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T.C. Lukins and R.B. Fisher
School of Informatics

University of Edinburgh
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Abstract

This paper extends the idea of classification schemes for
static surface curvature into the temporal domain. We seek
to identify regions in sequences of depth data that exhibit
variations in shape change, and to characterise the nature
of the deformation. From observing the change in prin-
ciple curvatures we show how it is possible to decouple
the type of change into one of fifteen classes, and also re-
veal the extent of alteration. Results are presented for syn-
thetic and real data sequences, with additional alignment
performed to accommodate global motion. This technique
shows promise in analysing data from video-rate range sen-
sors, with potential applications in biometric and psycho-
logical analysis of the face and other deformable objects.

1. Introduction

The study of shape is most often referred to as morpho-
metrics [4]. This has traditionally been the domain of bio-
logical taxonomy, broadly divided into biometric and geo-
metric based approaches. The biometric approach seeks to
identify specific landmarks and compare the measurements
between them (e.g. by using the Procrustes transform). In
contrast, the more modern geometric approach tries to pre-
serve a more complete description of the shape (e.g. by
using thin-plate spline and Finite Element Model based rep-
resentations). The aim in both cases is to provide quanti-
tative assessment of the variability of form in response to
other experimental conditions. This must take account of
the fact that the description of solid form is itself fundamen-
tally not only a property of the object, but is also based upon
the operation (method) or representation (model) used [8].
A common problem is then in recognising the same concep-
tual terms in order to express equivalence, given that there
are many different examples of a particular shape. Such
formalism is particularly relevant when we seek to not only
capture, but to also describe the dynamic nature of the tran-
sitions between forms.

In this paper we introduce a vocabulary and a computa-
tional technique that makes explicit the deformations of a
surface over time. We show that this can be used to dif-
ferentiate between the type of deformation and the extent
of change. In so doing, we maintain that this produces a
compact representation of dynamics for qualitative charac-
terisation of deforming surfaces. The calculations for this
can be performed by applying techniques from differential
geometry to 4D data sequences.

1.1. Capturing Deformation

A great deal of the work in capturing dynamic shape in
Computer Vision is concerned with medical imaging. In
particular, for describing the alteration in morphology for
various organs of the body over time - especially the brain
and heart. Such work is mostly based on volumetric data
from MRI or CAT scans that must first be segmented and
registered. In particular, the alignment of data must at-
tempt to accommodate those regions which have actually
deformed, as opposed to those area that have remained con-
stant. In this respect, the local properties of the surface can
be useful in identifying change - for example normals and
curvature - and can be used to refine the fitting between
scans [5]. The non-linear nature of natural tissue makes sub-
sequent modelling particularly hard to achieve, most com-
monly employing Finite Element Models [14] and displace-
ment fields [6] to track and capture the deformation.

Another popular domain that seeks to model deformation
is the analysis of the human face. Research in this field is
based primarily on data gained from 3D acquisition, again
with the initial focus in fitting a representative model in or-
der to accommodate registration. If the alignment is correct,
then comparing two different scans can be made, where in-
variant properties of the surface can again be particularly
useful in recognising the same person regardless of expres-
sion. For example, by using shape curvature to find features
for an initial coarse alignment between two facial scans, be-
fore then refining the match with the Iterative Closest Point
algorithm in order to identify the person [11].
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A more holistic approach can compare two faces using
the thin plate spline representation (common in geometric
morphometrics) to estimate the actual non-rigid displace-
ment vector field, and so delineate the deformation and iso-
late areas that have not changed [12]. In such approaches,
the emphasis is again focused on tracking the correspon-
dences between multiple scans of an object. Other work
for ensuring accurate comparative analysis of scans relates
back to more landmark oriented schemes, coupled to phys-
ical elasticity modelling as a natural extension to biometric
morphometrics [20].

The modelling of dynamic deformations over shorter
(millisecond) timescales can be further related to this prob-
lem of tracking the motion of corresponding points. In im-
age based techniques it is common to use optic flow, with
the possibility to decompose the resulting vector fields into
component elements - such as gradient, divergence and curl
- that reveal something of the type of motion [9]. How-
ever, the extension of these techniques into 3D (for example
via scene and range-flow [16]) currently serve to only cap-
ture localised changes. In this respect, hybrid flow based
techniques [13], as well as harmonic maps [17], can be em-
ployed to help constrain the newly emerging 4D capture
technologies for space-time reconstruction [19]. This has
lead to the possibility of video-rate capture of range data
for new commercial and academic systems [18].

While these recent advances allow for capture of actual
dynamic surfaces, there has not been much work to date
that seeks to analyse, nor describe, the observed deforma-
tions. Indeed, we note in general that there is an absence
of common terminology, or any complete geometric defini-
tion. This motivates to to focus on producing a simplified
and more symbolic technique for presenting the dynamics
of the data in a meaningful and accessible way.

1.2. Static Curvature Descriptions

The curvature of a surface is an intuitive idea to describe
the nature of shape and deviation from flatness of an embed-
ded manifold in R

3. In more formal differential geometry
terms these properties are defined by considering the local
intersection of a tangent plane with the surface at a fixed
point. Varying the orientation of this plane around a nor-
mal vector will reveal two orthogonal extrema - represent-
ing the two principal curvature values (κ1 and κ2) and the
directions at which they occur as the principal directions.

Exploiting this viewpoint invariant basis for curvature
has a long history of use in Computer Vision as a means
of object recognition. The most widely known scheme
was introduced by Besl in 1986 based on a mean (H =
1

2
(κ1 + κ2)) and Gaussian (K = κ1 ∗ κ2) curvature based

segmentation for 8 possible - and 1 impossible - shape clas-
sifications [2].

While this discretization to a subset of shapes is use-
ful, such a scheme loses the means to describe the
degree to which the surface is actually curved, and
the progression in shape. In response to this Koen-
derink proposed an alternative polar based representa-
tion which directly decouples a continuous shape (S =
2

π arctan ((κ1 + κ2)/(κ1 − κ2))) from an independent
value of curvedness (C =

√

(κ2

1
+ κ2

2
)/2) [10] - as shown

in figure 1. Both the H +K and S +C techniques continue
to have many applications in analysing static range/depth
data from scenes, and inspire us to consider how they might
be extended to apply over time.

Peak Ridge Saddle Valley Pit

Figure 1. Shape and curvedness.

2. Formulation

We propose a natural extension to the classification of
surface deformation by observing the variation of the prin-
cipal curvature values over time. As illustrated in the pre-
vious section, various classification schemes are available
for describing a static surface. In particular, the primary 6
classes of prototypical shape which are possible via com-
parison of the relative signs for the principal curvatures κ1

and κ2 are shown in Table 1.

κ1 < 0 κ1 = 0 κ1 > 0

κ2 < 0

concave
ellipsoid
(“pit”)

concave
cylinder

(“valley”)

hyperboloid
(“saddle”)

κ2 = 0

concave
cylinder

(“valley”)

plane
(“flat”)

convex
cylinder
(“ridge”)

κ2 > 0

hyperboloid
(“saddle”)

convex
cylinder
(“ridge”)

convex
ellipsoid
(“peak”)

Table 1. Shape classes based on κ1 and κ2.



Initial Shape: κ1 < 0 κ1 = 0 κ1 > 0

Dynamic Change: ∆κ1 < 0 ∆κ1 = 0 ∆κ1 > 0 ∆κ1 < 0 ∆κ1 = 0 ∆κ1 > 0 ∆κ1 < 0 ∆κ1 = 0 ∆κ1 > 0

∆κ2 < 0 Subside Squeeze Squeeze Collapse Fold Dimple Crumple Crumple Warp
κ2 < 0 ∆κ2 = 0 Squeeze Constant Squeeze Collapse Constant Dimple Crumple Constant Crease

∆κ2 > 0 Squeeze Squeeze Flatten Collapse Flatten Dimple Flatten Crease Crease

∆κ2 < 0 Collapse Collapse Collapse Subside Fold Warp Dent Dent Dent
κ2 = 0 ∆κ2 = 0 Fold Constant Flatten Fold Constant Bend Flatten Constant Bend

∆κ2 > 0 Dimple Dimple Dimple Warp Bend Protrude Bulge Bulge Bulge

∆κ2 < 0 Crumple Crumple Flatten Dent Flatten Bulge Flatten Stretch Stretch
κ2 > 0 ∆κ2 = 0 Crumple Constant Crease Dent Constant Bulge Stretch Constant Stretch

∆κ2 > 0 Warp Crease Crease Dent Bend Bulge Stretch Stretch Protrude

Table 2. The 15 types of deformation based on change in principal curvatures from initial shape.

For these classifications to work, it is often necessary
to define the zero boundary regions with a threshold (κ =
0 ⇐⇒ −θshape < κ < θshape). If one then considers the
alteration of κ1 and κ2 over time, then the transitions that
can occur from one prototype to another, and the dynamic
relationships between the classes, can be visualised as the
graph shown in Figure 2.

Flat

Peak

Ridge

Saddle

Valley

Pit

Protrude

Flatten Flatten

Subside

Stretch

Bulge

Bend

Warp

FlattenFlatten

Squeeze

Collapse

Dimple Crease

Warp

Fold
Bend

Crumple Dent

Subside Protrude

Fold

Flatten

Figure 2. Transitions between shapes.

It is evident from Figure 2 that it is firstly impossible
for some shape classes to deform into others without first
transitioning through an intermediate form (e.g. for a peak
to turn to a valley, it must first become flat, or else move
from a ridge to a saddle). Secondly, it can be realised that
there are only a limited number of types of transition:

• Those that typify, and exemplify further, the formation

of a prototype (e.g. “protrude” a peak, “subside” a
pit, “fold” a valley, “bend” a ridge, “warp” a saddle).

• Those that move the opposite way from the prototype
towards flat (e.g. “flatten”).

• Those bi-directional transitions that are also applicable
only between neighbouring non-flat prototypes (e.g. to
“squeeze” a pit to form a valley, to “collapse” a valley
to form a pit, to “dimple” a valley to form a saddle,
to “crumple” a saddle to form a valley, to “crease” a
saddle to form a ridge, to “dent” a ridge to form a sad-
dle, to “bulge” a ridge to form a peak, and “stretch” a
peak to form a ridge).

• Those shapes that do not make any transition - as they
have no observable change in curvature (e.g. they are
“constant”).

This results in a total of 15 different deformation classes,
which we formalise as the type of deformation:

T ∈ [1, ..., 15] (1)

that can occur over any given duration as defined by the
relative change in the principal curvatures ∆κ1 and ∆κ2.
These are shown formally in the extended Table 2 - indi-
cating the transitions that can occur from each initial shape
class (c.f. Table 1). As with the initial shape classes, in or-
der to define the zero boundary region we employ a thresh-
old term (∆κ = 0 ⇐⇒ −θchange < ∆κ < θchange).

We furthermore define the extent of change (E) to mea-
sure the degree to which this deformation occurs over the
duration as based on the Koenderink “curvedness” value:

E =

√

∆κ2

1
+ ∆κ2

2

2
. (2)



3. Calculation

In the following sections, we illustrate how ∆κ1 and
∆κ2 can be calculated robustly. We assume here that
incoming data forms a sequence of 2.5D depth-maps
Z(x, y, t) which can be re-projected into R

3 - such that
there is a neighbouring “patch” of associated data around
any given point. Many other techniques rely on an under-
lying topology or triangulation to determine this neighbour-
hood - and can use the same underlying curvature estima-
tion based on those representations (e.g. [7]). However, we
instead directly exploit the array structure of the raw data
depth-map.

3.1. Temporal Registration

We first compensate for global motion in intra-sequence
frames. We assume here that any such motion is minimal,
given that the data has been captured at a suitably fast frame
rate, or has already been externally aligned. We wish to
register on the basis of those rigid portions of the data, so
as to highlight any deformation. In essence, we are seek-
ing to address the issue of local registration in establishing
the correspondence between points on the surface between
frames (so that their curvature values may be compared).

We use the Iterative Closest Point algorithm [1] to min-
imise the Tukey M-estimator error distance between the two
frames represented the data Z(x, y, t) and Z(x, y, t + 1)
projected into R

3. By using a Tukey operator we seek to
only allow the best possible fitting for a subset to the data
(we remove the 50% greatest distances outright) in order to
reject outliers points caused by deformation. Having a fit-
ting, we then project the final registered point back via the
first frame camera for the resulting depth data alignment of
frame Z(x, y, t + 1).

3.2. Quadric Fitting

In order to calculate the curvature at every point, we de-
sire an analytic description of the surface. For this purpose
we fit a second order polynomial - a quadric - to the neigh-
bourhood of each point. We simplify the process by seeking
to align the quadric in the principal frame, at the origin with
the normal aligned on the z-axis. This allows us to focus on
fitting only an “extended” quadric (as opposed to the full 10
coefficient generalised form):

z = ax2 + bxy + cy2 + dx + ey. (3)

We iteratively refine the fitting as the following [15]:

1. Take a patch of data around a point: [X,Y, Z] .

2. Translate the patch by its mean to the origin.

3. Fit a plane to the patch to derive initial normal.

4. Align the patch normal to the z-axis.

5. Perform a Least Squares fitting of the patch to the
quadric:

[

X2, XY, Y 2, X, Y
]

[a, b, c, d, e]
>

= z.

6. Derive a new normal: [−d, e, 1]
>

/(1 + d2 + e2).

7. Repeat from step 4 until normal aligned: d = e = 0.

A further advantage in using quadrics is that they can im-
plicitly smooth through their minimisation to underlying
data while fitting. Noise in the data is accommodated down
to the level of scale at which true features can be fitted by the
quadric. This can be further employed to effectively down-
sample particularly dense data, as dictated by the distance
between sample points, and the size of the surrounding data
patch.

3.3. Static Curvature Calculation

The calculation of curvature for the quadric at a point in
frame Z(x, y, t) can be derived from the first 3 coefficients
of the fitted extended quadric (Eq. 3) at that point, such that:

κ1 = (a + c) + ((a − c)2 + b2)1/2 (4)

and
κ2 = (a + c) − ((a − c)2 + b2)1/2. (5)

3.4. Temporal Curvature Change

Given a sequence of aligned frames at each time-step t
for κ1(x, y, t) and κ2(x, y, t) then for a particular instance
the temporal integration can be calculated for a window of
duration d. Firstly by a convolution (denoted with ?) with
a 1D Derivative of Gaussian (Dt) filter in the t dimension,
then by spatial integration via convolution with Gaussian
filters (Gx,y) in the x and y dimensions as follows:

∆κ1(x, y, t) = Gx ? Gy ? Dt ? κ1(x, y, t ± d/2) (6)

and similarly:

∆κ2(x, y, t) = Gx ? Gy ? Dt ? κ2(x, y, t ± d/2). (7)

For both convolutions we employ a Gaussian window
with standard-deviation equal to 1. The window width d is
the same both spatially and temporally over the period of in-
tegration. This is to accommodate larger motion which will
potentially travel further and extend beyond the limit of the
local registration. Ultimately, relying on convolution will
lead to aliasing failure for motion that extends over longer
intervals (and so requiring more advanced tracking).



4. Experimentation

Results of using the above calculations as the basis for
determining the extent and type of deformation are pre-
sented. In all cases, the processing was performed “off-
line” on an 3GHz Intel Pentium IV with 1GB of RAM,
taking 5−60 minutes to run in Matlab depending on down-
sampling and quadric patch size. We set θshape and θchange

experimentally according to the scale of the data, and in or-
der to best capture the range of deformation.

4.1. Synthetic Data

To numerically verify and illustrate our formulation, we
first apply the calculation to synthetically generated data -
as shown in Figure 3 below. Both sequences are generated
over 5 frames at a resolution of 500×500, with no additional
global motion. We down-sample and fit to this data at every
3rd point with a 7 × 7 quadric (producing a final result of
166 × 166 - which is more efficient to process).

In sequence (a) the data is generated from a sinusoidal
wave with increasing amplitude of 0.1 every frame. We set
the thresholds θshape = 1.0 and θchange = 0.00001 to ef-
fectively define all initial shapes as locally flat, and only
verify the effects of altering the principal curvatures. The
extent of change then shows the simultaneous increase in
shape change toward the maximal bends in the surface. The
types of deformation are also shown correctly to be primar-
ily of bending and folding, with slight boundaries of buck-
ling where the transition is made.

In sequence (b) we consider a 2D Gaussian with stan-
dard deviation σ = 0.05. This is scaled in z over the se-
quence by a factor of 0.1 between frames, using the same
thresholds as above. The extent of change here nicely shows
the differential increases expected, particularly large to-
wards the apex of the data. For the types of deformation,
the flat region round the peak is labelled as protruding, with
folding then occurring as the relative angle between peak
and base increases. The sides of the peak then suffer warp-
ing/bending as the peak protrudes further and increases the
elongation of the surrounding curvatures.

4.2. Real Data

A dense stereo capture rig constructed from two cam-
eras was calibrated and used in “burst” mode to capture a
sequence from subjects making a number of basic expres-
sions. These were sampled at 2.5 frames per second for a
duration of 1.6 seconds - for a total of 4 images. Follow-
ing this, dense stereo recovery was performed on each pair
of simultaneous images to create a single high resolution
2048 × 3072 pixels frame of depth data. Additional mask-
ing of the data by removing any blue background, followed
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Figure 3. Synthetic data for expanding sinu-
soidal wave (a) and Gaussian peak (b).

by down-sampling to every 15th point with a 121 × 121
neighbouring patch (≈ 1cm2 in the original data) fitted to
a quadric. We use thresholds θshape = 1.0 × 10−9 and
θchange = 1.0 × 10−5 to define the zero boundaries.

The results for extent and type as shown in Figure 4 re-
veal deformations that exemplify the areas of the face that
alter for particular expressions. In the examples of happi-
ness shown in (a) and (b), it is the regions round the mouth,
nose and eyes that vary the most. This is most prominent in
the relative extent of change, which clearly shows a smile
forming. The distributions of types of deformation show a
very similar pattern between subjects - as further revealed
by comparing the histograms.

Similarly, in the examples of surprise as shown in (c)
and (d), it is the brows which are seen to move in the char-
acteristic upward direction, with ridges and valleys forming.
Large portions of the face are also more constant, particu-
larly around the cheeks. The extent of change again shows
this most clearly, while the distribution of types indicates
the occurrence of more bending and folding.

The Bhattacharyya distance [3] between the normalised
histograms of (a) and (b) is 0.0875, and between (c) and
(d) it is 0.2123. Conversely, between (a) to (c) it is 0.4230
and 0.4627 to (d). From (b) it is 0.4155 to (c) and 0.4852
to (d) respectively (0.0 = similar, 1.0 = dissimilar). This
provides evidence that we are measuring consistent patterns
of shape change for the two expressions.
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Figure 4. Real data extent and type of deformation for happiness (a)(b), and surprise (c)(d).



5. Conclusion

We have proposed a temporal extension of static curva-
ture analysis, which uses initial and variations in the prin-
ciple curvature values to characterise the type and extent
of deformation (T + E). This serves to provide a simple
and compact separation of 15 different classes. The control
offered by the thresholding values allows us to specify the
bearing that the initial shape and amount of change has on
these categories.

However, while the results for real data are promising,
they could be improved. Fundamentally, there is the crucial
aspect of point-to-point surface correspondence between
frames, especially over greater intervals of duration. Com-
bining surface characteristics (flow, colour, texture, etc.)
within a global constraining topology - could enable more
robust tracking and local registration of points as they move
and deform.

The inherent multi-resolution nature of complex sur-
faces could also be addressed by some form of hierarchical
quadric fitting. Additionally, other types of rotational defor-
mation (e.g. twisting and expanding) could be determined
from the changes in the principal directions. This could be
calculated within a more rigorous mathematical framework
that takes advantage of the changes occurring in the first and
second fundamental forms.

In general, this promises to be a useful technique that
can be employed when analysing data captured from novel
video-rate 4D systems at higher-frame rates (with a suitable
lag for integration). This would still be performed “off-line”
(as per the example results above), but could be substan-
tially faster using optimised, compiled versions of the algo-
rithm. We hope to improve and build on this work to further
investigate the automatic classification of faces along the
variational axes of both form and intensity, with the possi-
ble identification of particular expressions using a statistical
(eigenfaces) approach.
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