down image of the fabricated custom-designed modulator using the 

AIM Photonics platform. (b) Schematic cross-section of the electrode and dopant structure 

of the designed modulator. 

8.1.1 System-Level Simulations 

Lumerical INTERCONNECT was used for system-level simulations to accomplish two 

main goals: 1) to validate the accuracy of simulations compared to experiment, and 2) to 

predict the performance of new architectures leveraging both architectural modifications 

and improved component-level performance. Throughout the next subsection, the 

simulation and experimental results are provided simultaneously. The Lumerical models 

of various components are informed by measured results, where possible, and otherwise 

defer to PDK specifications. For example, measured index responses were used to capture 

nonlinearities and imperfections of the plasma-dispersion based phase modulators. 

Additionally, the electrical parameters of the modulators were included in simulations, 

such as experimentally determined characteristic impedances and termination impedances. 

All electrical sources assume thermally limited noise floors of -174 dBm/Hz. The 

experimental laser used in both architectures exhibited +20 dBm optical output power,  

relative intensity noise (RIN) of -145 dBm/Hz, and linewidth of 100 kHz, all specifications 

included the Lumerical laser model. All other parameters included in the simulation match 

those experimental values specified throughout this chapter, which include receiver 
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responsivities and bandwidths, electrical filter and modulator bandwidths, fiber-to-chip 

optical losses, electrical and optical amplifier gains and noise figures, modulator reverse 

biases, etc. 

8.1.2 Experimental and Simulation Results 

The test setups for the characterization of architectures I and II are given in Figure 44. Both 

setups comprise a C-band laser tuned to 1550 nm, high output power EDFA (up to +30 

dBm), variable optical attenuator (VOA) for linear optical power control, polarization 

controller (PC), two signal generators for RF and LO tone sources, 1 GHz low pass filters 

and 38 dB electrical amplifier on the detector output, and electrical spectrum analyzer. The 

average optical I/O loss in coupling to and from the silicon chip was 4.2±0.5 dB. The bias 

tees coupled -3.5V DC to reverse bias the modulator phase shifters to reduce absorption 

and junction capacitance. The largest difference between the two test setups is the use of a 

balun in Figure 44(b), since architecture II uses balanced detection that requires off-chip 

subtraction of the two detector outputs.  

 

Figure 44 – Schematics of the test setups for (a) architecture I and (b) architecture II. The 

test setup for architecture II includes an external balun since the balanced detector outputs 

were not subtracted on-chip to enable characterization of each detector separately. 

The basic functionalities of architectures I and II were verified by measurement of a 100 

MHz IF, for RF and LO tones as indicated in Figure 45. Architecture I was tested using RF 
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and LO tones at 5.0 GHz and 5.1 GHz, respectively. Architecture II was tested using RF 

and LO tones at 10.0 GHz and 10.1 GHz, respectively. In both responses, the low-pass 

electrical filters (LPFs) significantly attenuate the RF fundamental, LO fundamental, high 

frequency noise, and other spurious signals. The results of Figure 45 are raw 

measurements, unadjusted for losses in cables, bias tees, electrical combiners, and RF 

probes; the precise RF-to-IF gain will be assessed shortly.  

   

Figure 45 – Measured spectra demonstrating downconversion for (a) architecture I and for 

(b) architecture II. The 1 GHz lowpass filter strongly attenuates signals beyond 2 GHz. 

Relative comparison of IF power between (a) and (b) are not straightforward in these 

uncalibrated results. The calibrated RF-to-IF gains are -5.0 dB and -19.5 dB for (a) and (b), 

respectively.  

Next, because each architecture contains interferometers, the bias point can be optimized 

experimentally in terms of the RF-to-IF gain metric. The thermal phase shifter of 

architecture I was swept while monitoring optical output power and again while measuring 

IF power from the photodetector. The calibrated responses of Figure 46 demonstrate 

maximal performance at both peak and null biases, with a maximum IF gain of -5.0 dB 

achieved at peak transmission. Here, the optical transmission response (red) was measured 

with no AC modulation. The measured range of gains between optimum and minimum 

points exceeded 40 dB; hence, the IF gain is very sensitive to the relative phases of the RF 
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and LO modulated sidebands, in agreement with the cos (Δ𝜙𝑖𝑛𝑡) dependence from section 

7.3.11.  

 

Figure 46 – Measured IF gain of architecture I as a function of thermal phase shifter heater 

power, which alters the macro-interferometer bias point. Useful bias points including peak, 

quadrature, and null bias are indicated. For this architecture, the IF gain is maximized at 

both peak and null modulator bias points. 

The same measurement was performed for architecture II, with the added difficulty of 

optimizing over both the macro-interferometer bias and the two MZM biases. As explained 

thoroughly in the appendix of [23], the optimal bias scheme was one MZM fixed at 

quadrature bias while the second MZM was set to peak or null transmission, though peak 

transmission experimentally performed marginally better. This minor gain performance 

difference between the peak and null bias points is likely due to the nonlinear phase 

response of the plasma-dispersion phase shifters. Architecture II demonstrated a peak gain 

of -19.5 dB 

Additionally, the IF gain was investigated for architecture I as a function of optical power, 

giving information both on optimal performance and the power handling capability of the 

photonic frequency converter. Sweeping the laser output power while measuring the IF 

gain yields the response of Figure 47. The discrete derivative Δ𝑃𝐼𝐹/Δ𝑃𝑜𝑝𝑡,𝑖𝑛 (ratio of 
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change in IF power to change of optical power) indicates that two-photon absorption and 

free-carrier absorption onset near +10 dBm optical power in the waveguides of architecture 

I, similar to values found in Chapter 4. The gain response of Figure 47 implies that the 

frequency converter is still useful with two-photon absorption and free-carrier absorption 

present, although gain improvements come at a higher price in terms of power 

consumption.  

 

Figure 47 – IF gain response of architecture I and discrete derivative of the IF gain 

indicating nonlinear absorption at 9.9±0.25 dBm on-chip optical power at λ=1550 nm. 

Next, the downconverting bandwidths of both architectures were measured. The bandwidth 

for frequency converters is defined here as the frequency range over which an RF signal 

can be downconverted to a fixed IF; hence, the 3 dB bandwidth is measured by sweeping 

RF and LO tones simultaneously for a fixed IF, in this case 100 MHz. The measured results, 

along with simulated frequency responses, are shown in Figure 48. Architecture I achieved 

3 dB and 6 dB bandwidths of 5.1 GHz and 7.9 GHz, respectively. Simulations 

overestimated a 3 dB bandwidth of 8.8 GHz, likely due to the simple RC filter models of 

the simulation tool that fail to capture the complexity of the modulator’s equivalent circuit. 

Better matches in bandwidth could be achieved by using the measured s21 responses of 

characterized modulators. Additionally, small differences in the RF characteristics between 
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high-speed phase shifters may cause further deviation of experiment from simulation. 

Although this work has primarily focused on downconversion applications, upconversion 

is also possible with these same architectures, as demonstrated for architecture I. The 

upconversion bandwidth was measured by fixing the RF tone at 100 MHz while sweeping 

the LO source from 600 MHz to 12.1 GHz such that the output IF sweeps from  500 MHz 

to 12.0 GHz. This result is shown alongside the downconversion frequency response in 

Figure 48(a), demonstrating  a 6.4 GHz 3 dB bandwidth and a 9.1 GHz 6 dB bandwidth. 

In the upconversion experiment, only the LO path (cables and bias tees) frequency response 

was calibrated out, since the RF input was fixed at 100 MHz. Upconversion bandwidths 

are primarily determined by LO modulator and receiver bandwidths, since the RF input 

frequency is low-speed and fixed. 

Architecture II’s downconversion frequency response is given in Figure 48(b), exhibiting 

3 dB and 6 dB bandwidths of 11.2 GHz and 26.5 GHz, respectively. The simulated 3 dB 

bandwidth agreed well at 10.7 GHz, but does not well capture the full frequency converter 

response due to the simplistic modulator RC filter model employed. Note that these 

bandwidths are electrical-to-electrical bandwidths. The significance of the 6 dB bandwidth 

is its equivalence to the 3 dB electrical-to-optical bandwidth, due to the square-law 

behavior of photodetectors. In all downconversion frequency response measurements of 

Figure 48, the cable and bias tee frequency responses were calibrated out. In 

downconversion, the modulators primarily limit the system bandwidth, since the IF is 

typically low-speed (< 1 GHz), rendering the photodetector’s (and subsequent circuitry’s) 

frequency response of little consequence. 
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Figure 48 – (a) Measured and simulated frequency responses of architecture I. The 

measured and simulated 3 dB electrical-electrical downconversion bandwidths were 5.1 

GHz and 8.8 GHz, respectively. The measured upconversion bandwidth was 6.4 GHz. (b) 

Measured and simulated downconversion frequency responses of architecture II. The 

measured and simulated electrical-electrical 3 dB bandwidths were 11.2 GHz and 10.7 

GHz, respectively.  

Finally, the linearity metrics of architectures I & II are quantified by an equal-amplitude, 

two-tone test with RF tones at 1.4 GHz and 1.5 GHz and the LO at 1.0 GHz. This generates 

fundamental IF tones at 400 MHz and 500 MHz and IMD3 tones at 300 MHz and 600 

MHz. The RF input powers were swept while the IF fundamental and IMD3s were 

monitored via an electrical spectrum analyzer, Figure 49. The measured 𝑆𝐹𝐷𝑅s of 

architectures I and II were 91±1 dB·Hz2/3 and 92±1 dB·Hz2/3, respectively. Similarly, the 

Lumerical-simulated results of 91.2 dB·Hz2/3 and 90.1 dB·Hz2/3 are shown alongside the 

measured results for comparison, demonstrating good agreement. Although the frequency 

converters differ both in architecture and component performance, tradeoffs in the system 

level metrics of gain and noise floor result in similar 𝑆𝐹𝐷𝑅s for architectures I and II.  

(a)

(b)

(a)

(b)
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Figure 49 – Measured 𝑆𝐹𝐷𝑅s by an equal-amplitude two-tone test for fundamental 

frequencies at 1.4 GHz and 1.5 GHz and a 1.0 GHz LO for (a) architecture I and (b) 

architecture II. The noise floors of -111 dBm/Hz in (a) and -130 dB/Hz in (b) are largely 

due to the post-photodetection electrical amplification of output thermal noise. 

In terms of other linearity metrics, architecture II demonstrated greater linearity with a 

32±0.2 dBm 𝐼𝐼𝑃3 compared to architecture I’s 24.5±0.2 dBm 𝐼𝐼𝑃3. Interestingly, however, 

architecture II demonstrates a lower 𝑂𝐼𝑃3 than architecture I, 11±0.2 dBm vs. 15.0±0.2 

dBm. This counterintuitive result occurs because the 𝑂𝐼𝑃3 metric combines information 

of the 𝐼𝐼𝑃3 and the system gain; hence, because architecture II exhibits a significantly 

lower gain despite its superior 𝐼𝐼𝑃3, its 𝑂𝐼𝑃3 is lower than the 𝑂𝐼𝑃3 of architecture I. 

Simulated 𝑂𝐼𝑃3 and 𝐼𝐼𝑃3 results are summarized in Table 10, along with all other 

simulated and measured metrics for these architectures. In conclusion, architecture II 

demonstrates better linearity via its higher 𝑆𝐹𝐷𝑅 and 𝐼𝐼𝑃3 metrics. The photodetectors 

likely play only a marginal role in the photonic frequency converter system linearity, since 

the AIM Photonic detectors used here have been demonstrated in links with 𝑆𝐹𝐷𝑅s 

exceeding 113 dB∙Hz2/3 [92]. Additionally, the photodetector and electrical amplifier were 

operated in linear regimes away from their saturation points, leaving the MZMs as the 

primary source of nonlinearities. Hence, linearizing the silicon modulators, as addressed in 

section 6.1, is a key method for improving frequency converter performance.  

(a)

(b)

(a)

(b)
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From the electrical spectrum analyzer, the noise power spectral densities (𝑁𝑜𝑢𝑡, more 

colloquially called the “noise floor”) are measured, yielding noise floors of -111±0.5 

dBm/Hz for architecture I and -130±0.5 dBm/Hz for architecture II. The high noise floors 

are primarily due to electrical amplification of output thermal noise, ascertained through 

the Lumerical simulated noise floors of –112.4 dBm/Hz and -128.3 dBm/Hz for 

architectures I and II, respectively. 

Here, the ability for Lumerical INTERCONNECT to accurately simulate frequency 

converter system performance has been demonstrated, paving the way for using these 

calibrated simulations to predict improved architectures. 

8.2 Predictions for High Performance Architectures 

From the results of the previous section and Chapter 7, several improvements to the original 

architectures I and II may be suggested: 1) implementing balanced detection for common-

mode noise suppression, 2) using driver and TIA amplifiers for improved gain and output 

power, 3) increasing optical power, 4) using push-pull (dual-drive) modulation, and 5) 

using state-of-the-art integrated components. In this section, these modifications to the 

original architectures are assumed and simulated to identify reasonable future performance 

of silicon photonic frequency converters. These modified architectures are depicted 

schematically in Figure 50. The new architectures are hereon identified as “Modified 

Architecture I” and “Modified Architecture II”. The difference between these two 

architectures is in their modulators: the former uses single phase modulators, while the 

latter uses MZMs. 
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Figure 50 – Schematic of mixers for updated (a) architecture I and (b) architecture II; both 

architectures now implement on-chip balanced photodetection for noise suppression, an 

input RF amplifier, and a TIA post-photodetection. Architecture II now uses a dual-drive 

configuration for both LO and RF MZMs. 

The modified architectures assume 35 GHz modulators with 𝑉𝜋s of 7 V, on par with modern 

foundry capabilities. Amplifiers include 40 GHz, +20 dB gain drivers with up to 2.0 V 

output amplitude swings on the RF inputs and 10 GHz,  215 V/A TIAs on the outputs of 

the balanced photodetectors. In fact, a reduced bandwidth on the TIA is advantageous for 

downconverters by reducing high frequency noise. Optical launch powers were assumed 

to be +20 dBm from a laser diode; the EDFA was eliminated. Edge coupling losses were 

assumed (conservatively) at 4 dB/facet. All component values assumed here are matched 

or beaten by values claimed by existing silicon foundries. The component metrics are 

summarized alongside all results in Table 10. 

The predicted performance for modified architecture I includes a gain of +15.0 dB, a +34.9 

dB 𝑁𝐹, a 29.1 GHz 3 dB bandwidth, improved 𝑆𝐹𝐷𝑅 of 98.5 dB∙Hz2/3, an 𝐼𝐼𝑃3 of +5.3 

dBm, and an 𝑂𝐼𝑃3 of +23.5 dBm.  
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Simulations of modified architecture II predict a gain of +20.6 dB, an excellent 25.1 dB 

𝑁𝐹, 29.1 GHz 3 dB bandwidth, an 𝑆𝐹𝐷𝑅 of 104 dB∙Hz2/3, +10.5 dBm 𝐼𝐼𝑃3, and +30.8 

dBm 𝑂𝐼𝑃3. See Table 10 for summaries of all predicted and measured results. Note, the 

simulated 𝐼𝐼𝑃3s appear degraded in comparison to the previous architectures; nonetheless, 

this reduction in 𝐼𝐼𝑃3 is the result of using driver amplifiers at the RF inputs and does not 

indicate reduced linearity. Without considering noise effects, the addition of RF input 

amplifiers effectively shift the RF input power range over which the system maintains a 

specified linearity, e.g. an 𝑆𝐹𝐷𝑅. Here, input amplifiers and TIAs were assumed perfectly 

linear, because the well-matched simulation and experimental results of the original 

architectures imply the amplifier nonlinearities are insignificant in comparison to the 

modulator nonlinearities.  

This chapter has highlighted the performance achievable for frequency converters 

integrated in silicon using architectures and components readily fabricated in foundries as 

of this writing. SiP-based frequency converters, leveraging balanced detection, integrated 

drivers and TIAs, dual-drive modulation, and state-of-the-art foundry processes can 

achieve positive gains, > 100 dB∙Hz2/3 𝑆𝐹𝐷𝑅s, and low noise figures approaching 20 dB. 

Next, the performance of frequency converters in InP is investigated and compared to the 

results of this chapter and the broader literature. 
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Table 10– Summary of Experimental and Simulation Results for Architectures I & II. 

 ARCHITECTURE I 

MODIFIED 

ARCHITECTURE 
I 

ARCHITECTURE II 
MODIFIED 

ARCHITECTURE II 

Metric Experimental Simulated Simulated Experimental Simulated Simulated 

Launch Power (dBm) 20 20 20 20 20 20 

Edge coupling loss 

(dB/facet) 
4 4 4 4 4 4 

Input RF Amp Gain 

(dB) 
- - 20 - - 20 

TIA Transimpedance 

(V/A) 
215 215 215 - - 215 

Additional Output 

Amp. (dB) 
38 38 - 38 38 - 

MZM Vπ (V) 7.0 7.0 7.0 10.5 10.5 7.0 

MZM Operation 

Mode 
single-drive single-drive single-drive single-drive 

single-

drive 
dual-drive 

Bias Point(s) Null Null Null Quad, Null Quad, Null Null, Null + π/2 

Photodetection 

Scheme 
Single Single Balanced Balanced Balanced Balanced 

Integration Level 
Passives 

+MZMs 

Passives 

+MZMs 

Passives 

+MZMs 

+PDs 

Passives 

+MZMs 

+PDs 

Passives 

+MZMs 

+PDs 

Passives  

+MZMs 

+PDs 

EE MZM Bandwidth 

(GHz) 
7.5 7.5 35.0 12.1 12.1 35.0 

PD Bandwidth (GHz) 30 30 35.0 30 30 35.0 
           

IF Gain (dB) -5.0 -5.1 +15.0 -19.5 -19.6 +20.6 

NF (dB) +68.0 +66.7 34.9 +62.5 +64.1 25.1 

Noise floor (dBm/Hz) -111 -112.4 -124.1 -130 -129.5 -128.3 

Bandwidth (GHz)  5.1 8.8 29.1 11.2 10.7 29.1 

SFDR (dB·Hz2/3) 91 91.2 98.5 92 90.1 104.0 

IIP3 (dBm) 24.5 25.5 5.3* 32 29.4 10.5* 

OIP3 (dBm) 15 20.6 23.5 11 5.1 30.8 
         

*Apparent reduction in IIP3 is a result of input amplification and not an indication of decreased linearity. 
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CHAPTER 9. INDIUM PHOSPHIDE PHOTONIC FREQUENCY 

CONVERTERS 

While the capabilities of photonic frequency converters in a SiP platform were investigated 

in the previous chapter, the second most popular integrated platform, InP, also shows great 

promise for IMWP technologies. The InP platform can leverage the semiconductor’s direct 

bandgap to accomplish on-chip lasing and optical gain – a major advantage in the 

integrated photonics world where high losses are common. In this chapter, an InP photonic 

frequency converter is designed, fabricated, and characterized. Finally, the InP and SiP 

platforms are compared regarding their performance for IMWP functions.  

9.1 Architecture and Fabrication 

The photonic frequency converter architecture implemented here is similar to Architecture 

II of Chapter 8: a dual-parallel MZM architecture modified to take advantage of InP’s 

inherent gain capabilities, Figure 51. An on-chip distributed feedback laser (DFB) with a 

monitor photodetector (PD) serves as the optical source, followed by a 2x2 directional 

coupler providing nominally equal power to both arms of the macro-interferometer. Each 

arm of the macro-interferometer contains an MZM with output monitor PD, semiconductor 

optical amplifier (SOA), and thermal phase shifter for adjusting the relative phase between 

the arms. Due to the quadratic scaling of the IF output power with on-chip optical power, 

the SOAs are placed behind the MZMs to mitigate modulator insertion losses. The 

interferometer is terminated by another 2x2 directional coupler, with the top output fed to 

the highspeed photodetector and the bottom output fed to a (slow) monitor PD. Hence, this 
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implementation enables real-time monitoring and control of laser output power, MZM bias 

points, macro-interferometer bias point, and output optical power through the various DC 

monitor PDs. This is particularly important, as it makes operating the photonic frequency 

converter unambiguous and enables the characterization of distinct components in the 

monolithic PIC, particularly the insertion losses throughout the architecture. The 

monolithic photonic frequency converter was fabricated as a system-on-chip (SoC) through 

a multi-project wafer offering under AIM Photonics through Infinera’s InP foundry 

process. The InP PIC was attached and wirebonded to a carrier board with breakout DC 

and RF lines to enable convenient access to all electrical ports, courtesy of Infinera. 

 

Figure 51 – Monolithically integrated system-on-chip photonic integrated circuit schematic 

of a downconverter architecture, comprised of on-die laser, two MZMs in parallel followed 

by SOAs and phase shifters, high-speed photodetector, and multiple low speed detectors 

for monitoring optical power and bias. 

9.2 Experimental Results and Discussion 

All measurements, such as gain, downconverting bandwidth, 𝑁𝐹, 𝑆𝐹𝐷𝑅, and other 

linearity metrics were measured by methods identical in methodology to those described 

in Chapter 8. Hence, the measurement methodologies are not repeated here, except where 

major differences occur. 
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Before measuring the key MWP metrics, the MZMs were null biased using the monitor 

PDs directly following both RF and LO MZMs. The SOA drive current during these initial 

measurements was 120 mA, which provides approximately 9 dB optical gain. To measure 

the gain, a 0 dBm, 1.1 GHz tone served as the input RF signal, while a +17.4 dBm, 1.0 

GHz tone served as the LO. For the Infinera modulator with 𝑉𝜋 < 5 𝑉, this input optical 

power maximizes the LO-generated optical sideband, which is described by a first-order 

Bessel function dependence on input voltage. This optimal drive condition is achieved with 

a driving voltage (peak amplitude) equal to 0.5875𝑉𝜋
 .  The modulator efficiency’s Bessel 

function dependence, described further in Chapter 7, has a global maximum which is easily 

achieved for devices with low to moderate 𝑉𝜋’s. The 100 MHz IF output was measured via 

electrical spectrum analyzer and tracked as a function of macro-interferometer bias point 

to ascertain the optimal bias condition, Figure 52(a). The DC photocurrent from the RF PD 

was also monitored, as this gives direct information about the macro-interferometer bias 

point, which can then be compared to the measured IF gain. The results Figure 52(a), which 

have been calibrated for RF input cable loss, IF output cable loss, and excess electrical loss 

from bias tees, demonstrate a peak RF-to-IF gain of -26.8±0.2 dB at a quadrature-like bias 

macro-interferometer bias point, i.e. where the photodetected current and hence incident 

optical power was -3 dB below its maximum. No external electrical amplifiers were used 

in this measurement, but this result indicates that the InP frequency converter could easily 

achieve unity gain with driver amplifiers or a TIA on the photodetected output. 

Next, the frequency response of the InP frequency converter was measured with all 

electrical cable, bias tee, and RF probe responses calibrated out. The frequency response, 

Figure 52(b), indicates a downconverting 3 dB bandwidth of 10.0 GHz, and a 6 dB 
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bandwidth of 13.6 GHz. Because this measurement sweeps the frequencies of both RF and 

LO tones simultaneously while keeping a fixed output IF of 100 MHz, the frequency 

response falls approximately twice as fast as the frequency response for a single modulator. 

Hence, this 6 dB point of 13.6 GHz is the approximate modulator bandwidth. From this, a 

useful rule-of-thumb is intuited: a frequency converter’s 3 dB bandwidth will be roughly 

equal to the 6 dB bandwidth of the modulator used, assuming the LO and RF modulators 

are identical. Note also that the photodetector bandwidth plays practically no role in the 

response of Figure 52(b), since the output IF is both fixed and a low frequency (100 MHz). 

Higher frequency IF’s will simply incur a fixed loss according to the photodetector’s 

frequency response during this measurement. 

Figure 52 – (a) IF gain and DC photocurrent versus the macro interferometer bias point, 

controlled by heater power. (b) Downconversion RF bandwidth of 10.0 GHz, measured by 

sweeping RF and LO frequencies for a fixed 100 MHz IF. Note this downconversion 

bandwidth includes the responses of both RF and LO modulators; hence, the 6 dB point 

indicates the InP modulators exhibit 3 dB bandwidths of ~13.6 GHz. 

Next, the noise metrics of the InP frequency converter are determined. However, it was 

found the noise floor was below the electrical spectrum analyzer’s noise floor of -152 

dBm/Hz, Hence, the true InP frequency converter’s 𝑁𝑜𝑢𝑡 was measured indirectly using 

  

(a) (b) 
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basic amplifier noise theory. By adding an amplifier to the photodetector output and 

measuring the new total system’s noise factor, the InP PIC’s (without amplifier) 𝑁𝑜𝑢𝑡 can 

be estimated. From amplifier theory, the system noise factor 𝐹𝑠𝑦𝑠 is a simple function of 

the PIC’s noise factor 𝐹𝑃𝐼𝐶 and gain 𝐺𝑃𝐼𝐶, as well as the known electrical amplifier’s noise 

factor 𝐹𝑎𝑚𝑝: 

𝐹𝑠𝑦𝑠 = 𝐹𝑃𝐼𝐶 +
𝐹𝑎𝑚𝑝 − 1

𝐺𝑃𝐼𝐶
 

9-1 

Recall that 𝐹 = 10𝑁𝐹/10. Hence, knowing 𝐹𝑎𝑚𝑝, 𝐺𝑃𝐼𝐶, and 𝐹𝑠𝑦𝑠, the term of interest, 𝐹𝑃𝐼𝐶 , is 

easily solved for: 

𝐹𝑃𝐼𝐶 = 𝐹𝑠𝑦𝑠 −
𝐹𝑎𝑚𝑝 − 1

𝐺𝑃𝐼𝐶
. 

9-2 

Then, this 𝐹𝑃𝐼𝐶 (and its 𝑁𝐹𝑃𝐼𝐶) can be used to calculate the PIC’s 𝑁𝑜𝑢𝑡 via the RF photonic 

link equation relating 𝑁𝑜𝑢𝑡, 𝑁𝐹, and 𝐺 from Chapter 2: 

𝑁𝑜𝑢𝑡 (
𝑑𝐵𝑚

𝐻𝑧
) = 𝑁𝐹(𝑑𝐵) − 174 (

𝑑𝐵𝑚

𝐻𝑧
) + 𝐺 (𝑑𝐵) 

9-3 

Hence, the noise metrics are estimated using these equations in conjunction with 

measurements of the InP PIC with and without an external electrical amplifier on the 

photodetector output. The 𝑁𝑜𝑢𝑡 was estimated at -159.4 dBm/Hz for SOA drive currents of 

120 mA. This method of measuring a noise floor below the electrical spectrum analyzer 

noise floor works as long as the amplified system’s noise floor rises above the spectrum 

analyzer’s inherent noise floor limit; otherwise, a larger gain amplifier will be needed. 
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Next, the 𝑆𝐹𝐷𝑅 was measured for the InP frequency converter by methods identical to 

those described in Chapter 8. The two-tone inputs were at 1.4 GHz and 1.5 GHz, and the 

LO was at 1.0 GHz to produce fundamental tones at 400 MHz and 500 MHz and IMD3 

tones at 300 MHz and 600 MHz. The measured 𝑆𝐹𝐷𝑅 was 99 dB∙Hz2/3 over an RF input 

power range between -15 dBm and 0 dBm, Figure 53(a). The resultant 𝐼𝐼𝑃3 and 𝑂𝐼𝑃3 were 

12 dBm and -18.1 dBm, respectively. The 𝑆𝐹𝐷𝑅 was then reassessed near 10 GHz, for RF 

input tones at 10.4 GHz and 10.5 GHz and an LO tone at 10.0 GHz to produce the same IF 

fundamentals and IMD3s as previously. The 10 GHz experiment yielded a 98±1 dB∙Hz2/3 

𝑆𝐹𝐷𝑅 (Figure 53(b)), demonstrating negligible degradation of 𝑆𝐹𝐷𝑅 over the system’s 3 

dB bandwidth. The 10 GHz 𝑆𝐹𝐷𝑅 is valid over a narrower range of RF input power, -8 

dBm to 0 dBm, because the IMD3s are closer to the noise floor and hence more difficult 

to measure. At 10 GHz, the 𝐼𝐼𝑃3 and 𝑂𝐼𝑃3 were 19 dBm and -20.2 dBm, respectively. 

Note that while the 𝐼𝐼𝑃3 at 10 GHz appears larger than the 𝐼𝐼𝑃3 at 1 GHz, the 𝐼𝐼𝑃3 and 

𝑂𝐼𝑃3 measurements are prone to large error bars due to the fitting and extrapolation of 

limited data.  

Next, efforts were directed toward optimizing the system performance, first by increasing 

the SOA drive current from 120 mA to 150 mA, after which higher drive current no longer 

benefits performance. The gain, noise metrics, and linearity metrics were remeasured, 

yielding -26.8 dB gain, 𝑁𝑜𝑢𝑡 = -158.9 dBm/Hz, 42.1 dB 𝑁𝐹, 𝑆𝐹𝐷𝑅 of 104±1 dB∙Hz2/3, 

𝐼𝐼𝑃3 = 12.5 dBm, and 𝑂𝐼𝑃3 = -17.0 dBm, Figure 54(a).  
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Figure 53 – Two-tone experiments near (a) 1 GHz and (b) 10 GHz. In (a) RF tones at 1.4 

GHz and 1.5 GHz and an LO tone at 1.0 GHz demonstrated a 99 dB∙Hz2/3 𝑆𝐹𝐷𝑅 over an 

RF input power range of roughly -15 dBm to 0 dBm. In (b) RF tones at 10.4 GHz and 10.5 

GHz and an LO tone at 10.0 GHz demonstrated a 98 dB∙Hz2/3 𝑆𝐹𝐷𝑅 over an RF input 

power range of roughly -8 dBm to 0 dBm, a smaller range than in (a) since the IMD3 tones 

are more difficult to measure due to their proximity to the noise floor. Both experiments 

yielded fundamental IFs at 400 MHz and 500 MHz, and IMD3 tones at 300 MHz and 600 

MHz. Both used SOA drive currents of 120 mA. The 𝑆𝐹𝐷𝑅 degraded very little over the 

10 GHz 3 dB bandwidth. 

Lastly, the system performance was characterized with the addition of a 26 dB amplifier 

on the IF output (SOA current = 120 mA). The InP frequency converter with RF amplifier 

on the output achieved near unity gain of -0.8 dB, 𝑁𝑜𝑢𝑡= -133 dBm/Hz, a 42 dB 𝑁𝐹, an 

𝑆𝐹𝐷𝑅 of 100 dB∙Hz2/3, a 14 dBm 𝐼𝐼𝑃3, and a 10.3 dBm 𝑂𝐼𝑃3, Figure 54(b). With the RF 

amplifier, the system maintains a high 𝑆𝐹𝐷𝑅 while achieving near-unity gain, for overall 

good system performance. The performance metrics of the InP frequency converter under 

these various operating conditions are summarized in Table 11. 

  

(a) (b) 
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Figure 54 – Two-tone experiments with RF tones at 1.4 GHz and 1.5 GHz and LO tone at 

1.0 GHz, yielding fundamental IFs at 400 MHz and 500 MHz, and IMD3 tones at 300 MHz 

and 600 MHz. (a) The downconverter achieved a 104 dB∙Hz2/3 𝑆𝐹𝐷𝑅 with SOAs driven 

with 150 mA. (b) The downconverter achieved a -0.8 dB gain and maintained a 100 

dB∙Hz2/3 𝑆𝐹𝐷𝑅 when a 26 dB RF amp was added to the detector output. 

 

Table 11– Summary of InP Downconverter Performance for Different Operating 

Conditions. 

 

SOA@120mA 

@ 1 GHz 

No RF amp 

 

SOA@120mA 

@ 10 GHz 

No RF amp 

 

SOA@120mA 

@ 1 GHz 
w/ RF amp 

SOA@150mA 

@ 1 GHz 
No RF amp 

Gain (dB) -26.8 -29.8 -0.8 -26.8 
NF (dB) 41.6 44.4 42 42.1 
Nout (dBm/Hz) -159.4 -159.4 -133 -158.9 
SFDR (dB•Hz2/3) 99 98 100 104 
RF bandwidth 

(GHz) 

10.0 10.0 10.0 10.0 
IIP3 (dBm) 12 19 14 12.5 
OIP3 (dBm) -18.1 -20.2 10.3 -17.0 

 

9.3 Comparing Experiment to Theory 

Here, the analytic equations for the single-drive, single detection architecture from Chapter 

7 are employed to compare the experimental results to theory and commercial simulation 

results. This section validates the accuracy of the analytic equations while simultaneously 

  

(a) (b) 
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identifying the performance trends for the InP frequency converter with increasing optical 

power. 

Using the single-drive, single detection equations of section 7.3.6, the gain and 𝐼𝐷𝐶 

responses versus optical launch power were calculated, Figure 55. Also shown in the figure 

are results from Lumerical INTERCONNECT simulations for a system matching the 

experimental frequency converter in terms of component performance and operating 

points. These simulations (diamonds in figure) were performed at three different laser 

powers to compare performance over a wide range of power and noise regimes and 

matched the analytic results closely for both gain and 𝐼𝐷𝐶. Also shown are the experimental 

results described in the previous section 9.2, matching superbly with both the analytic result 

and the Lumerical simulated points at +13.5 dBm laser power (the experimental laser 

power). 

Figure 55 – Calculated, simulated (via Lumerical), and experimental (a) gain and (b) DC 

photocurrent 𝐼𝐷𝐶 versus laser launch power for the InP downconverter. 

Next, the noise power spectral density 𝑁𝑜𝑢𝑡 analytic, simulation, and experimental results 

are shown in Figure 56. While the results agree well, the analytic results at 𝑃0 = +13.5 

dBm were overestimated slightly, yielding 𝑁𝑜𝑢𝑡 = -156.1 dBm/Hz compared to the 

  

(b) (a) 
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experimentally measured -158.8 dBm/Hz. Likewise, the Lumerical INTERCONNECT 

simulation also slightly overestimated 𝑁𝑜𝑢𝑡, yielding a value of -155.7 dBm/Hz. Lumerical 

INTERCONNECT consistently estimated slightly higher 𝑁𝐹s compared to the analytic 

equations across all simulated laser powers, likely due to limited simulation times. 

Nonetheless, this discrepancy between analytic and simulated results is within 0.5 dBm/Hz. 

The analytic result was within 3 dBm/Hz of the experimentally measured result. 

 

Figure 56 – Calculated, simulated (via Lumerical), and experimental noise floor 𝑁𝑜𝑢𝑡 

versus laser launch power for the InP downconverter. 

Lastly, the 𝑁𝐹 and 𝑆𝐹𝐷𝑅 metrics were calculated via the analytic equations and compared 

with the Lumerical simulations and experimental data, Figure 57. The small discrepancy 

between analytic and experimental 𝑁𝑜𝑢𝑡 also causes further discrepancy in the 𝑁𝐹, with 

the analytic result predicting 𝑁𝐹 = 44.4 dB compared to the experimentally measured 41.6 

dB. The Lumerical 𝑁𝐹 (45.0 dB at +13.5 dBm laser power) was slightly higher than the 

analytic result across the simulated laser powers , as anticipated. 

The experimentally measured 99.0 dB∙Hz2/3 𝑆𝐹𝐷𝑅 compares well to the predicted 100.3 

dB∙Hz2/3 per the analytic equation. The Lumerical simulations yielded very good 
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agreement with the analytic equations, with a simulated 𝑆𝐹𝐷𝑅 of 100.2 dB∙Hz2/3 for +13.5 

dBm input power. 

Hence, this section’s results demonstrate the accuracy of the analytic expressions derived 

previously, as all metrics were found to agree well with both commercial simulation results 

and experimental data.  

 Figure 57 – Calculated, simulated (via Lumerical), and experimental (a) noise figure and 

(b) 𝑆𝐹𝐷𝑅 versus laser launch power for the InP downconverter. 

9.4 Improving Performance 

Despite the strong performance of the characterized InP frequency converter, relatively 

simple improvements can be made to dramatically improve performance. Taking the 

measured InP results of section 9.2 as a starting point, the analytic equations of section 

7.3.6 can predict how performance will improve through relatively simple architectural 

changes, such as moving to dual-drive and balanced detection implementations. 

As apparent from the 𝑁𝐹 and 𝑆𝐹𝐷𝑅 results of Figure 58, the experimentally measured 

frequency converter was performance-limited due to RIN-dominant noise since the 𝑁𝐹 and 

𝑆𝐹𝐷𝑅 calculated responses (dashed black) show significant flattening at the experimental 

  

(b) (a) 
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laser output power 𝑃0 = 13.5 dBm. This RIN prevents significant improvement in 𝑁𝐹 and 

𝑆𝐹𝐷𝑅 for increased optical power >13.5 dBm. Hence, eliminating RIN is key to unlocking 

the benefits of operating such frequency converters at high optical powers. 

Balanced detection is a common solution for eliminating common-mode RIN, such as that 

originating from the laser. Recalculating the responses with balanced detection assumed 

(solid black) yields dramatic improvements: a 13 dB reduction in 𝑁𝐹 and 9 dB∙Hz2/3 

increase in 𝑆𝐹𝐷𝑅 for the same operating conditions, Figure 58. Additionally, with RIN 

largely eliminated, performance can continue scaling in the shot noise limit for increased 

optical power, enabling 𝑁𝐹s< 20 dB and 𝑆𝐹𝐷𝑅s approaching 120 dB∙Hz2/3. 

Furthermore, implementing dual-drive modulation schemes can further improve the 𝑁𝐹 by 

reducing the effective MZM 𝑉𝜋. A dual-drive scheme can further reduce the 𝑁𝐹, as 

indicated in Figure 58(a), by another 8 dB for the same operating conditions. This 

simultaneously increases the 𝑆𝐹𝐷𝑅 modestly by another 1 dB∙Hz2/3. 

Figure 58 – Calculated, simulated (via Lumerical), and experimental (a) noise figure and 

(b) 𝑆𝐹𝐷𝑅 versus laser launch power for single-drive with single detection (dashed black), 

single-drive with balanced detection (solid black), and dual-drive with balanced detection 

implementations (solid red). 

  

(b) (a) 
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To conclude, increased performance relies most significantly on eliminating RIN through 

balanced detection to enable performance to scale with optical power in the shot noise 

limited regime. Additionally, moving to dual-drive implementations will be necessary for 

reducing the 𝑁𝐹 as much as possible. Hence, dual-drive, balanced detection 

implementations with high powered optical sources could achieve 𝑁𝐹s approaching 10 dB 

and 𝑆𝐹𝐷𝑅s of 120 dB∙Hz2/3 without any complex noise reduction or linearization schemes. 

However, optical power handling of platforms, especially in integrated photonics, must be 

optimized to achieve aggressive 𝑁𝐹 and 𝑆𝐹𝐷𝑅 target metrics. 

9.5 Comparing InP and Silicon for Photonic Frequency Converters 

Now that both silicon and InP based photonic frequency converters have been investigated, 

a side-by-side comparison of the two platforms for IMWP applications is useful. Neither 

platform provides an obvious upper hand; rather the two platforms excel in disparate areas, 

and choosing between the two will depend on the designer’s specific requirements, larger 

system parameters, cost, and availability.  

Because (as Chapters 4 and 7-9 firmly established) optical power is the key metric to 

achieving high performance, the optical power handling is perhaps the most important 

point of comparison. Though not the only contribution to nonlinear absorption, the two-

photon absorption (TPA) is the primary material property describing inherent optical power 

handling capabilities. The TPA for silicon of 0.5 cm/GW is significantly lower than that of 

InP, 25 cm/GW, which lends an inherent superiority for optical power handling to the SiP 

platform. However, the SiP waveguiding index contrast is significantly larger than the 

index contrast for InP waveguides, leading to smaller SiP waveguide cross-sections, 

typically ~500 nm x 200 nm. This is an advantage for compact waveguide routing, but 
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results in higher optical power density for the same input optical power compared to larger 

InP waveguides, typically 2000 nm x 200 nm. Hence, to first order, InP platforms have 

greater cross-sectional area by a factor of four, which aids in increasing optical power 

handling by spreading the power of the mode over the waveguide area. Thus, the inherently 

lower optical power handling of the InP platform is at least partially buoyed by the use of 

larger waveguides. 

Continuing features relevant to achieving high optical power, the InP platform offers on-

chip lasing and gain, which both eliminates the need for lossy (1-3 dB) off-chip coupling 

and offers an ability to mitigate insertion losses with on-chip SOAs. Hence, while InP 

waveguides may not handle quite as much average optical power as SiP waveguides, the 

optical link budget is more manageable with InP. 

One drawback of InP is relatively poor electrical isolation between components which 

requires further engineering to increase and prevent crosstalk between nearby electrical 

components. This also makes engineering the RF properties of high-speed electrodes more 

flexible in SiP. Another benefit inherent to the high-quality oxides available in SiP is better 

thermal control and isolation, which helps reduce the required electrical power for thermal 

tuning. As complex PICs can have dozens or even hundreds of thermal tuning elements, 

the ~10% better efficiency of SiP thermal tuners has a major impact on the scalability of 

large systems. Furthermore, novel undercut structures have been developed by 

Globalfoundries in their 90 nm process that further boost the efficiency of SiP thermal 

tuners, requiring < 3 mW of electrical power for a 𝜋 phase shift [93]. 

Lastly, the modulation bandwidths are compared. Thus far, SiP modulators have generally 

demonstrated larger 3 dB electro-optic bandwidths ( > 35 GHz) while InP modulators have 

demonstrated bandwidths up to approximately 15 GHz, from the experience and 

observation of several PDKs by the author. Note this does not mean a well-engineered InP 
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phase shifter cannot exceed this bandwidth and compete with SiP bandwidths; rather, 

amongst open foundry PDKs, this is merely a typical bandwidth encountered. Proprietary 

InP modulators likely exceed this quoted bandwidth, but are not currently found in open 

multi-project wafer PDKs. 

A summary of the InP and SiP platform comparison is given in Table 12. 

Table 12– Summary Comparing SiP and InP Platforms 

SiP InP Takeaway 

TPA coefficient, 
 𝛽: ~0.5 cm/GW 

TPA coefficient,  
𝛽: ~25 cm/GW 

SiP waveguides likely handle higher optical power 
densities. 

Waveguide cross-

sectional area~ 200 nm x 

500 nm 

Waveguide cross-

sectional area ~ 200 nm 

x 2000 nm 

InP waveguides cross-sectional areas are roughly 4 times 

larger, and mitigate InP’s power handling penalty due to 

its TPA coefficient. 

No gain on die 

SOAs on die offering ~ 

10 dB gain, outputs of 

>10 dBm 

SOAs on die greatly benefit the power budget, boosting 

gain, SFDR, and NF.  Regains optical power lost to 

insertion loss. 

Requires optical coupling Laser on die 

Lasers on die avoid 1- 3 dB optical power penalty 

incurred by coupling losses, further benefiting 

performance. 

Strong oxide insulator Poor insulators available 

SiP has superior electrical isolation. SiP may have 

increased flexibility in engineering RF and optical group 

velocities. 

Relatively more power 

efficient thermal tuning 

(e.g. heater π phase shift 

requires 40-50 mW) 

Relatively less power 

efficient thermal tuning 

(e.g. heater π phase shift 

requires ~50-60 mW) 

SiPs may use less power at cost of needing external 

components (e.g. lasers). InP likely consumes more 

power, but is monolithic. 

Commercial MZM 

bandwidths 

 > 35 GHZ 

Commercial MZM 

bandwidths  

~ 15 GHz 

Thus far, SiP MZMs in foundry processes have 

demonstrated better high-speed performance. 
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CHAPTER 10. PUBLICATIONS & SUMMARY OF 

CONTRIBUTIONS TO THE FIELD 

10.1  First-Authored Publications 

Design Guide for Photonic Frequency Converters 

Christian G. Bottenfield, Varghese A. Thomas, Richard DeSalvo, Stephen E. Ralph, IPC 

2021 

Analytic Equations for Photonic Frequency Converter Design 

Christian G. Bottenfield, Varghese A. Thomas, Stephen E. Ralph, JLT 2021 

High Performance Microwave Photonic Downconversion in a Commercial InP Platform 

Christian G. Bottenfield, Michael Hoff, Varghese A Thomas, Ardy Winoto, Yuchun 

Zhou, Ashish Bhardwaj, Gloria E. Hoefler, Richard DeSalvo, Stephen E. Ralph, OFC 

2021 

Synthetic Pockels Modulators in Silicon 

Christian G. Bottenfield, Richard DeSalvo, and Stephen E. Ralph, CLEO 2021 

High-Performance Fully Integrated Silicon Photonic Microwave Mixer Subsystems 

Christian G. Bottenfield, Stephen E. Ralph, JLT 2020. 

A Silicon Photonic Down-converter 

Christian G. Bottenfield, Varghese A. Thomas, Gareeyasee Saha, Richard DeSalvo, 

Stephen E. Ralph, ECOC 2019 

DC Kerr Effect and Limits for Silicon Photonic Modulators 

Christian G. Bottenfield, Varghese A. Thomas, and Stephen E. Ralph, CLEO 2019. 

Silicon Photonic Modulator Linearity and Optimization for Microwave Photonic Links 

Christian G. Bottenfield, Varghese A. Thomas, and Stephen E. Ralph, JSTQE 2019. 

Microwave Photonic Links: Optimization of SiP Modulator Design and Operation 

Christian G. Bottenfield, Varghese A. Thomas, and Stephen E. Ralph, OFC 2019. 

 

10.2  Other Publications 

Self-Homodyne Photonic Transmitter Conceptual Proof in a Commercial Monolithic InP 

Platform 

Michael T. Hoff, Christian G. Bottenfield, Varghese A. Thomas, Ardy Winoto, Yuchun 

Zhou, Ashish Bhardwaj, Gloria E. Hoefler, Stephen E. Ralph, OFC 2021 

Photonic Integrated Circuits for Simultaneous Channelization and Downconversion 

Benjamin B. Yang, Brandon Lovelace, Brian Wier, Jacob Campbell, Mark Bolding, 

Cheong-Wo Chan, J. Glen Vinson, Tarun Muthuchamy, Rajib Bhattacharjea, T. Robert 

Harris, Kyle Davis, Andrew Stark, Christopher Ward, Christian G. Bottenfield, Stephen 

E. Ralph, Michael Gehl, Anthony Lentine, GOMAC 2021 

Multichip Module Development for Radio Frequency Photonic Channelization and 

Downconversion 
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Benjamin B. Yang, Brandon Lovelace, Brian Wier, Mark Bolding, J. Glen Vinson, Rajib 

Bhattacharjea, Tarun Muthuchamy, T. Robert Harris, Kyle Davis, Andrew Stark, 

Christopher Ward, Christian G. Bottenfield, Stephen E. Ralph, Michael Gehl, Anthony 

Lentine, GOMAC 2020. 

CMOS Foundry DRC-Conforming Extended Cladding Modulated Integrated Bragg 

Grating Filters 

Gareeyasee Saha, Christian G. Bottenfield, Patrick S. Goley, John D. Cressler, Stephen E. 

Ralph, CLEO 2019. 

A Co-integrated Silicon-Based Electronic-Photonic Wideband, High-Power Signal Source 

Saeed Zeinolabedinzadeh, Patrick Goley, Milad Frounchi, Sunil Rao, Christian G. 

Bottenfield, Stephen E. Ralph, M. Kaynak, Lars Zimmermann, Stefan Lischke, Christian 

Mai, and John D. Cressler, OFC 2020. 

Gain, SFDR and NF for Analog Links with with Arbitary Transfer Functions  

Stephen E. Ralph, Varghese A. Thomas, Christian G. Bottenfield, Stephen M. Hurst, 

Gareeyasee Saha, AVFOP 2018. 

Simulation of Integrated Transmitter with Enhanced Power for Analog RF Links 

Varghese A. Thomas, Christian G. Bottenfield, Gareeyasee Saha, Siddharth Varughese, 

and Stephen E. Ralph, IPC 2018. 

Photonic Integrated Circuits for RF Electronic Systems  

A. Stark, C. Ward, K. Davis, B. Yang, T. Brothers,  J. Langston, C. Bottenfield, G. 

Saha, J. Lavrencik, S.E. Ralph,  A. Paollela, C. Middleton, R. DeSalvo,  M. Gehl, C. 

DeRose, A. Lentine,  GOMACTEC  2018. 

 

10.3 Prior Publications 

Investigation of Printing-Based Graded Bulk Heterojunction Organic Solar Cells 

Christian G. Bottenfield, Fanan Wei, Hui Joon Park, Jay Guo, and Guangyong Li, Energy 

Technology, Wiley VCH; 10.1002/ente.201402152, published March 12th, 2015 

Lithium Niobate Electro-Optic Racetrack Modulator Etched in Y-Cut LNOI Platform 

M. Mahmoud, L. Cai, C. Bottenfield and G. Piazza, IEEE Photonics Journal, vol. 10, no. 

1, pp. 1-10, Feb. 2018 

Fully integrated lithium niobate electro-optic modulator based on asymmetric Mach-

Zehnder interferometer etched in LNOI platform 

M. Mahmoud, C. Bottenfield, L. Cai and G. Piazza, 2017 IEEE Photonics Conference 

(IPC), Orlando, FL, 2017, pp. 223-224. 

Effects of Se Vapor Annealing on Water-based Solution-Processed Cu2ZnSn(S,Se)4 Thin-

Film Solar Cells 

Minlin Jiang, Quan Tao, Fei Lan, Christian G. Bottenfield, Xingzhong Yan, Guangyong 

Li, J. Photon. Energy, 5(1), 053096. 10.1117/1.JPE.5.053096, published February, 27th, 

2015. 
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10.4 Contributions to the Field 

The goal of this research is to advance the field of IMWP in achieving spectrally agile 

systems for next gen fronthaul networks, defense communications, space-based 

communications, and modern warfighter support. The sum of completed work constitutes 

significant contributions to the field:  

1. Pioneered the linearization of SiP modulator transfer functions by DC Kerr effects, 

leading to enhanced performance in MWP applications. This work included a) 

Advancing the understanding of nonlinearities generated by SiP modulators. b) 

Advancing the understanding of SiP modulators under large reverse bias 

conditions; and c) Developing rigorous methods of simulating the DC Kerr effect 

through a combination of commercial software and custom code.  

2. Demonstrated analog fiber links using SiP transmitters with >100 dB.Hz2/3 𝑆𝐹𝐷𝑅 

through linearization by DC Kerr effect.  

3. Demonstrated a pure DC Kerr effect modulator, acting as a “synthetic” Pockels 

effect in silicon. Such high linearity, pure phase modulators may be useful for 

applications including microwave photonics, modulators optimized for higher 

order modulation formats, and use in quantum gates. 

4. Quantified optical power handling in commercial SiP platforms and their limitation 

of IMWP subsystem performance.  

5. Demonstrated the first electrical-in, electrical-out MWP frequency converter on a 

SiP platform. Additionally, demonstrated the ability of modern simulation tools 

(e.g. Lumerical) to accurately predict IMWP mixer analog system performance.  

6. Developed intuitive expressions for describing the performance and trade space for 

MWP frequency converting links and verified them by commercial simulations and 

characterization of an InP based photonic frequency converter. 

7. Demonstrated optical edge filters based on TPA-generated free carrier plasma-

dispersion effects, exhibiting record-setting filter roll-offs exceeding 103 dB/GHz. 

Concentric ring filter variants also demonstrated few- and sub-GHz optical 

bandwidths. 
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