
An FPGA-Based Web Server for High Performance Biological Sequence
Alignment

Ying Liu1, Khaled Benkrid1, AbdSamad Benkrid2 and Server Kasap1

1Institute for Integrated Micro and Nano Systems, Joint Research Institute for Integrated Systems,
School of Engineering, The University of Edinburgh, The King's Buildings, Mayfield Road,

Edinburgh, EH9 3J, UK
2 The Queen’s University of Belfast, School of Electronics, Electrical Engineering and Computer

Science, University Road, Belfast, BT7 1NN, Northern Ireland, UK
 (y.liu,k.benkrid)@ed.ac.uk

Abstract
This paper presents the design and implementation of the
FPGA-based web server for biological sequence
alignment. Central to this web-server is a set of highly
parameterisable, scalable, and platform-independent
FPGA cores for biological sequence alignment. The web
server consists of an HTML–based interface, a MySQL
database which holds user queries and results, a set of
biological databases, a library of FPGA configurations, a
host application servicing user requests, and an FPGA
coprocessor for the acceleration of the sequence
alignment operation. The paper presents a real
implementation of this server on an HP ProLiant DL145
server with a Celoxica RCHTX FPGA board. Compared
to an optimized pure software implementation, our
FPGA-based web server achieved a two order of
magnitude speed-up for a pairwise protein sequence
alignment application based on the Smith-Waterman
algorithm. The FPGA-based implementation has the
added advantage of being over 100x more energy-
efficient.

1. Introduction

Scanning genome and protein sequence databases is an
essential task in molecular biology. Biologists find out the
structural and functional similarities between a query
sequence and a subject database sequence by scanning the
existing genome or protein database sequences, with real
world applications in disease diagnosis, drug engineering,
bio-material engineering and genetic engineering of plants
and animals. There are numbers of biological sequence
alignment algorithms with various execution
speed/accuracy tradeoffs. Among these, we cite dynamic
programming based algorithms [2, 3], heuristic-based
algorithms [4, 5], and HMM-based algorithms [6].

The most accurate algorithms for pairwise sequence
alignment are exhaustive search dynamic programming
(DP)-based algorithms such as the Needleman-Wunsch

algorithm [2], and the Smith-Waterman algorithm [3].
The latter is the most commonly used DP algorithm
which finds the most similar pair of sub-segments in a
pair of biological sequences. However, given that the
computation complexity of such algorithms is quadratic
with respect to the sequence lengths, heuristics, tailored to
general purpose processors, are often introduced to reduce
the computation complexity and speed-up bio-sequence
database searching. The most commonly used heuristic
algorithm for pairwise sequence alignment, for instance,
is the BLAST algorithm [4]. In general, however, the
quicker the heuristic method is, the worse is the result
accuracy. Hence, accurate and fast alignment algorithms
need faster computer technologies to keep up with the
exponential increase in the sizes of biological databases
[1].

Field Programmable Gate Arrays (FPGAs) have been
proposed as a candidate technology to solve this problem
as they promise the high performance and low power of a
dedicated hardware solution while being reprogrammable.
Few commercial players are offering real customer
solutions for high performance FPGA-based sequence
analysis, the most prominent of which are TimeLogic,
Progeniq [7, 8] and Mitrionics [9]. TimeLogic, for
instance, offers FPGA-based desktop and server solutions
for biological sequence analysis applications. Progeniq on
the other hand offer mostly small FPGA-based
acceleration cards for workstations. Mitrionics offer an
FPGA-based server for the BLAST algorithm. Speed-up
figures reported by these companies are in the range x20-
x80. Nonetheless, these solutions are specific to the
hardware and software of choice, and hence do not offer
users the flexibility to migrate to other platforms.
Moreover, to the best of our knowledge, there is not any
academic-based FPGA server solution for biological
sequence analysis.

In this paper, we propose a flexible multi-process
FPGA-based web server for efficient biological sequence
analysis. An FPGA-based web server for pairwise
sequence alignment has been realised to demonstrate the

2009 NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3714-6/09 $25.00 © 2009 IEEE

DOI 10.1109/AHS.2009.59

361

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

benefits of our approach. Central to this server is a highly
parameterisable FPGA skeleton for pairwise bio-sequence
alignment using dynamic programming algorithms [10].

The remainder of this paper is organised as follows.
First, important background information on pairwise bio-
sequence alignment algorithms is briefly introduced in
section 2. After that, the design of our FPGA-based web
server is detailed in section 3. Section 4 then presents a
real hardware implementation of a generic DP-based
pairwise sequence alignment algorithm on an HP
ProLiant DL145 server with a Celoxica RCHTX FPGA
board, with detailed implementation results. Finally,
conclusions and plans for future work are laid out in
section 5.

2. Background

Biological sequences (e.g. DNA or protein sequences)
evolve through a process of mutation, selection, and
random genetic drift [11]. Mutation, in particular,
manifests itself through three main processes, namely:
substitution of residues (i.e. a residue A in the sequence is
substituted by another residue B), insertion of new
residues, and deletion of existing residues. Insertion and
deletion are referred to as gaps. The gap character “-“ is
introduced to present the alignment between sequences.
There are four ways to indicate the alignment between
two sequence s and t as shown below:

� � � �
� � � �
� � � � � �
� � � �.,

,,
,,

,,

sinbchatacterofinsertiondenotesb
tinbbysinaoftreplacemendenotesba

sinacharacterofdeletiondenotesa
ttosfromchangenomatchadenotesaa

�

�

For example, an alignment of two sequences s and t
(Figure 1) is an arrangement of s and t by position, where
s and t can be padded with gap symbols to achieve the
same length:

ATCACACAt
CCACACGAs

�
�

:
:

Figure 1. Denotations of the alignment between sequences
s and t

��� �� indicates a match,���� �� indicates the deletion
of G, ��� 	� indicates the insertion of T, and
��
� ���indicates the replacement of C by A. Gaps should
be taken into account when aligning biological sequences.

The most basic pairwise sequence analysis task is to
ask if two sequences are related or not, and by how much.
It is usually done by first aligning the sequences (or part
of sequences) and then deciding whether the alignment is
more likely to have occurred because the sequences are

related or just by chance. The key issues of the methods
are listed below [12]:

� What sorts of alignment should be considered;
� The scoring system used to rank alignments;
� The algorithm used to find optimal (or good)

scoring alignments;
� The statistical methods used to evaluate the

significance of an alignment score.
The degree of similarity between pairs of biological

sequences is measured by a score, which is a summation
of odd-log score between pairwise residues in addition to
gap penalties. The odd-log scores are based on the
statistical likelihood of any possible alignment of pairwise
residues, and is often summarised in a substitution matrix
(e.g. BLOSUM50, BLOSUM62, PAM). Figure 2 presents
a 20 by 20 substitution matrix called BLOSUM50 for
amino-acid residues, used for protein sequence
alignments.

Figure 2. The Blosum50 substitution matrix

The gap penalty depends on the length of gaps and is
often assumed independent of the gap residues. There are
two types of gap penalties, known as linear gaps and
affine gaps. The linear gap is a simple model with
constant gap penalty, denoted as:

Penalty(g) = -g*d,
where g is the length of gaps and d is the constant penalty
for each single gap. Affine gaps consist of opening gap
penalties and extension gap penalties. The constant
penalty value d for opening a gap is normally bigger than
the penalty value e of extending a gap. Affine gaps are
formulated as:

Penalty(g) = -d-(g-1)*e
Since it is often the case that a few gaps are as frequent as
a single gap, the affine gap model is much more realistic
than the linear gap model. The following however
presents dynamic programming algorithms in the case of

362

linear gaps for the sake of clarity. The extension to the
case of affine gaps is straightforward [12].
2.1 Dynamic Programming Algorithms

The Needleman-Wunsch (NW) and Smith-Waterman
(SW) algorithms are two widely used dynamic
programming algorithms for pairwise biological sequence
alignment. Needleman-Wunsch is a global alignment
algorithm, which is suitable for small sequences, as it
aligns the sequences from the beginning to the end. In the
case of longer sequences, Needleman-Wunsch introduces
too much gap penalty noises that reduce the accuracy of
the alignment. Hence, the Smith-Waterman algorithm is
used to avoid this problem by looking for similar
segments (or subsequences) in sequence pairs (the so-
called local alignment problem). In both cases, however,
an alignment matrix is computed by a recursion equation
with different initial values (see Equation 1 below for the
Needleman-Wunsch case, and Equation 2 in the case of
the Smith-Waterman algorithm). Here, an alignment
between two sequences X = {xi} and Y= {yj} is made.

� �1
.)1,(
,),1(

),()1,1-(
max),(

,

�
�

�
�

�

��
��

	�

djiF
djiF

yxsjiF
jiF

ji

� �2

.)1,(
,),1(

),()1,1(
0

max),(,

�
�
�

�
�
�

�

��
��

	��

djiF
djiF

yxsjiF
jiF ji

From the recursion equations, the alignment score is
obtained as the largest value of three alternatives:

� An alignment between xi and yj, in which case the
new score is F(i-1,j-1)+s(xi,yj) where s(xi,yj) is the
substitution matrix score or entry for residues xi
and yj.

� An alignment between xi and a gap in Y, in which
case the new score is F(i-1,j)-d, where d is the gap
penalty.

� An alignment between yj and a gap in X, in which
case the new score is F(i,j-1)-d, where d is the gap
penalty.

The dependency of each cell can be clearly shown in
Figure 3. Here, each cell on the diagonal of the alignment
matrix is independent of each other, which allows systolic
architectures to be introduced to increase the parallelism
and speed up the computation of dynamic programming
algorithms.

F(i-1,j-1) F(i,j-1)

F(i-1,j) F(i,j)

-d

-d

s(xi,yj)

Figure 3. Data dependency of dynamic programming
algorithms

As mentioned earlier, affine gap penalties provide a
more realistic model of the biological phenomenon of
residue insertions and deletions. The affine gap penalty is
defined using two constants d and e as follows:

Penalty(g)=-d-(g-1)*e, where g is the gap length.
Multiple values of each pair of residue (i,j) need to be
computed instead of just one in the affine gap case, with
recursive equations similar to the ones for linear gaps,
both for local and global alignment [12].

2.2 BLAST

The BLAST algorithm is a heuristic algorithm for
pairwise sequence alignment, developed by the National
Center for Biotechnology Information (NCBI). The basic
idea of NCBI BLAST is to find positions in the subject
sequences (the database) which are similar to certain
query sequences segments, allowing for insertion,
deletion and substitution. These positions are called High-
Scoring Pairs (HSPs), which are defined as pairs of
aligned segments of sequence pairs that generate an
alignment score above a certain threshold T. Starting with
these HSPs instead of computing the whole score matrix
for pairwise sequences result in substantial computational
savings, which makes BLAST searches faster than Smith-
Waterman, for instance, on general purpose processors.
In general, NCBI BLAST consists of three steps as
illustrated in Figure 4 below:

Figure 4 Steps employed by BLAST

363

Seed generation: A seed is a fragment of fixed length
W (W = 3 for protein sequences and W = 11 for DNA
sequences) from the query sequence. For a query
sequence of length M, the number of seeds generated is
M-W+1 as shown in Figure 5.

Figure 5. DNA Seed Generation

Hits finding: The second step in the BLAST algorithm
is to find matches (potential HSPs) between seeds and the
database stream. A substitution matrix is used for proteins
in order to obtain the substitution scores for pairwise
sequence segments. If the substitution score is above a
threshold T, the system considers these segments to be
High-Scoring Pairs (HSPs).

Hits extension: The final step is to extend the HSPs
found in the second step in both directions to complete the
alignment. The most widely used implementation of
BLAST looks at ungapped alignments only. Nonetheless
current versions of NCBI BLAST provide gapped
alignments too. The extension process terminates either
when it reaches the end of one sequence, or when the
score decreases sufficiently to a falloff parameter F [13].

NCBI BLAST is able to perform five different
similarity searches, namely BLASTn, BLASTp, BLASTx,
tBLASTn, and tBLASTx (see Table 1 below).

Table 1. Various searches of BLAST
Search
Name Query Type Database

Type Translation

BLASTn Nucleotide Nucleotide None

BLASTp Protein Protein None

BLASTx Nucleotide Protein Query

tBLASTn Protein Nucleotide Database

tBLASTx Nucleotide Nucleotide Both

BLASTn is a member of the BLAST program package
which searches DNA sequences against DNA database.
Due to the high degree of conservation in DNA sequences,
the High-Scoring Pairs in the second step of BLASTn are
the exact matches between query seeds and database
stream. BLASTp is the most widely used program for
aligning a Protein sequence against a Protein database.
Instead of finding exact matches, it looks for non-
identical pairs that generate high similarity scores by
using similarity substitution matrices, such as PAM and
BLOSUM62. One HSP stands for a pair of similar
fragments with a score above the threshold T.

The other three members of BLAST searches require
translation. A nucleotide sequence can be translated into
protein sequences in 6 different frames. Searches are
processed against all 6 frames to get the final BLAST
result.

3. Our Proposed FPGA-based Web Server
for Efficient Biological Sequence Alignment

Figure 6 presents our FPGA-based web server for
biological sequence analysis. The web server consists of
an HTML based web interface, a MySQL database for
storing the queries and results, a list of biological
sequence database, a database of FPGA configuration, a
host application that services user requests, and FPGA co-
processor(s) that accelerate the sequence alignment tasks.
The web interface takes all the parameters needed for one
unknown query as following:

� sequence symbol type i.e. DNA, RNA, or Protein
sequences

� Alignment task e.g. Smith-Waterman, Needleman-
Wunsch, BLASTn, BLASTp.

� Query sequence: Here the query sequence length
and the alignment task dictate the configuration(s)
to be downloaded to the FPGA(s), if need be.

� match score i.e. the score attributed to a symbol
match. This is supplied in the form of a
substitution matrix e.g. BLOSUM matrix.

� gap penalties: This could be either linear or affine.
The gap penalty is loaded to the FPGA co-
processor at run time.

� match score thresholds: e.g. the HSPs threshold T
and the fall-off parameter F in the case of the
BLAST algorithm.

When the user submits a query, a unique ID is given
for checking the result. A MySQL database is used to
store all query information with the unique ID into a
query list. The host application manages communications
between the MySQL database, sequence databases, and
FPGA configurations on the one hand, and the FPGA
coprocessor(s) on the other hand.

364

Figure 6. Proposed FPGA-based Web Server for Efficient Biological Sequence Alignment

The FPGA coprocessors are initially configured with
the most commonly used configurations by the host
application. The subject sequence databases are loaded
into host memory. When a query comes, the host
application will check if FPGA coprocessors need to be
reconfigured. Since many users might be requesting the
server at the same time, several processes would run
concurrently on the same FPGA chip, and/or across many
FPGA chips. Efficient partitioning and scheduling
algorithms need to be employed to minimize the average
user waiting time. After the configuration of the FPGA
co-processor(s), the host application processes the
incoming query set before sending it to FPGA
coprocessor, and configures the FPGA with query
coefficients according to the query sequence submitted.
The selected database sequences are sent from the host
memory to the FPGA processor(s) for the alignment
executions. At the end of processing, alignment results are
collected by the host application and stored into a result
list in the MySQL database. The users can obtain the
results through their unique ID via a web interface to the
MySQL database.

4. Real Implementation: an FPGA-based Web
Server for DP-based Pairwise Sequence
Alignment

In order to demonstrate our proposed FPGA-based

web server, we implemented a prototype web server on an
HP ProLiant DL145 server with a Celoxica RCHTX
FPGA board, and run a generic FPGA skeleton for DP-
based pairwise sequence alignment on it. The following
first describes our generic skeleton, before
implementation results are presented.

4.1 A Generic FPGA Skeleton for DP-based
Pairwise Sequence Alignment

Figure 7 presents a generic systolic architecture for
DP-based pairwise sequence alignment [14]. Each
processing array (PE) in the array consists of control logic,
coefficient RAM and computation logic.

Max
PE1 PE2 PEM

Subject sequence
and Control

Figure 7. Linear Processor Elements array architecture of
pairwise biological sequence alignment with single pass

Given the DNA sequences comprise only four
nucleotides, whereas protein sequences comprise fivefold
larger variety of sequence characters, it is much easier to
detect patterns of sequence similarity between protein
sequences than between DNA sequences [13]. Pearson
[14, 15, 16] has proven that searches with a protein
sequence encoded by a DNA sequence against a DNA

365

sequence database yield far fewer significant matches
than searches using the corresponding protein sequence.
Hence, we conducted the web server implementation on
Smith-Waterman algorithm for protein sequence and
extended it to all the variances of DP based bio-sequence
alignment. Figure 8 illustrates the PE
architecture/behaviour for a DP pairwise sequence
alignment algorithm with linear gap penalty. Control logic
separates the different database subject sequence
calculations. Coefficient RAMs are run-time
reconfigurable according to the query sequence in hand
(one column of substitution matrix coefficients are stored
in one RAM). Given that each coefficient is 2-bit wide for
DNA and 5-bit wide for proteins, and that there are 21
elements in one column, distributed memory on FPGAs is
used to implement the coefficient RAMs. The
computation logic is tailored to the parameters of dynamic
programming algorithms in hand, i.e. sequence type,
alignment type, gap penalty, etc.

Figure 8. Processor Element for pairwise biological
sequence alignment using the Smith-Waterman algorithm

As each processing element copes with one residue
from the query sequence, the computation complexity of a
single pass linear array of processing elements is reduced
from quadratic to linear, as denoted below:

����
� = � �
 � ���
where ����
� represents the number of clock cycles
spent on each query sequence with length � aligned to a
subject sequence database of � residues.

In the case of longer sequences, due to the possible
resource limitation of the FPGA chip in hand, our design
can be tailored to cope with this by folding the systolic
array and using several alignment passes instead of just
one, at the expense of longer processing time (Figure 9).
The complexity of the design with multiple passes is

denoted as:
����
� � �� � ������� �
 � ����������������������

where ������� presents the amount of passes that one
query needs. ������� is calculate as follows:

������� �� !"#$%&#'()*
+,-". /�����������������������������0�

where �1�23452�678 is the length of the query sequence,
and �9:��� is the maximum number of PEs that can be
fitted into the FPGA chip in hand. Hence, the single pass
design can be considered as a special case of multiple
pass design with �������� � � , which gives the best
throughput.

Subject sequence

and Control
Max

First Pass?

1
0

PE1 PE2 PE�PE�-1

FIFO
Intermediate results, subject

sequence and Control

Figure 9. Linear Processor Element (PE) array
architecture for pairwise biological sequence alignment

with multiple passes

The above described skeleton has been captured in
Handel-C, which makes it FPGA-platform independent.
Indeed, since our Handel-C description did not use any
specific FPGA resource or placement constraints, it can
be easily retargeted to a variety of FPGA platforms e.g.
from Xilinx and Altera.

Compared to previously reported FPGA-based
biological sequence alignment accelerators [18-22], our
FPGA-based web server solution has been designed to be
platform-independent with a service-based model of
operation in mind. Detailed comparison between our
implementation and previously reported FPGA-based
biological sequence alignment accelerators is presented in
[24].

4.2 Implementation Results
As mentioned above, our FPGA-based web server has
been targeted to an HP ProLiant DL145, which has an
AMD 64bit processor and a Celoxica RCHTX FPGA
board. The latter has a Xilinx Virtex 4 LX160-11 FPGA
chip on it. All data transfer between the host application
and FPGA coprocessor pass through the Hyper-Transport
interface and is supported by the DSM library in Handel-
C. Celoxica DK5 suite and Xilinx ISE 9.1i were used to
compile our Handel-C code into FPGA configurations
(bitstreams).

The performance of the resulting FPGA-based web
server is illustrated with a single core implementation of
the Smith-Waterman algorithm on the Virtex-4 FPGA,

366

using the Swiss-Prot Protein database as a sequence
database. A single processing element of a systolic array
implementing the Smith-Waterman algorithm with linear
gap penalty and a processing word length of 16 bits,
consumes ~110 slices. Consequently, we were able to fit
in ~500 PEs on a Xilinx Virtex 4 LX160 -11 FPGA.

We also compared our FPGA implementation with
equivalent optimised software implementation running on
the Dual-Core AMD OpteronTM processor 2218, and
captured in C++. A set of 100 queries of 250 residues is
chosen to align against the latest Swiss-Prot database [23]
as a test bench. The processing time of a single core
FPGA implementation was 188.4 seconds (i.e. 3min 8sec)
while it was 28840 seconds (i.e. 8 hours 36sec) for the
software implementation. This means that our FPGA
implementation outperforms an equivalent software
implementation by 150x.

We also performed power consumption measurements
for both hardware and software implementations, using a
power meter. Factoring the execution time, the total
energy consumed by our FPGA-based web server
implementation was 2.09 Wh (i.e. 7542 Joule), whereas
the software implementation consumed 360.5 Wh (i.e.
1297800 Joule), for the same set of queries. This means
that our FPGA-based web server implementation is 172x
more energy efficient than the software implementation.
This shows that FPGAs offer a high performance and low
power platform for biological sequence alignment
applications.

It is worth noting that since the computation
complexity of the software implementation grows
quadratically with the sequence sizes, while it grows
linearly in the case of FPGA implementation, the more
PEs we can fit on FPGAs, the better the speed up figure
we get.

5. Conclusion

In this paper, we have presented the design and
implementation of an FPGA-based web server for
biological sequence alignment, where FPGA coprocessors
are used for the acceleration of sequence alignment tasks.
A demonstrator FPGA-based web server was
implemented on an HP ProLiant DL145 server with a
Celoxica RCHTX FPGA board containing one Xilinx
Virtex 4 LX160-11 FPGA chip. Using a highly
parameterisable FPGA skeleton for pairwise sequence
alignment, our FPGA-based web server implementation
outperformed an equivalent optimised software
implementation of the Smith-Waterman algorithm by
150x, while consuming 172x less energy. This shows
FPGAs to be an efficient and efficacious computing
platform for biological sequence alignment applications.

The work presented in this paper is part of a bigger
effort by the authors which aims to harness the
computational performance and reprogrammability

features of FPGAs in the field of Bioinformatics and
Computational Biology. Future work includes the
extension of the library of biological sequence analysis
algorithms implemented on the server including profile
HMM searches, various BLAST algorithm variations, and
phylogenetic tree construction algorithms.

6. References

[1] Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell,
J., Rapp, B. A. and Wheeler, D.L. ‘Genbank’. Nucleic
Acids Res., 28, 15-18. 2000

[2] Needleman, S. and Wunsch, C. ‘A general method
applicable to the search for similarities in the amino acid
sequence of two sequences’, J. Mol. Biol., 48(3), (1970),
443-453

[3] Smith, T.F. and Waterman, M.S. ‘Identification of
common molecular subsequences’. Journal of Molecular
Biology, 147, 195-197, 1981

[4] Altschul, S. F., Gish, W., Miller, W., Myers, E.W. and
Lipman, D.J. ‘Basic Local Alignment Search Tool’,
Journal of Molecular Biology, 215, pp. 403-410, 1990

[5] Pearson, W.R. and Lipman, D.J. ‘FASTA: Improved tools
for biological sequence omparison’, Proceedings of the
National Academy of Sciences, USA 85, (1988), pp. 2444-
2448.

[6] HMMER user's guide: biological sequence analysis using
pro hidden Markov models. http://hmmer.wustl.edu (1998)

[7] Gollery, M., Rector, D., Lindelien, J, ‘TLFAM-Pro: A
New Prokaryotic Protein Family Database’,
http://www.timelogic.com/ , TimeLogic Corporation,2009

[8] ‘BioBoost for Bioinformatics’, http://www.progeniq.com/,
progeniq Private Limited, 2009

[9] ‘Mitrion-C Open bio-project’, http://www.mitrionics.com,
mitrionics, 2009

[10] Benkrid, K., Liu, Y., and Benkrid A., ‘Design and
Implementation of a Highly Parameterised FPGA-Based
Skeleton for Pairwise Biological Sequence Alignment’.
FCCM’07, pp. 275-278, 2007

[11] Harrison G. A., Tanner, J. M., Pilbeam D. R., and Baker, P.
T. 'Human Biology: An introduction to human evolution,
variation, growth, and adaptability', Oxford Science
Publications, 1988

[12] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G.,
‘Biological Sequence Analysis: Probabilistic Models for
Proteins and Nucleic Acids’, Cambridge University Press,
Cambridge UK, 1998

[13] Kasap, S., Benkrid, K., Liu, Y., ‘High performance FPGA-
based core for BLAST sequence alignment with the two-hit
method’, BioInformatics and BioEngineering 2008, pp. 1-
7, 2008.

[14] Mount D.W., ‘Bioinformatics: Sequence and Genome
Analysis’, Cold Spring Harbour Laboratory Press, Cold
Spring Harbour, New York, USA, 2001

[15] Pearson W.R., ‘Comparison of methods for searching
protein sequence databases’, 1995. Protein Science e. 4:
1150–1160.

[16] Pearson W.R., ‘Effective protein sequence comparison’,
1996, Methods Enzymol. 266: 227–258.

367

[17] Pearson W.R., ‘Flexible sequence similarity searching
with the FASTA3 program package’, 2000, Methods Mol.
Biol. 132: 185–219

[18] Yamaguchi, Y., Maruyama, T., and Konagaya, A. 'High
Speed Homology Search with FPGAs', Proceedings of the
Pacific Symposium on Biocomputing, pp.271-282, 2002.

[19] VanCourt, T. and Herbordt, M. C. 'Families of FPGA-
Based Algorithms for Approximate String Matching',
Proceedings of Application-Specific Systems,
Architectures, and Processors, ASAP’04, pp. 354-364,
2004

[20] Oliver, T., Schmidt, B. and Maskell, D. 'Hyper customized
processors for bio-sequence database scanning on
FPGAs', Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate
arrays

[21] Bojanic, S., Caffarena, G., Pedreira., C., and Nieto-
Taladriz, O., 'High Speed Circuits for Genetics
Applications', Proceedings of the 24th International
Conference on Microelectronics (MIEL 2004), Vol. 12, pp.
517-524, 2004

[22] Puttegowda, K., Worek, W., Pappas, N., Dandapani, A.,
and Athanas, P., 'A Run-Time Reconfigurable System for
Gene-Sequence Searching', Proceedings of the 16th
International Conference on VLSI Design VLSI’03, pp.
561–566,2006.

[23] http://www.uniprot.org/, Uniprot, 2008
[24] K. Benkrid, Y. Liu, A. Benkrid, A Highly Parameterised

and Efficient FPGA-Based Skeleton for Pairwise
Biological Sequence Alignment, IEEE Transactions on
Very Large Scale Integration Systems, v 17, p 561-570,
No. 4, 2009

368

