263 research outputs found

    Simultaneous Positioning and Communications: Hybrid Radio Architecture, Estimation Techniques, and Experimental Validation

    Get PDF
    abstract: Limited spectral access motivates technologies that adapt to diminishing resources and increasingly cluttered environments. A joint positioning-communications system is designed and implemented on \acf{COTS} hardware. This system enables simultaneous positioning of, and communications between, nodes in a distributed network of base-stations and unmanned aerial systems (UASs). This technology offers extreme ranging precision (<< 5 cm) with minimal bandwidth (10 MHz), a secure communications link to protect against cyberattacks, a small form factor that enables integration into numerous platforms, and minimal resource consumption which supports high-density networks. The positioning and communications tasks are performed simultaneously with a single, co-use waveform, which efficiently utilizes limited resources and supports higher user densities. The positioning task uses a cooperative, point-to-point synchronization protocol to estimate the relative position and orientation of all users within the network. The communications task distributes positioning information between users and secures the positioning task against cyberattacks. This high-performance system is enabled by advanced time-of-arrival estimation techniques and a modern phase-accurate distributed coherence synchronization algorithm. This technology may be installed in ground-stations, ground vehicles, unmanned aerial systems, and airborne vehicles, enabling a highly-mobile, re-configurable network with numerous applications.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Performance of the CMS Tracker Optical Links and Future Upgrade Using Bandwidth Efficient Digital Modulation

    Get PDF
    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator will begin operation in 2007. The innermost CMS subdetector, the Tracker, comprises ~10 million detector channels read out by ~40 000 analog optical links. The optoelectronic components have been designed to meet the stringent requirements of a high energy physics (HEP) experiment in terms of radiation hardness, low mass and low power. Extensive testing has been performed on the components and on complete optical links in test systems. Their functionality and performance in terms of gain, noise, linearity, bandwidth and radiation hardness is detailed. Particular emphasis is placed on the gain, which directly affects the dynamic range of the detector data. It has been possible to accurately predict the variation in gain that will be observed throughout the system. A simulation based on production test data showed that the average gain would be ~38% higher than the design target at the Tracker operating temperature of -10°C. Corrective action was taken to reduce the gains and recover the lost dynamic range by lowering the optical receiver's load resistor value from 100Ω to 62Ω. All links will have gains between 0.64 and 0.96V/V. The future iteration of CMS will be operated in an upgraded LHC requiring faster data readout. In order to preserve the large investments made for the current readout system, an upgrade path that involves reusing the existing optoelectronic components is considered. The applicability of Quadrature Amplitude Modulation (QAM) in a HEP readout system is examined. The method for calculating the data rate is presented, along with laboratory tests where QAM signals were transmitted over a Tracker optical link. The results show that 3-4Gbit/s would be possible if such a design can be implemented (over 10 times the equivalent data rate of the current analog links, 320Mbits/s).(Abridged version) The CMS experiment at the LHC will begin operation in 2007. The CMS Tracker sub-detector, comprises ~10 million detector channels read out by ~40 000 analog optical links. The optoelectronic components have been designed to meet the stringent requirements of a HEP experiment in terms of radiation hardness, low mass and low power. Extensive testing has been performed on the components and on complete optical links in test systems. Their functionality and performance in terms of gain, noise, linearity, bandwidth and radiation hardness is detailed. Particular emphasis is placed on the gain, which directly affects the dynamic range of the detector data. It has been possible to accurately predict the variation in gain that will be observed throughout the system. A simulation based on production test data showed that the average gain would be ~38% higher than the design target at the Tracker operating temperature of -10{\deg}C. Corrective action was taken to reduce the gains and recover the lost dynamic range by lowering the optical receiver's load resistor value from 100{\Omega} to 62{\Omega}. All links will have gains between 0.64 and 0.96V/V. The future iteration of CMS will be operated in an upgraded LHC requiring faster data readout. In order to preserve the large investments made for the current readout system, an upgrade path that involves reusing the existing optoelectronic components is considered. The applicability of Quadrature Amplitude Modulation (QAM) in a HEP readout system is examined. The method for calculating the data rate is presented, along with laboratory tests where QAM signals were transmitted over a Tracker optical link. The results show that 3-4Gbit/s would be possible if such a design can be implemented (over 10 times the equivalent data rate of the current analog links, 320Mbits/s)

    Digital Signal Processing for Front-end Non-idealities in Coherent Optical OFDM system

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advanced Signal Processing Algorithms for GNSS/OFDM Receiver

    Get PDF
    The recent years have shows a growing interest in urban and indoor positioning with the development of applications such as car navigation, pedestrian navigation, local search and advertising and others location-based-services (LBS). However, in urban and indoor environment the classical mean of positioning, the Global Positioning Satellite System (GNSS) has limited availability, accuracy, continuity and integrity due to signal blockage by building, intense multipath conditions and interferences from the other signals, abundant in metropolitan areas. Even some improvements of GNSS can reduce these issues (high-sensitivity receiver, assisted-GNSS, multi-constellation GNSS…), they do not permit to reach sufficient performance in deep urban and indoor environments. However, some alternatives to GNSS allow complementing it in difficult environments. They are, for example, additional sensors (accelerometers, gyrometers, magnetometers, odometers, laser, and video), radiofrequency systems dedicated to positioning (pseudolites, RFID, UWB) or signals of opportunity (SoO). SoO are telecommunication signals (as mobile phone, TV, radio, Wi-Fi) that are used opportunely to provide a positioning service. Even if these signals are not designed for such application, they have the advantages to be many and varied in urban and indoor environments. In addition they allow, by definition, a good integration of communication and positioning services. Among all the SoO available, this thesis focuses on the one based on the Orthogonal Frequency Division Multiplexing (OFDM) modulation. This choice is motivated by the important popularity of this modulation, that has been chosen in several actual and future telecommunication and broadcasting standards (Wi-Fi, WiMAX, LTE, DVB-T/H/SH, DAB, T-DMB, ISDB-T, MediaFLO…). Among this standard using the OFDM modulation, the European standard for digital television called “Digital Video Broadcasting – Terrestrial” (DVB-T) has been selected to be studied in this thesis. The choice is motivated by the relatively simple definition of this standard, allowing reuse of the work for other OFDM standards, and also because it is already operational in Europe, allowing tests on real signals. A method to obtain ranging measurements based on timing synchronization using DVB-T signals has been developed. This method uses delay lock loops (DLL) and takes into account the specificity of the terrestrial propagation channel (many multipathes, direct signal sometimes absent, quick variation of received power…). The performance of the method has been determinate theoretically and validated by simulation, in an ideal case (i.e.; with a Gaussian propagation channel). This theoretical study has proven than the ranging error standard deviation has an order of magnitude of 1 meter, for signal to noise ratio of about -20 dB, a SNR 40 dB under the demodulation threshold of the TV signal. The performance in a realistic propagation channel has been determined on real signal. For that purpose a test bench has been developed. It allows to receive and record TV signals on two synchronized antennas and it includes and GPS receiver to record a reference position and provide a GPS time reference to the test bench. Tests on real signals have been realized in several environments (sub-urban, urban and indoor) using 1 emitter synchronized on GPS time and 2 emitters in a signal frequency network (SFN). The results of these tests on real signals showed a precision of the ranging estimation of about 10 meters with a better performance in rural environment and an improvement of the ranging estimate using antenna diversity. Finally, the thesis proves the feasibility of positioning with signal using the OFDM modulation, with a technique that can be easily tailored to other OFDM signal than DVB-T

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure

    Software-Defined Radio Demonstrators: An Example and Future Trends

    Get PDF
    Software-defined radio requires the combination of software-based signal processing and the enabling hardware components. In this paper, we present an overview of the criteria for such platforms and the current state of development and future trends in this area. This paper will also provide details of a high-performance flexible radio platform called the maynooth adaptable radio system (MARS) that was developed to explore the use of software-defined radio concepts in the provision of infrastructure elements in a telecommunications application, such as mobile phone basestations or multimedia broadcasters

    Técnicas de gestão de feixe de onda para sistemas Massive MIMO nas redes 5G NR

    Get PDF
    The use of Millimeter wave (mmWave) spectrum frequencies is seen as a key enabler technology for the future wireless communication systems to overcome the bandwidth shortage of the sub 6GHz microwave spectrum band, enabling high speed data transmissions in the 5G/6G systems. Nevertheless, mmWave propagation characteristics are associated to significant free-path losses and many more attenuations that become even more harsher as the frequency increases, rendering the communication challenging at this frequencies. To overcome these distinct disadvantages, multiple antenna arrays are employed to allow beamforming techniques for the transmission of narrower concentrated beams in more precise directions and less interference levels between them, consequently improving the link budget. Thus, to constantly assure that the communication with each device is done using the beam pair that allows the best possible connectivity, a set of Beam Management control procedures is necessary to assure an efficient beamformed connection establishment and its continuous maintenance between the device and the network. This dissertation will address the description of the Initial Beam Establishment (IBE) BM procedure, focusing the selection of the most suitable transmit-receive beam pair available after completed beam sweeping techniques to measure the different power levels of the received signal. The main goal is to design a new 3GPP-standard compliant beam pair selection algorithm based on SSS angle estimation (BSAE), that makes use of multiple Synchronization Signal Blocks (SSBs) to maximize the Reference Signal Received Power (RSRP) value at the receiver, through the selected beam pair. This optimization is done using the Secondary Synchronization Signals (SSSs) present in each SSB to perform channel estimation in the digital domain (comprising the effects of the analog processing). Afterwards, the combination of those estimations were used to perform the equivalent channel propagation matrix estimation without the analog processing effects. Finally, through the channel propagation matrix, the angle that maximizes the RSRP was determined to compute the most suitable beam through the aggregated response vector. The obtained results show that the proposed algorithm achieves better performance levels compared to a conventional beam pair selection algorithm. Furthermore, a comparison with an optimal case is also done, i.e., the situation where the channel is known, and the optimal beam pair angle can be determined. Therefore, the similar performance results compared to the optimal case indicates that the proposed algorithm is interesting for practical 5G mmWave mMIMO implementations, according to 3GPP-compliant standards.O uso de frequências na banda das ondas milimétricas é visto como uma tecnologia chave para os futuros sistemas de comunicação móveis, tendo em vista a ultrapassar o problema da escassez de banda a sub-6 GHz, e por permitir as elevadas taxas de dados requeridas para sistemas 5G/6G. Contudo, a propagação deste tipo de ondas está associado a perdas acentuadas em espaço livre e várias atenuações que se tornam cada vez mais significativas com o aumento do valor da frequência, impondo obstáculos à comunicação. Para ultrapassar estas adversidades, agregados constituídos por múltiplos elementos de antena são implementados por forma a permitir técnicas de formação de feixe e possibilitar a transmissão de feixes mais estreitos e altamente direcionais, diminuindo os níveis de interferência e melhorando consequentemente o link budget. Deste modo, para assegurar constantemente que a comunicação efetuada em cada dispositivo ocorre utilizando o conjunto de feixes que proporciona o melhor nível de conectividade, é então necessário um conjunto de procedimentos de controlo de gestão de feixe, assegurando um estabelecimento eficiente da comunicação e a sua contínua manutenção entre um dispositivo e a rede. Esta dissertação descreve o procedimento de gestão de feixe conhecido como estabelecimento inicial de feixe, focando o processo de seleção do melhor par de feixe de transmissão-receção disponível após o uso de técnicas de varrimento de feixe por fim a efetuar medições dos diferentes níveis de potência do sinal recebido. O principal objetivo passa pela conceção de um novo algoritmo de estabelecimento de par de feixes baseado em estimações de ângulo (BSAE), que explora o uso de múltiplos SSBs definidos pelo 3GPP, por forma a maximizar o RSRP no recetor, através do feixe selecionado. Esta otimização é feita usando os sinais de sincronização secundários (SSSs) presentes em cada SSB para efetuar uma estimação de canal no domínio digital (que contém o efeito do processamento analógico). Depois, combinando essas estimações, foi feita uma estimação da matriz do canal de propagação, sem o efeito desse processamento analógico. Finalmente, através da matriz do canal de propagação, foi determinado o ângulo que maximiza o RSRP, e calculado o feixe através do vetor de resposta do agregado. Os resultados obtidos demonstram que o algoritmo proposto atinge melhor desempenho quando comparado com o algoritmo convencional de seleção de par de feixes. Foi feita ainda uma comparação com o caso ótimo, isto é, com o caso em que se conhece completamente o canal e se obtém um ângulo ótimo. Os resultados obtidos pelo algoritmo proposto foram muito próximos do caso ótimo, pelo que é bastante interessante para sistemas práticos 5G mmWave mMIMO, que estejam de acordo com o padrão 3GPP.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    Joint Channel Estimation and Detection for Multi-Carrier MIMO Communications

    Get PDF
    In MIMO OFDM systems, channel estimation and detection are very important. Pilot-based channel estimation using BEMs is widely used for approximating time-frequency variations of doubly-selective channels. BEMs can provide high estimation performance with low computational load. Data-aided channel estimation outperforms the pilot-based estimation. The data-aided estimation iteratively improves estimates using tentative data symbols and corresponding adaptive weights (reweighted channel estimation). These weights are computed assuming Gaussian data errors, which is inapplicable to OFDM. In this thesis, this assumption is however shown to improve the channel estimation performance. The reweighted channel estimation is shown to significantly outperform the unweighted estimation. Most often used mismatched receivers assume perfect channel estimates when detecting data symbols. However, due to limited pilot symbols and data errors, the channel estimates are imperfect, resulting in a degraded detection performance. The optimal receiver without explicit channel estimation significantly outperform mismatched receivers. However, its complexity is high. To reduce the complexity, a receiver that combines mismatched and optimal detection is proposed. The optimal detection is only applied to data symbols unreliably detected by the mismatched detector, identified using weights computed in the reweighted estimator. The channel estimator and the optimal receiver require the knowledge of channel statistics, which are unavailable and difficult to acquire. To overcome this, an adaptive regularization using the cross-validation criterion is introduced, which finds a regularization matrix providing best channel estimates. The proposed receiver has a reduced complexity than the optimal receiver and provides close-to-optimal detection performance without the knowledge of channel PDP. The adaptive regularization is extended to joint estimation of the Doppler-delay spread and channel. The Doppler and delay spread corresponding to the optimal regularization are selected as their estimates. This approach outperforms other known techniques and provides channel estimation performance close to that obtained with perfect channel statistics
    corecore