1,167 research outputs found

    A model-based approach for combined tracking and resolution enhancement of faces in low resolution video

    Get PDF
    Wide area surveillance situations require many sensors, thus making the use of highresolution cameras prohibitive because of high costs and exponential growth in storage. Small and low cost CCTV cameras may produce poor quality video, and high-resolution CCD cameras in wide area surveillance can still yield low-resolution images of the object o

    Synthesis and Control of High Resolution Facial Expressions for Visual Interactions

    Full text link
    The synthesis of facial expression with control of intensity and personal styles is important in intelligent and affective human-computer interaction, especially in face-to-face inter-action between human and intelligent agent. We present a facial expression animation system that facilitates control of expressiveness and style. We learn a decomposable genera-tive model for the nonlinear deformation of facial expressions by analyzing the mapping space between low dimensional embedded representation and high resolution tracking data. Bilinear analysis of the mapping space provides a compact representation of the nonlinear generative model for facial expressions. The decomposition allows synthesis of new fa-cial expressions by control of geometry and expression style. The generative model provides control of expressiveness pre-serving nonlinear deformation in the expressions with simple parameters and allows synthesis of stylized facial geometry. In addition, we can directly extract the MPEG-4 Facial Ani-mation Parameters (FAPs) from the synthesized data, which allows using any animation engine that supports FAPs to ani-mate new synthesized expressions. 1

    Modeling 3D articulated motions with conformal geometry videos (CGVs)

    Get PDF
    Singapore National Research Foundatio

    Qualitative Characterization of Deforming Surfaces

    Get PDF

    Visibility computation through image generalization

    Get PDF
    This dissertation introduces the image generalization paradigm for computing visibility. The paradigm is based on the observation that an image is a powerful tool for computing visibility. An image can be rendered efficiently with the support of graphics hardware and each of the millions of pixels in the image reports a visible geometric primitive. However, the visibility solution computed by a conventional image is far from complete. A conventional image has a uniform sampling rate which can miss visible geometric primitives with a small screen footprint. A conventional image can only find geometric primitives to which there is direct line of sight from the center of projection (i.e. the eye) of the image; therefore, a conventional image cannot compute the set of geometric primitives that become visible as the viewpoint translates, or as time changes in a dynamic dataset. Finally, like any sample-based representation, a conventional image can only confirm that a geometric primitive is visible, but it cannot confirm that a geometric primitive is hidden, as that would require an infinite number of samples to confirm that the primitive is hidden at all of its points. ^ The image generalization paradigm overcomes the visibility computation limitations of conventional images. The paradigm has three elements. (1) Sampling pattern generalization entails adding sampling locations to the image plane where needed to find visible geometric primitives with a small footprint. (2) Visibility sample generalization entails replacing the conventional scalar visibility sample with a higher dimensional sample that records all geometric primitives visible at a sampling location as the viewpoint translates or as time changes in a dynamic dataset; the higher-dimensional visibility sample is computed exactly, by solving visibility event equations, and not through sampling. Another form of visibility sample generalization is to enhance a sample with its trajectory as the geometric primitive it samples moves in a dynamic dataset. (3) Ray geometry generalization redefines a camera ray as the set of 3D points that project at a given image location; this generalization supports rays that are not straight lines, and enables designing cameras with non-linear rays that circumvent occluders to gather samples not visible from a reference viewpoint. ^ The image generalization paradigm has been used to develop visibility algorithms for a variety of datasets, of visibility parameter domains, and of performance-accuracy tradeoff requirements. These include an aggressive from-point visibility algorithm that guarantees finding all geometric primitives with a visible fragment, no matter how small primitive\u27s image footprint, an efficient and robust exact from-point visibility algorithm that iterates between a sample-based and a continuous visibility analysis of the image plane to quickly converge to the exact solution, a from-rectangle visibility algorithm that uses 2D visibility samples to compute a visible set that is exact under viewpoint translation, a flexible pinhole camera that enables local modulations of the sampling rate over the image plane according to an input importance map, an animated depth image that not only stores color and depth per pixel but also a compact representation of pixel sample trajectories, and a curved ray camera that integrates seamlessly multiple viewpoints into a multiperspective image without the viewpoint transition distortion artifacts of prior art methods
    • …
    corecore