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ABSTRACT

Cui, Jian PhD, Purdue University, May 2015. Visibility Computation through Image
Generalization. Major Professor: Voicu Popescu.

This dissertation introduces the image generalization paradigm for computing

visibility. The paradigm is based on the observation that an image is a powerful tool

for computing visibility. An image can be rendered efficiently with the support of

graphics hardware and each of the millions of pixels in the image reports a visible

geometric primitive. However, the visibility solution computed by a conventional

image is far from complete. A conventional image has a uniform sampling rate which

can miss visible geometric primitives with a small screen footprint. A conventional

image can only find geometric primitives to which there is direct line of sight from

the center of projection (i.e. the eye) of the image; therefore, a conventional image

cannot compute the set of geometric primitives that become visible as the viewpoint

translates, or as time changes in a dynamic dataset. Finally, like any sample-based

representation, a conventional image can only confirm that a geometric primitive is

visible, but it cannot confirm that a geometric primitive is hidden, as that would

require an infinite number of samples to confirm that the primitive is hidden at all of

its points.

The image generalization paradigm overcomes the visibility computation limi-

tations of conventional images. The paradigm has three elements. (1) Sampling

pattern generalization entails adding sampling locations to the image plane where

needed to find visible geometric primitives with a small footprint. (2) Visibility sam-

ple generalization entails replacing the conventional scalar visibility sample with a

higher dimensional sample that records all geometric primitives visible at a sampling

location as the viewpoint translates or as time changes in a dynamic dataset; the

higher-dimensional visibility sample is computed exactly, by solving visibility event

equations, and not through sampling. Another form of visibility sample generalization

is to enhance a sample with its trajectory as the geometric primitive it samples moves

in a dynamic dataset. (3) Ray geometry generalization redefines a camera ray as the

set of 3D points that project at a given image location; this generalization supports
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rays that are not straight lines, and enables designing cameras with non-linear rays

that circumvent occluders to gather samples not visible from a reference viewpoint.

The image generalization paradigm has been used to develop visibility algorithms

for a variety of datasets, of visibility parameter domains, and of performance-accuracy

tradeoff requirements. These include an aggressive from-point visibility algorithm

that guarantees finding all geometric primitives with a visible fragment, no matter how

small primitives image footprint, an efficient and robust exact from-point visibility

algorithm that iterates between a sample-based and a continuous visibility analysis of

the image plane to quickly converge to the exact solution, a from-rectangle visibility

algorithm that uses 2D visibility samples to compute a visible set that is exact under

viewpoint translation, a flexible pinhole camera that enables local modulations of

the sampling rate over the image plane according to an input importance map, an

animated depth image that not only stores color and depth per pixel but also a

compact representation of pixel sample trajectories, and a curved ray camera that

integrates seamlessly multiple viewpoints into a multiperspective image without the

viewpoint transition distortion artifacts of prior art methods.
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1 INTRODUCTION

The visibility problem has been studied since the very early days of computer graphics,

yet visibility remains an important an active research area. The computation of the

set of geometric primitives that are visible from a viewpoint or a view region is

central to many computer graphics, visualization, and computer vision applications.

At first, due to computing power and storage limitations, visibility computation was

limited to finding the geometric primitives visible from a given viewpoint, in order to

render the geometric dataset from that viewpoint with correct hidden-surface removal.

As graphics algorithms and their hardware implementation have advanced, research

has begun to focus on visibility computation in order to achieve effects such as soft

shadows, reflections and motion blur. Soft shadows can be rendered efficiently if

one can quickly determine the geometric primitives to which there is direct line of

sight from a point within an area light source. Reflections can be rendered efficiently

if one can quickly compute the set of geometric primitives that can be reached by

reflected rays. Motion blur requires finding all geometric primitives that are visible

at an output image pixel over the exposure time interval of the virtual camera used

render the scene.

As the size of computed and acquired data grows exponentially, solving visibility

becomes both more challenging and more important. Technology advances enable the

simulation and acquisition of complex phenomena with ever increasing accuracy. The

resulting data volume increase surpasses our ability to analyze, transmit, and visualize

data. Fortunately, many of the data queries benefit from data locality, which means

that they can be answered by consulting only a small fraction of the entire dataset. In

many instances, the visible set is several orders of magnitude smaller than the entire

dataset. The reduced size of the visible set makes data analysis, transmission, and

visualization tractable.

Another important motivation for studying the visibility problem is the prolifer-

ation of thin Internet-connected computing platforms, such as laptops, tablets, and

smart phones, which have become the platform of choice for many applications. The

platform does not have the storage and processing capabilities to handle a large
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dataset and remote visualization is needed. One remote visualization approach is

to render each frame at the server and to transfer the frame to the client where it

is displayed. However, such an approach incurs the delay of traversing the network

twice, once to communicate to the server the parameters of the desired frame, and

once to receive the frame. The resulting latency limits the interactivity of the visual-

ization. The network latency can be avoided if one computes and transfers a visible

set sufficient to reconstruct visualization frames for a range of view parameters. Each

frame is rendered at the client, from the visible set, with good interactivity.

Although the visibility problem can be solved, in theory, with computational

geometry approaches such as the Aspect Graph, the O(n9) complexity for general

scenes makes these solutions impractical for todays datasets which can contain billions

or even trillions of geometric primitives. An image is a powerful way of approximating

visibility. One can render an image quickly with the help of massively parallel GPUs,

and each image pixel reports a visible geometric primitive. However, the visibility

computation power of a conventional image is limited by the images uniform sampling

rate, single viewpoint, and single time point.

We eliminate the visibility computation limitations of conventional images through

image generalization. We have used the image generalization visibility paradigm to

develop fast quality-guaranteed approximate visibility algorithms and efficient exact

visibility algorithms (chapter 2), images with pixels that do not only store a color and

geometry sample at each pixel but also the samples trajectory (chapter 3), camera

models that allow modulating the sampling rate of the image to assign more pixels to

data subsets with higher complexity or importance (chapter 4), and camera models

with curved rays that circumvent occluders (chapter 5).

In this section, we first introduce the visibility problem and its importance (sec-

tion 1.1), we then present a taxonomy of visibility problems and solutions (sec-

tion 1.2), we describe the connection between visibility and images (section 1.3),

we introduce the image generalization visibility paradigm (section 1.4), we state the

dissertation that anchored this research (section 1.5), and we give a preview of our

results (section 1.6).



3

1.1 Visibility problem and importance

The need to answer the question “what is visible?” arose for the first time in com-

puter graphics in the context of rendering an image of a scene with correct visibility

sorting of opaque surfaces. Due to the limited computation power, early rendering

of polygons was usually done in wire frame. Without visibility culling, it is difficult

to recognize objects and their spatial relationship in wireframe images. Hidden line

removal algorithms solved this problem by not drawing the invisible line segments,

thus wire frame objects appear to be solid in the output image. The hidden line re-

moval algorithms were then extended to hidden surface removal algorithms for filled

surfaces. When two or more surfaces project to the same image region, one needs

to arbitrate between these surfaces and to give preference to the nearest, or visible,

surface, over the farther, or invisible, surfaces. Hidden surface removal algorithm

compute which surfaces and which surface parts should not be drawn to obtain a

complete and correct output image. In addition to correct visibility, hidden surface

removal algorithms also bring the efficiency of not drawing hidden surfaces. Once

hardware performance has improved, painters style visibility algorithms have become

prevalent. Such algorithms compute the order in which primitives should be drawn

such that the visible surface is always drawn last, resulting in correct visibility, with-

out the challenge of segmenting partially visible surfaces.

After a few more iterations of Moore’s Law, a simple visibility algorithm became

practical: the z-buffer. In addition to color, each pixel now also has a depth channel,

which records the distance to the nearest surface encountered so far at that pixel as

the current frame is rendered. A pixel is written only if the current triangle is closer at

that pixel than the depth recorded in the z-buffer. Output image visibility is correct

no matter in what order the surfaces are considered. The simplicity and versatility

of z-buffering made hidden surface removal and painters style visibility obsolete.

Z-buffering provides pixel-level visibility sorting of the primitives that project

inside the image frame, but in the case of large datasets, many primitives project

outside the image, and eliminating these primitives one at a time can be too slow.

Frustum culling is a type of visibility algorithm that discards a group of primitives

if the projection of a conservative bounding box of the group does not intersect

the image. For datasets with high complexity, performance might not be adequate

even if one only draws the primitives that project inside the frame. Occlusion culling
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algorithms discard groups of geometric primitives that project inside the output image

frame but that are hidden by primitives that are closer to the output image viewpoint.

The visibility algorithms discussed so far consider only a single output image.

However, in many computer graphics applications, view parameters change slowly.

For example, when exploring a dataset, the viewpoint changes on a continuous curve

as the virtual camera is translated through the dataset. The view parameter coherence

is exploited by potentially visible set (PVS) algorithms, which attempt to find a set of

geometric primitives that contains all the geometric primitives visible over a range of

view parameters. If the camera translates from a point A to a point B, a PVS should

contain all geometric primitives that are visible from an intermediate viewpoint on

segment AB. In many cases the sets of geometric primitives visible from A and from

B exhibit significant redundancy, the PVS for AB is only slightly larger than the

union of the visible sets from A and B, and the PVS for AB is much smaller than the

entire dataset. Consequently, rendering the frames for the intermediate viewpoints

from the PVS brings efficiency comparable to rendering only the visible primitives,

but without requiring that the visible set be computed for each frame. However,

given a dataset, computing the PVS corresponding to a range of view parameters is

a challenging open research question.

So far, the discussion has focused on computing visibility along rays that emanate

from the output image viewpoint. For many computer graphics applications, visibil-

ity has to be evaluated for other types of rays. In the case of shadow rendering, one

has to estimate whether an output image surface sample is visible from a light source,

i.e. whether a light ray reaches that sample. Shadow rendering is simpler when the

light source can be approximated with a point, and the resulting shadows are hard,

i.e. with an abrupt transition from light to shadow. Interactive graphics applications

approximate hard shadows by rendering the dataset from the light point. The re-

sulting z-buffer is called a shadow map. An output image sample is reprojected onto

the shadow map and it is shaded as in shadow if it is farther from the light than the

shadow map sample at the reprojection point. However, the quality of the rendered

shadows is limited by the resolution of the shadow map, which can miss thin features,

and by the fact that the shadow map doesnt estimate visibility along output image

sample light rays, but rather along light rays defined by the regular grid of the shadow

map.
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When the light source cannot be approximated by a light point, shadow compu-

tation becomes more challenging. Some output image samples see a fraction of the

light source area, and the transition from light to shadow is gradual, over a penumbra

region. Rendering soft shadows accurately and efficiently requires finding the geomet-

ric primitives that are visible from anywhere on the light source, a problem similar

to PVS computation.

Rendering specular reflections accurately requires finding the first surface inter-

sected by each reflected ray. Whereas output viewpoint and light rays are highly

coherent, reflected rays typically exhibit great direction and sampling rate variability,

as the incident rays are perturbed by the reflective surfaces. Whereas light rays can be

approximated with conventional cameras, computing reflections accurately requires

tracing individual reflected rays, a process that can be accelerated by computing the

set of geometric primitives visible along the reflected rays.

The visibility problem is also central to the field of image based rendering (IBR).

Image-based rendering appeared in the early 1990s as an approach for simplifying

photo-realistic rendering. Unlike traditional computer graphics, which uses 3D ge-

ometric primitives as input, IBR uses pre-acquired or pre-computed images as ren-

dering primitives. Rendering from reference images has recently received renewed

attention in the context of remote visualization. A fundamental challenge in IBR is

to decide which reference images are necessary and sufficient to render a given output

image. In other words, one has to find the reference images that contain the samples

visible in the output image. The IBR visibility problem computes a set of reference

image samples and not a set of visible primitives. The visible samples are computed

using a heuristic set of redundant images acquired from nearby viewpoints, using a

layered depth image that eliminates the redundancy during a pre-processing step, or

using a 4D database of rays called a light field.

Visibility has applications beyond traditional computer graphics. In computer

vision, visibility computation aids in sensor placement adequate scene sampling; in

robotics, visibility aids motion planning; in simulation, visibility accelerates wave

propagation computation.

In conclusion, visibility computation is an open research problem at the core of

many applications in graphics and beyond.
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1.2 Visibility algorithm taxonomy

Visibility algorithms are classified based on the type of visibility problem they

solve, based on the type of the visibility solution they compute, and based on the

approach they take.

1.2.1 Visibility algorithm classification based on problem type

We distinguish between the following types of visibility problems:

� Visibility along a line

� Visibility from a viewpoint

� Visibility from a view segment

� Visibility from a view polygon

� Visibility from a view region

� Dynamic visibility

The visibility along a line problem has two variants: ray shooting and point-to-

point visibility. In ray shooting, a ray is defined with an origin point and a direction

and the goal is to find the first geometric primitive intersected by the ray. In point-

to-point visibility the goal is to determine whether a segment defined by two points

intersects a geometric primitive or not, i.e. whether there is a direct line of sight

between the two points. Visibility along a line serves as a building block for more

complex visibility problems.

Visibility from a viewpoint is a 2D set of ray shooting visibility problems. The

most frequently used parameterization of the 2D set of rays is that defined by the

planar pinhole camera model (i.e. the conventional perspective projection model). A

ray is defined by the viewpoint and a point on the image plane. Since the viewpoint is

constant, a ray is defined by two parametersthe two image plane coordinates. Typical

uses of from viewpoint visibility include output image visibility computation and hard

shadow computation.

Visibility from a view segment adds one viewpoint translation as the third dimen-

sion of the set of rays along which visibility is probed. A ray is defined with three
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parameters: the parameter that defines the viewpoint location along the view seg-

ment, and the two image plane coordinates. From view segment visibility is useful,

for example, in motion blur computation.

Visibility from a view polygon adds a second viewpoint translation as the fourth

dimension of the set of rays along which visibility is probed. A ray is defined with

four parameters: two parameters that define the viewpoint inside the view polygon,

and the two image plane coordinates. If the polygon is a triangle, the two view-

point parameters are typically the barycentric coordinates of the viewpoint inside

the triangle. If the polygon is a rectangle, the two viewpoint parameters are the

2D coordinates that define the viewpoint inside the rectangle. From view polygon

visibility is useful, for example, in the case of soft shadow computation where one has

to find all geometric primitives visible from a rectangular area light source. Another

application of from view polygon visibility is in the context of remote visualization,

where it allows the user to translate the viewpoint at the client anywhere within a

view rectangle. The current image is rendered efficiently from the from view polygon

visible set, which contains all geometric primitives visible from anywhere inside the

view polygon.

Visibility from a view region adds a third viewpoint translation as the fifth di-

mension of the set of rays along which visibility is probed. A ray is defined with five

parameters: three parameters to define the viewpoint within the region, and the two

image plane coordinates. The region is typically a box defined by the ranges of the

three orthogonal translations of the viewpoint. Complex view regions are approxi-

mated with a bounding box. From a view box visibility is typically reduced to solving

from-rectangle visibility for the six faces of the box and unioning the six visible sets

with the geometric primitives inside the box. As a result, in practice, from view re-

gion visibility is only a 4D visibility problem. From-region visibility allows computing

visibility in complex datasets by partitioning the viewing space into box-like cells.

Dynamic visibility is the problem of computing visibility in a dynamic dataset.

The dataset time parameter adds another dimension to the visibility problem. Visi-

bility along a given ray becomes 1D; as time changes and the geometric primitives of

the dynamic dataset move, a ray can intersect multiple geometric primitives. From-

point visibility becomes 3D. From-region dynamic visibility is a 5D visibility problem,

using again the reduction of the view box to the union of the visible sets of the box

faces.
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A common prior work approach is to approximate higher-order visibility problems

by sampling the high-dimensional space of visibility parameters and by unioning the

visible sets computed at the sampling points. For example, from view box dynamic

visibility can be approximated by computing static from-point visibility at each box

corner, for several time steps, and by unioning the visible sets. Such an approach re-

quires sampling the high-dimensional space of visibility parameters densely, and, even

so, the approach remains heuristic, with no quality guarantee for the approximation

computed.

The image generalization paradigm advocates computing visibility with an image

and not with individual rays. The coherency of the rays in an image allows estimating

visibility efficiently by projection followed by rasterization, which leads to a low per-

ray amortized cost. We have demonstrated the power of the image generalization

visibility paradigm by developing several algorithms for from-point, from-segment,

from-polygon, and from-region visibility, for static and for dynamic datasets.

1.2.2 Visibility algorithm classification based on solution type

Visibility algorithms are also classified based on whether and how the visible set

is approximated:

� Exact

� Aggressive

� Approximate

� Conservative

Exact visibility algorithms compute visible sets that contain all and only visible

geometric primitives. Given a high dimensional input domain D of visibility param-

eter values, the exact set contains all dataset geometric primitives p for which there

is a point d in D such that p is visible from d. For example, in the case of static from

view segment visibility, the exact visible set contains a geometric primitive if and only

if it is visible from somewhere on the view segment. The challenges of exact visibility

algorithms are high computational complexity and lack of numerical robustness. We

have used the image generalization paradigm to develop an efficient and robust from-

point exact visibility algorithm. We have also developed from view segment and from
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view polygon visibility algorithms that are exact under view translation. A visibility

algorithm is exact under view translation if it finds all geometric primitives that are

visible as the view translates.

Aggressive visibility algorithms underestimate the visible set, in the interest of

simplicity and of performance. The aggressive visible set contains only but not all

visible geometric primitives. Aggressive algorithms sample the input domain of visi-

bility parameters and accumulate the visible geometric primitives they found. Prior

art aggressive visibility algorithms sample visibility heuristically, which can lead to

visible sets that are far from complete. The missing visible geometric primitives trans-

late to objectionable artifacts when the output image is rendered from the aggressive

set. We have developed aggressive visibility algorithms that provide a quality guar-

antee for the visible set computed. The quality guarantee results in output images

that are virtually indistinguishable from images that are rendered from the original

dataset.

Approximate visibility algorithms both overestimate and underestimate the set

of visible geometric primitives. The visible set contains some geometric primitives

that are never visible from the input domain of visibility parameter values, and it

misses some that are visible. Image-based rendering visibility algorithms fall in this

category. The visible samples computed are just a sampling of the set of visible ge-

ometric primitives. The sampling of the visible set is desired when the number of

visible geometric primitives is itself too large for adequate application performance.

Consider the case of a curved surface tessellated with 10,000 triangles. When the

surface is seen from a distance, approximating the surface with a few samples (e.g.

10) is acceptable and preferred to finding all 10,000 visible triangles. IBR visibility

algorithms not only solve visibility, but they also adapt the geometric level of detail

to bound rendering cost, a problem that is notoriously difficult to solve with compu-

tational geometry approaches. We have used the image generalization paradigm to

develop approximate visibility algorithms for static and dynamic datasets that bound

the number of samples in the visible set.

Conservative visibility algorithms simplify visible set computation at the cost of

including in the visible set some geometric primitives that are not visible from the in-

put domain of visibility parameters. All visibility approximations are conservative in

the sense that the approximations cannot lead to missing visible primitives. Conser-

vative visibility algorithms usually compute an aggressive visible set and then discard
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the primitives hidden by the aggressive set. The challenge is to avoid including too

many hidden primitives in the visible set. The factor by which conservative algorithms

overestimate the visible set is not bounded, so it can be arbitrarily large. Our ag-

gressive visibility algorithms with quality guarantees enable conservative algorithms

with small overestimation factors.

1.2.3 Visibility algorithm classification based on approach

Based on how visibility is analyzed over the input domain of visibility parameters,

visibility algorithms can be categorized as:

� Continuous

� Sample-based

Continuousvisibility algorithms compute a complete and accurate visibility subdi-

vision over the input domain D of visibility parameters (e.g. image plane coordinates,

viewpoint translation, dynamic dataset time). A single geometric primitive is visible

at each visibility subdivision cell. The exact visible set is computed as the union of

geometric primitives visible at the visibility subdivision cells. For example, in the case

of from-point visibility of a dataset modeled with triangles, the visibility parameters

are the two image coordinates. The visibility subdivision is a polygonal subdivision

of the image plane. A cell is a polygonal region where a single triangle is visible.

The exact visible set is defined by all the triangles visible in the polygonal regions

of the visibility subdivision. In the case of from view segment visibility of a triangle

dataset, each triangle is composed with the viewpoint translation vector to generate

a 3D prism through extrusion. The visibility subdivision is the intersection of the

extruded 3D prisms. The composition of the geometric primitive with the visibility

parameters leads to high dimensional spaces where no algorithm for computing the

visibility subdivision has proven to be practical. Another approach is to solve di-

rectly for the visibility subdivision boundaries, which have lower dimensionality. For

example, the intersections of the boundaries of the 3D prisms in from view segment

visibility are lines. The visibility event equations that describe the visibility subdivi-

sion boundaries have high degree. An additional challenge is the difficulty to account

for all degeneracies and to achieve robustness.
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Sample-based visibility algorithms sample the input domain of visibility parame-

ters with visibility rays. Some approaches use individual rays, and some approaches

use rays grouped in images. Approaches that use individual rays start out with a set

of seed rays and shoot additional rays based on the results of the visibility queries

gathered by the seed rays. The decision of whether and which additional rays to

shoot is heuristic. Approaches that use images typically render images from a regular

grid of viewpoints. The advantage of images is that the amortized cost of a single

ray is much smaller than in the case of shooting individual rays. The disadvantage

of images is that images rendered from nearby viewpoints are redundant. A sample-

based visibility algorithm cannot promise an exact or even a conservative visible set.

Whereas a ray confirms that the first geometric primitive it intersects is visible, it

would take an infinite number of rays to verify that a geometric primitive is hidden.

In the case of a triangle, a single ray can reveal that the triangle is visible, but it

would require shooting a ray through each triangle point to confirm that the triangle

is hidden.

Most of the visibility algorithms developed under the image generalization paradigm

fall in the sample-based category. Unlike prior-art sample-based visibility algorithms,

our algorithms sample the space of visibility parameters deterministically and not

heuristically, which provides a quality guarantee. We have also developed a visibility

algorithm that combines the rigor of continuous visibility analysis with the efficiency

of sample-based visibility analysis. Our hybrid visibility algorithm constructs an ini-

tial visibility subdivision starting from a high-quality aggressive visible set provided

by our sample-based algorithm. The initial visibility subdivision is used to find most

hidden triangles and to suggest visibility rays for the sample-based algorithm to probe.

Some of the rays find additional visible triangles, and the visibility subdivision is ex-

tended. The hybrid algorithm proceeds recursively, alternating between a continuous

and sample-based stage. The visible set converges quickly to the exact set.

1.3 Image as a visibility solution

Modern computer graphics applications let the user explore a 3D dataset by com-

puting raster images of the dataset. A raster image is a regular 2D array of color

values, or pixels, that are mapped to the display pixels. The image is computed using

a camera model whose rays sample the dataset. Most applications use the planar
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pinhole camera model which approximates the human eye well, producing images

that resemble what the user would see if the user were actually immersed into the

dataset. Each pixel defines a ray from the pinhole, or eye, to the pixel center. The

rendering algorithm computes a pixel by computing the color where the ray intersects

the geometric primitives of the dataset.

There are two fundamental approaches for rendering an image of a 3D dataset.

The feed-forward approach processes each geometric primitive in the dataset by pro-

jection followed by rasterization. Projection determines the pixels affected by the

primitive, and rasterization computes the color of the pixels affected by the primi-

tive. The second fundamental approach for rendering an image of a 3D dataset is

ray tracing. Ray tracing computes one image pixel at the time by computing the

intersection between the pixel ray and the geometric primitives of the dataset.

Ray tracing has the advantage of versatility. Whereas one can render opaque

and diffuse surfaces by only taking into consideration the first order rays that leave

the eye, effects such as refraction and reflection require considering higher order rays

that appear when the first order rays intersect transparent and reflective surfaces.

The ray tracing procedure can be applied iteratively or recursively to compute the

color samples collected by higher order rays. However, higher-order rays do not

exhibit the same amount of coherence as first-order rays, and there generally is no

closed-form image plane projection of geometric primitives that are sampled by higher

order rays. Consequently, the feed-forward approach cannot accurately render effects

that generate higher-order rays. Consider a chrome teapot which defines reflected,

second-order rays at the image pixels covered by the teapot. One cannot render the

specular reflections on the teapot by projection followed by rasterization, because

one cannot project the reflected geometric primitives directly onto the image plane.

Feed-forward rendering approximates specular reflections with techniques such as

environment mapping.

Feed-forward rendering has the advantage of efficiency: the projection stage quickly

determines which pixels might be affected by a given geometric primitive, and avoids

considering pixel-geometric primitive pairs that do not yield any intersection. A nave

ray tracer considers all pixel-geometric primitive pairs, which is inefficient. Ray trac-

ing acceleration schemes focus on limiting the data subset that is considered for each

ray. However, ray tracing acceleration has proven to be challenging, and most com-
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puter graphics applications where performance is at a premium rely on feed-forward

rendering with hardware support.

1.3.1 The visibility computation potential of images

No matter how it is computed, an image has to record the color of the closest

geometric primitive intersected by the ray of each pixel. In other words, rendering

solves a visibility problem along the line of the ray of each pixel. Therefore, visibility

computation is integral to image rendering, and an image is a solution to a visibility

problem. The visible set computed by an image can be recovered in one of two ways:

as a set of visible samples, or as a set of visible geometric primitives.

The set of visible samples is obtained directly from the image without any mod-

ification of the procedure by which the image is rendered. As discussed earlier, z-

buffering is now the method of choice for solving visibility for rendering. The pixel

sample stores not only the red, green, and blue color values, but also a depth value

that indicates how far along the pixel ray the closest geometric primitive is located.

The depth value together with the pixel ray provided by the camera model defines a

visible sample, i.e. a 3D point on a geometric primitive that is known to be visible

from the viewpoint of the image. The samples can be reprojected to novel viewpoints

to render new images without incurring the cost of processing the original dataset in

its entirety.

One can use an image to recover a set of visible geometric primitives by assigning

a unique identifier to each primitive (e.g. the index in the array of primitives), and

by keeping track of the identifier of the geometric primitive sampled at each pixel.

The identifier is stored in an additional pixel channel and it is updated each time the

z-value of the pixel is updated. Once the image is fully rendered, each pixel reports

the identifier of a visible primitive.

We clarify here that the visibility information of an image has to be collected before

antialiasing. To reduce the artifacts stemming from the non-zero pixel size, high-

quality rendering computes first an intermediate image with multiple color samples

per pixel. Then the multiple color samples of a pixel are blended to obtain the final

color value at the pixel. Whereas blending colors alleviates aliasing, one cannot blend

3D points or geometric primitive identifiers. The visibility information has to be

collected by considering all samples of a pixel, before they are blended.
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The visibility paradigm presented in this dissertation capitalizes on the great

visibility computation potential of images. We adopt the feed-forward approach of

rendering images to benefit from the efficiency of the approach. We only consider

first-order rays, that is we only attempt to find the geometric primitives that are

directly visible, and we do not attempt to find the geometric primitives that are

visible indirectly, for example by reflection in a specular scene surface. Although

our visibility algorithms do not consider simultaneously first and higher order rays,

our algorithms can be used to compute visibility for same-order bundles of rays. For

example, our from view polygon visibility algorithm can be used to render efficiently

the soft shadows cast by a rectangular area light source. The reflections of a diffuse

object can be computed efficiently if the diffuse object is approximated with an image

rendered with one of our visibility-optimized camera models.

A conventional image can quickly find visible geometric primitives in large datasets.

However, the visibility solution computed by a conventional image is far from com-

plete.

1.3.2 Visibility computation limitations of conventional images

When used to compute visibility, a conventional image suffers from four funda-

mental limitations: the field of view limitation, the uniform sampling rate limitation,

the sample-based limitation, the single viewpoint/time point limitation.

The field of view limitation stems from the fact that conventional images are

rendered with planar pinhole cameras whose field of view cannot exceed 180 degrees.

The field of view limitation of conventional cameras has been encountered in computer

graphics in other contexts, including in the context of building an omnidirectional

panorama, or map, to approximate the environment of a 3D scene. For example,

distant geometry in an outdoor scene (e.g. mountains, clouds) are approximated

with a panorama which renders the environment correctly without incurring the cost

of modeling and rendering the environment geometry. Initially, environment maps

were built using a spherical parameterization of the 2D space of rays through a point.

Spherical environment maps were later replaced by cube maps. A cube map is the

equivalent of six images, one for each of the faces of a cube. The images are rendered

with six planar pinhole cameras with 90 degree by 90 degree field of view, with the

center of the cube as their eye, and with the cube faces as their image planes. Cube
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maps are an effective solution to the field of view limitation of conventional images

which we adopt.

The uniform sampling rate limitation stems from the fact that conventional images

are rendered with a uniform grid, oblivious to the fact that geometric primitives have

image footprints of different sizes. Consider a 3D dataset modeled with triangles.

First, triangles can have an arbitrarily small image footprint due to a high dataset

complexity, to a large distance to the eye, or to a grazing viewing angle. In Figure 1.1

(top), the visible set found by the reference image of the finely tessellated sphere is

incomplete, which results in severe artifacts when the set is used to render an image

from the same viewpoint but with a slightly different view direction. Increasing the

resolution of the reference image is only palliative: the image footprint of a visible

triangle can be arbitrarily small; therefore an infinite resolution would be needed to

guarantee that all visible triangles are found.

Figure 1.1. Top: reference image and frame rendered from the incomplete set of
visible triangles found by the reference image. Bottom: sampling locations (crosses)
added to a pixel to sample all the triangle fragments at the pixel.

The sample-based limitation is the fundamental limitation of sample-based ap-

proaches to visibility of not being able to verify that a geometric primitive is com-
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pletely hidden by other geometric primitives. Sampling visibility with a ray might

reveal that the geometric primitive is hidden along that ray, but an infinite number

of samples is needed to confirm that the geometric primitive is hidden throughout.

The single viewpoint/time point limitation of conventional images when it comes

to computing visibility is that a conventional image only finds visible geometric primi-

tives from a single viewpoint and at a single time point. An image provides a visibility

snapshot, whereas many applications would benefit from knowing which geometric

primitives are visible over a range of viewpoint translations and over a time interval.

Consider a remote visualization application that aims to let the user explore a massive

dynamic dataset remotely. Given a box and a time interval, a visibility algorithm is

asked to find all the geometric primitives that are needed to render the dataset from

any viewpoint inside the box and at any time point inside the interval. The visible

set is transferred to the client which can sustain an interactive visualization of the

dynamic dataset from inside the box and overt the time interval. The user can de-

cide to translate the virtual viewpoint inside the box for a given time point, or let

time advance for a given viewpoint, or even translate the viewpoint to examine the

dynamic dataset as time advances.

1.4 Image generalization paradigm for computing visibility

We propose to generalize images to overcome their visibility computation lim-

itations described above. Our image generalization paradigm has three elements:

sampling pattern generalization, visibility sample generalization, and ray geometry

generalization.

1.4.1 Sampling pattern generalization

The first element of the image generalization paradigm is to abandon the uni-

form sampling of the image plane used by conventional images and to add sampling

locations to the image plane where needed in order to improve the quality of the

visibility solution computed. One option is to add sampling locations at image plane

regions where the data subsets of higher complexity project. Another option is to add

sampling locations such as to find all geometric primitives with a completely visible

fragment. A fragment is the intersection between an image pixel and the image plane
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projection of the geometric primitive. In other words, the fragment is the part of

the pixel square covered by the geometric primitive. Sampling locations are added

to make sure that all fragments are sampled, which guarantees finding all geometric

primitives with a completely visible fragment, and which in turn guarantees finding

all geometric primitives of a front surface, no matter how small their footprint. For

our sphere example, sampling all fragments finds all visible triangles at the cost of

one sampling location per fragment (Figure 1.1, buttom). Sampling locations are

not added heuristically but rather deterministically, based on the dataset geometric

primitives and based on the pixel grid. This sampling pattern generalization does not

guarantee finding all visible geometric primitives, as some visible primitives that do

not have a completely visible fragment are missed. However, the guarantee of finding

all geometric primitives of a front facing surface is a strong quality guarantee which

in practice results in aggressive visible sets that are close to complete.

1.4.2 Visibility sample generalization

A conventional image sample only stores a scalar visibility value, corresponding

to a single visible geometric primitive. When the viewpoint translates or when time

changes in the case of a dynamic dataset, the geometric primitive that is visible at

an image plane sampling location can change. We propose to generalize the vis-

ibility sample to enable visibility computation in the context of dynamic datasets

and of viewpoint translation. Visibility sample generalization proceeds in one of two

directions. One direction is to increase the dimensionality of the visibility sample.

A second direction is to enhance the sample with a record of its trajectory in the

dynamic dataset. Increasing the dimensionality of the visibility sample brings two

benefits: it enables visibility computation in the context of dynamic datasets and

viewpoint translation, and it enables exact visibility computation. Consider the case

of a dynamic dataset modeled with triangles rendered from a fixed view. As triangles

move over time, multiple triangles can become visible at a given sampling location.

What is needed is a 1D visibility sample that records all triangles visible at the sam-

pling location over the time interval. The 1D visibility sample proposed by our image

generalization paradigm is not a uniform 1D array of conventional samples. Instead,

the 1D visibility sample is a subdivision of the time interval into subintervals such

that a single triangle is visible for each subinterval. The visibility data stored by the
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1D sample is non-redundant and complete, and the set of visible triangles at that

sampling location is exact. Consider now the case of from view rectangle visibility of

a static dataset modeled with triangles. A 2D visibility sample is needed to account

for the triangles visible as the viewpoint translates with two degrees of freedom within

the view rectangle. The 2D visibility sample stores a polygonal subdivision of the 2D

viewpoint translation space. Each subdivision region corresponds to the viewpoint

positions where a single triangle is visible. The 2D visibility sample stores all the

triangles visible at a given sampling location as the viewpoint translates. Finally,

consider the case of from viewpoint visibility of a static dataset modeled with trian-

gles. A single 2D visibility sample is sufficient to compute an exact visibility solution.

Like before, the visibility sample is a polygonal subdivision of a 2D space of visi-

bility parameters. Whereas before the visibility parameters were the two viewpoint

translations, now the visibility parameters are the two output image coordinates.

The second direction for visibility sample generalization is to enhance the sam-

ple with its trajectory as the geometric primitive it samples moves in the dynamic

dataset. The geometric primitive carries the sample as the primitive moves over

time. Instead of recording which geometric primitives are visible at a given sampling

location over time, this visibility sample generalization records where each sample

moves over time. The advantage of the dimensionality generalization of the visibility

sample is a high-quality of the visibility solution computed. The advantage of the

trajectory generalization of the visibility sample is lower redundancy of the visibility

solution: consider a visible triangle moving with a constant velocity vector; dimen-

sionality generalization will record the triangle as visible at all the pixels the triangle

touches as it moves; trajectory generalization will record each triangle sample once

along with a line segment to indicate the linear motion.

1.4.3 Ray geometry generalization

A conventional image is rendered with a planar pinhole camera whose rays connect

the viewpoint to the pixel centers. Therefore, a conventional image can only find scene

surfaces to which there is a direct line of sight from the viewpoint. We abandon the

restriction that camera rays be straight lines. Generalizing the ray geometry to allow

a ray to be any continuous curve enables designing cameras whose rays reach around

occluders to sample surfaces that are not visible from the viewpoint. Rendering a
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dataset from a reference point with a camera designed to have enhanced disocclusion

capability results in a multiperspective image that stores sufficient samples to support

quality reconstruction of output frames from viewpoints other than the reference

point.

The non-linear rays are designed for the resulting camera to provide a fast projec-

tion operation. This way, the multiperspective image can be rendered efficiently with

the feed forward approach. The rays are also designed to avoid ray intersections, as

ray intersections lead to imaging a geometric primitive multiple times, and therefore

to unnecessary redundancy of the set of visible samples.

Like the sample dimension generalization element of our paradigm, ray geometry

generalization extends the visibility computation capability of images to support view

translation. The two elements are orthogonal and they can be used in conjunction.

Sample dimension generalization has the benefit of a higher quality visibility solution.

Ray geometry generalization has the advantage of computing the visibility solution

faster. Moreover, multiperspective images have a single layer and they are coherent,

which makes it human interpretable. The multiperspective image can be shown di-

rectly to the user to support occlusion management in visualization applications. In

other words, the user can directly see the data subset visible from multiple viewpoints.

1.5 Dissertation statement

This dissertation makes the following statement.

The accuracy and efficiency of sample-based 3D visibility computation using im-

ages is improved by generalizing the sampling pattern, the visibility sample, and the

geometry of the rays of the camera model used to render the image.

1.6 Preview of results

We have proven this statement by developing several visibility algorithms. We

give here a preview of our results.
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Figure 1.2. Preview of framebuffer generalization result

1.6.1 Framebuffer generalization

We have used the sampling pattern and the visibility sample generalization ele-

ments of our image generalization paradigm to develop four visibility algorithms.

1. We have used sampling pattern generalization to develop a quality-guaranteed

aggressive from-point visibility algorithm. In Figure 1.2, top row, the algorithm

computes the correct visibility over 99.93% of the reference image. The aggressive

set yields high quality frames even under substantial magnification of the reference

image. On the grass scene with 57 million triangles, the left image is computed with

complete visible set, and the middle image shows a frame with 17× magnification

rendered from the aggressive visible set, the pixel error is 0.26% and visualized in

the right image. The few incorrect pixels are at surface boundaries, and never inside

visible surfaces, so the frames are virtually indistinguishable from truth.

2. We have used the sampling pattern and the dimensionality of the visibility

sample generalization to develop an algorithm for exact from-point visibility. Sam-

pling all triangle fragments as prescribed by sampling pattern generalization does

not guarantee finding all visible triangles since a partially visible fragment might be
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sampled at a point where the fragment is hidden. Starting from the aggressive visible

set, sampling locations are added iteratively to determine the visibility of triangles

that are not hidden by the known visible triangles. The additional sampling locations

are defined deterministically and not heuristically, based on the visibility subdivision

of the image defined by the current set of visible triangles. No hidden triangle is

ever added to the visibility subdivision. Because the starting set is almost complete,

the visible set converges quickly to the exact set. The algorithm extends the aggres-

sive set from Figure 1.2, top row, to the exact set in just three iterations, despite

the complex occlusion patterns in the grass scene with 57 million triangles. The

algorithm essentially computes a single 2D visibility sample that solves from-point

visibility exactly. The 2D visibility sample is constructed iteratively, with the help

of conventional 0D visibility samples that are placed according to sample pattern

generalization principles.

3. The third algorithm is an aggressive visibility from a line segment algorithm

that is exact under view translation. In other words, the algorithm finds all triangles

that are visible in an image as the viewpoint translates on a segment, and the view

does not rotate. The algorithm adds sampling locations aggressively and then com-

putes the exact visible set directly over the entire view segment for each sampling

location. A sampling location stores a 1D visibility sample that records all triangles

visible as the viewpoint translates. When the view translates (and does not rotate

or change focal length), the output image pixel centers remain a subset of the sam-

pling locations, and the visible set is exact. In Figure 1.2, middle row, rendering an

intermediate frame from the triangles visible at the endpoints of the view segment

results in severe visibility artifacts, whereas the correct frame is obtained when using

the visible set computed with our algorithm. The same algorithm also computes vis-

ibility over a time interval from a fixed viewpoint in a dynamic scene. Left image is

the visualization of view segment, and middle image shows a frame rendered on the

view segment with triangles visible from view segment endpoints; right image shows

the correct frame rendered from our exact under translation algorithm.

4. The fourth algorithm computes visibility directly over a view rectangle, and

the algorithm is exact under view translation. A sampling location stores a 2D

visibility sample that records all triangles visible as the viewpoint translates over

the view rectangle. The from-rectangle visibility problem is decomposed into a set

of from-point visibility problems, one for each sampling location, which are solved
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with our exact from-point algorithm. Since visibility is computed exactly for each

sampling location, the resulting visible set contains all triangles visible as the view

translates anywhere inside the view rectangle (Figure 1.2, bottom row). View region

visualization is shown in left image, and middle image shows error visualization for

a frame rendered from the triangles visible from the view rectangle corners; correct

frame rendered from the visible set computed by our algorithm directly over the entire

view rectangle is shown in right image.

1.6.2 Animated depth images

We have used the visibility sample generalization element of our image general-

ization visibility paradigm to support the interactive remote visualization of dynamic

datasets. This work was published in the IEEE Transactions on Visualization and

Computer Graphics [1]. The importance of remote visualization has grown and will

continue to grow for the foreseeable future. One reason is that the amount of data

obtained through observations and simulations increases much faster than our abil-

ity to transfer data from one geographic location to another. Another reason is that

storing, processing, and displaying large datasets requires advanced capabilities which

cannot and should not be replicated at all sites interested in a given dataset. Finally,

the number of locations from where access to a given dataset is desired has increased

with the proliferation of mobile computing platforms such as laptops, tablets, or

even smartphones. One approach in interactive remote visualization is to send the

visualization parameters from the client interested in the visualization to the server

who stores the dataset of interest, to compute the desired visualization frame on the

server, and to send the frame to the client where it is displayed. The approach re-

quires no storage, computing, or visualization capabilities at the client and therefore

it is suitable for any type of client that can display an image. However, for networks

such as the internet, the approach can suffer from long latencythe network has to be

traversed twice for each frame, once to send the visualization parameters and once

to receive the image. Moreover, even though a single frame is much more compact

than the entire dataset, sending a frame several times a second still requires aggressive

compression or reduced resolution. Another challenge is achieving scalability with the

number of clients, as each client sends frequent frame requests to the server. Based on

the observation that a conventional image becomes obsolete with the slightest change
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in visualization parameters, we take the approach of sending enhanced images, or

superimages, from the server to the client. A superimage contains sufficient data

to enable the quality reconstruction of thousands of frames at the client, without

any additional data from the server. Reconstruction is fast and local, which greatly

alleviates latency and achieves interactive rates without aggressive compression or

reduced resolution. Moreover, client requests to the server are much less frequent,

which improves scalability with the number of clients.

The challenge of the proposed approach is to construct a superimage that is ro-

bust to visualization parameter changes. In the case of dynamic geometric datasets,

visualization parameters typically include three translations (x, y, z), three rotations

(rx, ry, rz), and the focal length f for the view, as well as the time parameter t.

Whereas a frame is valid for a single point (x0, y0, z0, rx0, ry0, rz0, f0, t0) in this multi-

dimensional space of visualization parameters, it is our goal to construct a superimage

that is valid for an entire volume (x0 +∆x, y0 +∆y, z0 +∆z, rx0 +∆rx, ry0 +∆ry, rz0 +

∆rz, f0 + ∆f, t0 + ∆t). The superimage should allow reconstructing quality output

frames for any visualization parameter values in the volume it covers.

We address the rotations and focal length changes näıvely by simply having a

larger field of view and a higher resolution than the frame. This way the view can

rotate and zoom in without running out of samples and without blurriness due to

undersampling to a certain extend. The output image is computed through ray re-

sampling and the result is correct, including for view dependent effects such volume

rendering and reflections. We anticipate the view translations by using multiple from

viewpoint images adaptively until an error threshold is reached while eliminating the

redundancies of samples in between frames on the fly.

We address the problem of creating an image that covers a time interval as opposed

to a time step. We introduce animated depth images, the rays of which not only

sample depth and color samples, but also approximation of the trajectories of the

samples over time. Like conventional depth images, animated depth images allow

adapting the level of detail, provide occlusion culling, and bound the amount of data

that has to be transferred. Unlike conventional depth images that can only capture a

single snapshot of a dataset, animated depth images provide a quality approximation

of a dynamic dataset for an entire time interval. Compared to a static/pre-computed

video sequence, animated depth images have the advantage of interactivity, as the user
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Figure 1.3. Animated depth image result preview.

is free to translate anywhere in the vicinity of a reference point, and the advantage

of allowing to slow down the animation to any desired rate.

Animated depth images imply the following challenges. First, sample trajectories

have to be stored compactly. Storing the trajectory of every sample is prohibitively

expensive. Instead, we leverage sample coherence to assign trajectories to groups of

samples based on a semi-rigid body decomposition of the image. Second, the recon-

struction of output frames has to be done by taking into account sample connectivity

that changes as samples move. The third problem is that of disocclusion errors, due

not only to viewpoint translations, but now also due to motion within the dataset.

We take the approach of sampling the dataset adaptively from multiple viewpoints

and multiple time steps to derive on the server a good approximation of the set of

necessary and sufficient samples, which are then transferred to the client. The ap-

proach is robust in the context of extremely challenging occlusion patterns. When

the viewpoint desired at the client moves outside the neighborhood covered by the set

of samples, or when the client desires to visualize the dataset at a time step outside

of the interval covered, the adaptive sampling process is repeated, and a new set of

animated samples are transferred from the server to the client.
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We apply animated depth images in the context of interactive remote visualization

of finite element analysis (FEA) datasets. FEA datasets are particularly challenging

dynamic datasets since there are millions of degrees of freedom, with nodes moving

independently, which creates complex occlusion patterns and massive data replication.

Figure 1.3 top 2 rows show that animated depth images enable the reconstruction of

quality visualization frames that are comparable to frames rendered directly from the

original FEA dataset. Top row of Figure 1.3 shows frames rendered from animated

depth images. Middle row shows frames rendered from the original FEA dataset, for

comparison. The animated depth images approximate sample trajectories with a user-

specified maximum error of 10mm, which represents 0.01% of the spatial extent of the

aircraft dataset (left and middle), and 0.1% for the truck dataset (right) respectively.

An adaptive sampling strategy reduces disocclusion errors below 1% for viewpoint

translations of up to 10m around the reference viewpoint.

We also extend our approach to SPH datasets Fig 1.3, bottom row. Left image

shows frame reconstructed from an animated depth image and right image shows

frame obtained by rendering the original SPH dataset.The residual disocclusion error

is 0.35% and thus virtually indistinguishable.

1.6.3 Flexible pinhole camera model

We have used the sampling pattern generalization element of our image generaliza-

tion paradigm to develop a novel camera model that overcomes the uniform sampling

rate limitation of conventional images. This work was published in IEEE Computer

Graphics and Applications [2].

We introduce the flexible pinhole camera or FPC which allows for adjustments of

the sampling rate according to the local importance or complexity of the data imaged.

Like the planar pinhole camera (PPC), the FPC is defined by a viewpoint (i.e. center

of projection or eye) and an image plane. However, the sampling locations are not

defined by a uniform grid but rather by a sampling map that allows shifting sampling

locations from one region of the image plane to another. The FPC image provides

a coherent non-uniform sampling (CoNUS) of the dataset. The CoNUS image in

Figure 1.4, left, samples the five faces at a higher rate. The sampling map has the

topology of a 32 × 32 regular rectangular mesh but it is distorted to implement the

sampling rate modulation.
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Figure 1.4. FPC result preview with CoNus images.

The sampling map underlying the FPC can be constructed from known regions

of interest in a variety of ways. We build sampling maps in one of three ways: (1)

interactively, using a physics-based mass-spring system, (2) by composing multiple

sampling maps together, or (3) analytically. The FPC provides fast 3D projection

which allows rendering CoNUS images quickly, in feed-forward fashion, by projection

followed by rasterization, from many types of data. We demonstrate FPC rendering

of CoNUS images from image, height field, geometry (i.e. 3D triangle meshes), and

volume data. We explore the use of CoNUS images in the contexts of remote visu-

alization, of focus-plus-context visualization, and of acceleration of expensive effects

such as surface geometric detail and specular reflection rendering
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Consider the example of a high resolution portrait photograph that has to be

downsampled to be sent over the internet (Figure 1.4, top row). The recipient is likely

to want greater detail on the faces, which, of course, cannot be provided by zooming

into the conventional downsampled image. If instead the server sends a CoNUS image

of same size but with a higher sampling rate at the known regions of interest, the user

can zoom in with better results. Consider a second example where a height field is

visualized remotely. The server sends periodically height field sections corresponding

to the current user location. If instead the server sends CoNUS height fields, the

fidelity of the output frame increases considerably. Like any height field, the CoNUS

height field samples the ground plane orthogonally, avoiding occlusions. However, the

sampling pattern is defined analytically to match the sampling rate requested by the

output frames. Left image shows a coherent non-uniform sampling (CoNUS) image

that allocates more samples to the face regions, and middle image shows output frame

reconstructed from CoNUS image. It is clear that CoNUS image reconstruction is

better by comparing with output frame reconstructed from a conventional image of

same size shown in the right image.

Many techniques employ depth images in order to accelerate expensive rendering

effects. In relief texture mapping a depth image is used to enhance a surface with

geometric detail. In specular reflection rendering the environment mapping approxi-

mation errors are avoided by modeling objects close to reflectors with depth images.

The main reason depth images accelerate these effects is that one can compute the

intersection between a ray and a depth image faster than one can compute the in-

tersection between a ray and the original geometry. A CoNUS depth image brings

sampling flexibility (Figure 1.4, middle row), without increasing the cost of the in-

tersection operation. Left image shows a CoNUS relief texture that allocates more

samples to a tablet of interest; middle image shows the texture mapping with this re-

lief texture, and comparison between frames that zoom in on tablet of interest and are

rendered with CoNUS and with conventional relief textures of same size are displayed

in the right two images.

Whereas in the examples presented so far the need for non-uniform sampling is

to improve an auxiliary data representation from which conventional output images

are computed, in the case of focus-plus-context visualization the CoNUS image is

shown directly to the user. The FPC approach enables a versatile focus-plus-context

visualization technique that can handle any type of data and that provides good
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Figure 1.5. The curved ray camera ray visualization.

control over the focus regions. The CoNUS images are rendered directly from the

dataset (e.g. volume data, geometry) using the FPC, and they are not obtained

by first rendering and then downsampling a high resolution conventional image. A

focus-plus-context visualization for volume rendering example is shown in Figure 1.4,

bottom row, emphasizing on two cylinder housings.

1.6.4 Curved ray camera model

We have used the ray geometry generalization element of our image generaliza-

tion visibility paradigm to develop the curved ray camera (CRC), a camera with C1

continuous rays that reach around occluders to gather sufficient samples for a com-

prehensive multiperspective visualization of the dataset. This work was published in

the IEEE Transactions on Visualization and Computer Graphics [3].

A conventional image can only sample surfaces to which there is a direct line of

sight. An elegant solution for integrating into the image samples that are not visible

from the reference viewpoint is to design the set of rays to include rays that bend to

go past occluders to reach data subsets of interest.

In some applications, the goal is to capture samples that are not visible from the

reference viewpoint, but are visible from nearby viewpoints. Occlusion cameras [4–
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6] are a family of cameras that gather such barely hidden samples to generate a

multiperspective image that has sufficient samples to provide good reconstructions of

output frames from nearby viewpoints.

In other applications, the rays have to reach deep into the dataset to expose

data subsets that are hidden from anywhere near the reference viewpoint. Consider a

scientific visualization application where the goal is to search for a feature of interest in

a large dataset. The conventional approach is to navigate interactively a conventional

camera in search of the feature of interest. The user has to be able to retrace their

steps in order to achieve a systematic exploration of the dataset. The navigation

approach is even more problematic in the case of dynamic datasets, where it can

happen that the user reaches the locale of a transient phenomenon of interest too late

for the phenomenon to be observed. Dynamic datasets could be explored in parallel

with a set of several fixed conventional cameras, but the parallel visualization based

on multiple discontinuous and redundant images is confusing. The user has to spend

significant cognitive effort to adapt to each one of the contexts, and the efficiency of

such parallel visualization is only marginally better than that of serial visualization.

A promising approach for parallel visualization is to integrate multiple conven-

tional images, each with its own viewpoint, into a continuous multiperspective image.

The graph camera [7] achieves such an integration with C0 continuity between the

individual perspectives. Although the resulting multiperspective image is continu-

ous, meaning that nearby 3D points project to nearby image locations, the abrupt

transition from one viewpoint to the next introduces a significant visual artifact that

lowers the quality of the parallel visualization. The artifact is due to the fact that

the rays of the graph camera are piecewise linear. When the ray switches from one

perspective to the other, the ray breaks from a line through the first viewpoint to a

line through the second viewpoint.

The CRC alleviates the abrupt perspective change artifact of graph camera images

by transitioning from one viewpoint to the next gradually, over a transition region.

A CRC ray is a sequence of line segments interconnected with conic arcs. A conic arc

is tangent to both line segments it connects (Figure 1.5, top). The gradual transition

from one viewpoint to the next eliminates the distortion of objects as they switch

perspective (Figrue 1.6).

Although the simplest curve that can meet the endpoint tangency requirements

is a Bézier curve, modeling the CRC rays with Bézier arcs does not provide a closed-
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Figure 1.6. The curved ray camera C1 continuous transition (right) eliminates the
abrupt change of perspective (left).

form projection operation. We use general conic arcs which do provide closed-form

projection. The CRC frustum is a chain of PPC subfrusta connected by transition

subfrusta. The rays of a PPC subfrustum do not intersect other than at the PPC

viewpoint. The rays of a transition subfrustum do not intersect as they are family of

conic arcs defined by a linear parameterization of the entry and exit rectangles of the

PPC subfrusta the rays connect. Finally, the subfrusta of the CRC do not intersect

by construction.

We have developed three CRC constructors. One constructor allows the user to

add and modify viewpoints interactively. The CRC has many more degrees of freedom

than a conventional camera. Each of the viewpoints can be placed to achieve the

desired disocclusion effect. A second constructor builds a CRC to keep a target data

subset disoccluded. Given a 3D dataset, a desired viewpoint, and a target, the target

tracking constructor builds the CRC rays to find a path to the target. If the target

is visible in a conventional image, the CRC reverts to a PPC. Target tracking works

in multiple contexts, including a moving target and a stationary viewpoint, a moving

viewpoint and a stationary target, and a moving target and a moving viewpoint.

A third constructor builds a CRC that follows a given path. The constructor adds

viewpoints to guide the rays of the CRC along the path. The CRC visualization

straightens the path and shows what is visible along the path, avoiding the occlusions

that the turns of the path would cause in a conventional visualization.
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2 FRAMEBUFFER GENERALIZATION

A conventional image is a powerful visibility computation tool. An image is computed

efficiently using graphics hardware, and every image pixel finds a visible triangle.

However, the visible set found by a conventional image is far from complete because

of its uniform and finite sampling rate. First, triangles can have an arbitrarily small

image footprint due to a high scene complexity, to a large distance to the eye, or to

a grazing viewing angle. In Figure 1.1 (top), the visible set found by the reference

image of the finely tessellated sphere is incomplete, which results in severe artifacts

when the set is used to render an image from the same viewpoint but with a slightly

different view direction (0.2◦).

Increasing the resolution of the reference image is only palliative: the image foot-

print of a visible triangle can be arbitrarily small, therefore an infinite resolution

would be needed to guarantee that all visible triangles are found. Second, an image

can rule a triangle as visible, but it cannot rule a triangle as hidden. Whereas a

single sample can be sufficient to verify that a triangle is visible, an infinite number

of samples would be needed to verify that a triangle is hidden at all its points. Third,

a conventional image finds visible triangles from a viewpoint and not from a view

region, missing triangles that become visible as the viewpoint translates. Moreover, a

conventional image only computes visibility for a single time point, missing triangles

that becomes visible as time changes.

We generalize images to remove these shortcomings in three ways: (1) by adding

sampling locations to sample all triangles fragments, which guarantees that all trian-

gles with a completely visible fragment are found, no matter how small their image

footprint; (2) by adding sampling locations based on a visibility subdivision of the

image, which completes the set of visible triangles efficiently; (3) and by generalizing

the ray sampling at a sampling location from 0D to 1D and to 2D, which supports

viewpoint translations and time changes. We have used the paradigm to develop a

quality-guaranteed aggressive from viewpoint visibility algorithm, an efficient exact

from viewpoint visibility algorithm, a from view segment and a from view rectangle
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visibility algorithm that are exact under view translation, and an over time interval

visibility algorithm that is exact for a constant view.

In this chapter, the PVS algorithms are introduced in the order of problem do-

main: from viewpoint aggressive, from viewpoint exact, from view segment, over time

interval and finally from a view polygon. This chapter ends with conclusion after our

experimental result on a variety of complex static and dynamic datasets, including

3D surfaces, FEA dataset and SPH dataset.

2.1 Prior work

Visibility algorithms are classified based on the visible set they compute. Con-

servative visibility algorithms overestimate visibility, such that no visible triangle is

omitted. The benefit is an accurate image, but the number of hidden triangles un-

necessarily included in the solution can be substantial [8, 9]. Aggressive visibility

algorithms underestimate the set of visible triangles, which leads to image errors.

The goal of aggressive visibility research is to reduce and control the error [10, 11].

Exact visibility algorithms find only and all visible triangles, which avoids the cost of

rendering unnecessary triangles as well as any image error.

Aggressive Visibility. We distinguish between probing visibility by casting indi-

vidual rays, and by rendering entire images. Algorithms in the first category use

randomly generated rays [12, 13], or heuristics to shoot rays that are likely to find

visible triangles, and subsequent sampling is guided by what the initial rays find

e.g. [11, 14]. The advantage is the flexibility to cast precisely the rays deemed nec-

essary, which limits sampling redundancy. Some approach shoots bundles instead of

rays in order to exploit the spatial coherency of rays [15]. However, it is difficult

to place error bounds on the results. Moreover, casting individual rays can only be

done efficiently with a hierarchical scene subdivision, which is difficult to extend to

dynamic scenes. For dynamic scenes, 4D ray tracing is firstly proposed with the

assumption that the majority of geometric primitives do not change [16,17].

Algorithms in the second category leverage the fact that the amortized cost of rays

in an image is lower than that of individual rays. Our aggressive visibility algorithms

fall in this category. An image only captures samples visible from its viewpoint, which

provides exact visibility for that viewpoint and rays only [18, 19]. One option is to

use images from additional viewpoints [10, 20, 21], which are highly redundant, or to
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eliminate redundancy as a pre-process [22, 23]. The challenge of these approaches is

to decide which images are needed for a sufficient sampling of the visibility parameter

space. The usual strategy is to sample uniformly ”as densely as possible”, and thus

the visibility error is not bounded. Multiperspective images capture in a single shot

more than what is visible from a single viewpoint through innovation at the camera

model level [3, 24], but there is no quality guarantee on the visible set they gather.

Specialized visibility algorithms have been developed for many computer graphics

contexts. The algorithms are typically aggressive, focusing on finding the visible

triangles of highest relevance in the particular context. The semi-analytical visibility

algorithm [25], developed for motion blur, samples the image with lines as opposed

to points, an idea borrowed from temporal antialiasing [26]. Visibility is analyzed

continuously over time for each line sample. The algorithm is aggressive because

the analysis is restricted to a uniform grid of image lines. Line samples are a brute

force approach for improving uniform point sampling. The line parameter adds an

expensive second dimension to the 1D motion blur visibility problem. The uniform

line sample pattern is heuristic, so even after solving the higher-dimension visibility

problem, there is still no guarantee for the quality of the solution. We propose

deterministic point sampling that guarantees a quality visible set without increasing

the visibility problem dimensionality.

Exact Visibility. Early work focuses on from-point visibility for anti-aliasing. The

solution was to compute a visibility partition for each pixel, defined by the triangle

fragments visible at each pixel [27–29]. The solution is inefficient because fragments

of hidden triangles are added and then removed from the visibility partitions. The

exact from-point visibility algorithm we describe computes pixel visibility partitions

exclusively from visible triangles.

Pixel-free from-point visibility algorithms are also inefficient because they com-

pute occluded intersections (e.g. [30]); typical running times are O((n + k) log n) or

O(n log n+k+t) for n triangles with k edge intersections and t triangle intersections on

the image plane. Output sensitive algorithms are restricted to special input [31, 32].

From-point visibility was implemented on the GPU [33], but with a running time

quadratic in the number of triangles.

Beam tracing [34] analyzes visibility in 3D by partitioning the 2D space of rays

defined by the viewpoint using conical [35] or frustum-like beams. The unsampled

gaps between rays are avoided, but beam-triangle intersection is costly. Beam-tracing
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has more recently been used for shadow [36, 37] and sound [38] rendering, using

acceleration schemes based on adaptive beam splitting. Our paradigm bypasses the

need for beams in from-point visibility: the beam is replaced with the smallest number

of rays needed to capture the visible triangles over a solid angle. Moreover, we do not

trace multi-dimensional rays but rather evaluate visibility over their sampling domain

by projection.

One strategy for from-rectangle visibility is to decompose the 4D non-Euclidean

space of lines in the dataset according to visibility criteria. Aspect graph algorithm [39]

uses visibility events to subdivide the 3D view space, which has a O(n9) complexity

in computation. A more efficient model with O((n3 + k) log n)complexity and output

sensitive construction is yet to be practical [40]. Another strategy is to compute

visibility between pairs of polygons [41–45], using constructive solid geometry in the

5D ambient space of the Plucker coordinate representation of lines. The algorithms

have high computational complexity and are not output sensitive.

In order to reduce complexity, some researches reduce 3D visibility problem to

2D by restricting the viewpoints on the ground of a 2.5D scenes, such as urban and

terrains [46–52]. For indoor scenes, with the clear definition of windows and portals,

visibility problem can be solved efficiently [53, 54]. However, the complexity of these

approaches converges to other 3D algorithms when the dataset does not meet the

prerequisites.

Conservative Visibility algorithms are exact algorithms that run on a visibility

problem that was conservatively simplified, e.g. through extended projections [55], or

occluder erosion [56]. Our aggressive visibility algorithms produce a visible set that

is almost complete, so adding to the set all triangles not hidden by the aggressive

set yields a good conservative visible set (i.e. with only a small number of hidden

triangles). Per-frame occlusion culling improves rendering performance by batch dis-

carding triangles that are hidden in the current output frame [57–61], which is further

optimized with the help of graphics hardwares [62–64]. Triangles are grouped inside

containers with simple geometry, the containers are rendered on a partial z-buffer

of the output frame obtained from known big blockers, and the triangles of hidden

containers are discarded.

Occlusion culling methods can also be aggressive by fusing blockers [59]. Grouping

occluded and occluding geometry is heuristic, and it is particularly challenging in
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the case of dynamic scenes. For each time step, the occlusion mask needs to be

updated [65] and becomes obsolete when the occluding pattern changes drastically.

Irregular Framebuffers. Our paradigm advocates abandoning the uniform sam-

pling of conventional images in favor of adding sampling locations deterministically

to guarantee that all visible triangles are found. The benefits of irregular frame-

buffers have been noted before in contexts that include: pixel-accurate shadow map-

ping [66, 67], where the shadow map estimates light visibility precisely at the point

samples captured by the output image; point-based rendering [68], where projected

reference image samples are not clamped to the output image pixel grid but rather

located precisely within the output image pixel using a pair of offsets; and focus plus

context visualization where focus regions are sampled at a higher rate [69].

2.2 From viewpoint algorithm

We have developed two from viewpoint visibility algorithms with the ray pattern

generalization: one aggressive with a quality guarantee, and one exact.

2.2.1 Aggressive

The aggressive algorithm finds all triangles that have a completely visible frag-

ment. This includes all triangles of a front surface, no matter their image footprint.

The algorithm takes three passes over the scene triangles (Algorithm 1).

(Line 1) The first pass is a conventional rendering pass over a pixel grid with one

sampling location at each pixel center. After the first pass, each pixel center reports

one visible triangle. In Figure 2.1, the centers of pixels 0-3 are indicated with dots.

The conventional image rendered finds triangles a and c, but not b, even though b is

completely visible.

(Lines 2-9) The second pass adds sampling locations to make sure that all triangle

fragments are sampled. A fragment f is defined as the intersection between the

projection of a triangle t and a pixel p. If f doesn’t contain any of the sampling

locations of p, a new sampling location s is generated at the centroid of f , unless t

is hidden at s by the triangle t0 found by the first pass as visible at the center of

p. In Figure 2.1, a generates one and b four sampling locations (crosses). Triangle d

generates no sampling locations: the fragments of d in pixels 1 and 2 already contain
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Algorithm 1 Aggressive from viewpoint visibility

Input: scene triangles S, viewpoint o, conventional pixel grid G
Output: aggressive set of visible triangles V0
1: Render S from o over G
2: for all triangles t in S do
3: for all pixels p covered by the projection t′ of t do
4: fragment f = t′ ∩ p
5: if f does not contain a sampling location then
6: sampling location s = Centroid(f)
7: t0 = triangle visible at the center of p
8: if t is closer to o than t0 at s then
9: Add s to p

10: Render S from o over G
11: for all sampling locations s in G do
12: V0 = V0 ∪ {s.t}
13: return V0

sampling locations (which were added for b); the fragment of d in pixel 0 does not

contain a sampling location; however, d is hidden at the centroid of its fragment in

pixel 0 by a, which was found at step 1, and adding such a sampling location is

unnecessary since it is already known that d is not visible there.

(Line 10) The third pass renders the scene over the grid of pixels, which now

have a variable number of sampling locations. Triangle projection proceeds as usual.

Rasterization has to evaluate projected triangle edge equations and depth for each

sampling location of each pixel touched by the triangle projection. After the third

pass, each sampling location reports a visible triangle, which are collected into the

visible set (lines 11-12) .

A sampling location is useful only if it reveals that its triangle is visible at that

point. If the triangle is not visible at the sampling location, one cannot rule the

triangle as hidden, and the sampling location is wasted. The first pass computes a

preliminary set of visible triangles efficiently, then the second pass avoids creating

sampling locations that are already known not to be useful based on the preliminary

set. If a pixel is completely covered by a visible triangle, the pixel will have only its

initial sampling location at its center; the visible triangle is found at the first pass,

and all candidate sampling locations are discarded by the triangle at the second pass.
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Figure 2.1. Quality-guaranteed aggressive from viewpoint visibility.

2.2.2 Exact

We have developed an efficient algorithm that extends the aggressive visible set

iteratively to the exact set (Algorithm 2).

Algorithm 2 Exact from viewpoint visibility

Input: scene triangles S, viewpoint o, aggressive visible set V0
Output: exact set of visible triangles V
1: Initialize V = V0, U = S − V0
2: Construct visibility subdivision VS from V0
3: while U is not empty do
4: for all triangles t in U do
5: if t is hidden by VS then
6: remove t from U
7: else
8: add sampling locations for t

9: Render triangles in U
10: Collect newly found visible triangles Vi
11: Update VS with Vi and set U = U \ Vi, V = V ∪ Vi
12: return V
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Figure 2.2. Incremental construction of visibility subdivision. The scene consists of
three triangles, a, b, and c, with a partially occluding b (1). The visibility subdivision
constructed from b and c (2) is updated according to a (3-4).

(Line 1) The algorithm first initializes the visible set V to the aggressive visible set

V0 received as input, and all other scene triangles are added to the set of undecided

triangles U .

(Line 2) Then the algorithm constructs an initial visibility subdivision VS of the

image from the aggressive visible set V0 received as input (2). VS is a subdivision

of the image plane into polygonal regions where one or no triangles are visible. The

region boundaries are the visible portions of the projected triangle edges. VS is

constructed incrementally, by adding one triangle at the time. In the example in

Figure 2.2, the visibility subdivision built for triangles b and c contains three visibility

regions, where b, c, and no triangles are visible. The visibility subdivision is updated

with triangle a in two steps. First, the subdivision is intersected with a which results

in shrinking the region where b is visible and in creating two regions where a is visible.

Then the two regions for a are merged into one region to obtain the updated visibility

subdivision.

(Lines 3-11) The algorithm iterates until there are no more undecided triangles.



39

r

r

1

2
r

3

t

r
4

s

u

v t t

(1) (2) (3)

Figure 2.3. (1) six sampling locations, shown with dots, created for undecided triangle
t at first iteration, (2) triangles s, u, and v visible at those sampling locations, and
(3) eight sampling locations created for t at second iteration.

Each iteration first processes the undecided triangles (lines 4-8). If an undecided

triangle t is hidden by the visibility subdivision, t is removed from further considera-

tion. If t is not hidden in region r of the subdivision, sampling locations are created at

the vertices of t that project in r, at the vertices of r inside the projection of t, and at

the intersection points of the edges of r and the projected edges of t. In Figure 2.3.1,

t is hidden in regions r3 and r4, but not in r1 and r2, and six sampling locations are

created.

After the undecided triangles are processed, the remaining undecided triangles

are rendered over the new sampling locations (line 9), a step identical to step 3 of

the aggressive algorithm. The visible triangles found by the sampling locations (line

10) are used to update the visibility subdivision, and they are transfered from the

undecided set to the visible set (line 11).

The algorithm is fast because the initial visible set is almost complete and most

remaining triangles are hidden by the initial visibility subdivision. The visibility

subdivision is built exclusively from visible triangles. Figure 2.3 illustrates an unlikely

scenario where a triangle remains undecided after an iteration: all sampling locations

created for t (1) are won by other undecided triangles (2) and more sampling locations

are needed to decide t (3). In our experiments, the algorithm converged in at most

three iterations even for scenes with tens of millions of triangles and complex occlusion

patterns.
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2.3 From view segment visibility

We have developed an algorithm that computes visibility from a view segment

directly. The input is a scene S modeled with triangles, a view segment o0o1, and

a conventional grid of pixels G. The output is an aggressive approximation of the

set of triangles visible from points on the view segment, with the following quality

guarantees:

1. The visible set contains all triangles that have a fragment f that is completely

visible from any viewpoint on o0o1 where f exists. In other words, if a triangle t has

a fragment f in a pixel p and f is completely visible from any viewpoint from where

the projection of t touches p, the algorithm finds t. Like before, this guarantees that

all triangles of a front surface are captured, no matter how small their footprint.

2. The visible set contains all triangles visible at the pixel centers as the view

translates from o0 to o1. This makes the algorithm exact under view translation: the

visible set produces correct frames from any intermediate viewpoint.

Algorithm 3 From view segment visibility

Input: scene triangles S, view segment o0o1, pixel grid G
Output: aggressive visible set V , exact under view translation
1: for all triangles q in S do
2: h = Footprint(q, o0o1, G)
3: for all pixels p touched by h do
4: fragment f = p ∩ h
5: if f doesn’t contain a sampling location add one

6: for all triangles q in S do
7: h = Footprint(q, o0o1, G)
8: for all pixels p touched by h do
9: for all sampling locations s of p do

10: q.V I = ComputeVisibilityIntervals(q, s, o0o1)
11: s.V I = MergeVisibilityIntervals(s.V I, q.V I)

12: for all pixels p in G do
13: for all sampling locations s in p do
14: for all visibility intervals vi in s do
15: V = V ∪ vi.triangle
16: return V
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Figure 2.4. Triangle footprint as the view translates.

The from view segment algorithm has two main stages (Algorithm 3): enhancing

the pixel grid with additional sampling locations (lines 1-5), and computing visibility

at each sampling location (lines 6-11).

Lines 1-5 In the first stage, sampling locations are added to sample all triangle

fragments. This is done like before by computing the image footprint of the triangle,

by computing its fragments, and by adding a sampling location at the centroid of

a fragment that does not already contain one. The only difference is that now the

footprint of the triangle is the union of all triangle projections as the view translates.

We use a fast, tight, and conservative approximation of the triangle footprint as the

convex hull of the six extremal vertex projections. In Figure 2.4 the projection of the

triangle moves from a0b0c0 to a1b1c1 as the viewpoint moves from o0 to o1, and the

convex hull a0b0c0b1c1a1 has six fragments, each with one sampling location.

Lines 6-11 The second stage takes another pass over the scene and updates vis-

ibility at each sampling location touched by each triangle. Whereas in the case of

from viewpoint visibility there is a single triangle visible at a sampling location, in

the case of from view segment visibility multiple triangles can become visible at a

sampling location as the viewpoint translates. The translation along the view seg-

ment defines a one-parameter visibility change. The visibility sample of a sampling

location is generalized from 0D to 1D to store a list of visibility intervals that define

which triangle is visible at the sampling location and for which view sub-segment.
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Figure 2.5. Left: triangles d and e move over a sampling location (cross). Right:
visibility intervals at the sampling location.

In Figure 2.5, left, two triangle projections e and d move over a sampling location

as the viewpoint translates along the view segment. The translation is linear with

parameter t. The graph (right) shows the depths z from the viewpoint to the triangles,

at the sampling location, as the viewpoint translates. The visibility intervals stored

are shown on the abscissa. Initially the visibility sample of the sampling location is

empty. After d is processed, there is one visibility interval [t0, ts] for d. After e is

processed, there are three visibility intervals: [t0, tq] for d, [tq, tr] for e, and [tr, ts] for

d.

Updating visibility at a sampling location s for a triangle q is done in two steps:

the first step computes the visibility intervals for q (line 10), and the second step

intersects and z-buffers the visibility intervals of q with the visibility intervals already

stored as s (line 11).

The visibility intervals of q are the intervals of the translation parameter t when

the projection of q covers s. They are computed by computing the values of t when

s crosses the moving projections of the edges of q. Given two triangle vertices a

and b and a sampling location s with image plane coordinates (us, vs), we derive the

condition that the projection of triangle edge ab contains s. The coordinates (ua, va)

of the projection of a are computed by writing a as a 3D point on the ray through

(ua, va) at w from viewpoint o:
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a = o+M



ua

vb

1


w,



ua

vb

1


w = M−1(a− o) (2.1)

ua =
m0 · (a− o)
m2 · (a− o)

, va =
m1 · (a− o)
m2 · (a− o)

(2.2)

where M is the camera matrix, and the rows of M−1 are mi. s is on the projection

of ab if:
us − ua
us − ub

=
vs − va
vs − vb

(2.3)

By plugging in ua and va from Eq. 2.1 into Eq. 2.3, we obtain:

(usm2 −m0)(a− o)
(usm2 −m0)(b− o)

=
(vsm2 −m1)(a− o)
(vsm2 −m1)(b− o)

(2.4)

M is constant as the view translates along the view segment. Since mi, vs, us,

a and b are constant, and since o is linear in t, Eq. 2.4 is quadratic in t. Eq. 2.4 is

solved for each of the three edges of the triangle, the solutions in [t0, t1] are kept and

sorted to define the visibility intervals of the current triangle q.

In the second step, the visibility intervals of q are z-buffered with the previous

visibility intervals at the sampling location s. The depth z from o to the intersection

of a triangle abc and camera ray rs through s is given by:

z =
(a− o) · n
rs · n

, n = (b− a)× (c− a) (2.5)

Since a, b, c, n, and rs are constant, and since o is linear in t, z is linear in t. For

scenes where triangles do not intersect, z-buffering two overlapping visibility intervals

is simply done by evaluating the two depth functions at a t inside the overlap. When

triangles can intersect, the possible intersection between two triangles is found by

solving the quadratic equation that results from setting their z’s (Eq. 2.5) to be equal

at the sampling location.

The visible set is obtained by unioning the visible triangles found by each visibility

interval of each sampling location of each pixel (lines 12-15).
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2.4 Over time interval visibility

The from view segment visibility algorithm can be used to compute the triangles

visible over a time interval in a dynamic scene. The input is a dynamic scene modeled

with triangles whose vertices move linearly over a time interval [t0, t1], and a view

V . Whereas in the case of from view segment visibility all vertices move relative to

the viewpoint according to the same translation vector, now each vertex moves inde-

pendently according to its own translation vector. The output is the set of triangles

visible at the pixels of V at any time in [t0, t1]. The visible set is exact for view V .

Eq. 2.4 used to compute the visibility events remains a quadratic in t, as now

vertices a, b, and c are linear in t and o is constant. Eq. 2.5 used to z-buffer the

overlapping visibility intervals of two triangles is now a cubic in t over a quadratic

in t, as n is quadratic in t. For applications where moving triangles do not intersect,

such as for the finite element analysis and the smoothed particle hydrodynamics

simulation applications used as examples in this chapter, the depth functions are

trivially evaluated to arbitrate between the two triangles. When triangles intersect,

depth function equality results in an order five equation in t, which has to be solved

numerically.

The visible set is exact for the given view V because visibility is computed exactly

for each sampling location, including the pixel centers of V . Visibility at a sampling

location is computed continuously over the time interval by solving visibility event

equations. The algorithm computes not only what triangles are visible for [t0, t1], but

also what triangles are visible at a given t in [t0, t1], which enables exact occlusion

culling.

2.5 From view rectangle visibility

We have developed an algorithm for computing visibility directly over a view

rectangle (Algorithm 4). The visible set provides the same guarantees as before: the

set contains all triangles that have a completely visible fragment, and the algorithm

is exact under view translation. Like the from view segment algorithm, the algorithm

has three stages.

Lines 1-5 Stage one adds sampling locations to a conventional pixel grid G to

ensure that all triangle fragments are sampled. The triangle footprint is approximated

with the convex hull of the twelve extremal projections of the triangle vertices (one
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Algorithm 4 From view rectangle visibility

Input: scene triangles S, view rectangle o0o1o2o3, pixel grid G
Output: aggressive visible set V , exact under view translation
1: for all triangles q in S do
2: h = Footprint(q, o0o1o2o3, G)
3: for all pixels p touched by h do
4: fragment f = p ∩ h
5: if f doesn’t contain a sampling location add one

6: for all triangles t in S do
7: h = Footprint(q, o0o1o2o3, G)
8: for all pixels p touched by h do
9: for all sampling locations s of p do

10: q′ = CoverageTriangle(q, s, o0o1o2o3)
11: s.A = s.A ∪ {q′}
12: for all pixels p in G do
13: for all sampling locations s in p do
14: V = V ∪ ExactFromPointVisibility(s.A)

15: return V

for each of the four corners o0, o1, o2 and o3 of the view rectangle, for each of three

vertices).

Lines 6-11 Stage 2 decomposes the from view rectangle visibility problem into

one from viewpoint visibility problem for each sampling location. This is done with

another pass over the scene triangles. The triangle footprint is approximated as

described for stage one (line 7). For each sampling location s covered by the footprint

of a triangle q, a coverage triangle q′ is computed and stored at s (lines 10-11).

The coverage triangle is defined as follows. The viewpoint translation inside the

view rectangle is described with two parameters v and t. The visibility of q changes at

s when the projection of an edge of q crosses s. These visibility events occur on lines

in the visibility parameter plane (v, t). The three edges of q define three visibility

event lines, which define the coverage triangle q′ of q. q′ defines the v and t values

when the triangle projection covers s. q′ can also be thought of as the orthographic

projection of q with the set of parallel rays obtained by translating the sampling

location ray with two degrees of freedom.

The table in Figure 2.6 (left) shows two triangle projections that move over a

sampling location s as the viewpoint translates over a view rectangle. The 3D graph
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Figure 2.6. Left: two triangles projections moving over sampling location s as the
view translates over a view rectangle [v0, v1] × [t0, t1]. Right: z planes of the two
triangles as they move over the sampling location, and 2D visibility sample in the
(v, t) plane.

(right) shows the depth z at the sampling location as a planar function of the two

translations, for each triangle. The (v, t) plane (bottom of graph) shows the two

coverage triangles clipped to the [t0t1]× [v0v1] domain and depth-composited to define

the 2D visibility sample stored at the sampling location.

Lines 12-14 Stage 3 computes visibility at each sampling location s by running

our exact from viewpoint algorithm (Section 3.2) on the set A of coverage triangles

stored in stage 2. The coverage triangles are already projected so no projection is

needed. The visible set is the union of the sampling location visible sets.

2.6 Spherical particles as visibility primitives

We have described our visibility algorithms for scenes modeled with triangles. The

algorithms support any geometric primitive that can be tessellated. We have extended

our aggressive from viewpoint , from view segment, and over time interval visibility

algorithms to support spherical particles directly, without the cost of increasing the

number of primitives through tessellation (Figure 2.7 and isosurface in Figure 2.8).

The extension has to solve four problems:

(1) deciding whether a particle covers a sampling location, which is done in 3D

by checking whether the distance d from the particle center to the sampling location

ray is less than or equal to the particle radius r;
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Figure 2.7. Over time interval visibility in a dynamic scene: frame rendered from
the particles visible at the time interval endpoints, with missing particles shown in
red (top), and correct frame rendered from the visible particles computed by our
algorithm directly over the entire time interval (bottom).

(2) approximating the footprint of the image projection of a particle as the view-

point translates or the particle moves, which is done by computing the bounding box

of conservative approximations of the extremal projections of the particle;

(3) finding the visibility parameter values (translation or time) when a visibility

event occurs, which is done by solving a quadratic equation that results from setting

d equal to r;

(4) finding the centroid of a particle ”fragment”, which is the projection of the par-

ticle center if the projection is inside the pixel, or else the average of the intersection

points between the pixel frame and the particle projection.

The exact from-point algorithm cannot be easily extended to handle particles di-

rectly because the particle projections have curved edges which complicates visibility

subdivision construction.

2.7 Results and discussion

We have tested our visibility algorithms on a variety of scenes: Manhattan (4.0

million triangles, Figure 1.2, bottom), Grass (55 million triangles, Figure 1.2, top),

Forest (47 million triangles, Figure 1.2, middle), Isosurface (500 million triangles,

Figure 2.8), Water (2.1 million spherical particles over 80 states, Figure 2.7), Impact

(2 million triangles over 134 states, Figure 2.8), Fusion (500 thousand spherical par-
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Figure 2.8. Isosurface with 500M triangles (top), Fusion with 500K particles over
100 states (middle), and Impact 2M triangles over 134 states (bottom) scenes.

ticles over 100 states, Figure 2.8). We organize the presentation and discussion of our

results in four subsections: quality, efficiency, comparison to prior art methods, and

limitations.

2.7.1 Quality

from viewpoint visibility. The quality of the visible set computed by our aggressive

from viewpoint visibility algorithm is summarized in the top three rows of Table 2.1.

Visibility completeness (row 1) is defined as the percentage of image area for which

the aggressive algorithm finds the visible triangle. Let S∗ and S be the visibility

subdivisions of the image induced by the aggressive and exact sets. Then visibility

completeness is computed as the sum of the areas of the regions in S for which S∗

provides the correct visible triangle. Visibility completeness is 98.1% for Forest which

has both high depth complexity and small triangle footprint, and 99.7% or better for

the other scenes.

We have also estimated the quality of the algorithm by measuring the average and

maximum per frame percentages of incorrect pixels over typical paths with thousands

of frames. Both the reference image and the output frames have a resolution of

1, 280 × 720. The errors are small, even though the paths include zooming in. The

maximum zoom-in factors for the Manhattan, Grass, and Forest paths were 7×, 17×,

and 10×. The few incorrect pixels only occur in between surfaces, which makes for

frames that are hard to distinguish from truth frames.
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Table 2.1. Quality and efficiency of from viewpoint visibility algorithms.

Manhattan Grass Forest Isosurface Water

1. Completeness 99.9% 99.9% 98.1% 99.7% N/A

2. Frame err. (avg) 0.03% 0.11% 2.11% 0.27% 0.09%

3. Frame err. (max) 0.08% 0.20% 3.0% 0.61% 0.13%

4. S.L. / pix (avg) 1.6 5.7 24 209 2.0

5. S.L. / pix (max) 57 1,490 1,245 1,670 27

6. Time A [s] 8.8 47 53 1,677 8.1

7. Iterations 2 3 3 3 N/A

8. Time E-A [s] 5.8 22 1,078 146 N/A

The exact from viewpoint visibility algorithm supports rendering correct frames

with any view direction and any zoom factor. We have developed a robust imple-

mentation of the algorithm based on a perturbation technique that evaluates control

logic predicates correctly and without special handling of degeneracy [70].

We start by perturbing the triangle vertex coordinates by an amount that is

negligible in terms of visibility but sufficient to avoid degeneracies. We evaluate

predicates with floating point interval arithmetic, which provides an interval that

contains the true value of the predicate. The sign of the predicate is determined unless

the interval contains zero. We resolve such ambiguous cases by increasing the precision

of the interval arithmetic, and thus shrinking the interval, until zero is excluded. The

extended precision arithmetic is implemented with the MPFR library [71]. Although

it is costly, ambiguity is rare due to perturbation, so the overall efficiency is high.

1D visibility. Our from view segment visibility algorithm is exact for view trans-

lations, and our over time interval visibility algorithm is exact as time changes and

the view is fixed. Table 2.2 gives the error if instead of using our algorithms one

approximates the visible set with the union of the two visible sets computed for the

endpoints of the visibility parameter domain (view segment or time interval). The

error is given as the average and maximum percentage of incorrect pixels per frame

over a sequence of one thousand frames uniformly sampling the visibility parameter

domain.

The from view segment algorithm supports any segment length. The longer the

segment, the bigger the benefit of the algorithm compared to simply computing vis-
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Table 2.2. Percentage of incorrect pixels per frame when the visible set in 1D visibility
is approximated with the union of the endpoint visible sets. Our algorithms are exact
in these cases.

From segment endpoints From time interval endpoints
Forest Grass Manhattan Impact Water Fusion

Avg. 26% 46% 2.5% 0.093% 0.17% 0.66%

Max. 34% 50% 5.2% 0.34% 0.35% 0.91%

ibility at the segment endpoints, but also the less efficient the algorithm becomes as

the same visible triangle is found at a larger number of sampling locations. The over

time interval algorithm is run for time intervals that are short enough for the motion

of triangle vertices to be approximately linear over the interval. The scenes used here

were animated by numerical simulation codes that define these intervals implicitly in

between simulation states.

from view rectangle visibility. Table 2.3 reports the quality of the visible set

computed by our from view rectangle visibility algorithm. The scene is Manhattan

and the output resolution is 1, 280× 720. The algorithm is compared to running the

exact from viewpoint algorithm from the corners of the view rectangle and union the

resulting four visible sets. The error is given as the average and maximum number of

incorrect pixels over two paths of ten thousand frames each, which sample the view

rectangle. For the first path the view only translates, and for the second path the view

translates and rotates. The view-rectangle algorithm is exact under view translation

and it has substantially smaller errors than the four-corners algorithm when the view

also rotates. The algorithm is also compared to guided visibility sampling (GVS), a

state of the art visibility algorithm, as discussed in Section 8.3.

2.7.2 Efficiency

The efficiency of our aggressive from viewpoint visibility algorithm is summarized

in rows 4-6 of Table 2.1. The number of sampling locations per pixel (rows 4-5)

depends on the average image footprint of the triangles, and on the presence of large

blockers, and therefore it is small for scenes like Manhattan and large for scenes like

Isosurface. All running times reported in this chapter were measured by running
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Table 2.3. Incorrect pixels per frame for our from view rectangle visibility algorithm
compared to computing visibility at the rectangle corners, and compared to prior-art
guided visibility sampling (GVS).

Tanslation only Translation + rotation
Avg. Max. Avg. Max.

from view rectangle 0 0 0.01 1

From rectangle corners 202 362 274 948

GVS (10M rays) 805 1,554 643 1,516

parallel implementations of our algorithms on a workstation with 24 2.27GHz X7560

Intel cores. The algorithms were parallelized by tiling the reference image with a

uniform 2D grid, by assigning scene triangles to tiles based on triangle footprint,

which is computed as described for each algorithm, and by assigning the tile visibility

sub-problems to cores in round-robin fashion. The running times for the aggressive

from viewpoint visibility algorithm (row 6) is below one minute except for Isosurface

where the average number of sampling locations per pixel is 209.

The efficiency of our exact from viewpoint visibility algorithm is summarized in

rows 7-8 of Table 2.1. The algorithm converges in at most three iterations (row 7),

even for the Grass and Forest scenes which have tens of millions of triangles and

complex occlusion patterns. The sampling locations generated based on the visibility

subdivision (Figure 2.3) are very likely to resolve the visibility of an undecided tri-

angle t by verifying that t is visible or by finding the triangle that occludes t. The

running time (Time E-A, row 6) does not include the time for computing the starting

aggressive visible set (Time A).

The running times of our from view segment and our over time interval visibility

algorithms are given in Table 2.4. Interval z-buffering uses a binary search tree and

has an O(n log n) running time for a sampling location with n intervals. For the over

time interval algorithm the times given are the sum of all times over all intervals (i.e.

134, 80, and 100 intervals for the Impact, Water, and Fusion scenes).

The running time of our from view rectangle visibility algorithm was 23 hours for

the Manhattan scene.
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Table 2.4. Running times for our 1D visibility algorithm.

from view segment over time interval
Forest Grass Manh. Impact Water Fusion

Time [min] 4.2 25 9.2 6.9 2.5 15

2.7.3 Comparison to prior art methods

We compare the visibility computation capability of our image generalization

paradigm to two prior art approaches.

The first prior art approach is the use of conventional images to aggregate an

approximate visible set by uniformly sampling the high-dimensional space of visibility

parameters. We compared our from viewpoint visibility algorithms to computing

visibility with a conventional image of ultra-high resolution of 32× 1, 280× 32× 720.

This corresponds to a 32× 32 uniform supersampling of the reference image used by

our visibility algorithms. Even at the prohibitive cost of 1,024 samples per pixel, the

conventional image fails to find all visible triangles: the average pixel errors for the

cases used in Table 2.1 are 0.015%, 0.0078%, 0.11%, 0.25%, and 0.0001%. Our exact

from viewpoint visibility algorithm produces correct frames. For the Manhattan scene

our aggressive algorithm yields a 0.03% frame error with 1.6 sampling locations per

pixel, compared to the 0.015% error for the high resolution image with 1,024 sampling

locations per pixel.

We compared our 1D visibility algorithm to sampling the visibility parameter

domain, i.e. the view segment or the time interval. Even when the domain is sampled

densely, the quality of the aggregate visible set is low. For example, for the Forest

(Table 2.3), aggregating the visible set from 40 points on the view segment reduces the

average error only to 4.9%, whereas our algorithm yields error-free frames. Similarly,

we have compared our from view rectangle visibility algorithm to aggregating visibility

from 50 × 50 conventional images supersampled by a factor of 32 × 32, rendered

from viewpoints that sample the view rectangle uniformly. Again, the dense uniform

sampling of the visibility parameter domain failed to find all visible triangles (average

and maximum frame errors of 2.5 and 41 pixels). Our algorithms do not search for

the visible triangles blindly, through uniform sampling of the visibility parameter
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domain, but they rather find the visible triangles directly, by computing the visibility

parameter values where visibility changes occur, through visibility event equations.

The second prior art approach to which we compare our image generalization

paradigm for visibility is the heuristic sampling of the space of visibility parameters

using individual rays. We considered two state-of-the-art algorithms that take this

approach:guided visibility sampling (GVS ) [11], which provides an aggressive solution

to from view rectangle visibility, and adaptive global visibility sampling (AGVS ) [14],

which provides an aggressive solution for multiple view cells at once.

GVS shoots visibility rays from a rectangle in an iterative process. Early rays

guide the generation of subsequent rays based on two heuristics: adaptive border

sampling, which looks for new visible triangles adjacent to visible triangles that were

already found, and reverse sampling, which looks for visible triangles in unsampled

but accessible space defined by depth discontinuities. The iterative search for visible

triangles is terminated heuristically based on a predetermined ray budget or on a

lower threshold for the rate of visible triangle discovery.

Table 2.3 shows that when shooting ten million rays, which corresponds to an

average of 10 rays per pixel for our 1,280 × 720 resolution, GVS is outperformed by

simply aggregating the visible sets computed at the corners of the rectangle. GVS

results in substantially larger visibility errors compared to our from view rectangle

visibility algorithm, which defines on average fewer than two sampling locations per

pixel, and then computes visibility at each sampling location deterministically. We

have also run GVS on the sphere example (Figure 1.1, top), tessellated to 1.3Mtris,

and 40 million rays (i.e. 40 rays per pixel) were not sufficient to complete the visible

set, whereas our aggressive from viewpoint algorithm finds all visible triangles with

an average of 3.18 sampling locations per pixel. In all these comparisons, ray shooting

for GVS was restricted to the ray subspace sampled by our algorithms, and therefore

all rays were given a chance to contribute to the visibility solution.

AGVS records a visible triangle not just with the view cell that contains the origin

of a visibility ray, but with all view cells traversed by the ray until the intersection

with the visible triangle. New rays are generated based on the visibility probing

outcome of earlier rays and based on proximity to visibility events using a set of

heuristics called adaptive mixture distribution. Solving visibility for several view cells

at once could be done with GVS or with our algorithms and it is an issue orthogonal

to the visible set quality comparison at hand. We do compare against AGVS because



54

Table 2.5. Number of incorrect pixels per frame for the prior approach of heuristic
visibility sampling using individual rays, and for our approach.

GVS(6 faces) AGVS
Image Generalization paradigm
8 corners 12 edges 6 faces

Avg. 527 435 21 4.9 0.56

Max. 5,536 3,198 210 124 21

of the adaptive mixture distribution heuristics which affect the visible set computed

for individual view cells.

Table 2.5 compares our approach to GVS and to AGVS for a box-shaped view cell

for the Manhattan scene. GVS approximates from view cell visibility by aggregating

the visible sets computed by shooting ten million rays for each of the six faces of

the box. AGVS computes visibility directly for the entire cell using 40 million rays

that originate from inside the cell. We rendered ten thousand frames with random

viewpoints inside the cell and with random view direction, and we measured the

average and maximum number of incorrect pixels per frame. Our paradigm performs

substantially better even when we only compute visibility at the eight corners of the

view cell. The errors are further reduced when our more powerful visibility algorithms

are used for the edges and the faces of the view cell.

2.7.4 Limitations

The current implementation of our aggressive from viewpoint visibility algorithm

has a running time quadratic in the number of sampling locations per pixel, as a new

sampling location is created only after checking that none of the existing sampling

locations is inside the current fragment. This is acceptable when the average number

of sampling locations is small, but can become a bottleneck for scenes where the

average triangle image footprint is small (e.g. Isosurface). In all our experiments

the resolution of the reference image where visibility was computed was always the

same as the resolution of the output image. Choosing a reference image resolution

commensurate with the average triangle footprint will control the average number of

sampling locations per pixel. Another option is to subdivide pixels hierarchically, e.g.

with a quadtree, to find the sampling locations inside a fragment in logarithmic time.
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Our over time interval visibility algorithm relies on the assumption that triangle

vertices move with a constant velocity over the time interval, which reduces the

complexity of the visibility event equations. The assumption requires subdividing

time into many short intervals and running the visibility algorithm for each interval.

Generalizing our from view rectangle visibility algorithm to a from view segment

and over time interval algorithm is challenging. When one visibility parameter is

translation and the other one is time, the visibility events occur on curves instead of

on lines and so the visibility subdivision becomes nonlinear.

Our algorithms rely on sampling locations to eliminate two visibility parameters.

For example, from view rectangle visibility is reduced to solving a from viewpoint

visibility problem at each sampling location. However, this comes at the cost of

redundancy–the same triangle is found as visible by many sampling locations. The

bigger the span of the visibility parameter domain (e.g. view segment, time interval,

or view rectangle), the higher the redundancy, which hurts performance.

2.8 Conclusions and future work

We have described a novel approach to visibility based on image generalization.

The image is enhanced with sampling locations defined by scene geometry. A small

number of sampling locations are sufficient to reveal most visible triangles. Our ap-

proach couples a sample-based and a continuous visibility analysis of the image plane

to complete the visible set efficiently, in a remarkably small number of iterations. 1D

and 2D visibility domains are handled directly, by solving visibility event equations,

which reveals visibility changes without trial and error.

So far we have used our visibility algorithms to precompute visibility for complex

scenes off-line. One direction of future work is to accelerate our visibility algorithms

to support applications where visibility has to be computed in real time, such as

antialiasing of minified geometry, motion blur, or soft shadow rendering. One option

is to leverage the programmability of current graphics hardware (e.g. through CUDA);

another option is to devise hardware extensions that bring native support to rendering

over framebuffers with a variable number of sampling locations per pixel, and with

more complex sampling locations (e.g. a list of intervals, a 2D map).

A second direction of future work is to use the image generalization paradigm to

develop more general visibility algorithms. For example, an exact from view rectangle
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visibility algorithm, which also provides exact from view box visibility when applied

to the six faces of the box, requires the construction of a two-parameter dynamic

visibility subdivision of the image; a quality-guaranteed aggressive from view rectan-

gle and over time interval visibility algorithm requires 3D visibility samples, which

could be implemented by voxelizing the translation by translation by time visibility

parameter volume.
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3 ANIMATED DEPTH IMAGE

Remote visualization has become both a necessity, as dataset sizes have grown faster

than computer network performance, and an opportunity, as laptop, tablet, and

smart-phone mobile computing platforms have become ubiquitous. However, the

conventional remote visualization approach of sending a new image from the server

to the client for every view parameter change suffers from reduced interactivity. One

problem is high latency, as the network has to be traversed twice, once to commu-

nicate the view parameters to the server and once to transmit the new image to the

client. A second problem is reduced image quality due to aggressive compression or

low resolution.

We address these problems by constructing and transmitting unconventional im-

ages that are sufficient for quality output frame reconstruction at the client for a range

of view parameter values. The client synthesizes thousands of frames locally, without

any additional data from the server, which avoids latency and aggressive compres-

sion. By generalizing the ray sampling of regular image, we introduce the animated

depth image(ADI), the ray of which not only samples the color and depth, but also

the temporal trajectory of the samples for a given time interval. Sample trajectories

are stored compactly by partitioning the image into semi-rigid sample clusters and

by storing one sequence of rigid body transformations per cluster. Animated depth

images leverage sample trajectory coherence to achieve a good compression of ani-

mation data, with a small and user-controllable approximation error. This work has

been published on IEEE Transaction on Visualization and Computer Graphics [1].

3.1 Prior work

We review prior work in remote visualization and prior work aimed at overcoming

the problem of disocclusion errors.
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3.1.1 Remote visualization

We classify remote visualization approaches based on the computational load dis-

tribution between client and server. At one end of the spectrum is the approach of

doing all the work on the server and of sending visualization frames to the client,

which acts like a simple terminal that displays images [72–76]. The approach is ap-

pealing because it doesnt require any storage or computation capability at the client,

which is particularly beneficial when the client runs on limited hardware such a smart-

phone [77]. Moreover the approach is general - any visualization algorithm and any

type of dataset are supported as long as the server can produce the visualization

frames which are displayed at the client. The approach suffers from the disadvantage

of limited interactivity due to network bandwidth limitations and latency, which can

be addressed by reducing resolution or by aggressive compression. Moreover, the

approach implies frequent requests from the client to the server, i.e. once for every

change in the visualization path requested by the user, which can lead to server over-

load, and to poor visualization service quality when connection to the server is lost.

The problem has been addressed in the context of virtual environments by anticipat-

ing user interactions [78, 79] which however comes at a loss of generality and which

is difficult to extend to the context of remote visualization where the visualization

target might not be known a priori.

At the other end of the spectrum is the approach of reducing the dataset to a man-

ageable size, to transfer the reduced dataset to the client, and to run the visualization

algorithm at the client. There is a large variety of techniques for reducing dataset

size, including multi-resolution and level of detail [80, 81], feature extraction [82, 83],

progressive refinement [84,85], occlusion culling [86,87], and data compression [88,89]

techniques. One technique [90] targets dynamic datasets specifically and reduces the

dataset by compressing the trajectories of the simulation nodes (i.e. vertices of finite

element geometry) through rigid body decomposition. The strength of the general

approach of reducing the dataset at the server is that once the reduced dataset is

transferred to the client, the visualization doesnt depend on the network anymore.

One weakness of the approach is the need for data reduction algorithms for specific

data types and visualizations. Another weakness is the challenge of reducing large

datasets aggressively while preserving features of interest that are typically not known

a priori.
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In the middle of the spectrum are hybrid approaches: most of the work is done

at the server while the client also shoulders part of the burden with the reward of

improved interactivity. One example are approaches that use sophisticated compres-

sion schemes on the server that require decompression at the client in parallel [91,92],

or with the help of GPUs [93]. Another example are systems that send enhanced

images, or superimages, from the server to the client, such as panoramas [94–101],

depth images [23,102,103], multiple center of projection (MCOP) images [104,105], or

non-uniformly sampled images [106]. Depth images can be used to synthesize images

with point based rendering technique, such as splatting [107,108] or meshing [109].

View-dependent effects such as volume rendering or reflections are challenging for

such approaches since it requires either computing the expensive effect at the client, or

increasing the size of the representation considerably to include view-dependent color.

The visualization by proxy framework [110] succeeds at decomposing and translating

a static volume dataset into a compact set of proxy depth and attenuation images that

serve as an intermediate representation in the context of volume rendering. Occlusions

are addressed using a single-pole occlusion camera [4], which creates multi-perspective

proxy images that avoid simple occlusion patterns between a small number of features.

Visualization by proxy provides a general framework where volume rendering op-

erations can be quickly approximated, without accessing the original dataset. The

coherent visualization of a time-varying volume dataset without access to the entire

dataset, as needed for example in the case of remote visualization, has been proposed

using ray attenuation functions [111]. The method has the limitations of not allowing

viewpoint changes and of restriction to exploratory use due to approximation errors.

Our method focuses on viewpoint changes in opaque surface rendering for dynamic

FEA datasets, it handles arbitrarily complex occlusion patterns, and it enforces a

user selected error bound on sample trajectory approximation.

The animated depth image method we introduce falls in the category of hybrid

approaches. Hybrid approaches are general as far as the client is concerned - like

conventional images, superimages insulate the client from the complexity and variety

of visualization algorithms and dataset types. Hybrid approaches also improve inter-

activity - like reduced datasets, superimages are sufficient to reconstruct frames at the

client without any additional data from the server. The challenge of the hybrid ap-

proach is to devise superimages that can cover a large volume of the multidimensional

space of visualization parameters. Previous work was concerned with view rotations
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and focal length variations [106] and with viewpoint translations [102]. Animated

depth images target the changes in the time parameter for time-varying datasets.

Like the previous method for dynamic dataset reduction through rigid body de-

composition discussed above [90], our method compresses animation data by lever-

aging motion coherence of animated depth image samples. However, the previous

method works at dataset level and does not scale with dataset size. Animated depth

image are a hybrid remote visualization approach, with cost independent of dataset

extent or resolution, and only dependent on output image resolution. In order to

achieve this, the animated depth image approach contributes solutions to the prob-

lems of fast, hierarchical rigid body decomposition of the animated depth image

samples, of adaptive sampling to avoid disocclusion errors due to viewpoint transla-

tion and sample motion, and of visualization output frame reconstruction from the

animated depth image samples.

3.1.2 Alleviating disocclusion errors

The idea of using a depth image as a rendering primitive dates back to early

image-based rendering work [20], However, a single depth image is not sufficientthe

slightest viewpoint translation creates disturbing disocclusion errors. Disocclusion

errors have been addressed by combining multiple depth images at run time [20, 68,

112] or off-line [22, 23, 113]. Another approach is to render the depth image with a

non-pinhole camera model, such as a multiple-center-of-projection camera [105], an

occlusion camera [4], a general linear camera [24], or a graph camera [7]. Similar

approaches distort the dataset instead of the camera rays in order to eliminate the

occlusions [114].

The advantage of the non-pinhole camera approach is that the samples needed

for the view region are arranged in a single-layer depth image with good pixel to

pixel coherence, which is compact and compresses well. This is of great importance

in our context where we aim to reduce the amount of data that has to be transferred

from the server to the client. However, constructing non-pinhole camera models that

capture all samples needed in the context of the complex occlusion patterns that arise

in FEA datasets is challenging. We opt instead for the approach of pre-combining

multiple depth images. This suits the remote visualization scenario wellthe work of
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rendering multiple depth images and of combining them into a non-redundant set of

samples is done at the server, before transmission.

3.2 Animated depth image definition

Animated depth image is similar to regular depth image [115]. Each ray in the

ADI is generalized to sample not only a spatial 3D point, but also its trajectory over

a time interval continuously. An ADI stores:

(a) Color and depth samples to approximate the color and geometry of the dataset

(b) Sample trajectories to approximate the motion in the time-varying dataset

(c) Sample connectivity to enable a quality triangle-mesh-based reconstruction of

visualization frames

(a) Like a conventional depth image, an animated depth image is an image that

stores color and depth per pixel, obtained by rendering the dataset for a given view

PPC0 and at a given time step t0. The pixel data can be unprojected to a 3D point

with color using PPC0. In Figure 3.1, the viewpoint of PPC0 is E, and pixels a, b,

and c are unprojected to 3D points A, B, and C using the PPC0 rays Ea, Eb, and

Ec and the depths za, zb, and zc stored at the three pixels.

(b) Unlike a conventional depth image, an animated depth image also encodes the

trajectories of its samples. Consider a sample A that belongs to a dataset triangle

V0V1V2 (Figure 3.1). The sample is defined by its barycentric coordinates α, β, and

γ:

A = αV0 + βV1 + γV2 (3.1)

As the triangle vertices move to V01, V11, and V21, respectively, the sample moves

to A1 which is found using the sample’s barycentric coordinates:

A1 = αV01 + βV11 + γV21 (3.2)

In complex time varying datasets, such as for example FEA datasets, triangles

have complex trajectories modeled with hundreds of time steps. Storing the trajectory

of each of individual sample of an animated depth image results in a large data

size that precludes applications such as remote visualization. We leverage the local
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Figure 3.1. Animated depth image illustration.

coherence of motion in time-varying datasets and group nearby animated depth image

samples into rigid bodies. A rigid body is a cluster of samples whose motion is

approximated well with a single sequence of rigid body transformations X1, X2, ,

Xn−1, where Xi is a conventional 4×4 transformation matrix that encodes a rotation

and a translation but no scaling, and n is the number of time steps. Instead of

storing the trajectory A0, A1, , An−1 of each sample in the rigid body, the animated

depth image only stores the initial position A0 of each sample and the sequence of

transformations X1, X2, , Xn−1. The subsequent positions Ai of the sample are

approximated with:

A∗i = XiA0 (3.3)

Consider for example a piece of an axle of the truck in the FEA simulation shown

in Figure 1.3(right). When the truck impacts the barrier the piece breaks off and flies

away spinning. The samples of the piece can be grouped into a rigid body because

their motion throughout the simulation can be approximated with the same sequence

of rigid body transformations. The piece can also bend slightly as it breaks off, as

long as a user imposed maximum trajectory approximation error is not exceeded. If



63

Figure 3.2. Illustration of the six possible connectivity scenarios for a neighborhood
of 2× 2 samples.

the piece bends significantly and the error threshold would be exceeded when using a

single rigid body, the piece is approximated with two or more smaller rigid bodies. In

Figure 3.1 there are four rigid bodies highlighted with green, blue, purple and yellow.

Not all samples are assigned to rigid bodies (red in Figure 3.1). Such unassigned

samples have their trajectory encoded explicitly.

(c) The animated depth image samples are used to reconstruct output visualiza-

tion frames from novel views. One approach is to resort to a point-based rendering

technique that does not require explicit sample connectivity. A high-quality recon-

struction approach is to connect samples in a triangle mesh leveraging the connectiv-

ity defined implicit by the regular grid of pixels [109]. However, not all four adjacent

samples should be connected by two triangles. Like for a conventional depth image,

samples should be disconnected if they are on opposite sides of a depth discontinu-

ity: the silhouette samples of a foreground object should not be connected to their

neighboring samples that belong to the background object.

Animated depth images also require that samples be disconnected when they

belong to surfaces that move apart over the course of the simulation. The animated

depth image stores at sample A the connectivity in the 2×2 sample neighborhood that

has A as its top left sample (Figure 3.1). The issue of connectivity for the purpose

of reconstruction is of course orthogonal to the issue of rigid body decomposition for

sample trajectory approximation (Figure 3.2).

3.3 Animated depth image construction

Consider a time-varying dataset D modeled with triangles whose vertices move

on piecewise linear trajectories over n time steps from t0 to tn−1. Given a reference

view PPC0 and a sample trajectory approximation error threshold ε, an animated
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depth image of D is constructed in three major steps, with each step computing one

of the main components of the animated depth image (Section 3.2):

(a) Compute samples by rendering D at t0 from PPC0.

(b) Compress sample trajectory through rigid body clustering.

(c) Compute sample connectivity.

The first step (a) computes a conventional depth image of the dataset by rendering

the triangles in D at their t0 position. The triangle color could originate for example

from materials or from false color schemes, and could be encoded for example with a

color per vertex or with textures. No matter what the origin of the color or encoding

mechanism, the color is transferred to the depth image which stores a color sample per

pixel. In addition to color and depth, each pixel stores the index(ID) of the dataset

triangle it samples. The triangle ID is used to compute the barycentric coordinates

of the pixel sample using Equation 3.1.

3.3.1 Rigid body clustering

The second step (b) of animated depth image construction computes a compact

representation of sample trajectories by clustering samples into rigid bodies. This

clustering is based on the reasonable assumption that samples that move together

like a rigid body are close together in model space, and hence in image space. The

sample trajectory approximation error is bound by the threshold ε. The clustering

proceeds in bottom-up fashion with the following steps:

(b.1) Seed rigid bodies in 2× 2 sample neighborhoods.

(b.2) Merge rigid bodies recursively.

(b.3) Finalize rigid bodies.

Step b.1 takes a pass over the depth image computed at Step (a) and forms initial

rigid bodies of 2 × 2 neighboring samples, whenever possible. Let S0, S1, S2 and S3

be the four samples of the 2 × 2 neighborhood. The samples form a rigid body if a

sequence of rigid body transformations X1, X2, , Xn−1 places each of the four samples

for each time step within epsilon of its true dataset position.
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Figure 3.3. Construction of rigid body transformation Xi.

S∗ji = XiSj0 (3.4a)

|S(ji)
∗ − Sji| < ε (3.4b)

0 ≤ j ≤ 3, 1 ≤ i ≤ n− 1 (3.4c)

In Equation 3.4, S∗ji is the position of sample Sj at time step i as approximated

using the rigid body transformations (Equation 3.3), Sji is the true position of sample

Sj at time step i as given by the dataset using the barycentric coordinates computed

at Step (a) (Equation 3.2), and the Euclidean distance between S∗ji and Sij has to be

smaller than ε for each sample j and for each time step i.

We construct the rigid body transformations Xi one at the time, starting with X1

and ending with Xn−1. Xi is constructed using three samples by adapting a previously

developed method [116] as shown in Figure 3.3. Xi is constructed by combining a

translation that takes the initial position S00 of sample S0 to its position S0i at

time step i, with a rotation that aligns the planes of triangles S00S10S20 to triangle

plane S0iS1iS2i, and with a rotation about the normal of the common triangle plane

that aligns edges S00S20 and S0iS2i. Once Xi is constructed, the approximate sample

positions at time step i are computed by applying the transformation Xi to the initial

sample positions.

The approximation error for S0i is 0 since transformation Xi is constructed such

that S∗0i and S0i coincide. If the distance between the true and approximated position

of any of the other three samples, including S3, exceeds ε, the four samples cannot

form a rigid body and the iterative construction of the sequence of transformations

Xi stops. If all errors are within ε, the algorithm proceeds with constructing trans-
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formation Xi+1. Once Xn−1 is constructed, the four samples define a rigid body.

Figure 3.4, top, illustrates the 2× 2 sample rigid bodies constructed by Step b.1. For

the 2× 2 neighborhoods where rigid body construction fails, the four samples remain

unassigned (white in Figure 3.4, top).

Step b.2 reduces the number of rigid bodies through merging. Merging proceeds

in bottom-up quadtree fashion. The rigid bodies of four neighboring nodes at the

current level of the quadtree are merged to form the rigid bodies of the parent node

at next level up. The inner horizontal and vertical boundaries are traversed one pair

of samples at the time. If the two samples of a pair belong to different rigid bodies,

the algorithm attempts to merge the two rigid bodies.

Given two rigid bodies A and B, rigid body B could be merged into A if the

sequence of rigid body transformations of A approximates the trajectories of all the

samples in B within ε. When B is merged into A, the rigid body B is abandoned

while the transformations in A will represent all samples in both A and B. Figure 3.4,

middle, shows the rigid bodies obtained after Step b.2. The rigid bodies are larger

and in smaller number compared to the starting seed rigid bodies (top).

Step b.3 improves the rigid body partitioning of the animated depth image by

overcoming limitations of Steps b.1 and b.2. First, Step b.1 only attempts to form a

rigid body between the four samples of a 2 × 2 neighborhood. If the attempt fails,

the four samples remain unassigned, whereas, for example, it could be that sample

S0 can be assigned to the rigid body to the left of the 2 × 2 neighborhood, or even

to a distant rigid body. To overcome this limitation, Step b.3 tests each unassigned

sample for possible inclusion into each of the existing rigid bodies. Second, Step b.2

only attempts to merge rigid bodies that are adjacent. Step b.3 attempts to merge

all pairs of rigid bodies.

Figure 3.4, bottom, shows the final rigid bodies. Some large rigid bodies are

formed by merging non-adjacent rigid bodies. As expected, the few remaining unas-

signed samples are concentrated around the impact region where samples move chaot-

ically. The trajectories of the unassigned samples are approximated using the greedy

polyline simplification algorithm of Ramer [117] and Douglas-Peucker [118], conform-

ing to the same error threshold ε.
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Figure 3.4. Visualization of rigid bodies and magnified fragment after Step b.1 (top),
Step b.2 (middle) and Step b.3 (bottom) of the animated depth image construction
algorithm. The number of rigid bodies and the percentage of unassigned samples for
each of the three images are 125,752 and 20.72%, 12,945 and 20.72%, and 6,322 and
1.45%.

3.3.2 Sample connectivity computation

The third and final step (c) of the construction of the animated depth image

computes sample connectivity to enable triangle-mesh-based reconstruction of output

visualization frames.

For conventional depth images, connectivity is computed using the second order

derivative of the depth map. Values larger than a threshold indicate depth dis-
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Figure 3.5. Incorrect reconstruction that does not take into account the temporal
changes in sample connectivity.

continuities, and reconstruction triangles spanning across depth discontinuities are

removed [68]. However, naively using such connectivity data computed at t0 for all

time steps of an animated depth image results in severe artifacts (Figure 3.5) due

to sample motion and erosion. When a finite element, e.g. a piece of a structural

steel beam, undergoes excessive stress, the element ”erodes”, i.e. it is eliminated

from the FEA simulation for the subsequent time steps. When an element erodes, all

the dataset triangles used to represent the element erode as well, as do all samples

contributed by the eroding dataset triangles. A reconstruction triangle connecting

three samples should clearly not outlive its first eroding sample, but this is not always

sufficient.

Consider a structural steel beam in the aircraft impact simulation shown in Fig-

ure 1.3. Let’s assume that the beam is modeled with six dataset triangles with vertices

V0 to V7 (Figure 3.6), and let’s assume that dataset triangles V1V2V6 and V2V5V6 erode

at time step i. If the beam is far from the viewpoint of the perspective camera PPC0

used to construct the animated depth image, or if the beam is seen by PPC0 at an

angle, it can happen that neither V1V2V6 nor V2V5V6 has a sample in the animated

depth image. In Figure 3.6, samples S0, S1, S2 and S3 skip V1V2V6 and V2V5V6. Sim-

ply checking for erosion at the vertices of the reconstruction triangles will lead to the

erroneous conclusion that the reconstruction triangles do not erode.

The correct eroding time step of each reconstruction triangle is set as follows.

Consider reconstruction triangle S0S1S2. For each of its edges, e.g. S1S2, compute

the shortest path P12 between the dataset triangles of the two samples, i.e. V0V1V7 and

V2V3V5, respectively. The shortest path is computed in the dataset triangle adjacency
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Figure 3.6. Reconstruction triangles S0S1S2 and S2S3S4 should erode when dataset
triangles V1V2V6 and V2V5V6 (red) erode, even though samples Si belong to dataset
triangles that do not erode.

graph at t0. The dataset triangle adjacency graph is an undirected graph with nodes

corresponding to dataset triangles and with edges corresponding to dataset triangles

sharing a vertex. The eroding time step of edge S1S2 is set as the first time step

where P12 is interrupted. A path is interrupted when one of the dataset triangles it

enumerates erodes. Finally, the eroding time step of the reconstruction triangle is

set to be the earliest of the eroding time steps of its three edges. For the example

in Figure 3.6, each reconstruction triangle has two edges that erode at time step

i and one edge that does not erode, and thus the eroding time step for the two

reconstruction triangles is i.

3.4 Adaptive sampling in space and time

Like a conventional depth image, an animated depth image suffers from disocclu-

sion errors when the viewpoint translates. Moreover, disocclusion errors also occur

when sample motion uncovers new samples. We alleviate disocclusion errors by sam-

pling the dataset adaptively from multiple viewpoints and at multiple time steps

(Section 3.4.1), and by eliminating redundant samples (Section 3.4.2).
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3.4.1 Adaptive sampling

Given an animated depth image ADI0 with view PPC0 covering nt time steps

starting at t0, the goal is to enhance ADI0 with sufficient samples to ensure a dis-

occlusion error free reconstruction from anywhere in a neighborhood of PPC0, and

at any time in [t0, t0 + nt]. We define the neighborhood of PPC0 with an equilateral

triangle of radius q (i.e. the radius of its circumscribed circle), perpendicular to the

view direction of PPC0, and centered at its viewpoint. The length q is an input

parameter. The larger the triangle, the bigger the viewpoint translation range at the

client, but also the bigger the data size.

Algorithm 5 Adaptive sampling algorithm

Input: Dynamic dataset D, view triangle R, timer interval T
Output: ADI tiles set S
1: Initialize the set S of animated depth image tiles to empty.
2: Initialize view parameter queue q with (R, T )
3: while q is not empty do
4: Dequeue the first pair (Rnow, Tnow) from q
5: for all Viewpoint e, time step t in a discretized subset of in (Rnow, Tnow) do
6: Render a depth image DIet
7: Computer non-redundant samples DIet − S
8: S∗et = Tile(DIet − S)
9: Set = ConstructADI(S∗et)

10: S = S ∪ Set

11: if The last processed |DIet − S|/|DIet| > g then
12: Subdivide (Rnow, Tnow) and enqueue the subregions

13: Return S

Our adaptive sampling scheme renders conventional depth images from various

locations inside the viewpoint triangle and at various time steps. The sampling pro-

cess stops when the percentage of non-redundant samples contributed by a new depth

image drops below a threshold g. In order to enable the elimination of redundant sam-

ples, depth images and animated depth images are split into square tiles of size tw×tw
(we use tw = 4). Figure 3.7 shows the tiles containing the non-redundant samples

contributed by a depth image. Tiles, like complete images, allow storing connectivity

information compactly. Given a tile size tw and a threshold g for the percentage of

new samples contributed by a new image, our adaptive sampling algorithm proceeds

as follows.
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Figure 3.7. Non-redundant samples gathered by our adaptive algorithm.

The algorithm samples the space of possible viewpoints and time steps recursively,

in the form of a stack implementation in Algorithm 5. The recursion start from

the input view triangle polygon R and time interval T . For each pair of (R, T ), a

predefined viewpoints subset are used to represent the visibility of this entire region.

In our implementation, we use the three vertices plus the centroid of the view

triangle, and the two end points of the time interval. For each viewpoint and time

pair (e, t) in this space, a new depth image DIet is rendered at line 6. Line 7 checks

for each sample in DIet whether it is redundant with the samples already collected in

S. The non-redundant parts of DIet are partitioned into tiles (line 8 ), an animated

depth image tile is computed for each depth image tile (line 9 ), the new set of tiles

is added to S (line 10 ).

The subdivision continues recursively if the last examined pair (e, t) contributes

sufficient number of non-redundant samples (lines 11-12 ). When the algorithm fin-

ishes, the set of ADI tiles are returned (line 13 ). The first depth image computed by

the adaptive sampling algorithm corresponds to the center of the viewpoint triangle

(also the viewpoint of PPC0) and to t0. Since S is initially empty, S will contain the

entire animated depth image constructed for PPC0, which guarantees highest-quality

reconstructions for the view PPC0.
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Figure 3.8. Projections of samples P0 and P1 onto the image plane as the viewpoint
translates on the viewpoint triangle plane. The distance d between the projections is
0 at C0 where q′0 and q′1 coincide, and it increases away from C0.

3.4.2 Sample redundancy

The first task is to define sample redundancy. Depth images contain point samples

and two samples will in general not correspond to the same 3D point. We define two

samples as redundant if and only if they project within one pixel in all views PPCi,

where PPCi is identical with PPC0 except that the viewpoint can be anywhere inside

the equilateral viewpoint triangle with radius q. If two samples belonging to different

surfaces happen to project at nearby locations from a viewpoint, motion parallax

separates the two samples when seen from a different viewpoint, and the samples

are correctly labeled as non-redundant. Our definition of redundancy ignores view

rotations which only introduce a negligible variation of the distance between the

projections of two samples. Given two samples defined at different time steps ta

and tb, the samples are redundant if they are redundant when the second sample is

brought to time step ta.

The second task is to find a method for quickly checking for sample redundancy,

given our definition. Figure 3.8 illustrates the projection of a pair of two samples P0

and P1 as the viewpoint translates on the plane of the viewpoint triangle. The image

plane is constant as there are no view direction rotations. Let C0 be the intersection

between P0P1 and the viewpoint plane. For a viewpoint C, the square of the distance

d between the image plane projections q0 and q1 of P0 and P1 is given by:
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d2 = |q0 − q1|2 = (w0 − w1)
2 · x2 (3.5)

where wi(i = 0, 1) and x are defined as:

wi =
|qi − q′i|
|C − C0|

=
|Pi − Si|
|Pi −Oi|

(3.6a)

x = |C − C0| (3.6b)

Since w0 and wi do not depend on the current viewpoint C, d2 is a quadratic

function in x, with the minimum value of 0 reached when C = C0. Distance d

increases away from C0. Over the entire viewpoint triangle, the maximum distance

occurs at one of the three vertices of the viewpoint triangle. Consequently, given

two samples, the largest distance between the projections of the samples over all

viewpoints inside the viewpoint triangle can be easily computed as the maximum

over the three distances obtained at the viewpoint triangle vertices. If the maximum

is less than one pixel, the new sample is discarded as redundant.

3.5 Visualization frame reconstruction

Given a set of animated depth image tiles S, an output image view PPCi, and

time parameter value tj, the client reconstructs the corresponding visualization frame

by rendering each tile in S.

A first step computes the positions at time ti of each 3D sample stored in the tiles

in S. If a sample belongs to a rigid body, the position is reconstructed by applying to

the initial position of the sample the appropriate transformation from the rigid body

trajectory. If the sample is unassigned, that is it does not belong to a rigid body, the

current position is inferred from the trajectory of the sample which is stored explicitly

in the animated depth image representation. The time value ti need not be one of the

simulation time steps: the simulation can be visualized at arbitrarily slower speeds

by interpolating simulation computed sample positions.

Once the current position of the 3D samples is established, the frame reconstruc-

tion problem is reduced to the well-studied problem of reconstructing output images

with novel viewpoints from input depth images. Any prior work method developed

for rendering from depth images can be used, including splats [108], surfels [107],

forward rasterization [119], and triangle-mesh reconstruction [20].
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Figure 3.9. Frames with lighting computed at the client.

Figure 3.10. Side view of the aircraft dataset.

We use two reconstruction modes: an efficient point-based rendering approach

where each sample is rendered with a 2 × 2 output image pixel splat, and a high-

quality triangle-mesh reconstruction. A tw × tw tile defines a mesh of up to (tw −
1)× (tw − 1)× 2 triangles by connecting any 4 neighboring samples with 2 triangles.

The connectivity information stored by the tiles is used to avoid defining triangles

across depth discontinuities. Samples not connected in any triangle are drawn as

points. Depending on the rendering capability at the client, more shading flexibility

can be supported by incorporating into the animated depth image additional per-

sample shading parameters. We have extended animated depth images to also store

per-sample normal, which allows for dynamic relighting at the client (see Figure 3.9).
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3.6 Extension to SPH datasets

The animated depth image is a general compact representation of time-varying

color and depth datasets. So far we have demonstrated animated depth images in

the context of triangle meshes resulting from FEA simulations. Animated should

be extendable to other types of time-varying datasets, with certain modifications.

Consider, for example, a smoothed-particle hydrodynamics (SPH) dataset where the

3D position of each particle center is recorded over a sequence of time steps. One

option for visualizing such a dataset is to render each moving particle as an opaque,

shaded sphere. Tessellating each sphere would result in a dataset of moving triangles

that can be handled as described. However, tessellating each particle results in a one

hundred-fold explosion in the number of primitives. Instead we modify our method

to handle particles directly.

Like before, the animated depth image stores color and depth samples. A pixel

sample is a reference to its particle and not a 3D pointthe triangle ID is replaced with

the particle ID and no barycentric coordinates are needed. Rigid bodies are computed

using the center of the particle to which each sample belongs, and not the sample’s

3D point. The animated depth image encodes the trajectories of the centers of the

particles and not the trajectories of individual samples. Sample connectivity is not

needed, as output visualization frames are reconstructed by rendering each particle

as an (independent) sphere. The adaptive sampling in space and time remains the

same. Sample redundancy detection is now replaced with a simple test for particle

ID uniqueness. For the example in Figure 1.3 the SPH dataset was captured using

the animated depth image approach. The trajectory approximation error threshold

is 1% of the radius of the sphere modeling the particle, the average disocclusion error

rate is 0.17%, and the compression factor is 40.

3.7 Results and discussion

We have applied animated depth images to multiple reference views in two FEA

datasetsthe truck dataset (Figure 1.3, right) and the aircraft dataset (Figure 1.3 left

and middle), as well as to an SPH dam break simulation dataset (Figure 1.3, bottom).

The truck dataset has 81 time steps and covers a region of 15m × 5m × 3.3m. The

truck dataset contains 0.63M triangles and 0.28M vertices, for a total of 23M vertex

positions. The aircraft dataset has 170 time steps, it is segmented into 3 segments
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Table 3.1. Data size variation with trajectory approximation error for the aircraft
dataset.

ε
[mm] 5 10 25 50 100 500 1000
[%] 0.005 0.01 0.025 0.05 0.1 0.5 1.0
[pix] 0.04 0.09 0.21 0.43 0.85 4.25 8.50

Size [MB] 39 29 22 19 18 17 16

Table 3.2. Adaptive sampling performance for various convergence threshold g values
for the aircraft dataset.

g[%]
Number of

Sampling Depth
Images

Data
Size[MB]

Residual Disocclusion Error
Rate [%]

Max. Avg.
0.05 208 24 0.31 0.084
0.1 184 23 0.31 0.11
0.2 136 23 0.37 0.14
0.3 124 23 0.46 0.16
0.5 76 20 40.0 0.65

of 58, 58, and 56 time steps, and it covers a region of 110m × 90m × 60m. The

aircraft dataset contains 2.08M triangles and 2.01M vertices, for a total of 342M vertex

positions. The SPH dataset has 82 time steps, it covers a region of 100× 18× 20 and

it contains 2.17M particles for a total of 178M particle center positions. The particles

are rendered as spheres with radius 0.1.

3.7.1 Quality

We investigate quality along three directions: sample trajectory approximation,

residual disocclusion, and reconstruction errors.

Sample trajectory approximation error

Animated depth images approximate sample trajectories with a user-controlled

maximum approximation error. Larger error bounds ε lead of course to fewer rigid
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bodies, fewer unassigned samples, and a more compact representation. Table 3.1

shows how the data size decreases as the approximation error ε increases for the

aircraft dataset. ε is given in absolute values (e.g. 10mm), in approximate relative

values (e.g. 10mm/100m = 0.0001 = 0.01%), and in maximum image plane error

values (e.g. 0.01 pix). The error in the image plane is estimated by projecting a

segment of length ε on the view PPC0 of the animated depth image. The segment

is parallel to the image plane and it is located at the depth of the closest sample in

the animated depth image, which provides a conservative upper bound of the image

plane error. The image resolution is 1, 280× 720.

Residual disocclusion error

Given an output frame F , we measure the residual disocclusion error rate in F as

the percentage of samples in the corresponding truth frame F0 that are not present in

F . Table 2 shows the number of depth images the adaptive sampling algorithm uses,

the size of the resulting set of animated depth image tiles, and the maximum and

average residual disocclusion error rates for various values of the convergence threshold

g. The maximum and average residual disocclusion error rates are computed over a

visualization sequence of 50,000 frames, which were reconstructed from viewpoints

and at time steps that sample the viewpoint triangle and time step interval densely

and comprehensively. As expected, a smaller g value yields fewer residual disocclusion

errors at the cost of sampling the dataset more. Disocclusion errors are not linear,

as seen in the jump of the maximum error rate when the g value changes from 0.3%

to 0.5%. The size of the resulting representation decreases slowly as the residual

disocclusion error is small (i.e. up to g = 0.3% ) and then it decreases rapidly

indicating that samples are missed. For all the images shown in this chapter, the

value for g is 0.1%.

Table 3.3 reports typical residual disocclusion error rates for the truck and aircraft

datasets. The 3 regions of the aircraft dataset that were investigated are shown in

Figure 1.3 left (outside), Figure 3.10 (side), and Figure 1.3 middle (reverse). The

residual disocclusion errors is small in all cases.

The graph in Figure 3.11 shows the variation of the average and maximum residual

disocclusion error rates over all viewpoints as a function of time step for the outside,

side, and reverse regions of the aircraft dataset. The maximum graph line for the
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Figure 3.11. Variation of residual disocclusion error rates over time steps.

Figure 3.12. Variation of residual disocclusion error rates over time steps.

reverse region (solid green) varies considerably due to the fast and chaotic motion in

that dataset region and the proximity of the reference viewpoint.

Reconstruction error

Even if all samples needed are captured, the reconstructed frame will differ slightly

from a frame rendered directly from the original dataset. Figure 3.12 shows that such
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differences are small. The largest errors are seen at residual disocclusion errors and

at edges. The reasons for the differences include:

� The additional resampling introduced by the intermediate animated depth im-

age representation; the output frame has the same resolution as the input ani-

mated depth image, whereas, for conservative reconstruction, the input should

have twice the resolution of the output;

� The undersampling caused when the screen footprint of samples increases from

the reference view due to view changes or sample animation;

� The conservative early elimination of a triangle between samples that erode at

different time steps, as opposed to splitting the triangle into fragments each

eroding at a different time.

3.7.2 Performance

Data size

Table 3.4 shows the data size variation for the animated depth image representa-

tion as a function of the length q of the viewpoint triangle side. The data was mea-

sured for the outside region of the aircraft dataset, the output resolution is 1, 280×720,

and the number of simulation time steps is 58. As can be seen in the relative size

row, the ratio of the data size to the viewpoint triangle edge length decreases as the

viewpoint triangle gets bigger, which indicates that the animated depth image rep-

resentation is more efficient as the viewpoint triangle grows. We chose a triangular

Table 3.3. Maximum and average residual disocclusion error rates.

Dataset
Residual Disocclusion Error Rate [%]

Max. Avg.
Truck 0.23 0.05

Aircraft
Outside 0.64 0.17
Side 0.46 0.16

Reverse 0.69 0.21
SPH 1.1 0.17
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Table 3.4. Data size for various viewpoint triangle sizes.

q[m] 1 2 3 4 5 8 10
Size[MB] 16 19 21 25 26 36 42
Rel. Size 16 9 7 6 5 4.5 4

C.F. 17 15 15 14 14 13 13

viewpoint region for simplicitymore complex regions can be built from multiple tri-

angles. Moreover, the adaptive sampling algorithm can be easily extended to more

complex 2D or 3D regions (e.g. a cuboid sampled in octree fashion).

The viewpoint triangle is the set of viewpoints used by the adaptive sampling

algorithm to capture all samples needed. However, the viewpoint triangle is a conser-

vative approximation of the set of viewpoints from where the animated depth image

representation has sufficient samples. Other viewpoints close to the triangle are likely

to have sufficient samples, such as points off the triangle plane behind and in front

of the center of the triangle, or points on the triangle plane just beyond the triangle.

The image in Figure 3.13 shows the viewpoint triangle (solid orange) enlarged (orange

triangular contour) and extruded (blue and yellow).

Reconstructions from 66% of the viewpoints inside the prism defined by the blue

and yellow triangles have a smaller residual disocclusion error than reconstructions

from the viewpoint triangle. Consequently the user can navigate the viewpoint away

from the triangle viewpoint, and good reconstructions are obtained even at a consid-

erable distance from the viewpoint triangle (compare the size of the prism to that

of the viewpoint triangle in Figure 3.13). When the viewpoint leaves the viewpoint

triangle, the user (or the system) can request a new animated depth image represen-

tation. Visualization continues using the current representation, with good results,

until the new representation arrives from the server.

The last row of Table 4 gives the compression factor achieved by the rigid body

decomposition and the compression of the trajectories of unassigned samples. The

compression factor is computed by comparison to storing the trajectory of every

sample uncompressed, with one position per simulation time step. Tables 3.1 and 3.2

report the variation of the size of the animated depth image representation with the

trajectory approximation error threshold ε and with the convergence factor g. For the

SPH dataset, the animated depth image representation requires 49.4MB of storage
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Figure 3.13. Visualization of viewpoints outside of viewpoint triangle (solid orange)
with conforming residual disocclusion error.

space, a 41.67 compression factor over the original dataset (2.01GB) that stores each

particle position for each time step.

Frame rate

Table 3.5 gives the average rate at which frames are reconstructed at the client

from the animated depth image representation. The measurements were performed

on an Intel i7 workstation with an nVidia GTX660 graphics card. Four output frame

rendering modes are investigated. For static the simulation time step is fixed. For

dynamic the simulation time advances from frame to frame. PB corresponds to a

straight forward point-based reconstruction with 2 × 2 splats (Figure 3.14). TM

corresponds to triangle mesh reconstruction. The primitives (points and triangles)

are sorted in descending order based on their erosion times; this way the primitives

needed at a time step are simply determined by choosing the appropriate prefix of

the connectivity array without having to enable and disable individual triangles. As

expected, higher frame rates are obtained for lower output resolutions, since that

implies fewer samples during reconstruction, for the point-based reconstruction mode

which is less expensive than the triangle mesh reconstruction, and for the static

visualization mode since it does not imply updating the geometry for every frame.

For all aircraft dataset experiments at the 1, 280 × 720 resolution, the minimum,

average and maximum frame rates are (98, 145, 212), (13, 18, 23), (16, 28, 40), and

(9, 14, 20) for Static PB, Static TM, Dynamic PB, and Dynamic TM , respectively.
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Figure 3.14. Comparison between frames reconstructed using 2×2 pixel splats (left),
and using a triangle mesh (right)

Before the client can reconstruct output visualization frames, the animated depth

image representation has to be decompressed. Decompression time ranges between

0.4 and 2.5s (Table 3.5), which is comparable to the transmission time in the case of

high bandwidth networks, and negligible in the case of low bandwidth networks, as

discussed in Section 3.7.2.

Scalability

Animated depth images inherit from conventional depth images the desirable prop-

erty of cost independence from dataset size. Dataset size depends on two factors:

extent and resolution. The animated depth image performs occlusion culling and

geometry resampling to achieve cost independence from both factors. Consider an

FEA simulation of an earthquake in a city with thousands of buildings. In output

views that focus on one or a few buildings, the buildings not visible are culled away.

In output views that show the entire city, the resolution of the animated geometry

is reduced. The number of samples remains capped by the animated depth image
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Table 3.5. Frame rate for various visualization modes.

Dataset Sequence Region
Frame

Resolution
Decomp-
ression [s]

Frame Rate[fps]
Static Dynamic

PB TM PB TM
Truck 0-80 N/A 1280× 720 0.60 566 106 100 68

Aircraft

0-57

Out.
1280× 720 1.4 201 23 38 18
960× 640 0.66 266 31 50 27
640× 480 0.42 480 56 111 45

Side
1280× 720 1.2 111 14 23 12
960× 640 0.88 160 22 31 17
640× 480 0.48 311 46 60 33

Rev.
1280× 720 1.2 135 22 25 15
960× 640 0.85 194 28 56 21
640× 480 0.45 394 74 113 45

58-115

Out.
1280× 720 1.4 212 21 38 20
960× 640 0.65 275 37 49 26
640× 480 0.40 505 57 75 47

Side
1280× 720 1.2 109 13 23 12
960× 640 0.89 157 21 30 15
640× 480 0.51 312 45 59 34

Rev.
1280× 720 1.8 119 16 22 12
960× 640 1.3 165 24 30 17
640× 480 0.72 319 40 53 36

116-171

Out.
1280× 720 1.3 211 22 40 17
960× 640 0.55 298 36 54 28
640× 480 0.32 550 68 114 52

Side
1280× 720 1.1 112 16 24 12
960× 640 0.91 167 22 34 18
640× 480 0.51 315 42 58 31

Rev.
1280× 720 2.5 98 14 16 9
960× 640 1.9 137 18 22 12
640× 480 1.0 270 40 48 26

SPH 0-81 N/A 1280× 720 0.33 3280 20 352 20

resolution. Although the cost of a single animated depth image is capped, the adap-

tive sampling algorithm uses multiple animated depth images to prevent disocclusion

errors.

The total number of samples depends on the complexity of the occlusion patterns

and on the size of the viewpoint triangle. Although, to the limit, in a dataset with

an infinite number of infinitely small particles every two viewpoints gather disjoint

sets of samples and thus the number of samples is infinite, for FEA datasets there is
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Table 3.6. Relative cost increase as output image resolution changes from 640× 480
to 1, 280× 720.

Sequence
0-57 58-115 116-171

Out. Side Rev. Out. Side Rev. Out Side Rev.
Samples 2.35 2.92 2.97 2.40 2.90 2.92 2.52 2.97 2.82
Data size 2.13 1.96 2.13 2.17 2.16 2.24 2.56 2.19 2.13
Frame rate 0.38 0.43 0.38 0.29 0.43 0.49 0.32 0.37 0.43

substantial sample redundancy between neighboring viewpoints and the number of

samples needed for a given viewpoint triangle is bounded.

The cost of the animated depth image does depend on output image resolution.

As the output image resolution grows, a quality reconstruction requires that the

resolution of the animated depth images increases as well. In all our experiments the

resolution of images increases as well. In all our experiments the resolution of the

animated depth images equals the resolution of the output frame.

Table 3.6 reports the relative change in number of samples, in data size, and in

reconstruction frame rate as the resolution increases from 640× 480 to 1, 280× 720,

which corresponds to an increase in number of pixels by a factor of 3. Data is

provided for each sequence of the aircraft dataset and for each region. The number

of samples never increases by a factor greater than 3. The storage size increases with

the number of pixels sub-linearly, which is a strong point of the compression based

on rigid body decomposition employed by our approach. The higher the resolution,

the more coherent neighboring samples are, the more samples per rigid body, and

the more effective the compression. The frame rate at higher resolution is typically

higher than a third of the frame at lower resolution, which indicates good scalability.

Comparison to other remote visualization approaches

The animated depth image approach enables remote visualization of dynamic

datasets and produces high-quality frames that are very close to frames rendered

directly from the dataset. Compared to transferring a conventional depth image, our

representation requires a larger initial transfer, but then supports changing the view

and advancing the simulation time at the client.
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We now compare our approach to the conventional remote visualization approach

of computing each frame on the server. The performance of a remote visualization

system is characterized by three quantities: the startup time t0, defined as the time

it takes for the first frame F0 to be displayed, the frame to frame latency l, defined

as the average time elapsed from when a frame Fi(i > 0) is requested by the user

to when Fi is displayed, and the total amount D of data transferred for a remote

visualization sequence. To estimate these quantities we have to further define the

visualization context.

First, we define how the frame is compressed for the conventional approach. We

investigate two scenarios: each frame is compressed individually using jpeg, and each

frame is compressed by taking into account that previous frames have already been

sent to the client. We approximate conservatively the second scenario by compiling

off-line a video file for all the frames from a visualization sequence with the state of

the art H.264 codec. This provides an upper bound on the compression performance

that live streaming can achieve. For the aircraft dataset, the average per frame data

size is 422kB for 1, 280 × 720 resolution and individually compressed frames, 58kB

for 1, 280× 720 resolution and streaming. For 640× 480 resolution the same numbers

are 45kB and 4kB, respectively.

Second, we estimate the ping time between the server and the client, defined as

the time it takes a short message to be transferred from the client to the server and

back, and the network download bandwidth, defined as the amount of data that can

be transferred from the server to the client per second. Upload speed is not a concern

since the request for a new frame implies small data amounts. Average ping times

from our Purdue University laboratory to various domestic and international servers

ranges from 57ms to 276ms. In our comparison we use the values of 50ms and 300ms

for a short and a long ping time. The download bandwidths we measured in West

Lafayette IN for 4G, 4G LTE, residential broadband, and wide area network (WAN)

are 2.5, 10, 20, and 100 Mbps, respectively. In our comparison we use 1Mbps and

100Mbps for high and low bandwidth values.

Finally, we need to define a visualization sequence as the series of consecutive

visualization frames requested by the user for a particular region of the dataset and for

a particular interval of simulation time steps. In the case of the animated depth image

approach, a visualization sequence is reconstructed from the same set of animation

depth image tiles. The number of frames in such a visualization sequence depends on
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Table 3.7. Comparison between conventional and animated depth image remote vi-
sualization for various network scenarios.

Resolution
Conventional Animated Depth Image

l[ms] D[MB] t0[s] l[ms] D[MB]
Scenario A: ping 300ms, bandwidth 1Mbps

1, 280× 720 603 - 3,447 580 - 4,220 192 2 - 111 24
600× 480 300 - 502 40 - 450 88 2 - 38 11

Scenario B: ping 300ms, bandwidth 100Mbps
1, 280× 720 300 580 - 4,220 1.92 2-111 24
600× 480 300 40 - 450 0.88 2 - 38 11

Scenario C: ping 50ms, bandwidth 1Mbps
1, 280× 720 478 - 3,322 580 - 4,220 192 2 - 111 24
600× 480 56 - 377 40 - 450 88 2 - 38 11

Scenario D: ping 50ms, bandwidth 100Mbps
1, 280× 720 50 - 58 580 - 4,220 1.92 2-111 24
600× 480 50 40 - 450 0.88 2-111 11

the dataset, on the region of the dataset, and on the time interval. We have observed

the civil engineers in our project examine each of the outside, side, and reverse regions

of the aircraft dataset for over 10 minutes, which at 30Hz implies sequences of 18,000

frames. In our comparison we assume visualization sequences of 10,240 frames.

Table 3.7 gives the performance of the animated depth image remote visualization

approach for the aircraft dataset and compares it to that of conventional remote

visualization. Four scenarios are investigated: long ping time and low bandwidth

(A), long ping time and high bandwidth (B), short ping time and low bandwidth (C),

and finally short ping time and high bandwidth (D). For each scenario two output

resolutions are investigated. For the animated depth image approach, the data size

is estimated by averaging the representation size over the three regions outside, side,

and reverse, for each resolution (resulting in the values of 24MB and 11MB). The

startup time t0 is computed by dividing the data size to the bandwidth to obtain the

192s and 88s values.

The frame to frame latency l is computed by inverting the reconstruction frame

rate, and it is given as a range, using the fastest and slowest frame rates given in

Table 3.5 for the same resolution, and over all reconstruction modes (i.e. 566fps and

9fps for 1, 280× 720, and 550fps and 26fps for 640× 480). l does not depend on the
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network parameters (i.e. ping and bandwidth). In fact the visualization can continue

at the client even if the connection to the server is lost after the initial transfer.

For the conventional approach, the total amount of data transferred D is obtained

by multiplying the average frame size by the number of frames in the sequence (i.e.

10,240). A frame size range is used, from H.264 sequence compression to compression

of individual frames, as discussed above. The conventional approach transfers sub-

stantially more data. The breakeven points are 424 and 58 frames for 1, 280 × 720,

and 2,816 and 250 frames for 640× 480.

For the conventional approach, the time for the first frame is the same as for any

other frame, thus t0 = l. We estimate l as follows:

l = max(tping,
tping

2
+
f

b
) (3.7)

Where tping is the ping time, f is the size of the frame, and b is the bandwidth.

If b is sufficiently large for the network to transport a frame in half the ping time, l

is given by tping. In scenario A, the advantage of the animated depth image (ADI)

approach over the conventional remote visualization (CRV) approach is substantial,

for both resolutions, and even when the highest quality reconstruction is used for ADI

and the most aggressive frame compression is used for CRV. In scenario B, the high

bandwidth reduces l for CRV to ping time, which still exceeds even the highest quality

reconstruction time for ADI. In scenario C, ADI has substantial advantage for the

1, 280× 720 resolution. In scenario D, which corresponds to a very highly performing

network, ADI has an advantage only for the faster reconstruction modes (i.e. PB

static and dynamic, see Table 3.5). For all scenarios, the fastest reconstruction (i.e.

2ms) gives at least a 25 fold advantage for ADI over CRV.

We conclude that, compared to the conventional remote visualization approach of

sending each frame from the server to the client, the animated depth image approach

improves frame to frame latency in all but in the case of a very highly performing

network, and the advantage increases with output frame resolution. Moreover, the

frame to frame latency does not depend on the network condition. These advantages

come at the cost of a longer startup time. The conventional approach will always

be limited by the ping time, a network characteristic which whose improvement is

challenging and costly.
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3.7.3 Limitations

One of the limitations of animated depth images as of all hybrid approaches to

remote visualization is the large startup time. Progressive refinement schemes such

as transferring a lower resolution animated depth image for the reference view could

help alleviate this problem. Another approach is to further reduce the size of the

animated depth image, for example by compressing the color and depth maps. The

trajectories of the unassigned samples currently take up to 50% of the overall storage

requirement, so further improving the compression of those trajectories will translate

in sizable storage gains. Although the amount of residual occlusion errors is small

even for the complex occlusion patterns in the dataset regions explored, the adaptive

sampling algorithm proceeds nonetheless in greedy fashion. A global optimization

approach could be developed to bound residual disocclusion errors.

A second limitation of animated depth images is that they do not support volume

rendering. This limitation is inherited from conventional depth images which can

model opaque surfaces by capturing the first surface sample seen along a ray, but

cannot model transparency. This does not mean that animated depth images cannot

be used to visualize opacity data. Visualizations of opacity data often take the first

step of computing a surface of interest (e.g. isosurface) which can then be remotely

visualized with our method. Volume rendering is just one example of the more general

challenge brought to sample-based rendering by view dependent effects. Another

example is rendering reflections. One option is to render reflections at the client,

rendering capability permitting. We will also investigate the extension of animated

depth images to store view-dependent color in a compressed form, leveraging the fact

that color variability is limited by the targeted range of reconstruction viewpoints.

Finally, the rigid body decomposition of the set of samples stored by an animated

depth image is done non-optimally in the interest of performance. The heuristic used

is based on the reasonable assumption that samples whose motion is well approxi-

mated by a rigid body transformation are also samples that are close to each other

in model space and thus in image space.

3.8 Conclusions and future work

We have described animated depth images, a novel type of image that not only

stores color and depth samples but also stores sample trajectories. An animated
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depth image covers a time interval as opposed to the single time point covered by

conventional depth images. The difference between an animated depth image and

a set of conventional depth images comes from the fact that the trajectories of the

samples are stored in a compact way that leverages sample trajectory coherence.

The approximation is efficient: tight user-selected error bounds are met while

achieving considerable storage savings. The approach does not rely on sample tra-

jectory simplicity, but rather on similarity of trajectories of nearby samples. The

approach uses one rigid body transformation per time step which allows modeling

complex trajectories with little or no time step to time step coherence, as those aris-

ing in the impact and dam break simulations considered in this chapter. As we have

shown, despite the complexity of the motion in these simulations, trajectories do

exhibit sample to sample coherence. As the spatial resolution of simulations contin-

ues to increase, so will the sample to sample coherence and thus the efficacy of our

approach.

Compared to a video segment, an animated depth image affords interactivity. We

have demonstrated the benefits of animated depth images in the context of remote

visualization of FEA datasets, which exhibit complex occlusion patterns. We have

shown that the approach can be extended to SPH simulation datasets. Since animated

depth images are a general approximation of animated geometry, we anticipate that

the approach can be extended to other representations. Like for any type of image,

animated depth image size is independent of dataset size and their relative benefit

increases with dataset size.

In computer graphics applications such as, for example, urban simulation or

games, most of the dynamic scenes used are static where most of the moving tri-

angles are part of explicitly defined rigid bodies (e.g. cars through the city) whose

trajectories are encoded collectively with a single sequence or tree of transformations,

and the motion of most non-rigidly moving triangles is governed by the motion of

underlying skeletons (e.g. computer animation characters). This allows animating

the triangles economically by skinning the skeleton for each new configuration.

Animated depth images are not suitable for such scenes. Animated depth im-

ages are specifically designed for datasets where millions of simulation nodes move

independently resulting in millions of triangles with small screen footprint whose

vertices move independently from frame to frame. Such datasets are common in sci-

entific visualization and they cannot be handled with the conventional scene graph,
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transformation hierarchy, and skeleton conceptualizations of motion used in computer

graphics.

One direction for future work is incorporating animated depth images into an

actual remote visualization system, with one or a few powerful servers, and with many

thin clients. Output frame reconstruction is equivalent to straight forward triangle

rendering, and even smart-phones can render meshes with a number of triangles

commensurate to their screen resolution, so we do not foresee problems with rendering

performance at the client. One of the potential advantages of our hybrid method is

to decrease the frequency of requests from the client to the server, compared to

conventional remote visualization where each client makes a request for each frame

displayed.

However, the request for a new set of animation depth image tiles is more complex

than simply rendering a single frame. In order to minimize the response time for such

requests, we will investigate parallelizing the computation of an animated depth image

and the adaptive space/time sampling over the set of processors available at the server.

Prior work has accelerated the computation on the server side using a light field [120]

– the approach could be adapted to pre-compute all animated depth images possibly

needed by clients by tiling the viewing space. Another direction for future work is

to address other types of visualization, such as volume rendering, computation that

is harder to cache in sample sets [121]. Finally, animated depth images introduce

sampling robustness with respect to variations of the time parameter of time-varying

datasets. In the future we will investigate other image generalizations that bring

robustness with variations of other visualization parameters such as, for example, an

isovalue used in isosurface extraction.



91

4 THE FLEXIBLE PINHOLE CAMERA

In this chapter, we present a pinhole camera model that allows modulating the sam-

pling rate over the field of view with great flexibility via ray pattern generalization.

This flexible pinhole camera or FPC is defined by a viewpoint and by a sampling

map that specifies the sampling locations on the image plane. The sampling map

is constructed from known regions of interest with interactive and automatic ap-

proaches. The FPC provides an inexpensive 3D projection operation which allows

rendering complex datasets quickly, in feed-forward fashion, by projection followed

by rasterization.

The FPC supports many types of data, including image, height field, geometry,

and volume data. The resulting image is a coherent non-uniform sampling (CoNUS)

of the dataset that matches the local variation of the importance of the dataset. We

demonstrate the advantages of CoNUS images in the contexts of remote visualiza-

tion, of focus-plus-context, and of acceleration of expensive rendering effects such as

rendering of surface geometric detail and of specular reflections. This work has been

published in IEEE Computer Graphics and Applications [2].

Most computer graphics and visualization applications employ images computed

using the planar pinhole camera (PPC) model. The PPC is a good approximation of

the human eye which makes it uniquely well suited for applications where the goal is

to show users what they would see during an actual exploration of the scene. However,

there are applications where the reduced field of view, the single viewpoint, and the

uniform sampling rate limitations of the PPC model are a severe disadvantage.

In this chapter we address the uniform sampling rate limitation of the PPC model.

We introduce the flexible pinhole camera or FPC which allows for adjustments of the

sampling rate according to the local importance or complexity of the data imaged.

Like the PPC, the FPC is defined by a viewpoint (i.e. center of projection or eye)

and an image plane. However, the sampling locations are not defined by a uniform

grid but rather by a sampling map that allows shifting sampling locations from one

region of the image plane to another.
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Figure 4.1. Visualization of sampling map for Figure 1.4.

By generalizing the ray pattern this way, the dataset is no longer sampled uni-

formly, but rather with higher sampling rate in certain regions while lower rate in

the others. As a result, the output image of FPC is a coherent non-uniform sampling

(CoNUS) of the dataset.

The CoNUS image in Figure 1.4, left, samples the five faces at a higher rate. The

underlying sampling map is shown in Figure 4.1. The ray pattern generalization is

optimized to be represented as a sampling map. The sampling map has the topology

of a 32 × 32 regular rectangular mesh which is distorted accordingly to reflect the

sampling rate preference.

FPC CoNUS images preserve the advantages of conventional images. A CoNUS

image can be computed quickly with the help of GPUs. Data access remains constant

time, with the small additional cost of the sampling map indirection. A CoNUS image

has good pixel to pixel coherence and conventional image compression algorithms

apply. Finally, a CoNUS image remains a single-layer 2D array of samples which

defines connectivity implicitly.
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Figure 4.2. CoNUS height field and its sampling pattern (left), output frame rendered
from CoNUS (right top), and from conventional height field (right bottom).

4.1 Prior work

We first review prior efforts aimed at removing the uniform sampling rate con-

straint of conventional images, and then review prior work in the application contexts

where we examine the benefits of FPC rendered CoNUS images.

Non-uniform sampling rate Hierarchical spatial partitioning schemes such

as kd-trees do improve representation efficiency by stopping subdivision in regions

where data is sampled accurately. One could define the FPC sampling map with

such a partitioning scheme. Compared to our distorted grid approach (Figure 4.1),

the hierarchical approach has the advantage of supporting a wider range of sampling

rates, but it has the important disadvantages of sampling rate discontinuity, of lack

of contiguity, and of greater construction (i.e. rendering) and usage (i.e. lookup)

complexity.

Images with a non-uniform sampling rate were first obtained as a side effect of

techniques for removing the field of view limitation of conventional images. For

spherical panoramas the sampling rate variation was an unwanted side effect and

they were replaced by cube maps with a more uniform sampling rate. Recently,

single image panoramas have received renewed attention, as the programmability of
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graphics hardware enables sampling patterns that avoid the earlier undersampling

problems [122].

Researchers have also been addressing the single viewpoint limitation of conven-

tional images with innovations at the camera model level such as the general linear

camera [24] and the occlusion camera [4]. The FPC CoNUS is complementary to

these approaches, providing sampling rate flexibility to panoramic and non-pinhole

cameras. Irregular sampling patterns have also occurred in the contexts of image-

based rendering by 3D warping [20] and of shadow antialiasing [67]. In both cases

depth images are reprojected to novel views where the forward mapped samples are

irregular.

The granularity with which sampling is controlled in the FPC CoNUS approach

is insufficient to sample the shadow map precisely at the locations where the output

image does, as needed to completely eliminate shadow aliasing. However, shadow

aliasing could be reduced by using a CoNUS shadow map with a higher sampling

rate in regions that are magnified in the output image.

The most general pinhole camera defines each ray independently with its own

image plane point [106]. Such a camera model has the theoretical importance of

maximum generality, allowing for any sampling pattern given n rays, but it has no

practical use. First, the rays are not organized in a 2D array and therefore the

resulting image is an unsorted list of color samples which cannot be easily displayed.

Second, rendering such an image is expensive as it would require tracing each ray

independently.

The practical implementation of the general pinhole camera that the researchers

use [106] restricts the sampling rate variation to a rectangular region R of the image

plane. A smaller rectangle r, concentric with R, provides a higher resolution sampling

of the scene at that region of the image. The higher resolution region r is sampled

with a planar pinhole camera and hence it is distortion free (i.e. 3D scene lines map

to 2D image lines). The region R − r is used to transition from the low sampling

rate outside R to the high sampling rate inside r. The sampling locations in R − r
are chosen with a quadratic or cubic function to achieve C0 or C1 continuity. Several

regions of higher resolution are supported as long as they are disjoint.

The FPC amounts to a different specialization of the abstract general pinhole

camera model. The FPC CoNUS approach has two fundamental advantages over

the previous specialization. First, the FPC provides far greater flexibility in defining
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the sampling locations. Second, as explained in the next sections, the FPC sampling

map provides fine grain control of the sampling rate while keeping the amortized cost

of the fundamental image point distortion and undistortion operations constant. In

contrast, a general planar pinhole camera with multiple rectangular regions of high

resolution requires checking each of the regions for the distortion / undistortion of a

point, which does not scale with the number of regions.

In texture mapping non-uniform sampling has been pursued through compression,

atlasing, enhancement with explicitly modeled high frequency features (e.g. edges),

and distortion. We only discuss the last two approaches as they are closest to our

work. Textures enhanced with edges modeling shadow silhouettes [123] or abrupt

changes in color [124] are more robust to magnification. The approach is compatible

with CoNUS textures. When edges are derived from vector graphics primitives the

edges have to undergo the sampling map distortion (Figure 4.1), and long edges have

to be split. For edges derived from the texture, the CoNUS texture can be used

directly. Space-optimized textures [125] distort textures with a similar mechanism

to our sampling map. Our FPC work extends nonuniform sampling to more types of

data and applications.

Remote visualization. As the size of acquired and computed datasets continues

to increase, so will the importance of remote visualization which is called upon to

provide access to remote datasets for clients with no high-end storage or visualization

capabilities. One approach is to reduce the dataset on the server to a size that can

be transmitted to and visualized by the client. Many techniques can be used to

reduce the dataset size on the server, including data compression (e.g. [88]), feature

extraction (e.g. [82]), and level of detail (e.g. [80]). A second approach is to compute

the visualization at the server and send images to the client (e.g. [73]). The client

only needs a simple terminal that can display images, but network bandwidth limits

visualization resolution and frame rate.

A hybrid approach is to transfer from the server to the client images that have

more data than what is needed for the client’s current frame. Such an enhanced

image should be sufficient for a quality reconstruction of a sequence of frames at the

client, without any additional data from the server. Images enhanced with per pixel

depth [102] and with additional samples at the center [106] have been used to allow

translating and zooming in at the client. Remote visualization based on transferring

CoNUS images falls in this third, hybrid category. A CoNUS image that samples
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known regions of interest in greater detail anticipates the users intention to zoom in

on those regions. A CoNUS height field that samples the ground plane orthogonally

yet at a higher rate close to the user supports six degrees of freedom navigation at

the client in the neighborhood of the current view.

Rendering acceleration using depth images. Depth images are powerful

geometry approximations used for acceleration in many contexts including rendering

of complex geometric surface detail, of specular reflections, of refractions, and of

ambient occlusion. We limit the discussion of prior work to the first two contexts

which are used here to illustrate the benefits of our method.

Relief texture mapping is a technique for adding geometric detail to surfaces.

The technique produces correct silhouettes and correct interactions between relief

and other relief and non-relief geometry (e.g. intersections, casting and receiving

shadows) [126]. The relief texture is a depth image attached to a base box. Rendering

the box triggers intersecting the eye ray with the depth image at every pixel. The

intersection computation is performed by projecting the ray onto the depth image

and following the ray projection until the first intersection is found.

Specular reflections are challenging for the feed-forward 3D graphics pipeline be-

cause one cannot easily compute the image plane projection of reflected vertices. We

group specular reflection rendering techniques into four categories: ray tracing [127],

approximations of the projection of reflected vertices (e.g. [128]), image-based ren-

dering (e.g. [129]), and approximations of the reflected scene. We only discuss the

fourth category since it is the category where the CoNUS specular reflection ren-

dering method falls. The most drastic approximation is undertaken by environment

mapping [130], where the reflected scene is assumed to be infinitely far away from the

reflector. Environment mapped reflections are incorrect for objects close to the re-

flector. Approximating these objects with billboards or depth images [129] improves

reflection accuracy. Using CoNUS depth images as relief textures or to approximate

reflected objects brings sampling flexibility without a considerable increase of the cost

of ray / depth image intersection.

Focus-plus-context visualization. The visualization of complex scenes can

benefit from highlighting the scene region that is more important in the context of the

application. The pipeline of such focus-plus-context visualization has multiple stages,

including finding the regions of interest, finding the best view for a region of interest,

and highlighting the region of interest by assigning it a salient color, by assigning
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it more pixels, and by managing occlusions through cutaway, transparency, or non-

pinhole camera techniques. For example, finding the best viewpoint for a region

of interest can be done automatically by analyzing the region feature distribution

in an information-theoretic framework [131]. We refer the reader to an excellent

survey [132] of the state-of-the-art methods for the various stages of the focus-plus-

context pipeline, and we limit the discussion to the problem of highlighting the region

of interest by allocating more pixels to the region of interest, which is where the FPC

makes it contribution to focus-plus-context visualization.

An important challenge stems from the fact that displays have a uniform pixel

resolution (with the exception of special focus-plus-context screens [133]). Conse-

quently, the focus-plus-context image cannot be displayed directly and it has to be

mapped to displays with uniform resolution by introducing distortions between the

focus and context regions. Focus-plus-context visualization is typically applied to 2D

data (e.g. to hierarchies [134], graphs [135], and maps [136]). Applying the tech-

nique to 3D data can be done either by distorting the dataset and then visualizing it

with a conventional camera [137], or by distorting the camera model [106,138]. FPC

focus-plus-context visualization falls in the second category. Like the general pinhole

camera, the volume lens [138] defines one or a few regions of interest with higher

resolution. The ray perturbation employed does not provide closed form projection

and the method is restricted to volume rendering and ray tracing.

4.2 The flexible pinhole camera

4.2.1 Camera model

The goal is to define a camera whose rays pass through a point and that renders

an image with a variable sampling rate, i.e. a CoNUS image. The camera has to

be flexible, to allow defining the desired sampling rate for sub-regions of the CoNUS

image, and it has to be fast, in order to render the CoNUS image quickly from a

variety of types of input data. We implement the sampling rate variation with a

sampling map that defines a distortion of a regular 2D mesh. The distorted mesh has

the same topology as a regular 2D mesh, but with quadrilateral cells that are larger

where a higher sampling rate is desired (Figure 4.1). The sampling map is encoded

as a 2D array of 2D points. Each point defines a node of the distorted mesh.
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Figure 4.3. Piecewise bilinear image distortion using a sampling map.

Given an (undistorted) image point (u, v), the corresponding (distorted) CoNUS

image point (ud, vd) is found by looking up the sampling map using bilinear interpo-

lation as shown in Algorithm 6 and Figure 4.3. The input point is first converted to

sampling map coordinates (u′, v′) (line 1). Then the distorted point is computed by

bilinear interpolation of the four distorted mesh points stored in the sampling map

at the 2× 2 neighborhood containing (u′, v′) (line 2).

Camera model definition. We define the flexible pinhole camera model FPC

with a conventional planar pinhole camera PPC and a sampling map SM that dis-

torts the PPC image as described in Algorithm 6.

Projection. A flexible pinhole camera FPC(PPC, SM) projects a 3D point P

to its CoNUS image plane by first projecting P with PPC to obtain the undistorted

coordinates (u, v) and then by distorting (u, v) to (ud, vd) (Algorithm 6).

Algorithm 6 FPC::Distort(u, v) // FPC distortion

Input: undistorted image resolution (w, h), undistorted location (u, v), and sam-
pling map SM of resolution (w0, h0)

Output: distorted location (ud, vd)
1: (u′, v′) = (uw0/w, vh0/h)
2: (ud, vd) = SM .BilinearLookup(u′, v′)
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Algorithm 7 FPC::Rays() // Computation of FPC rays

Input: FPC of resolution w×h, defined by PPC and by SM of resolution w0×h0
Output: FPC rays
1: Initialize 2D mesh QM of w0 × h0 resolution
2: for all (i, j) where 0 ≤ i < w0, 0 ≤ j < h0 do
3: Vertex coordinates QM.vi,j = SMi,j;
4: Texture coordinates QM.(s, t)i,j = (i/w0, j/h0);

5: for all triangles q in QM do
6: for all pixels p covered by q do
7: (u, v) = (wsp, htp)
8: rayp = PPC.GetRay(u, v)

Camera rays. The FPC(PPC, SM) ray through (ud, vd) is the PPC ray

through (u, v). Consequently, in order to compute the camera ray, one needs to invert

the distortion, which poses two challenges. First, one has to find the quadrilateral

cell of the distorted mesh that contains (ud, vd). A naive approach would examine all

quads. A better approach would use a hierarchical subdivision of the CoNUS image

(e.g. using a kd-tree or a BSP-tree) to quickly find the quad that contains (ud, vd),

but constructing the subdivision remains laborious. Second one needs to solve the

quadratic equations of the inverse bilinear interpolation that computes x and y from

(ud, vd), SMij, SMi+1,j, SMi,j+1, and SMi+1,j+1.

We bypass these challenges by leveraging two observations. First, CoNUS appli-

cations do not need to compute an individual ray of the FPC, but rather all rays

iteratively. Second, bilinear interpolation inversion can be avoided by splitting the

distorted mesh quads into two triangles and by replacing the quad bilinear inter-

polation with two triangle barycentric interpolations. This modification does not

reduce the sampling rate flexibility of the FPC. We find all rays of the modified FPC

efficiently as shown in Algorithm 7.

The rays of the FPC are found by rasterizing the distorted mesh QM defined by

the sampling map (line 3). QM has the topology of a 2D regular mesh, but its vertices

are displaced according to the desired sampling rate variation (see Figure 4.1). Each

distorted mesh vertex carries its undistorted coordinates as texture coordinates (line

4). The ray at the current pixel p is found by first finding the undistorted coordinates

(u, v) of p from its texture coordinates (sp, tp) (line 7), and then by computing the

regular planar pinhole camera ray at the undistorted coordinates (line 8).
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The rays are found at the cost of rasterizing the 2×w0×h0 triangles of the distorted

mesh, which is small since the resolution of the sampling map is much smaller than

the resolution of the CoNUS image. We compute the rays on the GPU with a trivial

fragment shader that executes lines 7 and 8. Algorithm 7 provides the rays of the

FPC camera, one at a time, at a small amortized cost. The algorithm is not used

as is, but it is rather specialized as needed to render a CoNUS image from a regular

image or from volume data, as described below.

4.2.2 Rendering CoNUS images with the FPC

The FPC allows rendering CoNUS images efficiently from a variety of types of input

data.

Algorithm 8 FPC::Render(T ) // render from geometry

Input: FPC FPC and triangle mesh T
Output: CoNUS image I
1: for all vertices v of T do
2: v′ = FPC.Project(v)

3: for all projected triangles t′ of T do
4: Rasterize t′

Geometry data. A CoNUS image is rendered from a 3D triangle mesh with the

steps shown in Algorithm 8. The 3D triangle mesh T is projected by projecting its

vertices with FPC (i.e. PPC projection followed by distortion with Algorithm 6,

Section 4.2.1). Then the projected triangles are rasterized conventionally. The pro-

jected triangles have to be small enough such that conventional rasterization provides

a good approximation of the nonlinear projection induced by the sampling map. Most

datasets have small triangles and conventional rasterization is acceptable without fur-

ther subdivision. When subdivision is needed, an offline approach is preferred in order

to avoid the performance bottleneck of issuing a large number of primitives in the

geometry shader.

Image and height field data. A CoNUS image is rendered from a conventional

input image by modifying line 8 of Algorithm 7 as shown in Algorithm 9. Once the

undistorted location (u, v) is known, the input image is looked up to set the current

CoNUS image pixel (ud, vd). A CoNUS image has fewer pixels than the original

image. The original image provides the maximum resolution over the entire field of
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view, which is preserved in some regions of the CoNUS image, whereas the other

regions of the CoNUS image are at lower resolution. A CoNUS height field sampled

orthogonally to the base plane is constructed similarly with the exception that the

pixel is setup by looking up the depth in the original height field instead of (or in

addition to) looking up the color.

Algorithm 9 FPC::Render(I) // render from image

Input: FPC FPC and image I
Output: CoNUS image I ′

// identical to Algorithm 7 except for line 8
...
9: I ′(ud, vd) = I(u, v) // difference with Algorithm 7
...

Volume data. A CoNUS image is rendered from volume data by tracing the

FPC rays through the volume. The rays are determined with Algorithm 7.

4.2.3 Resampling of regular image from CoNUS image

We have described rendering a CoNUS image from a regular image. However, some

applications, such as remote visualization, use the CoNUS image as an intermediate

representation from which they have to resample a conventional image to be presented

to the user. A regular image I1 is resampled from a CoNUS image I0 with the steps

shown in Algorithm 10. The rays that sample I1 are defined by a planar pinhole

camera PPC1. Given an I1 pixel (u1, v1), the corresponding CoNUS image pixel

(ud, vd) is computed in two steps.

Algorithm 10 FPC::CoNUS2Regular(I0) // Resampling

Input: CoNUS image I0, FPC(PPC0, SM), PPC1

Output: Conventional image I1 for PPC1

1: for all pixels (u1, v1) in I1 do
2: P = PPC1.Unproject(u1, v1)
3: (u0, v0) = PPC0.P roject(P )
4: (ud, vd) = FPC.Distort(u0, v0) // see Algorithm 6
5: I(u1, v1) = I ′(ud, vd)
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Figure 4.4. Mass-spring system used to define sampling maps interactively. The user
defines regions of higher resolution using a circular brush (yellow).

First, one computes the corresponding point (u0, v0) on the image plane of PPC0,

as shown by lines 2 and 3. This correspondence is computed by generating the 3D

point P corresponding to (u1, v1) by unprojection with PPC1 and then by projecting

P with PPC0. The unprojection followed by projection can be combined into a single

matrix multiplication followed by perspective divides.

Second, the corresponding (ud, vd) is computed by distortion leveraging Algo-

rithm 6.

4.2.4 Sampling map construction

We construct sampling maps in one of three ways. One way is through the use

of an interactive physics-based 2D mass-spring system. The image is covered with

regularly distributed particles connected with springs to form a quadrilateral mesh.

All particles have the same mass and all springs have the same resting length (set

to 10% of the initial particle distance in our implementation). The user perturbs

the system interactively by adding repulsive forces between particles with a circular

brush (Figure 4.4).
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The force magnitude decreases from the center towards the periphery of the brush

exponentially. The equilibrium state is computed by tracking the position of each par-

ticle over time until all particle velocity vectors have negligible magnitude. For each

time step, the forces acting on each particle are computed first using Hooke’s equation

for harmonic oscillators Fi = −kxi, where Fi is the force applied to the particle by

spring i connected to it, k is the spring constant, and xi is the particle displacement

along the spring direction. Then the particle velocity v and displacement x are up-

dated with equations v = v + ∆tF/m and x = x + ∆tv, where F is the resultant

force acting on the particle. A mesh of 256 × 256 particles is updated at 30 fps and

a stable state is reached in less than 2s. The sampling map is defined by the final

position of the particles, and it can have a lower resolution than the particle mesh.

Sampling maps can also be generated through a linear combination of the dis-

tortion vectors of existing sampling maps, as shown in the equation below. SMij,

SM0
ij, and SMk

ij are element (i, j) of the new sampling map, of the undistorted sam-

pling map, and of the input sampling map k. sk and tk are the scale factor and the

translation vector of map k.

SMij = SM0
ij +

∑

k

(sk(SMk
ij − SM0

ij) + tk) (4.1)

A third approach is to do away with the discrete representation and define the

distortion analytically as shown in Figure 4.2, bottom left, and as described in Sec-

tion 4.3.

4.3 Remote visualization

The resolution of digital cameras continues to increase faster than network bandwidth.

It is also the case that workstation displays now have a lower resolution than the

simplest digital cameras attached to cellular phones (e.g. Apple’s 4MP 30” LCD

and 8MP iPhone 5S camera). Consequently, even if the image is transferred at full

resolution, it is most likely going to be downsized for viewing. Often not all pixels in

a digital image have the same relevance for the application. For example faces in a

portrait photograph are more important than the furnishings in the room. Moreover

faces are found automatically by digital cameras for focusing purposes. In the context

of an online geographic atlas, pixels sampling famous locations or locations marked

by other users as interesting have higher relevance. In the context of remote scientific
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visualization, some image regions might be known to be of higher interest to scientists,

such as regions showing receptors targeted in drug molecule design.

In such contexts, the CoNUS capability of the FPC could help reduce bandwidth

requirements and improve interactivity as follows. The server FPC renders a CoNUS

image that samples the regions of interest at a higher rate. Then the CoNUS image is

transferred to the client, where it is resampled to a conventional image (Algorithm 10).

The application tours the CoNUS image, showing the regions of interest in detail.

We have also investigated the use of the FPC CoNUS approach in the context

of remote terrain visualization. Given a height field H at the server and a current

view PPC at the client, the goal is to resample H to a CoNUS height field that has

all and only the samples needed to provide a quality visualization of the height field

from views in the neighborhood of PPC.

Algorithm 11 HeightF ieldCoNUS(H,PPC0)

Input: Height field H, client refrence view PPC0

Output: CoNUS height field CH
1: for all samples (ud, vd) in CH do
2: (u, v) = PPC0.Ray(ud, vd) ∩H.g
3: CH(ud, vd) = H(u, v)

First, a reference view PPC0 is constructed by enlarging the field of view of PPC,

to support view rotations, and by increasing the resolution, to support zooming in

and forward translation. Then a CoNUS height field is constructed with a sampling

rate that matches the requirements of PPC0. CH should have more samples close

to the viewpoint and fewer at a distance, as illustrated in Figure 4.2, bottom left.

We construct the CoNUS height field CH with an analytical distortion function as

described in Algorithm 11.

The CoNUS height field sample (ud, vd) is looked up in the original (undistorted)

height field H at location (u, v) which is computed by intersecting the ray at pixel

(ud, vd) in the client view PPC0 with the ground plane H.g of H. This construction

applies the perspective foreshortening of PPC0 while maintaining the orthogonal

sampling of H, which avoids disocclusion error problems that would occur if one

actually rendered the geometry of H from PPC0. CH is sent to the client where it

is transformed in a 3D triangle mesh that is rendered for each frame. A CH sample

is converted to a 3D triangle mesh vertex by computing the ground plane point P
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corresponding to (ud, vd) (line 2 in Algorithm 11) and by offseting P by CH(ud, vd)

above the ground plane.

Quality The CoNUS image shown in Figure 1.4 allows rendering all five faces in

great detail. The CoNUS height field produces frames that are comparable to frames

rendered from the original high-resolution height field (Figure 4.2).

Performance For Figure 1.4, once the FPC model is known, rendering the CoNUS

image takes negligible time; the FPC sampling map was designed interactively using

the spring-mass system. For the example in Figure 4.2, we use a CoNUS height field

of 1, 024 × 1, 024 resolution, which is rendered and used at over 400 and 100 frames

per second, respectively.

Limitations The FPC CoNUS approach increases the sampling rate of the regions

of interest at the expense of the rest of the image. When high frequencies are present

outside the regions of interest, the undersampling can become noticeable (Figure 4.7).

The approach does not address occlusions. Whereas occlusions do not occur for

images or orthogonally sampled height fields, the FPC CoNUS approach will have to

be integrated with an occlusion alleviation scheme such as a non-pinhole camera to

support six degrees of freedom remote visualization of general 3D data.

4.4 Depth image rendering acceleration

A depth image is a powerful method for approximating geometry: the depth image

is computed quickly with the help of graphics hardware, and a depth image can

be quickly intersected with a ray. Because of these important advantages depth

images have been used to accelerate the rendering of complex effects such as specular

reflections, refractions, ambient occlusion, and relief texture mapping. Eliminating

the uniform sampling rate constraint of conventional depth images using the FPC

CoNUS approach could benefit all these techniques provided that the efficiency of

depth image construction and of ray intersection is preserved. CoNUS depth images

can be rendered efficiently from height field or geometry data using the FPC as

discussed in Section 4.2.

A conventional depth image DI is intersected with a ray by projecting the ray to

the image plane of DI and by tracing the projection with one pixel steps until an

intersection is found [126]. In the case of a CoNUS depth image, the projection of the

ray is no longer a line segment, but rather a curve segment. The ray cannot longer be
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Figure 4.5. CoNUS depth image emphasizing all 4 engraved tablets (left top), scene
setup (left bottom), and reflection details rendered with CoNUS (middle) and conv.
(right) depth image.

projected solely by projecting its endpoints. Instead, the ray has to be subdivided into

segments, each projected with the FPC as described in Section 4.2. The fundamental

advantage of depth images of 1D intersection with a ray is preserved, at the cost of a

slightly more complicated projection of the ray. We integrated CoNUS depth images

into relief texture mapping and into specular reflection rendering, where the CoNUS

depth image is intersected with eye rays and with reflected rays, respectively.

Quality. The sampling flexibility afforded by CoNUS depth images allowed im-

proving the clarity of the engraved tablets (Figure 1.4) and of their reflection (Fig-

ure 4.5).

Performance. For both conventional and CoNUS depth images, the performance

bottleneck for relief texture mapping and specular reflection rendering is the depth

image / ray intersection computation. Intersecting a ray with a CoNUS depth image

brings the additional cost of distorting a 2D point at every step along the ray. How-

ever, CoNUS distortion is fast, and we measured an average frame rate penalty of

only 5%. For applications where the CoNUS depth image is intersected with a large

number of rays, it might be advantageous to undistort the CoNUS depth image at
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Figure 4.6. CoNUS focus-plus-context visualization emphasizing the yellow and white
cars (top), and conventional image (bottom).

the client to a higher resolution conventional depth image using Algorithm 10, which

results in straight ray projections and avoids the cost of per step distortion.

Limitations. CoNUS depth images inherit the occlusion limitations of conven-

tional depth images. The sampling tradeoff can lead to visual artifacts outside regions

of interest.

4.5 Focus-plus-context visualization

The FPC CoNUS approach is well suited for focus-plus-context visualization be-

cause it offers good control over the sampling rate, which allows precisely designing

one or multiple focus regions, and because CoNUS images can be rendered quickly,

which supports dynamic scenes and the interactive change of focus region parame-

ters. The CoNUS image is shown directly to the user thus no decoding is needed.

The CoNUS image can be rendered efficiently from a variety of data as described in

Section 4.2. The only remaining challenge is sampling map construction.

Unlike for the previous applications of CoNUS images, in focus plus-context-

visualization the sampling map has to be constructed online, once for every output

frame, which precludes the use of the mass-spring approach. We construct sampling

maps by composing canonical circular sampling maps, one for every focus region. We

demonstrate the approach in the context of volume rendering (Figure 1.4), where the

user manipulates focus region and view parameters interactively to examine a volume

dataset, and in the context of a city scene modeled with triangle meshes (Figure 4.6),
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where focus regions track moving cars. The focus region location is computed by

projecting the center of the tracked car in the output view.

Quality. The CoNUS approach enables high quality focus-plus-context visualiza-

tion for a variety of data types. The focus regions have strong magnification and low

distortion. Focus region parameters can change and focus regions can merge and then

separate again without abrupt changes in the output visualization. Focus plus context

visualization is particularly robust to undersampling outside the focus region–users

are likely to focus on the region that they themselves selected as important, and focus

regions can be shifted interactively to visualize any region in more detail.

Performance. In our experiments FPC volume rendering was on average 7% slower

than conventional volume rendering. The cost of volume rendering by ray casting is

dominated by the traversal of the volume, thus computing the perturbed rays for the

CoNUS approach has no impact on performance. We attribute the slight performance

decrease to a larger output image footprint for the distorted volume, and to more rays

being focused on the center of the dataset where volume traversal distances are longer.

The vertex distortion performed when rendering CoNUS images from triangle meshes

had no measurable performance impact.

Limitations. Since the CoNUS approach does not alleviate occlusions, tracked

objects of interest can become hidden and the user has to change the view to reveal

the object. As future work we will examine changing the view automatically to keep

the tracked object visible.

4.6 Conclusions and future work

We have presented a general method for removing the uniform sampling rate

constraint of conventional images. CoNUS images can be rendered efficiently from

image, height field, geometric, and volume data. Like a conventional image, a CoNUS

image has a single layer and good pixel to pixel coherence, thus conventional image

compression algorithms can be readily applied. The underlying sampling map can

be constructed from known regions of interest in a variety of ways including using a

mass spring system, by composing multiple input sampling maps, and analytically.

The sampling map is a powerful tool for assigning more pixels to some regions of

the image plane. For example, for the image in Figure 1, the maximum sampling rate

increase is 8.13×, respectively, which was measured by finding the largest quadrilat-
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Figure 4.7. Sampling artifact outside the regions of interest in a frame reconstructed
from the CoNUS image in Figure 1 (left), and undersampling of distant mountain by
CoNUS height field (right, top) compared to original height field (right, bottom).

eral cell of the sampling mesh, and by dividing its area to the area of an undistorted

cell. The sampling map does not create new pixels–the sampling rate is increased by

decreasing the sampling rate in other regions deemed of lesser importance.

For a sampling map of resolution w0×h0, for regions of interest occupying k cells,

and for a minimum sampling rate of the context regions of c×, the upper bound for the

sampling rate increase is z = w0h0(1−c)/k+c. For example, if w0×h0 = 1, 024, k = 64

and c = 1/2, then z = 8.5×. If the application tolerates downsampling the context

to 1/8, z increases to 14.125×. If there is a single region of interest that fits in one

cell, i.e. k = 1, then, even for a negligible downsampling of the context regions by

c = 0.95×, the sampling rate of the region of interest can reach z = 52.15×.

Possible directions for future work include exploring other uses of CoNUS images

(e.g. geometric simplification, acceleration of additional rendering effects), investi-

gating the benefit/cost tradeoff of higher order interpolation of the sampling map to

achieve C1 sampling rate continuity, and developing automatic sampling map con-

structors. This chapter describes how to sample at a non-uniform rate.

We are particularly interested in tightly coupling the FPC CoNUS approach with

automatic techniques for determining what to sample in more detail, such as auto-

matic geometric complexity analysis, object recognition, eye tracking, and saliency
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maps. We foresee that FPC-rendered CoNUS images will have wide applicability as

they are compatible with virtually all contexts where images are used.
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5 THE CURVED RAY CAMERA

Conventional images are rendered with the planar pinhole camera and only capture

dataset samples to which there is a direct line of sight. Multiperspective rendering is

an approach for extending the visibility computation capability of images while main-

tain the coherent, single-layer structure of conventional images. A multiperspective

image integrates samples from multiple viewpoints seamlessly into an image stored

as a regular 2D array of pixels that can be displayed conventionally. This opens up

the door to using the multi-viewpoint visibility solution directly in an application

by showing the multiperspective image to the user, and not just to use the visibility

solution as a data subset from which to render conventional output images.

One powerful method for rendering multiperspective images is to generalize the

geometry of a camera ray, a method adopted by our image generalization paradigm.

The rays of an initial planar pinhole camera are bent to go around occluders and to

reach geometric primitives that are hidden from the reference viewpoint of the initial

camera. A ray is not a straight line anymore, but rather the set of 3D points that

project at a given image plane location. Since the initial camera has millions of rays

and since each rays geometry can be modeled with many degrees of freedom, the

camera model design space is sufficiently broad to provide good visibility sampling

for the most complex of datasets. Unlike for conventional images, the camera model

depends on the reference viewpoint, on the dataset, and on the application.

The design of the camera model usually enforces two constraints. One constraint

is to design the set of rays such that the resulting camera model provides a fast

projection operation. Given a 3D point, the multiperspective image projection of

the point should be computable in a small number of steps. Fast projection enables

rendering the multiperspective image efficiently in feed-forward fashion. The second

constraint is to avoid that the rays of the camera intersect. More precisely, we want

to avoid that the same region of the dataset be sampled by multiple non-adjacent ray

bundles, where a ray bundle is a set of rays originating from a contiguous region of the

image. Two ray bundles are adjacent if their image regions are adjacent. Sampling a

data subset multiple times leads to image redundancy.



112

Prior work on camera model design for multiperspective rendering has produced

the family of occlusion cameras. An occlusion camera captures not only samples

visible from the reference viewpoint, but also samples that are not visible from the

reference viewpoint but are visible from nearby viewpoints. The occlusion camera

generalizes the viewpoint to a view region centered at the reference viewpoint. An-

other prior work camera model for multiperspective rendering is the graph camera.

A graph camera is literally a graph of planar pinhole cameras. The graph camera is

constructed from an initial planar pinhole camera through a series of bend, split, and

merge operations. The resulting camera model has the ability to reach deep into the

dataset to reveal distant data subsets.

A graph camera image integrates multiple viewpoints into a continuous multi-

perspective image. The image is a seamless collage of conventional planar pinhole

camera sub-images. Each sub-image is distortion free, with dataset lines projecting

to sub-image lines. However, an important limitation of the graph camera image is

that data subsets that cross from one sub-image to the next appear distorted. The

distortion is due to the fact that the graph camera rays transition from one viewpoint

to the next abruptly as they reach the planar boundary between the sub-frusta of

the two viewpoints. In Figure 1.6 left, the yellow car crosses the boundary from one

sub-frustum to the next. Half of the object is imaged from one viewpoint, and half is

imaged with the next viewpoint. As a result, the yellow car appears to be distorted

and broken into two hinged parts.

We alleviate this distortion artifact of graph camera images by transitioning from

one viewpoint to the next gradually, over a transition region. The transition region

turns the rays of one viewpoint into the rays of the other viewpoint progressively. The

rays are curved at the transition region. The large ray curvature all but eliminates the

distortion of objects located in the transition region (Figure 1.6, right). The rays are

modeled with conic curves, which are the simplest curves that provide C1 continuity

with the ray segments at both ends, and that provide fast projection. We call the

resulting graph camera variant a curved ray camera (CRC), since the rays are not

piecewise linear anymore, but rather a sequence of segments interconnected by arcs.

Given a 3D point inside the transition region, the curved ray that passes through

the point, and thereby the graph camera image projection of the point, is found with

a closed-form expression. The CRC rays do not intersect within a planar pinhole

camera or a transition subfrustum, and subfrusta are constructed to not intersect.
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We have developed three CRC constructors. The first constructor relies on the

user to define viewpoints and transition regions interactively. The second constructor

tracks a targeted data subset of interest that it maintains disoccluded. When the

reference viewpoint or the target move, occluders can hide the target in a conventional

image. The target tracking CRC constructor bends the rays of the camera to find a

path to the target. The resulting CRC image shows the target. The third constructor

takes an input path and conforms the CRC rays to the path. The resulting CRC

image provides a preview of the dataset beyond the turns of the input path. The

CRC supports any type geometry data, including triangle meshes, particles, or height

fields, as well as volume data.

5.1 Prior work

The multiperspective rendering prior work most relevant to the curved ray camera

is the general linear camera [24], the occlusion cameras [4–6], and the graph camera [7].

5.1.1 The general linear camera

The general linear camera(GLC) is a camera that interpolates linearly in between

three input construction rays [24]. When the construction rays are concurrent, the

GLC is a pinhole. When the construction rays are not concurrent, the resulting cam-

era is a non-pinhole whose rays gradually change from one construction ray to the

other. The camera model is defined using two planes. The construction rays define

the three vertices of a triangle on each plane. The rays of the GLC are obtained

through linear (barycentric) interpolation over the two triangles. A triple of barycen-

tric coordinates defines two corresponding points in each triangle, which define a GLC

ray. The GLC has been used to model the rays reflected off a curved surface. If the

reflective surface is modeled with a triangle mesh, each triangle vertex has a reflected

ray, and the rays reflected by the triangle are approximated well with a GLC.

When the two planes parameterizing the rays of the GLC are parallel, GLC projec-

tion is linear. However, parallel planes do not enforce continuity between two adjacent

GLCs. In the reflection example, at the shared edge of two adjacent reflector sur-

face triangles, the reflected rays generated by one triangle are not the same as those

generated by the other triangle. Subsequent work on devising camera models that
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interpolate in between given rays has produced the k-ray family of cameras, where

k is the number of construction rays [139]. The limitation of discontinuity between

adjacent GLCs was eliminated with a 3-ray camera that interpolates in between three

rays of unit length, and not in between rays of length defined through intersection

with parallel planes.

The GLC and k-ray cameras are suitable when the set of rays whose image one

wants to compute is available, as it is for example in the case of specular reflections.

These cameras however do not provide constructors that define the rays in order to

solve visibility. Moreover, a single GLC or k-ray camera doesnt have the ray modeling

flexibility needed to achieve disocclusion in complex datasets.

5.1.2 The occlusion cameras

The occlusion cameras are a family of cameras that shrink the occlusion shadows

of occluders. Given a reference conventional planar pinhole camera, the occlusion

camera detects occluders in its frustum and then routes rays to capture some of the

samples that are hidden but that are close to the silhouette of the occluder. Such

samples are likely to be needed from viewpoints close to the reference viewpoint. All

occlusion cameras provide closed-form projection, and the occlusion camera rays do

not intersect which makes the occlusion camera images non-redundant. The occlusion

cameras differ on how the non-concurrent rays are constructed.

The single-pole occlusion camera [4] is a non-pinhole whose rays are obtained

from the reference planar pinhole camera by bending the rays in, towards a pole in

the image. The pole is the image projection of the centroid of the occluder. The ray

distortion is equivalent to displacing the dataset samples captured by the rays away

from the pole. The displacement depends on the depth of the sample. The deeper the

sample, the more it is displaced. This way, hidden samples near the silhouette of the

occluder will move more than the occluding samples and will become disoccluded in

the occlusion camera image. Consider a sphere in front of a background. A single-pole

occlusion camera of the sphere will use the projection of the sphere center as a pole,

and the resulting image will show more of the background around the sphere than

visible in a conventional image from the reference viewpoint. Moreover, the occlusion

camera image will also show more of the sphere by effectively receding the silhouette

line on the sphere. The single-pole occlusion camera is limited to a single occluder.
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The depth discontinuity occlusion camera [5] allows designing the rays with greater

flexibility than the single-pole occlusion camera, in order to support more complex

occlusion patterns. Construction starts from a z-buffer rendered conventionally from

the reference viewpoint. Depth discontinuities are detected in the z-buffer, and then

the depth discontinuities are used to define a distortion map that moves samples

perpendicularly to the depth discontinuity, and away from the near surface. The

distortion map allows defining distortions with far greater control compared to the

single pole that can only define a single radial distortion for the entire image. The

depth discontinuity occlusion camera extends the reference viewpoint to a view region.

However, depth discontinuity camera construction does not allow the application to

specify a view region for which the occlusion camera image should contain sufficient

samples.

The epipolar occlusion camera [6] generates a multiperspective image that sam-

ples what is visible from a view segment. Unlike the previous occlusion cameras,

epipolar occlusion camera construction takes a set of viewpoints as input and builds

a camera accordingly. Epipolar occlusion camera construction leverages that when

the viewpoint translates on a segment, occlusion/disocclusion events are confined on

epipolar segments. This reduces the dimensionality of the construction from 3D to

2D: construction considers one epipolar plane at the time. The resulting epipolar

occlusion camera image is coherent along rows, but the rows of the image can be of

different length. A row where there are multiple depth discontinuities is typically

longer than a row with fewer discontinuities, as the more numerous depth disconti-

nuities requires inserting more samples. For complex datasets, row length changes

frequently and most rows are misaligned with respect to their neighbors above and

below, which makes the epipolar occlusion image harder to interpret directly by the

user. Therefore, epipolar occlusion images are used as intermediate representations

from which conventional output image frames are reconstructed.

The inserted samples become visible as the viewpoint translates on the segment

and alleviate disocclusion errors. The epipolar occlusion camera has the strength of

capturing all samples visible in the first order depth discontinuities. This means that

the camera is built with rays that sample into the first order depth discontinuities

visible from the reference viewpoint. However, the construction is not recursive, that

is there are no rays that sample into the secondary depth discontinuities revealed by

the rays added for the first order depth discontinuities. This means that the epipolar
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occlusion camera image provides an aggressive and not exact visibility solution. The

guarantee that all first-order depth discontinuities are handled translates to a quality

aggressive solution.

5.1.3 The graph camera

The GLC, the k-ray camera, and the occlusion camera achieve disocclusion locally,

that is they extend the reference viewpoint to a view region. Some applications require

imaging samples that are far away and are substantially occluded. Such samples are

not visible from nearby viewpoints. What is needed is a camera model that integrates

seamlessly a set of disparate viewpoints. Such a camera is the graph camera [7].

Bundles of the reference planar pinhole camera rays are bent, split, and merged to

reach the samples of interest, no matter how far or how heavily occluded from the

reference viewpoints. A graph camera can be built to sample all the corridors of

the maze and to image the entire maze into a single coherent and non-redundant

multiperspective image. As discussed in the introduction, the graph camera has the

shortcoming of transitioning abruptly from one viewpoint to the other. The curved

ray camera is designed to transition gradually from one viewpoint to another to avoid

the distortion artifacts caused by the graph cameras abrupt transitions.

5.2 The curved ray camera model

The curved ray camera is constructed starting from a reference planar pinhole

camera PPC0 that undergoes a series of successive bending operations. Like for the

graph camera, the bending operation is defined by a new viewpoint C1 and by a plane

t that indicates where the transition to the new viewpoint should occur. Unlike for

the graph camera however, the transition does not occur abruptly, at t but rather at

a transition region that contains t. The rays of the CRC are line segments before the

transition region and after the transition region. At the transition region, the rays

are conic arcs. The conic arcs are constructed to be tangent to the two segment rays

they connect. The conic arc construction is also constrained by the desire to obtain

a closed-form projection for the resulting curved rays.
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Figure 5.1. The curved ray camera model.

5.2.1 CRC rays

Consider a simple CRC defined by two viewpoints C0 and C1, by a transition

plane t, and by two transition region planes t0 and t1. Given an image plane point P ,

the ray of the CRC through P is segment C0P0, where P0 is the intersection between

C0P and t0. Then the ray is a conic arc defined by points P0, P
′, and P1, where

P ′ is the intersection between C0P and t, and P1 is the intersection between C1P

and t1 (Figure 5.1). Finally the ray is a line segment again beyond P1, namely the

line segment through C1. For general CRC’s with multiple viewpoints interconnected

with transition regions, the CRC ray is constructed similarly, as a sequence of line

segments interconnected by conic arcs.

One option is to choose the conic arc to be a Bézier arc with control points P0,

P ′, and P1. This is sufficient to achieve the tangency at P0 and P1 requirement, but

it does not provide closed-form projection. Nonetheless, Bézier arcs are acceptable

when the CRC image is rendered by ray tracing, as is the case, for example, in volume

rendering (Figure 5.2). In order to provide closed-form projection, the arcs are not

Bézier arcs but rather general conic arcs, as described in the paper [3].



118

Figure 5.2. Volume rendering with the CRC

5.2.2 Projection

Given a 3D point P , feed-forward rendering requires quickly computing whether P

projects on the CRC image, and, if so, where. The first task is to determine whether

P is inside the frustum of the CRC. P is in the frustum of the CRC if it is inside

one of the subfrusta. The subfrusta of the CRC are PPC subfrusta interconnected

by transition region subfrusta. Both these types of subfrusta are convex hexahedra,

and one can check whether P is inside a subfrustum with six dot products. When the

number of subfrusta is large, one can arrange the planes of the faces in a hierarchical

scheme such as a BSP tree.

The second task when projecting a point P , is to compute the CRC image coordi-

nates of P . If P is not inside the CRC frustum, there is no projection. If P is inside

the CRC frustum, P is either inside a PPC or a transition subfrustum. If P is inside a

PPC subfrustum, projection is straightforward. Like in the case of the graph camera,

the output image coordinates of the projection of P are computed by multiplying

P with a matrix that concatenates all transformation and projection matrices from

the subfrustum containing P to the initial subfrustum. If P is inside a transition

subfrustum, the projection involves one line/Bézier arc intersection (i.e. a univariate
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quadratic equation), one line/line intersection, and two line/plane intersections, as

described in the paper [3].

5.2.3 Constructors

We have developed an interactive, a target tracking, and a path following CRC

constructor.

Conventional cameras have only a few degree of freedom. During an interactive

visualization session the user typically translates and rotates the camera to obtain an

image that reveals the data subset of interest. The camera frustum is rigid with the

exception of occasional changes of the field of view. The CRC has many degrees of

freedom and one way to use the CRC for interactive visualization of a 3D dataset is

to allow the user to add and position viewpoints interactively.

In certain applications, the goal is to keep a target disoccluded as either the

target moves, or the visualization camera moves. We achieved this goal with a target

tracking CRC constructor. Construction starts from a conventional PPC. If the target

is occluded in the PPC image, the constructor will search for a way to bend the rays to

reveal the target. One variant of the constructor attempts to bend the rays left/right.

A second variant bends rays top/down. The construction for the next frame starts

from the camera constructed for the current frame. The camera can only change a

controlled amount from one frame to the next to avoid abrupt changes in the camera

model which would translate in temporal visualization discontinuities. Let us assume

that for a while the target tracking constructor succeeded at dissocluding the target

by bending the rays right. At some point it can happen that due to the complex

occlusion patterns in the dataset there is no more disocclusion solution to be found

by bending the rays right, and a solution was found by bending the rays left. The

camera switches over the next few frames from a right bend to a left bend to provide

a gradual change of the image. If at some point the target becomes visible again in a

conventional camera, the bend is removed gradually and the visualization converges

to a conventional planar pinhole camera visualization.

Our third constructor takes a path as input and builds a CRC whose rays conform

to the path. The path is segmented uniformly and each pair of consecutive segments is

modeled with two PPC subfrusta and a transition region. The CRC image linearizes

the path. A typical input path is occlusion free, e.g. the riverbed at the bottom of a
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Figure 5.3. A CRC image and its interactive constructor.

canyon, which results in a CRC image that sees ahead, beyond the turns of the path.

Figure 5.5 shows the images generated by this constructor (left column) comparing

conventional PPC (right column).

5.3 Results and discussion

We demonstrated CRC visualization on the following datasets: Blocks (Figure 5.4,

bottom), DNA (Figure 5.4, top), Canyon (Figure 5.5) and City (Figure 5.3), as well

as the Engine volume dataset. The CRC achieves disocclusion in a variety of contexts

without the distortions of the graph camera.
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Figure 5.4. Constructing CRC towards target tracking

The CRC has good rendering performance of surface geometry datasets due to its

fast projection operation. The Blocks, DNA, Canyon, and City datasets are rendered

at 137, 23, 52, and 2.8 frames per second. The performance is only marginally lower

compared to graph camera rendering, which yields frame rates of 136, 32, 56, and

2.8. Volume rendering performance on the Engine dataset is 4.1 fps for the CRC

compared to 6.7fps for the graph camera.

5.4 Conclusion

In this chapter, we have introduced the curved ray camera model which addresses

the single viewpoint limitation of regular image by generalizing the ray geometry

to C1 continuous arcs. This camera model is the first curved ray camera with fast

projection operation to the best of our knowledge. This camera model offers high

flexibility with many adjustable parameters and thus a good disocclusion power in

scenes that there are possible solution to circumvent the occluders. The fast projec-

tion modification enables interactive rendering of complex 3D scenes with projection
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Figure 5.5. Advancing viewpoint along the path with fixed depth.

followed by rasterization technique comparable to the conventional PPC. The closed

form definition of the CRC rays also enable straightforward implementation for vol-

ume rendering and other ray-tracing techniques.

In short, the curved ray camera model produces images that integrates multiple

viewpoints continuously and present the visibility in a human comprehensible format.
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6 CONCLUSION

In this dissertation we introduce and validate the image generalization paradigm as

a general sample based approach for solving visibility problems in different domains.

Images have great potential for solving visibility. However, conventional images fall

short of this potential due to the uniform sampling rate limitation, the sample-based

limitation, and the single viewpoint/time point limitation. To alleviate these limita-

tions, the image generalization visibility paradigm has the following three elements:

� Sampling pattern generalization

� Visibility sample generalization

� Ray geometry generalization

Ray pattern generalization abandons the uniform sampling rate of conventional

images and allows for sampling rate variation based on the local complexity of the

dataset. Visibility sample generalization abandons the scalar (i.e. zero-dimensional)

visibility sample stored in a conventional z-buffer in favor of more complex visibility

samples that can store multiple visible geometric primitives or the trajectory of a

sample in a dynamic dataset. Ray geometry generalization abandons the straight

line geometry of camera rays and redefines a ray as the set of 3D points that project

at a given image location. The generalized rays can avoid occluders to gather the

visible samples or geometric primitives needed by the application. We have used the

image generalization paradigm to develop four visibility computation approaches.

The framebuffer generalization approach uses the sampling pattern generaliza-

tion and the visibility sampling generalization elements to derive algorithms for from

viewpoint, from view segment, from view rectangle, and over time interval visibility.

We have developed an aggressive from viewpoint algorithm that adds sampling

locations to enforce that all geometric primitive fragments are sampled. This way,

the algorithm guarantees finding all geometric primitives with a completely visible

fragment. This includes all completely visible geometric primitives, no matter how

small their footprint. To the best of our knowledge, this visibility algorithm is the

first aggressive algorithm that provides a quality guarantee.
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We have developed an exact from viewpoint algorithm that is efficient and robust.

The algorithm combines an aggressive visibility computation based on adding sam-

pling locations to the framebuffer with the use of a single 2D visibility sample for the

entire image. The aggressive stage finds visible geometric primitives; the visibility

subdivision stored by the 2D sample finds geometric primitives hidden by the visible

ones and suggests additional sampling locations where to probe visibility to decide

the visibility status of the primitives that are not hidden by the current visible set;

the aggressive stage runs again on the suggested sampling locations, finds more visible

primitives, which are added to the visibility subdivision, which rules more primitives

as hidden; the algorithm converges quickly (e.g. five iterations or less) to the exact

visibility solution.

We have developed a quality-guaranteed aggressive from view segment or over

time interval algorithm. The visibility sample is generalized to 1D and stores a list of

visible geometric primitives as the viewpoint translates on the view segment, or as the

geometric primitives move as time changes in a dynamic dataset. The primitives that

are visible at a sampling location are computed by solving visibility event equations,

and are not computed by sampling viewpoint translation or time. The resulting visible

set is exact under view translation or under time change. This means that if the view

only translates and does not rotate, the visible set contains all geometric primitives

visible at the output image pixels. Similarly, as time advances for a dynamic dataset

and the view stays fixed, the set contains all visible geometric primitives.

We have developed a quality-guaranteed aggressive from rectangle visibility al-

gorithm. The visibility sample is generalized to a 2D visibility subdivision in the

visibility parameter domain of the two viewpoint translations. The 2D visibility

sample is computed at each sampling location using the exact from-point visibility

algorithm, except that for from-point visibility the two visibility parameters are the

image plane coordinates whereas now they are the two viewpoint translations. The

resulting visible set is exact under translation.

The animated depth image approach uses the visibility sample generalization el-

ement of our image generalization visibility paradigm to enhance a visibility sample

with the trajectory of the sample as the geometric primitive to which the sample be-

longs moves over time in a dynamic dataset. Whereas a conventional image acquires a

snapshot of a dynamic dataset, an animated depth image stores compactly sufficient

data to allow for the reconstruction of output frames at any point in a time interval.
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One application of animated depth images is in the context of remote visualization,

where, once transferred from the server to the client, the animated depth image is

sufficient to reconstruct thousands of frames without the latency of additional data

transfers from the server.

The flexible pinhole camera approach uses the sampling pattern generalization

element of our image generalization visibility paradigm to allow for local variations of

the sampling rate of an image, according to an input importance or complexity map.

The input complexity map is used to build a distortion map that directs more rays to-

wards the regions of the dataset with higher complexity. The resulting flexible pinhole

camera image has a single layer and good coherence, therefore it compresses well with

conventional image compression techniques. In a remote visualization scenario, the

user can zoom in on the regions of higher complexity or interest without the blurriness

associated when zooming into a conventional image. The curved ray camera approach

uses the ray geometry generalization element of our visibility paradigm to create mul-

tiperspective images that enhance a conventional image with samples of distant and

heavily occluded regions of the dataset. Unlike the graph camera prior work multi-

perspective rendering approach, a curved ray camera transitions from one viewpoint

to the next gradually, avoiding multiperspective image distortions. A curved ray cam-

era ray is a sequence of line segments interconnected by conic arcs. The conic arcs

are designed to provide a closed-form projection operation. The curved ray camera

renders complex geometry datasets at interactive rates on the GPU in feed-forward

fashion.

The visibility algorithms developed and their evaluation prove the statement that:

The accuracy and efficiency of sample-based 3D visibility computation using im-

ages is improved by generalizing the sampling pattern, the visibility sample, and the

geometry of the rays of the camera model used to render the image.
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[15] László Szirmay-Kalos and Werner Purgathofer. Global ray-bundle tracing with
hardware acceleration. In Proceedings of the Eurographics Workshop on Ren-
dering Techniques ’98, pages 247–258. Springer, 1998.

[16] Andrew Glassner. Spacetime ray tracing for animation. Computer Graphics
and Applications, IEEE, 8(2):60–70, 1988.

[17] Herve Maurel, Yves Duthen, and Rene Caubet. A 4D ray tracing. Computer
Graphics Forum, 12(3):285–294, 1993.

[18] Hank Weghorst, Gary Hooper, and Donald Greenberg. Improved computational
methods for ray tracing. ACM Transactions on Graphics, 3(1):52–69, 1984.

[19] Michael Cohen and Donald Greenberg. The hemi-cube: A radiosity solution
for complex environments. In Tutorial: Computer Graphics; Image Synthesis,
pages 254–263. Computer Science Press, Inc., 1988.

[20] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based
rendering system. In Proceedings of the Twenty-second Annual Conference on
Computer Graphics and Interactive Techniques, pages 39–46. ACM, 1995.

[21] Wolfgang Heidrich, Stefan Brabec, and Hans-Peter Seidel. Soft shadow maps
for linear lights. In Proceedings of the Eurographics Workshop on Rendering
Techniques 2000, pages 269–280. Springer, 2000.

[22] Nelson Max and Keiichi Ohsaki. Rendering trees from precomputed Z-buffer
views. In Proceedings of the Eurographics Workshop on Rendering Techniques
’95, pages 74–81. Springer, 1995.

[23] Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. Layered depth
images. In Proceedings of the Twenty-fifth Annual Conference on Computer
Graphics and Interactive Techniques, pages 231–242. ACM, 1998.

[24] Jingyi Yu and Leonard McMillan. General linear cameras. In Computer Vision-
ECCV 2004, pages 14–27. Springer, 2004.

[25] Carl Gribel, Rasmus Barringer, and Tomas Akenine-Möller. High-quality
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occluders. In Volume Visualization and Graphics, 2004 IEEE Symposium on,
pages 47–54. IEEE, 2004.

[87] Jinzhu Gao and Han-Wei Shen. Parallel view-dependent isosurface extraction
using multi-pass occlusion culling. In Parallel and Large-Data Visualization and
Graphics, 2001. Proceedings. IEEE 2001 Symposium on, pages 67–152. IEEE,
2001.

[88] Lars Lippert, Markus Gross, and Christian Kurmann. Compression domain
volume rendering for distributed environments. Computer Graphics Forum,
16(s3):C95–C107, 1997.

[89] Martin Isenburg, Peter Lindstrom, and Jack Snoeyink. Streaming compression
of triangle meshes. In ACM SIGGRAPH 2005 Sketches, page 136. ACM, 2005.

[90] Paul Rosen and Voicu Popescu. An evaluation of 3-D scene exploration using
a multiperspective image framework. The Visual Computer, 27(6-8):623–632,
2011.

[91] Kwan-Liu Ma and David Camp. High performance visualization of time-varying
volume data over a wide-area network. In Supercomputing, ACM/IEEE 2000
Conference, pages 29–29. IEEE, 2000.

[92] Anna Tikhonova, Hongfeng Yu, Carlos Correa, Jacqueline Chen, and Kwan-Liu
Ma. A preview and exploratory technique for large-scale scientific simulations.
In Proceedings of the Eleventh Eurographics Conference on Parallel Graphics
and Visualization, pages 111–120. Springer, 2011.

[93] Simon Stegmaier, Joachim Diepstraten, Manfred Weiler, and Thomas Ertl.
Widening the remote visualization bottleneck. In Image and Signal Processing
and Analysis, 2003. ISPA 2003. Proceedings of the Third International Sympo-
sium on, volume 1, pages 174–179. IEEE, 2003.

[94] Ned Greene. Environment mapping and other applications of world projections.
Computer Graphics and Applications, IEEE, 6(11):21–29, 1986.



133

[95] Shigang Li. Full-view spherical image camera. In Pattern Recognition, 2006.
ICPR 2006. Eighteenth International Conference on, volume 4, pages 386–390.
IEEE, 2006.

[96] Stephen DiVerdi, Jason Wither, and Tobias Höllerer. All around the map:
Online spherical panorama construction. Computers & Graphics, 33(1):73–84,
2009.

[97] Richard Szeliski and Heung-Yeung Shum. Creating full view panoramic image
mosaics and environment maps. In Proceedings of the Twenty-fourth Annual
Conference on Computer Graphics and Interactive Techniques, pages 251–258.
ACM, 1997.

[98] Shree Nayar and Amruta Karmarkar. 360× 360 mosaics. In Computer Vision
and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 2,
pages 388–395. IEEE, 2000.

[99] Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian Frueh, Stéphane
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