

DESIGN AND IMPLEMENTATION OF FPGA-BASED DNA SEQUENCE

ALIGNMENT ACCELERATOR

MOHD FIKRI BIN CHE HUSIN

A thesis submitted in

 fulfillment of the requirement for the award of the

Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering

Universiti Tun Hussein Onn Malaysia

DECEMBER 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/20350132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iv

ABSTRACT

Basic Local Alignment Search Tool (BLAST) is a standard computer application that

uses in the Bioinformatics field to search for sequence similarity in genomic

databases. This project describes a FPGA-based hardware implementation which

using a systolic array design architecture for Basic Local Alignment Search Tool

(BLAST). Before this designs detect at most one hit in one clock cycle, this design

applies a Multiple Hits Detection Module which is a pipelining systolic array to

search multiple hits in one clock cycle. This computationally intensive critical

segment has been designed and implemented in the FPGA that runs on Cyclone II

processor in the Altera DE 2 board. The concepts of portability, scalability and cost-

effectiveness of the implementation are also demonstrated from the results obtained.

v

ABSTRAK

Basic Local Alignment Search Tool (BLAST) ialah satu piawai aplikasi komputer

yang digunakan dalam bidang informasi bio untuk mencari kesamaan jujukan dalam

pengkalan data genom. Projek ini menerangkan pelaksanaan perkakasan berasaskan

FPGA yang menggunakan reka bentuk sistolik pelbagai untuk Basic Local Alignment

Search Tool (BLAST). Sebelum ini Sebelum reka bentuk ini mengesan paling

banyak satu hit dalam satu kitaran jam, reka bentuk ini menggunakan Modul

Pengesanan Pelbagai Hit yang mana reka bentuk sistolik pelbagai digunakan untuk

mencari hit berganda dalam satu kitaran jam. Pengiraan segmen kritikal intensif telah

direka dan dilaksanakan dalam FPGA yang berjalan pada pemproses Cyclone II di

dalam Altera DE 2. Konsep mudah alih, berskala dan keberkesanan kos pelaksanaan

juga ditunjukkan daripada keputusan yang diperolehi.

vi

CONTENTS

 TITLE i

 STUDENT’S DECLARATION ii

 ACKNOWLEDGMENT iii

 ABSTRACT iv

 ABSTRAK v

 CONTENTS vi

 LIST OF TABLES viii

 LIST OF FIGURES ix

 LIST OF SYMBOLS AND ABBREVIATIONS x

 LIST OF APPENDICES xi

CHAPTER 1 INTRODUCTION

1.1 Introduction 1

1.2 Objective of the Project 3

 1.3 Problem Statement 4

 1.4 Scope of Project 4

 1.5 Thesis Outline 4

CHAPTER 2 LITERATURE REVIEW

 2.1 Literature Review 6

2.2 List of Paper Review 9

vii

CHAPTER 3 METHODOLOGY

 3.1 Introduction 12

 3.2 System Block Diagram 14

 3.3 Multiple Hits Detection Module 16

3.3.1 Multiple Hits Detection Architecture 17

3.3.2 Behaviour Simulation Multiple Hits

Detection Module 19

3.4 Hits Combination Block 20

3.5 Parallel Architecture for Multiple Hits Detection

Module and Hits Combination Block 22

3.6 Ungapped Extension Block 23

CHAPTER 4 RESULTS AND DISCUSSION

 4.1 Introduction 25

4.2 Multiple Hits Detection Result 26

4.3 Hardware Performance Comparison 27

 4.3.1 Synthesis Performance 27

 4.3.2 Speed Performance 28

CHAPTER 5 CONCLUSIONS AND RECOMMENDATION

 FOR FUTURE WORKS

 5.1 Conclusions 30

5.2 Recommendation for Future Works 31

REFERENCES 33

APPENDIX 35

viii

LIST OF TABLES

3.1 3-bit binary description for nucleic acids in a DNA 19

4.1 Synthesis performance comparison between Tree-BLAST

and my project 28

4.2 Execution time of hardware and software 29

ix

LIST OF FIGURES

1.1 Molecular clocks four decades of evolution 3

3.1 Project Flowchart 17

3.2 BLAST algorithm with systolic array architecture 14

3.3 Block diagram of the simulated system 15

3.4 Two- dimensional systolic array 16

3.5 Architecture of the Multiple Hits Detection Module 17

3.6 Architecture of Processing Unit of Multiple Hits Detection Module

3.6 Hits Combination Block 21

3.7 Parallel Architecture Multiple Hits Finder Array and

Hits Combination Block 22

3.8 Ungapped Extension Block 23

3.9 Extension procedure 24

4.1 Systolic array 1 26

4.2 Systolic array 2 27

4.3 Speedup of the parallel FPGA architecture versus software version 29

x

LIST OF SYMBOLS AND ABBREVIATIONS

BLAST - Basic Local Alignment Search Tool

VHDL - Very High Speed Integrated Circuit Hardware Description

 Language

DNA - Deoxyribonucleic acid

FPGA - Field-programmable gate array

SDRAM - Synchronous dynamic random access memory

HSPs - Hit-scoring Sequence Pairs

http://en.wikipedia.org/wiki/Field-programmable_gate_array

xi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A 3 input And gate 35

B Array architecture 36

C Clock division 37

D Systolic Array Architecture 38

E Source Code 39

CHAPTER 1

INTRODUCTION

This chapter presents the introduction of the thesis, including with a short overview of

the design and implementation of FPGA-BASED DNA sequence alignment accelerator.

Furthermore, it details the aims of the project, continuing with the objective as well as

the scope of the project and finishing with the outline of the thesis.

1.1 Introduction

The discovery of sequence homology to a known protein or family of proteins often

provides the first clues about the function of a newly sequenced gene. As the DNA and

amino acid sequence databases continue to grow in size they become increasingly useful

in the analysis of newly sequenced genes and proteins because of the greater chance of

finding such homologies [1].

 With increasingly sophisticated technology in the field of Bioinformatics,

scientists and engineers have many options for applying the theories and methods such

as algorithms and computational simulations to transform genome into sequence digit

numbers.

For example, after sequencing the DNA of the organism, the researchers have a

passion for studying the function of genes and compared the gene sequences from

different organisms to obtain the similarity between them. The data will help researchers

discover new information about the new gene, knowing the function of genes, and

2

unlock the relationship between the organism. Previously, the researchers did a

comparison between the gene (queries) to a database of genes (sequences). This indeed

very time consuming process and the probability of errors along the process is very high.

Sequences for gene determines the function, so finding similar sequences can help to

determine the function of new sequences. Therefore, the compilation of a new sequence

comparison process is very dependent on a lot of the same sequence.

Blast (Basic Local Alignment Search Tool) [1] originated at the Washington

University in St. Louis, its development was continued by various institutions, whether

academic or industry. The blast is a tool used by researchers to find the local similarity

between sequences, such comparisons have been described previously. It compares the

sequence of nucleotides or protein sequence databases and calculates the statistical

significance of matches. The results of BLAST searches have a good statistical

interpretation, this makes the correct matching is easier to distinguish from random

background hits. Blast using a heuristic algorithm which searches for local rather than

global alignment is able to detect the correlation among sequences which share the

isolated region of similarity. However, various reports and journals confirm the fact that

this result is appropriate to define a significant finding. Since BLAST is based on the

heuristic algorithm, then it is not the most accurate tool in search of similarity, but it is

still a tool that is widely used by biologists due to the nature of the results produced.

3

Figure 1.1: Molecular clocks four decades of evolution [2]

To increase the speed of BLAST tools, systolic array architectures have been

used in combination with the parallel processing and pipelining in the design. Systolic

architecture is compiled and simulated by using Altera Quartus II and Cyclone II devices

targeted. Finally, the design is compared with each other to assess the performance of

the proposed architecture. Blast using systolic array architecture can increase the speed

of the search process better than conventional methods.

1.2 Objective of the Project

The intention of this research project is to design and implement a systolic array for

DNA sequence using the VHDL language. The requirement of this project is to speed

up the performance for the sequences. The objectives of the research are:

i. To explore the use of systolic array to accelerate sequence homology

search.

ii. To design Basic Local Alignment Search Tool (BLAST) algorithm using

the VHDL language.

iii. To implement the design using Quartus II with Cyclone II processor.

4

1.3 Problem statement

The evolution of automated DNA sequencing technologies, increasing the rate at

which DNA sequence data can be generated; the ability to assemble and analyse finished

DNA sequences from sequence fragment data has been identified as a bottleneck in

current large scale sequencing design. There is a lot of methods to do the sequencing,

but which one is better? The long fragment of data need amount of time to finish the

sequence alignment. So this project goal is to design systolic arrays for DNA sequence

with reducing the time for DNA sequence alignment and reduce the memory space for

analysing.

1.4 Scope of project

The scope of this project is to design and implement FPGA-based DNA sequence

alignment accelerator

1.5 Thesis Outline

This report is arranged and distributed into five chapters. Chapter 1 has presented a brief

introduction of the project mainly about DNA and Bioinformatics field, the problem

statements, the objectives of the project and its scope, and the limitations identified

using the proposed approach.

Chapter 2 of the dissertation includes a literature survey related to this project as

per referred to previous studies and results obtained by past researchers. It also contains

some important findings from past, researchers such as a review of existing database

search algorithms presentations. Their respective advantages and disadvantages, with

specific reference to the DNA sequence alignment, are discussed.

Together with the literature review carried out in Chapter 2, has helped with the

search for systolic array architecture that could potentially improve performance and

cost. Chapter 3 provides a methodology in how this project is conducted in sequence. It

5

also includes the development Multiple Hits Detection Module, Hits Combination Block

and Ungapped Extension Block.

Chapter 4 contains the results and findings of the project. A simulation is run on

a systolic array architecture for BLAST algorithm and hardware performance are

compared with other architecture. Simulation result is analysed and studied.

Lastly is chapter 5 where this chapter concludes the dissertation. It presents a

summary of research achievements together with a discussion of their significance.

Some recommended future work also presented in this chapter.

CHAPTER 2

LITERATURE REVIEW

1.1 Introduction

Needleman-Wunsch algorithm is an algorithm used in Bioinformatics for protein or

nucleotide sequence alignment. The discovery of this algorithm by Saul B.

Needleman and Christian D. Wunsch in 1970 [3] was the big breakthrough in the use

of dynamic programming, and was first used in dynamic programming for biological

sequence comparison. These algorithms provide the optimal outcome of flesh. This

algorithm is a global sequence.

In a rare alignment, nucleic acids in the x matched either nucleic acids or with

a gap in y and vice versa for example, the sequence GAATTC and Gatta should be

aligned according to the following scoring rules. Starting score = 0, match = 2,

mismatch = -1, gap = -2. The following equation must be satisfied to get the best

score:

As a result of the global alignment technique introduced by Needleman and

Wunsch, a new alignment technique was introduced by Smith and Waterman to

identify the same molecules but this technique on local alignment [4]. Smith-

Waterman algorithm combines evolutionary insertions and deletions techniques with

network functions. After the Gotoh introducing new techniques based on the Smith-

7

Waterman algorithm to make a few modifications that consider fine gap penalties

and techniques are still in use.

 Smith-Waterman algorithm is a more detailed and based on a dynamic

programming algorithm. It compares the sequence of functions based on local

alignment in order to find data matches between the two sequences. Part of the

Smith-Waterman algorithm is used to compute the optimal local alignment of two

sequences. This procedure consists of two steps, fill in the dynamic programming

matrix and find the maximum value (score) and trace back the patch that leads to the

maximum score for finding the optimal alignment.

Smith-Waterman search base is the comparison of the two DNA sequences. It

used pairwise comparisons between individual characters such as an equation:

The BLAST algorithm was used as a popular search algorithm to find the

queries against a database of biological sequences [5]. BLAST is used to make

comparisons between the biological sequence data, such as the amino acid sequence

of each protein or nucleotides of DNA sequences. A BLAST search enables a

researcher to compare a query sequence with a database of sequences, and identify

library sequences that resemble the query sequence above a certain threshold.

Another method for sequencing purpose maybe give optimal alignment such as

Smith-Waterman [4] and Needleman- Wunsch [3] algorithms. Both are more

sensitive than BLAST but it has taken a long time to search for the pattern, because

of that BLAST is introduced to get better speed and reduce the time. BLAST

algorithm is heuristic and gives sub-optimal results; it’s different from other

exhaustive dynamic programming algorithms that have optimal results. But the result

from the BLAST algorithm still can be used for the sequencing purposes. Exhaustive

algorithms typically have a complexity of O (mn) while heuristic algorithms usually

have a complexity of O (n) [6] where m is the size of database sequence and n is the

size of query sequence. The execution times for sequence alignment are very

important for the researcher because the size of bio sequence databases has grown

8

exponentially over the years. BLAST is very popular because of high execution

speed.

Based on 3 database search algorithms [3], [4] and [5], BLAST was chosen

for this project because of the speed, Needleman-Wunsch and Smith-Waterman

algorithms are good for sensitivity but result from BLAST still acceptable for the

sequence alignment purpose.

For architectural design Cge, S. etl [8] said special purpose processors

designed to speed up compute-intensive sections of applications. Two extreme

endpoints in the spectrum of possible accelerators are FPGAs and GPUs, which can

often achieve better performance than CPUs on certain workloads. FPGAs are highly

customizable, while GPUs provide massive parallel execution resources and high

memory bandwidth.

Since systolic model proposed by Kung [9]. Methods of solution for

demanding problems and performance potential has attracted great attention. The

systolic computation rate is limited by IO operations array, the heart of controlling

the flow of blood to the cells because it is a source and a destination for all blood.

Systolic arrays have been balanced. Uniform grid such as architecture in which each

line shows the communication path and each intersection represents a cell or a

systolic element, however, is more of a systolic array processor array that perform

systolic algorithms. Systolic arrays composed of elements that take one of the forms;

use a special cell with a hardwired function, vector - computer, such as a cell with

command decoding and processing unit and processor equipped with a control unit

and processing units.

Altera Corporation [10] already present implementations of the Smith-Waterman

algorithm for both DNA and protein sequences on the platform. A multistage

processing element (PE) design which significantly reduces the FPGA resource

usage and allows more parallelism to be exploited; a pipelined control mechanism

with uneven stage latencies a key to minimize the overall PE pipeline cycle time.

In all cases, the systolic elements or cells adapted to local communication

intensive and based parallelism. Because the array is made up of cells only one or, at

most, a wide range, it has the usual features and ease. Array usually extensible with

minimal difficulty. Three factors have contributed to the evolution of various systolic

into the main approach to handle computationally intensive applications: advances in

technology, processing concurrency, and demanding scientific applications.

9

1.2 List of Paper Review

NO RESEARCHER TITLE METHOD/DESCRIPTIONS ADVANTAGES

1 Stephen F.

Ailtshcul,

Warren Gish,

Webb Miller,

Eugene W.

Myers, David J.

Lipman

Basic local

alignment

search tool

1. The maximal

segment pair

measure
2. Rapid

approximation of

scores

3. Implementation

The concept underlying

BLAST is simple and

robust and therefore

can be implemented in

a number of ways and

utilized in a variety of

contexts.

2 Kasap, S. ,

Benkrid, K.,

Ying Liu

High

performance

FPGA-based

core for

BLAST

sequence

alignment with

the two-hit

method

The design and implementati

on of a high performance

FPGA-

based core for BLAST

sequence alignment with the t

wo-hit method.

Real

hardware implementati

ons show that

our core is 52 times

faster than equivalent

software implementatio

ns, on average

3 Needleman, S.

and Wunsch, C.

A general

method

applicable to

the search for

similarities in

the amino acid

sequence of

two sequences

A computer adaptable

method for finding

similarities in the amino acid

sequences of two proteins has

been developed. From these

findings it is possible to

determine whether significant

homology exists between the

proteins. This information is

used to trace their possible

evolutionary development.

Comparisons are made

from the smallest unit

of significance, a pair

of amino acids, one

from each protein. All

possible pairs are

represented by a two-

dimensional array, and

all possible

comparisons are

represented by

pathways through the

array.

4 Smith, T.F. and

Waterman, .S.

Identification

of Common

Molecular

Subsequences

A new alignment technique

was introduced by Smith and

Waterman to identify the

same molecules but this

technique on local alignment.

Based on Needleman

and Wunsch algorithm

but just focus on local

alignment. Better speed

than Needleman and

Wunsch.

5 Herbordt, M.C.,

Model, J., Gu,

Y.F., Sukhwani,

B. and

VanCourt, T.

Single Pass,

BLAST-Like,

Approximate

String

Matching on

FPGAs

Approximate string matching

(ASM) is a fundamental

operation of Bioinformatics

• High performance ASM is

important not only for

everyday queries, but also for

integration as a subroutine

into larger applications

• HW BLAST has been

challenging because it

depends on random access

into GB scale databases

More information

about BLAST can get

from this paper.

http://ezproxy.unimap.edu.my:2080/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kasap,%20S..QT.&searchWithin=p_Author_Ids:37409088300&newsearch=true
http://ezproxy.unimap.edu.my:2080/search/searchresult.jsp?searchWithin=p_Authors:.QT.Benkrid,%20K..QT.&searchWithin=p_Author_Ids:37273494800&newsearch=true
http://ezproxy.unimap.edu.my:2080/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ying%20Liu.QT.&searchWithin=p_Author_Ids:37675738300&newsearch=true

10

6 Euripides

Sotiriades,

Christos

zozanitis,

Apostolos

Dollas

FPGA based

architecture for

DNA sequence

comparison and

database search

This research is about

BLAST algorithm. The new

architecture was fully

designed, placed and routed.

The post place-and-route

cycle-accurate simulation,

accounting for the I/O, shows

a better performance than a

cluster of workstations

running highly optimized

code over identical datasets.

More specifically this

implementation

contains several

memories which have

been all implemented

using BRAMs.

7 F. Zhang, X-Z.

Qiao, Z-Y. Liu

A parallel

Smith-

Waterman

algorithm based

on divide and

conquer

Develop a new parallel

Smith-Waterman algorithm

using the method of divide

and conquer, named PSW-

DC

Memory space required

in the new parallel

algorithm is reduced

significantly in

comparison with

existing ones. A key

technique, named the

C&E method, is

developed for

implementation of the

new parallel Smith-

Waterman algorithm.

8 Cge, S., Li, J.,

Sheadder, J.W.,

Skadron, K.

And Lach, J.,

Accelerating

Computer-

Intensive

Applications

With GPUs and

FPGAs

Special purpose processors

designed to speed up

compute-intensive sections of

applications. Two extreme

endpoints in the spectrum of

possible accelerators are

FPGAs and GPUs, which can

often achieve better

performance than CPUs on

certain workloads. FPGAs

are highly customizable,

while GPUs provide massive

parallel execution resources

and high memory bandwidth.

Perform a comparative

study of application

behaviour on

accelerators

considering

performance and code

complexity. Based on

results, present an

application

characteristic to

accelerate platform

mapping, which can

aid developers in

selecting an

appropriate target

architecture for their

chosen application.

11

9 Xia, F., Dou, Y.

and Xu, J.Q.,

Families of

FPGA-Based

Accelerators

for BLAST

Algorithm with

Multi-seeds

Detection and

Parallel

Extension

Propose a systolic array

approach to detect string

matches without using

lookup tables. The pipelining

systolic array is implemented

as a multi-

seeds detection and parallel

extension pipeline engine to

accelerate the first two

stages of NCBI BLAST famil

y algorithms.

Achieves superior

performance results in

both of processing

element

number and clock

frequency over related

works in the

area of FPGA BLAST

accelerators.

10 Altera

Corporation

Implementation

of the Smith-

Waterman

Algorithm on a

Reconfigurable

Supercomputin

g Platform

Present implementations of

the Smith-Waterman

algorithm for both DNA and

protein sequences on the

platform.

A multistage

processing element

(PE) design which

significantly reduces

the FPGA resource

usage and allows more

parallelism to be

exploited; a pipelined

control mechanism

with uneven stage

latencies—a key to

minimize the overall

PE pipeline cycle time;

and a compressed

substitution matrix

storage structure,

resulting

CHAPTER 3

METHODOLOGY

3.1 Introduction

It is a well known fact that the most important step in the research process is to define

the problem as well as discussed the methods of study. Research methods are referring

to how the researcher gets the information and analysed the result based on the research

objective. At this point, the information and details of the flowchart sequence on how

the project is performed and an explanation of each step is also provided.

 For this project, Altera Quartus II 9.1 is used to perform the simulations in order

to apply the design architecture for the systolic array architecture. ModelSim- Altera

10.1d provided a waveform based on simulation results from Quartus II. Quartus II also

model of block diagrams can be created. This project focuses on the design and

implementation of FPGA-BASED DNA sequence alignment accelerator. The DNA

sequence alignment in this project uses systolic array architecture to increase the speed

of sequential processes.

13

Product

Requirement

Define Specification

Initial Design

Simulation

Design

Correct?

Implementation

Testing

Meet

Specification

Finish

Product

Minor

Error

Make correction

Redesign

NO

NO

NO
YES

YES

Figure 3.1: Project Flowchart

Figure 3.1 shows that at the early stage, the project starts by gathering

information or literature research of the project. It starts by searching about the

sequencing method, type of architecture to get optimal results and software that to be

used in order to gain more knowledge about the project. As a result of this research, a

suitable method and architecture is obtained to get better speed for sequencing the DNA

from the database. All of the activities are organized in the literature review part.

14

The next stage is writing the VHDL code and performing the compilation using

the Quartus II and doing the simulations in the ModelSim-Altera working platform.

Several different types of sequencing method are simulated with their own architecture.

If there is an error, the coding needs to recheck and make the correction in order to

produce good output. Finally, the system is applied to the analysis of DNA databases

and compared it with a previous sequencing method to see the differences. The final

stage is a report writing for this project.

3.2 System Block Diagram

A block diagram as shown in Figure 3.1 is basically the flow of this project. It

consist of three main parts, writing VHDL code for BLAST algorithm, designing

systolic array architecture and implementation of Altera DE2-70 FPGA board. These

three parts are the main systems that will be focusing on this project.

Figure 3.2: BLAST algorithm with systolic array architecture

A 4x4 systolic

array

BLAST Algorithm

array

Altera DE2-70

15

Figure 3.3: Block diagram of the simulated system

From Figure 3.2 shows DNA sequence alignment system with a systolic array

architecture consists of three layers. The top layer is a host computer which runs Altera

Quartus II and ModelSim for design and simulation purpose. The middle layer consists

of two SDRAM. The basic layer is the systolic array-based parallel architecture fitted

on FPGA. The main part of this system is the basic layer because all sequencing and

comparing process occurs in this layer.

 For the top layer of the system, an HP Compaq 8200 Elite desktop computer with

Intel Core i5 microprocessor and 4GB RAM to run the host software. In the middle later,

two 1 GB SDRAMs are attached to the FPGA where the basic layer is located.

The basic layer is the systolic array-based parallel architecture that implements

the BLAST algorithm. This layer mapped to the Cyclone II chip on the Altera DE2

FPGA board. This layer contains six blocks with various functions. The Initialization

Set & Data Control Block is used to initialize the status of the registers for the Hit

Finder Array and to forward subject sequence as well as a query sequence to the Hit

Finder Array. The Query Sequence Memory storing query sequence is constructed from

16

internal block RAMs. The four other blocks implement the three steps of the BLAST

algorithm in parallel. Hits Finder Arrays can detect multiple hits per clock cycle. The

Hits Combination Blocks can find combinable overlapping hits and combine them. For

example, it can find adjoined overlapping hits “TGA” and “GAC” then combine them

into “TGAC”. Ungapped Extension Blocks extend ungapped hits in both directions until

the score meets a thread value T. Gapped Extension Block extension gapped on Hit-

scoring Sequence Pairs (HSPs) through an exhaustive algorithm. The block outputs

HSPs and alignment scores.

3.3 Multiple Hits Detection Module

The first approach towards a parallel implementation of a Multiple Hits

Detection Module is by using two-dimensional systolic arrays. With some analysis of

the data and the way systolic array synchronization process data, a two-dimensional

implementation was designed. A common systolic array structure is the rectangle to be

more appropriate based on way data has flowed and the operations to process

computationally intensive tasks. The two-dimensional architecture of systolic array as

shown in Figure 3.3.

Figure 3.4: Two-dimensional systolic array

17

Arrows represent directions of data flowing. In this architecture, data flow

synchronously across two-dimensional network, usually with different data flowing in

different directions. Each unit at each step takes in data from one or more neighbour (up

and right), processes the data, and in the next step outputs results in the opposite

direction (down and left).

3.3.1 Multiple Hits Detection Architecture

 Multiple Hits Detection Module is used to detect 3-word hits and record hits

addresses on the query and the subject sequence. This design can detect more than one

hits in only one cycle, that is why less time is used. The architecture of Multiple Hits

Detection Module is shown in Figure 3.4.

R

E

G

I

S

T

E

R

16

bits

R

E

G

I

S

T

E

R

16

bits

31

30

29

28

3

2

1

0

CLOCK

(16:1)

Hits

Information

Extraction

Unit

Hits

Information

Extraction

Unit

q
u

e
ry

 s
e

q
u

e
n

c
e

s
u

b
je

c
t
s
e

q
u

e
n

c
e

q
u

e
ry

 s
e

q
u

e
n

c
e

s
u

b
je

c
t
s
e

q
u

e
n

c
e

hit address in query

hit address in

subject

hit address in query

hit address in

subject

Figure 3.5: Architecture of the Multiple Hits Detection Module

18

From the Figure 3.4, the systolic array has 32 processing units, every three units

are connected to one 3-input AND gates. Every 16 gates outputs are connected to 16-bit

register. The value of both registers is sent to the corresponding Hits Information

Extraction Units for recording the hits address in the query and the subject sequence. For

this system a Clock Division Block coordinates the systolic array and the Hits

Information Extraction Units.

A whole system start when a query sequence with 32 characters is forwarded into

the systolic array that means each processing unit holds a character from the query

sequence. Then the subject sequence drove into the systolic array by each internal clock

rising edge. Meanwhile, the incoming subject character and the query character which is

held by the unit are compared, if they are identical, the logic ‘1’ would be generated and

otherwise, and the logic ‘0’ would be generated. The comparison result is an input of a

3-input AND gate. Every three processing units, maps to an AND gate. A hit is detected

when the logic ‘1’ is generated from its output. So, the systolic array with 3-input AND

gates can detect multiple hits at one internal clock rising edge. The architecture of the

processing unit in the systolic array is illustrated in Figure 3.5.

Figure 3.6: Architecture of Processing Unit of Multiple Hits Detection Module

In implementation, 20 3-bit long binary numbers (“001” to “100”) are defined to

present 4 nucleotides in a DNA. Shift registers are able to shift characters in the adjacent

processing unit so that the query and the subject sequence can go through the systolic

array. When a new character from the query or the subject sequence is shifted into the

unit, the corresponding id register would increase its value by 1. Each processing unit of

the systolic array will compare two characters in it at each internal clock rising.

19

The Multiple Hits Detection Module is a parallel, pipelined architecture. The

systolic array with 32 processing units cooperates with 32 3-inputs AND gates to detect

hits in both sequences. The responsibility of Hits Information Extraction Block is

recording those hits’ locations. The two processes in the module are driven by two

clocks.

3.3.2 Behaviour Simulation Multiple Hits Detection Module

Several experiments were made to the behaviour simulation of Multiple Hits Detection

Module. 3-bit binary represents one kind of nuclide acid in a DNA. Table 3.1 describes

the names of nucleic acid and their 3-bit binary.

Table 3.1: 3-bit binary description for nucleic acids in a DNA

Name of the nucleotide acid Acronym 3-bit binary

Guanine G 001

Adenine A 010

Thymine T 011

Cytosine C 100

Multiple Hits Detection Module is actually a systolic array-architecture. Several

experiments were designed to show the correctness of the behaviour function of the

architecture. For example:

CTATGATGATAAATGATTATATAATCATTACG-> Query sequence

ATTAATTGAACTCATATTTATATAATAAGCGA-> Subject sequence

In order to show hits positions clearly, three systolic array statuses in which hits are

existing are listed as below. Each character in query sequence is in one processing unit

of the systolic array, each character in subject sequence is being forwarded into the

systolic array.

20

 Systolic array status 1:

 Query: GCATTACTAATATATTAGTAAATCAGAGTAGT

Subject: TTA

Hit address in a query sequence is 16 and subject sequence is 2.

Systolic array status 2:

 Query: GCATTACTAATATATTAGTAAATAGTAGTATC

Subject: AGCGAATAATATATTTATACTCAAGTTAATTA

Hit address in a query and subject sequence is 25.

3.4 Hits Combination Block

The Multiple Hits Detection Module may output a large amount of hits per clock

cycle if there is high similarity between query and subject sequence. Ungapped

Extension Block is relatively slower than Multiple Hits Detection Module and the

systolic array in this situation. Hence, the speed between both stages is unbalanced.

From the previous research [10] [11] suggested that in many cases there is a high

similarity between the query sequence and the subject sequence. Overlapping occurred

will waste execution cycle for Multiple Hits Detection Module and consumes additional

extension time for Ungapped Extension Block because one hits extended twice. For

example, two adjacent hits “ATC” and “GAT” are found, but they are actually only one

hit “GATC”. This hit will be recorded twice in Multiple Hits Detection and extended

twice in Ungapped Extension Block. That is why the implementation of Hits

Combination Block is needed because it can detect the overlapping hits and merge them

to reduce verbose its and maintain the sensitivity of BLAST.

21

This block contains an Hits (First In First Out) FIFO buffer which is used to store

hits location addresses from both query and subject sequence. The algorithm

implementation engine executes hits combination algorithm the forward the hit

addresses and hit length of the Ungapped Extension Block. The data flow in this block is

shown in Figure 3.6.

Figure 3.6: Hits Combination Block

The arrows show how the order of the Hit addresses in the Hits FIFO buffer. For

example, the address “ATC” should be stored in the FIFO buffers first, then the “GAT”.

The combination algorithm is triggered when there is more than one record in the Hits

FIFO buffer. Here, the hit addresses in subject sequence are recorded and forwarded to

the following operations. First, the algorithm implementation engine calculates the

ending address of the earth and (i+1) the hit in the subject sequence. For this project the

22

starting address is the address which is recorded minus 1, because the recorded address

is the address of the middle word in a 3-word hit. The ending address is the address of

the last character in a sequence, so (Ending address = Starting address + (sequence

length -1)). Here, the sequence length is equal to 3. Then a comparison between ith hit’s

ending address and (i+1)th hit’s starting address is performed. If ith hit’s ending address

is greater than or equal to the (i+1)th hit’s starting address, there will be an overlap

between two hits. The algorithm can determine new addresses in both subject sequence

and query sequence of the merged hit and calculate its length. Then the algorithm

records the new address and hit length at the ith place in Hit’s FIFO buffer. If ith hit’s

ending address is less than the (i+1)th hit’s starting address, the (i+1)th hit address will

be chosen to be compared with (i+1)th hit address. This operation continues until the

Hits FIFO buffer is empty.

3.5 Parallel Architecture for Multiple Hits Detection Module and Hits

Combination Block

The speed for hit detection can be increased if Multiple Hits Detection Module

can work together with Hits Combination Block in parallel architecture that shown in

Figure 3.7.

Figure 3.7: Parallel Architecture Multiple Hits Finder Array and Hits Combination

Block

23

The large systolic array contains many Multiple Hits Detection Modules. Each

module matches one Hits Combination Block, each of which records and combines hits

detected by its mapped module. After that, it sends the hits information to a local hits

FIFO. Then FIFO Combination modules combine hits FIFOs and deliver hits

information to larger hits FIFOs. In this architecture, Multiple Hits Detection Modules

are connected in a serial way to extend the array comparison size. Each Hits

Combination Block map for a Multiple Hits Detection Module so that each block can

detect overlapping hits and merge them simultaneously. The parallel implementation

trades on-chip resource for speed.

3.6 Ungapped Extension Block

 This block implements the ungapped extension step of the BLAST algorithm.

Hits information will be stored by FIFO. The score matrix BLAST Nucleotide Matrix is

applied to find the alignment score for a pair of words. If this block detects a hit in a

FIFO, the address of the hit word in query sequence and subject sequence and the hit

length would be extracted from the FIFO to compute both extension points. After this

step, the Ungapped Extension Algorithm Implementation Engine can finish the

ungapped extension step. The data flow in the Ungapped Extension Block is shown in

Figure 3.8.

Figure 3.8: Ungapped Extension Block

24

From the figure, the hits information is entered the FIFO. Addresses of hits in query

sequence and subject sequences included in this information. The algorithm

implementation engine will calculate the start points of the extension in the query

sequence and the subject sequence.

-3

6

15

6

-3

 Query A G G T T A C

T=15

-4 -4 5 5 5 -4 -4

 Subject T T G T T C T

G G T T A

T=7

-4 5 5 5 -4

T T G T T C T

 Figure 3.9: Extension procedure

32

REFERENCES

1. Stephen F. Ailtshcul, Warren Gish, Webb Miller, Eugene W. Myers, David J.

Lipman (1990), Basic local alignment search tool, Journal of Molecular

Biology, Volume 215, Issue 3, pp. 403-410.

2. Sudhir Kumar (2005), Molecular clocks: four decades of evolution, Nature

Reviews Genetics, Volume 6, pp. 654-662.

3. Needleman, S. and Wunsch, C. (1970), A general method applicable to the

search for similarities in the amino acid sequence of two sequences”, Journal

of Molecular Biology, Volume 48(3), pp. 443-453.

4. Smith, T.F. and Waterman, M.S.,“ Identification of Common Molecular

Subsequences”, Journal of Molecular Biology, Volume 147, pp 195-197.

5. Altschul, S. and Madden T. (1981), “Gapped BLAST and PSI-BLAST: a

new generation of protein database search programs”, Nucleic Acids Res,

Volume 25 (17), pp. 3389-402.

6. Herbordt, M.C., Model, J., Gu, Y.F., Sukhwani, B. and VanCourt, T. (2006),

“ Single Pass, BLAST-Like, Approximate String Matching on FPGAs”, 14
th

Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, pp. 217-226.

7. F. Zhang, X-Z. Qiao, Z-Y. Liu (2002), “A parallel Smith-Waterman

algorithm based on divide and conquer,” ICA3PP ’02.

8. Needleman, Saul B. and Wunsch, Christian D. (1970), “ A general method

applicable to the search for similarities in the amino acid sequence of two

proteins”. Journal of Molecular Biology, Volume 48, pp. 443-453

9. H.T. Kung. (1982), “Why Systolic Architectures?”Cotnpurer, Volume 15. No.

1, pp. 37-46.

10. Rao, A.A. And Visakhapatanam (2007), “ A Tool for 8m, kilo Pairwise

Alignment Algorithm”, Management Review: An International Journal,

Volume 2 (1), pp. 28-40.

11. Cge, S., Li, J., Sheadder, J.W., Skadron, K. And Lach, J. (2008), “

Accelerating Computer-Intensive Applications With GPUs and FPGAs”,

Symposium on Application Specific Processors, pp. 101-107.

http://www.nature.com/nrg/journal/v6/n8/full/nrg1659.html

33

12. Xia, F., Dou, Y. and Xu, J.Q. (2008), “Families of FPGA-Based Accelerators

for BLAST Algorithm with Multi-seeds Detection and Parallel Extension”,

CCIS 13, pp. 43-57.

13. M.C. Herbordt, J. Model, Gu Yongfeng, B. Sukhwani and T. VanCourt

(2006), “Single Pass, BLAST-Like, Approximate String Matching on

FPGAs”, Proc. 14th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines , pp. 217–226.

14. S.A.M Al Junid, Z. Abed Majid, A.K Halim (2008), “Development of DNA

Sequencing Accelerator based on Smith-Waterman Algorithm with Heuristic

Divide and Conquer Technique for FPGA Implementation”. ICA3 23.

15. F. Zhang, X-Z. Qiao, Z-Y. Liu (2002), “ A parallel Smith-Waterman

Algorithm based on divide and conquer”, ICA3 02.

16. T. Oliver T Oliver, B Schmidt, D Maskelll. (2005) “Hyper Customized

Processors for Bio-Sequence Database Scanning on FPGAs”, Proceedings of

the ACM/SIGDA 13th international symposium on Field programmable gate

arrays (FPGA), pp 229 – 237.

17. Sidhu, R.; Prasanna, V.K. (2001) “Fast Regular Expression Matching Using

FPGAs”, Proceedings of the 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pp 227 – 238.

18. Hutchings, B.L.; Franklin, R.; Carver, D. (2002),” Assisting network

intrusion detection with reconfigurable hardware”, Proceedings of the 10th

Annual IEEE Symposium on Field- Programmable Custom Computing

Machines, pp 111-120.

19. S. Guccione and Eric Keller.(2002), “Gene Matching Using JBits”.

Proceedings of the 12th International Conference on Field- Programmable

Logic and Applications, Lecture Notes In Computer Science; Volume 2438,

pp 1168-1171.

20. K. Muriki, K.D Underwood, R. Sass (2005). “RC-BLAST: Towards a

Portable, Cost-Effective Open Source Hardware Implementation”,

Proceedings 19th IEEE International Symposium Parallel and Distributed

Processing (IPDPS), pp 196b-196b.

21. Sotiriades, E.,Dollas (2007),’A General Reconfigurable Architecture for the

BLAST Algorithm’, Journal of VLSI Signal Processing; Volume 48, pp 189–

208.

http://scholar.google.com/citations?user=fUxQceoAAAAJ&hl=en&oi=sra

34

22. D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, D.L. Wheeler,(

2005), “GenBank, Nucleic Acids Res.”, Jan 1; Volume 33 (Database

issue):D34-8,.

23. Jacobi, R.P., Ayala-Rinc´on, M., Carvalho, L.G.A., Llanos, C.H.,

Hartenstein, R.W., (2005) “Reconfigurable systems for sequence alignment

and for general Dynamic programming.” Genetics and Molecular Research,

4. Volume 3, pp. 543–552.

24. G. Tempesti, D. Mange, A. Stauffer, and C. Teuscher., (2002),” The BioWall:

An electronic tissue for prototyping bio-inspired systems.” Proceedings of

2002 NASA/DoD Conference on Evolvable Hardware, IEEE, pp. 221–230.

25. Kuon, I. and Rose, J. (2007), “Measuring the gap between FPGAs and

ASICs.” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 26.Volume 2, pp. 203–215.

26. Malhis, N., Butterfield, Y.S.N., Ester, M., and Jones, S.J.M., (2009), “Slider

maximum use of probability information for alignment of short sequence

reads and SNP detection.” Bioinformatics Volume 25, pp.1- 6.

27. Trapnell, C. and Salzberg, S.L., (2009), “How to map billions of short reads

onto genomes.” Nature biotechnology Volume 27. pp. 5- 455.

28. T.Oliver, B. Schmidt, Y. Jakop and D.L. Maskell, (2006), “Accelerating the

Viterbi algorithm for profile Hidden Markov Models using reconfigurable

hardware”. Lecture Notes in Computer Science, Springer-Verlag, Volume

3991, pp. 522–529.

29. Y. Yamaguchi, Y. Miyajima, T. Maruyama and A. Konagaya, (2002), “High

speed homology search with FPGAs”. In Pacific Symposium on

Biocomputing, pp. 271– 282.

30. D. J. Lipman and W. R. Pearson, (1985), "Rapid and Sensitive Protein

Similarity Searches," Science, Volume 227, pp. 1435-41.

