254 research outputs found

    A highly parameterized and efficient FPGA-based skeleton for pairwise biological sequence alignment

    Get PDF

    A new hardware architecture for genomic and proteomic sequence alignment

    Get PDF
    Los Alamitos, US

    A study on the effect of stroop test on the formation of students discipline by using the Heart Rate Variability (HRV) technique

    Get PDF
    Discipline refers to self-control and individual behaviour. Other than that, discipline is an important element in the formation of integrity level. The objective of the study is to assess the effects of using the Stroop test of biofeedback protocol in order to evaluate individual level of discipline. A clinical study has been conducted on 50 participants which is the participants is a undergraduate student from Universiti Malaysia Pahang, who were divided into two groups. First group is students get high achiever and second group is students get low achierver in academic. The Heart Rate Variability (HRV) technique has been used in the assessment of this protocol. The findings show that there was a positive relationship between the Stroop test and the students discipline that those who excelled managed to get higher score of LF spectrum as compared to HF and VLF, while the students with lower achievement showed higher score of VLF and HF spectrum than LF. In conclusion, this test is one of the tests that can be used in increasing the level of individual discipline

    Revisiting the Speed-versus-Sensitivity Tradeoff in Pairwise Sequence Search

    Get PDF
    The Smith-Waterman algorithm is a dynamic programming method for determining optimal local alignments between nucleotide or protein sequences. However, it suffers from quadratic time and space complexity. As a result, many algorithmic and architectural enhancements have been proposed to solve this problem, but at the cost of reduced sensitivity in the algorithms or significant expense in hardware, respectively. Hence, there exists a need to evaluate the tradeoffs between the different solutions. This motivation, coupled with the lack of an evaluation metric to quantify these tradeoffs leads us to formally define and quantify the sensitivity of homology search methods so that tradeoffs between sequence-search solutions can be evaluated in a quantitative manner. As an example, though the BLAST algorithm executes significantly faster than Smith-Waterman, we find that BLAST misses 80% of the significant sequence alignments. This paper then presents a highly efficient parallelization of the Smith-Waterman algorithm on the Cell Broadband Engine, a novel hybrid multicore architecture that drives the PlayStation 3 (PS3) game consoles, and emulates BLAST by repeatedly executing the parallelized Smith-Waterman algorithm to search for a query in a given sequence database. Through an innovative mapping of the optimal Smith-Waterman algorithm onto a cluster of PlayStation 3 nodes, our implementation delivers a 10-fold speed-up over a high-end multicore architecture and an 88-fold speed-up over a non-accelerated PS3. Finally, we compare the performance of our implementation of the Smith-Waterman algorithm to that of BLAST and the canonical Smith-Waterman implementation, based on a combination of three factors — execution time (speed), sensitivity, and the actual cost of de-ploying each solution. In the end, our parallelized Smith-Waterman algorithm approaches the speed of BLAST while maintaining ideal sensitivity and achieving low cost through the use of PlayStation 3 game consoles

    Design and analysis of an accelerated seed generation stage for BLASTP on the Mercury system - Master\u27s Thesis, August 2006

    Get PDF
    NCBI BLASTP is a popular sequence analysis tool used to study the evolutionary relationship between two protein sequences. Protein databases continue to grow exponentially as entire genomes of organisms are sequenced, making sequence analysis a computationally demanding task. For example, a search of the E. coli. k12 proteome against the GenBank Non-Redundant database takes 36 hours on a standard workstation. In this thesis, we look to address the problem by accelerating protein searching using Field Programmable Gate Arrays. We focus our attention on the BLASTP heuristic, building on work done earlier to accelerate DNA searching on the Mercury platform. We analyze the performance characteristics of the BLASTP algorithm and explore the design space of the seed generation stage in detail. We propose a hardware/software architecture and evaluate the performance of the individual stage, and its effect on the overall BLASTP pipeline running on the Mercury system. The seed generation stage is 13x faster than the software equivalent, and the integrated BLASTP pipeline is predicted to yield a speedup of 50x over NCBI BLASTP. Mercury BLASTP also shows a 2.5x speed improvement over the only other BLASTP-like accelerator for FPGAs while consuming far fewer logic resources

    Comparative Analysis of Computationally Accelerated NGS Alignment

    Get PDF
    The Smith-Waterman algorithm is the basis of most current sequence alignment technology, which can be used to identify similarities between sequences for cancer detection and treatment because it provides researchers with potential targets for early diagnosis and personalized treatment. The growing number of DNA and RNA sequences available to analyze necessitates faster alignment processes than are possible with current iterations of the Smith-Waterman (S-W) algorithm. This project aimed to identify the most effective and efficient methods for accelerating the S-W algorithm by investigating recent advances in sequence alignment. Out of a total of 22 articles considered in this project, 17 articles had to be excluded from the study due to lack of standardization of data reporting. Only one study by Chen et al. obtained in this project contained enough information to compare accuracy and alignment speed. When accuracy was excluded from the criteria, five studies contained enough information to rank their efficiency. The study conducted by Rucci et al. was the fastest at 268.83 Giga Cell Updates Per Second (GCUPS), and the method by PĂŠrez-Serrano et al. came close at 229.93 GCUPS while testing larger sequences. It was determined that reporting standards in this field are not sufficient, and the study by Chen et al. should set a benchmark for future reporting

    Accelerated Profile HMM Searches

    Get PDF
    Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches

    High performance reconfigurable architectures for biological sequence alignment

    Get PDF
    Bioinformatics and computational biology (BCB) is a rapidly developing multidisciplinary field which encompasses a wide range of domains, including genomic sequence alignments. It is a fundamental tool in molecular biology in searching for homology between sequences. Sequence alignments are currently gaining close attention due to their great impact on the quality aspects of life such as facilitating early disease diagnosis, identifying the characteristics of a newly discovered sequence, and drug engineering. With the vast growth of genomic data, searching for a sequence homology over huge databases (often measured in gigabytes) is unable to produce results within a realistic time, hence the need for acceleration. Since the exponential increase of biological databases as a result of the human genome project (HGP), supercomputers and other parallel architectures such as the special purpose Very Large Scale Integration (VLSI) chip, Graphic Processing Unit (GPUs) and Field Programmable Gate Arrays (FPGAs) have become popular acceleration platforms. Nevertheless, there are always trade-off between area, speed, power, cost, development time and reusability when selecting an acceleration platform. FPGAs generally offer more flexibility, higher performance and lower overheads. However, they suffer from a relatively low level programming model as compared with off-the-shelf microprocessors such as standard microprocessors and GPUs. Due to the aforementioned limitations, the need has arisen for optimized FPGA core implementations which are crucial for this technology to become viable in high performance computing (HPC). This research proposes the use of state-of-the-art reprogrammable system-on-chip technology on FPGAs to accelerate three widely-used sequence alignment algorithms; the Smith-Waterman with affine gap penalty algorithm, the profile hidden Markov model (HMM) algorithm and the Basic Local Alignment Search Tool (BLAST) algorithm. The three novel aspects of this research are firstly that the algorithms are designed and implemented in hardware, with each core achieving the highest performance compared to the state-of-the-art. Secondly, an efficient scheduling strategy based on the double buffering technique is adopted into the hardware architectures. Here, when the alignment matrix computation task is overlapped with the PE configuration in a folded systolic array, the overall throughput of the core is significantly increased. This is due to the bound PE configuration time and the parallel PE configuration approach irrespective of the number of PEs in a systolic array. In addition, the use of only two configuration elements in the PE optimizes hardware resources and enables the scalability of PE systolic arrays without relying on restricted onboard memory resources. Finally, a new performance metric is devised, which facilitates the effective comparison of design performance between different FPGA devices and families. The normalized performance indicator (speed-up per area per process technology) takes out advantages of the area and lithography technology of any FPGA resulting in fairer comparisons. The cores have been designed using Verilog HDL and prototyped on the Alpha Data ADM-XRC-5LX card with the Virtex-5 XC5VLX110-3FF1153 FPGA. The implementation results show that the proposed architectures achieved giga cell updates per second (GCUPS) performances of 26.8, 29.5 and 24.2 respectively for the acceleration of the Smith-Waterman with affine gap penalty algorithm, the profile HMM algorithm and the BLAST algorithm. In terms of speed-up improvements, comparisons were made on performance of the designed cores against their corresponding software and the reported FPGA implementations. In the case of comparison with equivalent software execution, acceleration of the optimal alignment algorithm in hardware yielded an average speed-up of 269x as compared to the SSEARCH 35 software. For the profile HMM-based sequence alignment, the designed core achieved speed-up of 103x and 8.3x against the HMMER 2.0 and the latest version of HMMER (version 3.0) respectively. On the other hand, the implementation of the gapped BLAST with the two-hit method in hardware achieved a greater than tenfold speed-up compared to the latest NCBI BLAST software. In terms of comparison against other reported FPGA implementations, the proposed normalized performance indicator was used to evaluate the designed architectures fairly. The results showed that the first architecture achieved more than 50 percent improvement, while acceleration of the profile HMM sequence alignment in hardware gained a normalized speed-up of 1.34. In the case of the gapped BLAST with the two-hit method, the designed core achieved 11x speed-up after taking out advantages of the Virtex-5 FPGA. In addition, further analysis was conducted in terms of cost and power performances; it was noted that, the core achieved 0.46 MCUPS per dollar spent and 958.1 MCUPS per watt. This shows that FPGAs can be an attractive platform for high performance computation with advantages of smaller area footprint as well as represent economic ‘green’ solution compared to the other acceleration platforms. Higher throughput can be achieved by redeploying the cores on newer, bigger and faster FPGAs with minimal design effort
    • …
    corecore