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Abstract 
This paper presents the design and implementation of the 
FPGA-based web server for biological sequence 
alignment. Central to this web-server is a set of highly 
parameterisable, scalable, and platform-independent 
FPGA cores for biological sequence alignment. The web 
server consists of an HTML–based interface, a MySQL 
database which holds user queries and results, a set of 
biological databases, a library of FPGA configurations, a 
host application servicing user requests, and an FPGA 
coprocessor for the acceleration of the sequence 
alignment operation. The paper presents a real 
implementation of this server on an HP ProLiant DL145 
server with a Celoxica RCHTX FPGA board. Compared 
to an optimized pure software implementation, our 
FPGA-based web server achieved a two order of 
magnitude speed-up for a pairwise protein sequence 
alignment application based on the Smith-Waterman 
algorithm. The FPGA-based implementation has the 
added advantage of being over 100x more energy-
efficient. 

1. Introduction 

Scanning genome and protein sequence databases is an 
essential task in molecular biology. Biologists find out the 
structural and functional similarities between a query 
sequence and a subject database sequence by scanning the 
existing genome or protein database sequences, with real 
world applications in disease diagnosis, drug engineering, 
bio-material engineering and genetic engineering of plants 
and animals. There are numbers of biological sequence 
alignment algorithms with various execution 
speed/accuracy tradeoffs. Among these, we cite dynamic 
programming based algorithms [2, 3], heuristic-based 
algorithms [4, 5], and HMM-based algorithms [6].  

The most accurate algorithms for pairwise sequence 
alignment are exhaustive search dynamic programming 
(DP)-based algorithms such as the Needleman-Wunsch 

algorithm [2], and the Smith-Waterman algorithm [3]. 
The latter is the most commonly used DP algorithm 
which finds the most similar pair of sub-segments in a 
pair of biological sequences. However, given that the 
computation complexity of such algorithms is quadratic 
with respect to the sequence lengths, heuristics, tailored to 
general purpose processors, are often introduced to reduce 
the computation complexity and speed-up bio-sequence 
database searching. The most commonly used heuristic 
algorithm for pairwise sequence alignment, for instance, 
is the BLAST algorithm [4]. In general, however, the 
quicker the heuristic method is, the worse is the result 
accuracy. Hence, accurate and fast alignment algorithms 
need faster computer technologies to keep up with the 
exponential increase in the sizes of biological databases 
[1].

Field Programmable Gate Arrays (FPGAs) have been 
proposed as a candidate technology to solve this problem 
as they promise the high performance and low power of a 
dedicated hardware solution while being reprogrammable. 
Few commercial players are offering real customer 
solutions for high performance FPGA-based sequence 
analysis, the most prominent of which are TimeLogic, 
Progeniq [7, 8] and Mitrionics [9]. TimeLogic, for 
instance, offers FPGA-based desktop and server solutions 
for biological sequence analysis applications. Progeniq on 
the other hand offer mostly small FPGA-based 
acceleration cards for workstations. Mitrionics offer an 
FPGA-based server for the BLAST algorithm. Speed-up 
figures reported by these companies are in the range x20-
x80. Nonetheless, these solutions are specific to the 
hardware and software of choice, and hence do not offer 
users the flexibility to migrate to other platforms. 
Moreover, to the best of our knowledge, there is not any 
academic-based FPGA server solution for biological 
sequence analysis. 

In this paper, we propose a flexible multi-process 
FPGA-based web server for efficient biological sequence 
analysis. An FPGA-based web server for pairwise 
sequence alignment has been realised to demonstrate the 
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benefits of our approach. Central to this server is a highly 
parameterisable FPGA skeleton for pairwise bio-sequence 
alignment using dynamic programming algorithms [10].  

The remainder of this paper is organised as follows. 
First, important background information on pairwise bio-
sequence alignment algorithms is briefly introduced in 
section 2. After that, the design of our FPGA-based web 
server is detailed in section 3. Section 4 then presents a 
real hardware implementation of a generic DP-based 
pairwise sequence alignment algorithm on an HP 
ProLiant DL145 server with a Celoxica RCHTX FPGA 
board, with detailed implementation results. Finally, 
conclusions and plans for future work are laid out in 
section 5.  

2. Background 

Biological sequences (e.g. DNA or protein sequences) 
evolve through a process of mutation, selection, and 
random genetic drift [11]. Mutation, in particular, 
manifests itself through three main processes, namely: 
substitution of residues (i.e. a residue A in the sequence is 
substituted by another residue B), insertion of new 
residues, and deletion of existing residues. Insertion and 
deletion are referred to as gaps. The gap character “-“ is 
introduced to present the alignment between sequences. 
There are four ways to indicate the alignment between 
two sequence s and t as shown below: 
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,,
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sinbchatacterofinsertiondenotesb
tinbbysinaoftreplacemendenotesba

sinacharacterofdeletiondenotesa
ttosfromchangenomatchadenotesaa

�

�

For example, an alignment of two sequences s and t
(Figure 1) is an arrangement of s and t by position, where 
s and t can be padded with gap symbols to achieve the 
same length:  

ATCACACAt
CCACACGAs

�
�

:
:

Figure 1. Denotations of the alignment between sequences 
s and t

��� �� indicates a match,���� �� indicates the deletion 
of G, ��� 	�  indicates the insertion of T, and 
��
� ���indicates the replacement of C by A. Gaps should 
be taken into account when aligning biological sequences. 

The most basic pairwise sequence analysis task is to 
ask if two sequences are related or not, and by how much. 
It is usually done by first aligning the sequences (or part 
of sequences) and then deciding whether the alignment is 
more likely to have occurred because the sequences are 

related or just by chance. The key issues of the methods 
are listed below [12]: 

� What sorts of alignment should be considered; 
� The scoring system used to rank alignments; 
� The algorithm used to find optimal (or good) 

scoring alignments; 
� The statistical methods used to evaluate the 

significance of an alignment score. 
The degree of similarity between pairs of biological 

sequences is measured by a score, which is a summation 
of odd-log score between pairwise residues in addition to 
gap penalties. The odd-log scores are based on the 
statistical likelihood of any possible alignment of pairwise 
residues, and is often summarised in a substitution matrix 
(e.g. BLOSUM50, BLOSUM62, PAM). Figure 2 presents 
a 20 by 20 substitution matrix called BLOSUM50 for 
amino-acid residues, used for protein sequence 
alignments. 

Figure 2. The Blosum50 substitution matrix 

The gap penalty depends on the length of gaps and is 
often assumed independent of the gap residues. There are 
two types of gap penalties, known as linear gaps and 
affine gaps. The linear gap is a simple model with 
constant gap penalty, denoted as: 

Penalty(g) = -g*d,  
where g is the length of gaps and d is the constant penalty 
for each single gap. Affine gaps consist of opening gap 
penalties and extension gap penalties. The constant 
penalty value d for opening a gap is normally bigger than 
the penalty value e of extending a gap. Affine gaps are 
formulated as:  

Penalty(g) = -d-(g-1)*e
Since it is often the case that a few gaps are as frequent as 
a single gap, the affine gap model is much more realistic 
than the linear gap model. The following however 
presents dynamic programming algorithms in the case of 
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linear gaps for the sake of clarity. The extension to the 
case of affine gaps is straightforward [12]. 
2.1 Dynamic Programming Algorithms  

The Needleman-Wunsch (NW) and Smith-Waterman 
(SW) algorithms are two widely used dynamic 
programming algorithms for pairwise biological sequence 
alignment. Needleman-Wunsch is a global alignment 
algorithm, which is suitable for small sequences, as it 
aligns the sequences from the beginning to the end. In the 
case of longer sequences, Needleman-Wunsch introduces 
too much gap penalty noises that reduce the accuracy of 
the alignment. Hence, the Smith-Waterman algorithm is 
used to avoid this problem by looking for similar 
segments (or subsequences) in sequence pairs (the so-
called local alignment problem). In both cases, however, 
an alignment matrix is computed by a recursion equation 
with different initial values (see Equation 1 below for the 
Needleman-Wunsch case, and Equation 2 in the case of 
the Smith-Waterman algorithm). Here, an alignment 
between two sequences X = {xi} and Y= {yj} is made. 
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From the recursion equations, the alignment score is 
obtained as the largest value of three alternatives: 

� An alignment between xi and yj, in which case the 
new score is F(i-1,j-1)+s(xi,yj) where s(xi,yj) is the 
substitution matrix score or entry for residues xi
and yj.

� An alignment between xi and a gap in Y, in which 
case the new score is F(i-1,j)-d, where d is the gap 
penalty.  

� An alignment between yj and a gap in X, in which 
case the new score is F(i,j-1)-d, where d is the gap 
penalty. 

The dependency of each cell can be clearly shown in 
Figure 3. Here, each cell on the diagonal of the alignment 
matrix is independent of each other, which allows systolic 
architectures to be introduced to increase the parallelism 
and speed up the computation of dynamic programming 
algorithms. 

F(i-1,j-1) F(i,j-1) 

F(i-1,j) F(i,j) 

-d 

-d 

s(xi,yj)

Figure 3. Data dependency of dynamic programming 
algorithms 

As mentioned earlier, affine gap penalties provide a 
more realistic model of the biological phenomenon of 
residue insertions and deletions. The affine gap penalty is 
defined using two constants d and e as follows: 

Penalty(g)=-d-(g-1)*e, where g is the gap length.
Multiple values of each pair of residue (i,j) need to be 
computed instead of just one in the affine gap case, with 
recursive equations similar to the ones for linear gaps, 
both for local and global alignment [12]. 

2.2 BLAST 

The BLAST algorithm is a heuristic algorithm for 
pairwise sequence alignment, developed by the National 
Center for Biotechnology Information (NCBI). The basic 
idea of NCBI BLAST is to find positions in the subject 
sequences (the database) which are similar to certain 
query sequences segments, allowing for insertion, 
deletion and substitution. These positions are called High-
Scoring Pairs (HSPs), which are defined as pairs of 
aligned segments of sequence pairs that generate an 
alignment score above a certain threshold T. Starting with 
these HSPs instead of computing the whole score matrix 
for pairwise sequences result in substantial computational 
savings, which makes BLAST searches faster than Smith-
Waterman, for instance, on general purpose processors.  
In general, NCBI BLAST consists of three steps as 
illustrated in Figure 4 below:  

Figure 4 Steps employed by BLAST 
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Seed generation: A seed is a fragment of fixed length 
W (W = 3 for protein sequences and W = 11 for DNA 
sequences) from the query sequence. For a query 
sequence of length M, the number of seeds generated is 
M-W+1 as shown in Figure 5. 

Figure 5. DNA Seed Generation 

Hits finding: The second step in the BLAST algorithm 
is to find matches (potential HSPs) between seeds and the 
database stream. A substitution matrix is used for proteins 
in order to obtain the substitution scores for pairwise 
sequence segments. If the substitution score is above a 
threshold T, the system considers these segments to be 
High-Scoring Pairs (HSPs). 

Hits extension: The final step is to extend the HSPs 
found in the second step in both directions to complete the 
alignment. The most widely used implementation of 
BLAST looks at ungapped alignments only. Nonetheless 
current versions of NCBI BLAST provide gapped 
alignments too. The extension process terminates either 
when it reaches the end of one sequence, or when the 
score decreases sufficiently to a falloff parameter F [13]. 

NCBI BLAST is able to perform five different 
similarity searches, namely BLASTn, BLASTp, BLASTx, 
tBLASTn, and tBLASTx (see Table 1 below). 

Table 1. Various searches of BLAST 
Search 
Name Query Type Database 

Type Translation 

BLASTn Nucleotide Nucleotide None 

BLASTp Protein Protein None 

BLASTx Nucleotide Protein Query 

tBLASTn Protein Nucleotide Database 

tBLASTx Nucleotide Nucleotide Both 

BLASTn is a member of the BLAST program package 
which searches DNA sequences against DNA database. 
Due to the high degree of conservation in DNA sequences, 
the High-Scoring Pairs in the second step of BLASTn are 
the exact matches between query seeds and database 
stream. BLASTp is the most widely used program for 
aligning a Protein sequence against a Protein database. 
Instead of finding exact matches, it looks for non-
identical pairs that generate high similarity scores by 
using similarity substitution matrices, such as PAM and 
BLOSUM62. One HSP stands for a pair of similar 
fragments with a score above the threshold T.

The other three members of BLAST searches require 
translation. A nucleotide sequence can be translated into 
protein sequences in 6 different frames. Searches are 
processed against all 6 frames to get the final BLAST 
result. 

3. Our Proposed FPGA-based Web Server 
for Efficient Biological Sequence Alignment  

Figure 6 presents our FPGA-based web server for 
biological sequence analysis. The web server consists of 
an HTML based web interface, a MySQL database for 
storing the queries and results, a list of biological 
sequence database, a database of FPGA configuration, a 
host application that services user requests, and FPGA co-
processor(s) that accelerate the sequence alignment tasks. 
The web interface takes all the parameters needed for one 
unknown query as following:  

� sequence symbol type i.e. DNA, RNA, or Protein 
sequences 

� Alignment task e.g. Smith-Waterman, Needleman-
Wunsch, BLASTn, BLASTp. 

� Query sequence: Here the query sequence length 
and the alignment task dictate the configuration(s) 
to be downloaded to the FPGA(s), if need be.  

� match score i.e. the score attributed to a symbol 
match. This is supplied in the form of a 
substitution matrix e.g. BLOSUM matrix. 

� gap penalties: This could be either linear or affine. 
The gap penalty is loaded to the FPGA co-
processor at run time. 

� match score thresholds: e.g. the HSPs threshold T
and the fall-off parameter F in the case of the 
BLAST algorithm. 

When the user submits a query, a unique ID is given 
for checking the result. A MySQL database is used to 
store all query information with the unique ID into a 
query list. The host application manages communications 
between the MySQL database, sequence databases, and 
FPGA configurations on the one hand, and the FPGA 
coprocessor(s) on the other hand. 
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Figure 6. Proposed FPGA-based Web Server for Efficient Biological Sequence Alignment 

The FPGA coprocessors are initially configured with 
the most commonly used configurations by the host 
application. The subject sequence databases are loaded 
into host memory. When a query comes, the host 
application will check if FPGA coprocessors need to be 
reconfigured. Since many users might be requesting the 
server at the same time, several processes would run 
concurrently on the same FPGA chip, and/or across many 
FPGA chips. Efficient partitioning and scheduling 
algorithms need to be employed to minimize the average 
user waiting time. After the configuration of the FPGA 
co-processor(s), the host application processes the 
incoming query set before sending it to FPGA 
coprocessor, and configures the FPGA with query 
coefficients according to the query sequence submitted. 
The selected database sequences are sent from the host 
memory to the FPGA processor(s) for the alignment 
executions. At the end of processing, alignment results are 
collected by the host application and stored into a result 
list in the MySQL database. The users can obtain the 
results through their unique ID via a web interface to the 
MySQL database. 

4. Real Implementation: an FPGA-based Web 
Server for DP-based Pairwise Sequence 
Alignment 

In order to demonstrate our proposed FPGA-based 

web server, we implemented a prototype web server on an 
HP ProLiant DL145 server with a Celoxica RCHTX 
FPGA board, and run a generic FPGA skeleton for DP-
based pairwise sequence alignment on it. The following 
first describes our generic skeleton, before 
implementation results are presented.

4.1 A Generic FPGA Skeleton for DP-based 
Pairwise Sequence Alignment 

Figure 7 presents a generic systolic architecture for 
DP-based pairwise sequence alignment [14]. Each 
processing array (PE) in the array consists of control logic, 
coefficient RAM and computation logic. 

Max
PE1 PE2 PEM

Subject sequence 
and Control

Figure 7. Linear Processor Elements array architecture of 
pairwise biological sequence alignment with single pass

Given the DNA sequences comprise only four 
nucleotides, whereas protein sequences comprise fivefold 
larger variety of sequence characters, it is much easier to 
detect patterns of sequence similarity between protein 
sequences than between DNA sequences [13]. Pearson 
[14, 15, 16] has proven that searches with a protein 
sequence encoded by a DNA sequence against a DNA 
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sequence database yield far fewer significant matches 
than searches using the corresponding protein sequence. 
Hence, we conducted the web server implementation on 
Smith-Waterman algorithm for protein sequence and 
extended it to all the variances of DP based bio-sequence 
alignment. Figure 8 illustrates the PE 
architecture/behaviour for a DP pairwise sequence 
alignment algorithm with linear gap penalty. Control logic 
separates the different database subject sequence 
calculations. Coefficient RAMs are run-time 
reconfigurable according to the query sequence in hand 
(one column of substitution matrix coefficients are stored 
in one RAM). Given that each coefficient is 2-bit wide for 
DNA and 5-bit wide for proteins, and that there are 21 
elements in one column, distributed memory on FPGAs is 
used to implement the coefficient RAMs. The 
computation logic is tailored to the parameters of dynamic 
programming algorithms in hand, i.e. sequence type, 
alignment type, gap penalty, etc.  

Figure 8. Processor Element for pairwise biological 
sequence alignment using the Smith-Waterman algorithm 

As each processing element copes with one residue 
from the query sequence, the computation complexity of a 
single pass linear array of processing elements is reduced 
from quadratic to linear, as denoted below:  

���� 
� = � � 
 � ���������������������������������������������
where ���� 
�  represents the number of clock cycles 
spent on each query sequence with length � aligned to a 
subject sequence database of �  residues.  

In the case of longer sequences, due to the possible 
resource limitation of the FPGA chip in hand, our design 
can be tailored to cope with this by folding the systolic 
array and using several alignment passes instead of just 
one, at the expense of longer processing time (Figure 9). 
The complexity of the design with multiple passes is 

denoted as: 
���� 
� � �� � ������� � 
 � ����������������������

where ������� presents the amount of passes that one 
query needs. ������� is calculate as follows:  

������� ��  !"#$%&#'()*
+,-". /�����������������������������0�

where �1�23452�678  is the length of the query sequence, 
and �9:���  is the maximum number of PEs that can be 
fitted into the FPGA chip in hand. Hence, the single pass 
design can be considered as a special case of multiple 
pass design with �������� � �  , which gives the best 
throughput. 

Subject sequence 

and Control
Max

First Pass? 

1
0

PE1 PE2 PE�PE�-1

FIFO 
Intermediate results, subject 

sequence and Control

Figure 9. Linear Processor Element (PE) array 
architecture for pairwise biological sequence alignment 

with multiple passes 

The above described skeleton has been captured in 
Handel-C, which makes it FPGA-platform independent. 
Indeed, since our Handel-C description did not use any 
specific FPGA resource or placement constraints, it can 
be easily retargeted to a variety of FPGA platforms e.g. 
from Xilinx and Altera. 

Compared to previously reported FPGA-based 
biological sequence alignment accelerators [18-22], our 
FPGA-based web server solution has been designed to be 
platform-independent with a service-based model of 
operation in mind.  Detailed comparison between our 
implementation and previously reported FPGA-based 
biological sequence alignment accelerators is presented in 
[24].  

4.2 Implementation Results 
As mentioned above, our FPGA-based web server has 
been targeted to an HP ProLiant DL145, which has an 
AMD 64bit processor and a Celoxica RCHTX FPGA 
board. The latter has a Xilinx Virtex 4 LX160-11 FPGA 
chip on it. All data transfer between the host application 
and FPGA coprocessor pass through the Hyper-Transport 
interface and is supported by the DSM library in Handel-
C.  Celoxica DK5 suite and Xilinx ISE 9.1i were used to 
compile our Handel-C code into FPGA configurations 
(bitstreams). 

The performance of the resulting FPGA-based web 
server is illustrated with a single core implementation of 
the Smith-Waterman algorithm on the Virtex-4 FPGA, 
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using the Swiss-Prot Protein database as a sequence 
database. A single processing element of a systolic array 
implementing the Smith-Waterman algorithm with linear 
gap penalty and a processing word length of 16 bits, 
consumes ~110 slices. Consequently, we were able to fit 
in ~500 PEs on a Xilinx Virtex 4 LX160 -11 FPGA. 

We also compared our FPGA implementation with 
equivalent optimised software implementation running on 
the Dual-Core AMD OpteronTM processor 2218, and 
captured in C++. A set of 100 queries of 250 residues is 
chosen to align against the latest Swiss-Prot database [23] 
as a test bench. The processing time of a single core 
FPGA implementation was 188.4 seconds (i.e. 3min 8sec) 
while it was 28840 seconds (i.e. 8 hours 36sec) for the 
software implementation. This means that our FPGA 
implementation outperforms an equivalent software 
implementation by 150x. 

We also performed power consumption measurements 
for both hardware and software implementations, using a 
power meter. Factoring the execution time, the total 
energy consumed by our FPGA-based web server 
implementation was 2.09 Wh (i.e. 7542 Joule), whereas 
the software implementation consumed 360.5 Wh (i.e. 
1297800 Joule), for the same set of queries. This means 
that our FPGA-based web server implementation is 172x 
more energy efficient than the software implementation. 
This shows that FPGAs offer a high performance and low 
power platform for biological sequence alignment 
applications.  

It is worth noting that since the computation 
complexity of the software implementation grows 
quadratically  with the sequence sizes, while it grows 
linearly in the case of FPGA implementation, the more 
PEs we can fit on FPGAs, the better the speed up figure 
we get. 

5. Conclusion 

In this paper, we have presented the design and 
implementation of an FPGA-based web server for 
biological sequence alignment, where FPGA coprocessors 
are used for the acceleration of sequence alignment tasks. 
A demonstrator FPGA-based web server was 
implemented on an HP ProLiant DL145 server with a 
Celoxica RCHTX FPGA board containing one Xilinx 
Virtex 4 LX160-11 FPGA chip. Using a highly 
parameterisable FPGA skeleton for pairwise sequence 
alignment, our FPGA-based web server implementation 
outperformed an equivalent optimised software 
implementation of the Smith-Waterman algorithm by 
150x, while consuming 172x less energy. This shows 
FPGAs to be an efficient and efficacious computing 
platform for biological sequence alignment applications.  

The work presented in this paper is part of a bigger 
effort by the authors which aims to harness the 
computational performance and reprogrammability 

features of FPGAs in the field of Bioinformatics and 
Computational Biology. Future work includes the 
extension of the library of biological sequence analysis 
algorithms implemented on the server including profile 
HMM searches, various BLAST algorithm variations, and 
phylogenetic tree construction algorithms.  
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