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Modeling 3D Articulated Motions with
Conformal Geometry Videos (CGVs) ∗

Dao T. P. Quynh Ying He Xiaoming Chen Jiazhi Xia Qian Sun Steven C. H. Hoi
School of Computer Engineering
Nanyang Technological University

Singapore
daot0006|yhe|xmchen|xiaj0002|sunq0004|chhoi@ntu.edu.sg

ABSTRACT
3D articulated motions are widely used in entertainment, sports,
military, and medical applications. Among various techniques for
modeling 3D motions, geometry videos (GVs) are a compact rep-
resentation in that each frame is parameterized to a 2D domain,
which captures the 3D geometry (x, y, z) to a pixel (r, g, b) in the
image domain. As a result, the widely studied image/video pro-
cessing techniques can be directly borrowed for 3D motion. This
paper presents conformal geometry videos (CGVs), a novel exten-
sion of the traditional geometry videos by taking into the consider-
ation of the isometric nature of 3D articulated motions. We prove
that the 3D articulated motion can be uniquely (up to rigid motion)
represented by (λ,H), where λ is the conformal factor character-
izing the intrinsic property of the 3D motion, and H the mean cur-
vature characterizing the extrinsic feature (i.e., embedding or ap-
pearance). Furthermore, the conformal factor λ is pose-invariant.
Thus, in sharp contrast to the GVs which capture 3D motion by
three channels, CGVs take only one channel of mean curvature H
and the first frame of the conformal factor λ, i.e., approximately
1/3 the storage of the GVs. In addition, CGVs have strong spatial
and temporal coherence, which favors various well studied video
compression techniques. Thus, CGVs can be highly compressed
by using the state-of-the-art video compression techniques, such
as H.264/AVC. Our experimental results on real-world 3D motions
show that CGVs are a highly compact representation for 3D artic-
ulated motions, i.e., given CGVs and GVs of the same file size,
CGVs show much better visual quality than GVs.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Video

General Terms
Algorithms, Design
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1. INTRODUCTION
The media and entertainment industry has experienced explo-

sive growth in the last decade. Computer animated characters are
now necessary components of many applications, including video
games, movies, social virtual world, human computer interface de-
signs, mass communication and psychological studies. In order to
make these animated characters convincing, they require sophisti-
cated facial expressions and body motions. Thus, 3D motion/video
is an emerging research topic. Recent advances in 3D scanning
technology, such as multi-view photometric stereo [25], template
based space-time registration [15], fringe projection [38], etc, allow
the acquisition of 3D motions in real-time. However, the captured
3D motions are usually represented by bulky, irregular polygonal
meshes, which poses substantial challenges for modeling and com-
pression.

Geometry image [3] is an emerging technique that intelligently
encodes the 3D geometry into an image format, in which each pixel
r, g, b represents a 3D vertex x, y, z. Geometry images naturally
bridge two research fields, image processing and geometric pro-
cessing, thus, one can borrow the widely studied image processing
techniques (e.g., compression [9] [19]) to 3D geometry. Geometry
videos (GVs) extend geometry images to capture 3D motion in a
video format. It has been shown that geometry video is effective in
modeling 3D facial expressions [34] and 3D animation [2].

With a widespread belief within the media community that a 3D
surface has three functional freedoms (i.e., x, y, and z of each ver-
tex), the existing research of geometry compression relies on the
ambient space R

3 in which the surface is embedded and focuses
on the extrinsic properties. However, the classical result in differ-
ential geometry shows that a surface can be uniquely determined
up to rigid motion by its first fundamental form and mean curva-
ture H . With conformal parameterization, the first fundamental
form is completely encoded into conformal factor λ, which is the
scaling factor of infinitesimal patches of surface. In other words,
a 3D surface has only two degrees of freedom, one characteriz-
ing its intrinsic feature (i.e., metric) and the other for the extrinsic
feature (i.e., embedding), see Fig 1. Inspired by this, this paper
presents conformal geometry videos (CGVs), a novel extension of
the traditional GVs for modeling general 3D motions of articulated
models, which are approximate isometric transformation. By pa-
rameterizing 3D motions using conformal parameterizations, we
partition the 3D motion into two video sequences λ and H , where
the conformal factor λ encodes the intrinsic feature, the mean cur-
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vature H encodes the extrinsic feature. Observing that 3D artic-
ulated motions are approximate isometric transformations, confor-
mal factor λ, the intrinsic feature, remains unchanged, i.e., it is
invariant to 3D poses. Thus, different frames distinguish only by
their extrinsic feature H . As a result, we only need to handle the
pose-dependent mean curvature. This leads to a highly compact
representation that takes only approximately 1/3 the space of con-
ventional geometry videos. In addition, CGVs have strong spatial
and temporal coherence, and can be heavily compressed further
by using the state-of-the-art video compression techniques, such
as H.264/AVC. Our experimental results on real-world 3D motions
demonstrate that CGVs outperforms the conventional GVs by pro-
viding a more compact and effective modeling framework for 3D
articulated motions.

(a) 3D model (b) λ (c) H
Figure 1: With conformal parameterization, the 3D geometry
can be determined (uniquely up to rigid motion) by its confor-
mal factor λ and mean curvature H . λ and H are rendered in
color for illustration purpose.

So as presented above, CGV naturally bridges 3D motion model-
ing and 2D video processing,allowing us to borrow the well-studied
video processing technique (e.g., H.264) to model and compress 3D
motion data. The specific contributions of this paper include:

• We present CGV, which naturally extend the conventional
GV framework by taking into the consideration of the ap-
proximate isometric nature of articulated 3D motion.

• We present a set of algorithms to construct CGVs, including
geometric feature detection and tracking, constrained poly-
cube conformal parameterization, polycube flattening, and
optimization-based 3D motion reconstruction.

• We show that CGVs have stronger spatial and temporal co-
herence than that of GVs and natural videos, and such re-
dundancy can be significantly removed by the powerful com-
pression tools available in H.264/AVC.

2. PREVIOUS WORK
This section reviews the related work in three different research

fields, 3D motion processing, video compression, and global con-
formal parameterization, which are naturally integrated by the pro-
posed conformal geometry video framework.

2.1 3D motion processing
Recent advances in 3D scanning technology [25] [13] [15] [38]

allow us to capture the 3D human motion in real time, which also
pose significant challenges in data processing. Each frame of the
scanned motion is given in its own scanner space other than in the
object space. Therefore, from the analysis and processing point of
view, it’s highly desirable to align or register the captured data in
the object space. Feature tracking is the key technique to find the

correspondence among different frames of 3D motion. Wang et
al. presented a data-driven approach for video speed precise facial
tracking and expression retargeting [31]. To handle surface match-
ing with noise, occlusion and clutter, Wang et al. adopted least
square conformal parameterization simplifying the 3D human face
registration problem to a 2D image matching problem [29]. Mitra
et al. proposed an algorithm to register large sets of unstructured
point clouds of moving and deforming objects without computing
correspondences [17]. Wang et al. developed an efficient non-rigid
3D motion tracking algorithm to establish inter-frame correspon-
dences that facilitate the temporal study of subtle motions in facial
expressions [30].

Since the scanned 3D motion is usually bulky, compression be-
comes an emerging problem in 3D motion data transmission and
storage. Han et al. proposed time-varying meshes (TVM) by ex-
tending the block matching algorithm from 2D video to 3D meshes
[6]. By considering both spatial and temporal redundancies, the
compression ratio of TVM is between 6 : 1 and 50 : 1 [7]. Ya-
masaki et al. proposed algorithms of intra-frame and inter-frame
coding for both geometry and color texture of TVM [36].

Another approach to compress 3D motions is GVs. Briceño et al.
parameterized the synthetic animated mesh sequence onto a rectan-
gle domain and then formed GVs [2]. They classified the frames
as I-Frames and P-Frames and then used 2D wavelet-based tech-
niques to compress the geometry video. Taking the advantage of
approximate isometric feature of facial expressions, Xia et al. [34]
developed an expression-invariant 3D face parameterization algo-
rithm that can guarantee the exact feature correspondence, which
favors the geometry video compression by using the state-of-the-
art H.264/AVC.

2.2 Video compression
Video compression has been extensively studied in the past sev-

eral decades. The traditional 2D video compression techniques can
be categorized as prediction, transformation, quantization and en-
tropy coding, see [21] for a comprehensive survey. H.264/AVC
is the state-of-the-art video coding standard [10], which is able
to achieve very low bitrates by employing many advanced com-
pression techniques such as block-size adaptive intra-frame predic-
tion, quarter-pixel-precision multi-frame motion estimation, block-
size adaptive transformation and quantization, high-performance
CABAC entropy coding [32]. CGVs are fundamentally different
than natural videos and traditional GVs in that CGVs show strong
coherence in both temporal and spatial domains, which is partic-
ularly suitable for H.264/AVC compression (see Section 5.2 for
more details).

2.3 Global conformal parameterization
The research area of global surface parameterization has a long

and fruitful tradition in computer graphics community [20]. Con-
formal parameterization has drawn particular attention due to its
many promising properties, such as angle preserving, intrinsic to
the geometry, insensitive to resolution/tessellation, etc.

Gu and Yau [5] pioneered a global conformal parameterization
algorithm for surfaces with arbitrary genus. They analyzed the
structure of the space of all global conformal parameterizations of a
given surface and found all possible solutions by constructing a ba-
sis of the underlying linear solution space. The resulting parameter
lines minimize angle distortion but may have a rather large metric
distortion. Furthermore, the space of global conformal parameteri-
zations is too rigid to allow a local alignment of the parameter lines
at given surface features. Many follow-up works have been pro-
posed to improve the conformal parameterization quality by reduc-
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ing the area distortion and allowing user control on the singularities
and/or parameter lines, such as [11] [14] [37], just name a few.

Polycube map is a variant of the global parameterization in that
the parametric domain (i.e., a polycube) can be embedded in R

3

rather than the abstract charts in R
2. Polycube parameterization

has several unique advantages over the chart based parameteriza-
tion, which are particularly useful for conformal geometry video
constructions: 1) The parametric domain mimics the geometry of
the 3D shape, thus, the area distortion can be significantly reduced.
2) The user can easily control the location of singularities and di-
rection of parameter lines. 3) Polycube can be flattened to a 2D
rectangular domain, such that the boundary is axis aligned. Thus,
one can sample the input 3D model into a completely regular ge-
ometry image.

There are several approaches to parameterize 3D models to poly-
cube domain. Tarini et al. [23] pioneered the concept of poly-
cube mapping. However, as direct projection from 3D model to
polycube is used, their method is not bijective, since two vertices
may share the same projected image on the polycube. Wang et
al. [27] introduced an intrinsic approach that is guaranteed to be
a diffeomorphism. However, in this scheme it is difficult to con-
trol the polycube map, i.e., a feature on the 3D model may not
be mapped to a desired location on the polycube. In their follow-
up work, Wang et al. [28] proposed the user-controllable polycube
map where the users can explicitly specify the pre-images of the
polycube corners. Lin et al. [16] proposed an automatic approach
to construct the polycube map of non-trivial topology. He et al. [8]
proposed a divide-and-conquer approach to compute polycube map
of large-scale models. Xia et al. [33] presented an editable poly-
cube map framework that allows the users to easily specify the
mapping constraints and post-edit the parameterization. Wan et
al. [26] presented an optimization framework to find the optimal
polycube mapping by trading off the area distortion and the com-
plexity of the polycube.

Although there are extensive research in surface parameteriza-
tion, little progress has been reported on motion data parameteriza-
tion, in which the key challenge is to keep the temporal and spatial
coherence. Xia et al. proposed an algorithm to expression-invariant
parameterization algorithm for 3D human faces [34]. Their method
computes the harmonic field on a topological annulus and then
builds the bijective parameterization by tracing the integral curves
of the harmonic field. This method works well for 3D faces which
have simple topology and geometry. However, it is difficult to ex-
tend their method for parameterization of general 3D articulated
motions, which may have much more complicated geometry and
topology than human faces.

3. CONFORMAL GEOMETRY VIDEOS

3.1 Conformal representation of 3D surfaces
We use the following notations throughout this paper:

λ Conformal factor
H Mean curvature
K Gaussian curvature
r an oriented 2-manifold surface
� Laplace-Beltrami operator
M Motion sequence, Mi is the ith frame
kMi
t (x, x) Heat Kernel Signature of point x ∈ Mi

A classical question in differential theory is which data are suf-
ficient to describe a surface in space up to rigid motions.

Let r(u, v) be the surface embedded in R
3 and (·, ·) be the dot

product. Let E = (ru, ru), F = (ru, rv),and G = (rv , rv) be the
coefficients of the first fundamental form, where ru and rv are the
tangent vectors.

I = (dr, dr) = Edu2 + 2Fdudv +Gdv2

Let L = (ruu,n), M = (ruv,n), and N = (rvv,n) be the coef-
ficients of second fundamental form, where n is the normal.

II = (dr, dn) = Ldu2 + 2Mdudv +Ndv2

According to the fundamental theorem of surfaces, if E, F , G,
L, M , N are given functions of u and v, sufficiently differentiable,
which satisfy the Gauss-Codazzi equations and the added condi-
tions that EG − F 2 > 0, E > 0, G > 0, there exists a surface,
uniquely determined except for its position in space, which has re-
spectively as its first and second fundamental forms the quadratic
forms Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2.
This theorem guarantees not only the existence of a surface, pro-
vided the conditions are met, but also that if two surfaces have the
same fundamental forms, they are congruent.

Figure 3: 3D human motions are approximate isometric (i.e.,
metric preserving). Given various poses of a subject, we com-
pute the geodesic distance with the source point at his head
and render the isolines of the resultant geodesic distance fields.
Clearly, the geodesic distances (or the metrics) are intrinsic fea-
tures, that are highly consistent and invariant to the poses.

Note that under conformal parameterization, the u- and v- pa-
rameter lines are orthogonal, so F = (ru, rv) = 0. Considering
Gauss-Codazzi equations contain three equations, there are only
two degrees of freedoms among the six coefficients, E, F , G, L,
M and N . In general, a 3D surface can be uniquely (up to rigid
motion) determined by the first fundamental form and mean curva-
ture, which is stated in the following theorem [4].
Theorem 1. A closed surface r ∈ R

3 with conformal parametriza-
tion is determined by its conformal factor λ and mean curvature H
uniquely up to rigid motion, where

� lnλ = λ2K

Hn = �r,

� is the Laplace-Beltrami operator and K the Gaussian curvature.

Intuitively speaking, conformal factor can be thought of as scal-
ing infinitesimal patches of the surface, while mean curvature char-
acterizes how the shape is embedded in R

3. Theorem 1 states that
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(a) 3D (b) Parametric (c) Conformal (d) GI (e) GI (f) GI (g) GI all (h) CGI (i) CGI
model domain parameterization x channel y channel z channel channels λ channel H channel

Figure 2: Encoding 3D geometry into conformal factor λ and mean curvature H . The 3D model (a) is conformally parameterized
to a rectangular domain (b). The texture mapping in (c) illustrates the angle preserving property of conformal parameterization,
i.e., the u- and v-parameter lines are orthogonal everywhere. The traditional geometry image (GI) captures 3D geometry into three
grayscale images (d)-(f) or a color image (g), in which each vertex coordinate (x, y, z) is represented by the color of a pixel (r, g, b)
. In contrast, conformal geometry image (CGI) encodes the 3D shape (uniquely up to rigid motion) by its conformal factor (h) and
mean curvature (i), which is more storage efficient than the traditional geometry image.

a surface can be uniquely represented (up to rigid motion) by its
conformal factor λ and mean curvature H rather than the absolute
coordinate (x, y, z). The traditional geometry images have to save
3n data, i.e., each pixel has three channels, where n is the number
of pixels in the geometry image. In sharp contrast, using conformal
parameterization, we can encode 3D shape into a conformal geom-
etry image which only takes 2n space without loss of any infor-
mation. Figure 2 shows an example of representing the 3D model
using the conformal (λ,H) representation.

3.2 Conformal representation of 3D motions
With conformal parameterization, the traditional geometry im-

age can be converted into conformal geometry image, in which
1/3 space can be saved immediately. Thus, it is very natural to ask
how can we extend geometry video to conformal geometry video.
Observe that 3D motions of articulated objects (e.g., human, an-
imals) are approximate isometric, i.e., the geodesic distances are
preserved as show in Figure 3. Since the conformal factor λ is an
intrinsic feature that depends on the metric only, it is invariant to
the poses as well. As a result, we only need to capture the mean
curvature H in the conformal geometry video. This is characterized
in the following theorem:

Theorem 2. Consider a conformally parameterized deformable
model s(u, v, t), where t is the time and (u, v) are the isother-
mal parameters. If the deformation s(u, v, ·) is isometric, then the
conformal factor λ(u, v, ·) is independent of time t. Furthermore,
the 3D motion s(·, ·, t) can be completely reconstructed by using
λ(·, ·, 0) and H(·, ·, t) for ∀t.

We omit the proof as it is straightforward. The general frame-
work for constructing conformal geometry videos is shown in Al-
gorithm 1.
Remark 1. The above framework is very general in that various
conformal parameterization algorithm can be applied depending
on the geometry and/or topology of the input 3D motion,. Fur-
thermore, algorithms may also differ in the strategies of encoding,
compression and decoding. For example, different strategies of dis-
cretization of λ and H will lead to different encoding/decoding al-
gorithms; one has many choices on the video compression tech-
niques, such as H.264/AVC, MPEG, etc. This paper focuses on the
3D articulated motions, which can be parameterized to polycube
domain. We compress CGVs using H.264/AVC and reconstruct 3D
motions by an optimization approach. The details of our algorithm
are presented in Section 4 and 5.
Remark 2. As the 3D shape is uniquely determined up to rigid

Algorithm 1: Constructing Conformal Geometry Videos
Parameterization (Sec 4):
Given a 3D isometric motion M with k frames, conformally
parameterize M such that all the salient features are
consistently mapped to the parametric domain, which
guarantees the intrinsic features (e.g., metric, conformal factor,
Gaussian curvature, etc) are pose invariant.
Encoding (Sec 5.1):
Compute the conformal factor λ1 for the first frame M1.
Compute the mean curvature Hi, i = 1, · · · , k for every frame
Mi.
For each frame Mi, choose four non-coplanar anchor points,
and record their locations, denoted by li, which is used to
eliminate the reconstruction ambiguity.
Output the conformal geometry video λ1, H1, · · · ,Hk and
l1, · · · , lk.
Compression (Sec 5.2):
Apply the video compression technique to the mean curvature
sequence Hi, i = 1, · · · , k.
Decoding (Sec 5.3):
To recovery the i-th frame Mi, compute the 3D shape from λ1

and Hi.
Eliminate the rigid motion ambiguity by using the locations of
four anchor points li.

motion (i.e., rotation and translation) by conformal factor λ and
mean curvature H , we need to eliminate the rigid motion ambigu-
ity. Note that a 3D rigid motion can be uniquely determined by
given the coordinates of four non-coplanar points (a.k.a. anchor
points). Comparing to the number of vertices in each frame, the
storage of these four anchor points can be ignored.
Remark 3. A conformal geometry video with k frames takes nk+
n + 4k space, where n is the number of pixels/vertices in each
frame. In contrast, the traditional geometry video takes 3nk space.
Thus, CGVs take approximately 1/3 space of GV s, thus, CGVs
are more compact and space efficient than GVs.
Remark 4. The proposed conformal geometry videos are funda-
mentally different than the natural videos (NVs) and traditional ge-
ometry videos. First, CGVs contain only one channel, i.e., mean
curvature H , while both GVs and NVs have three channels, i.e.,
(x, y, z) or (r, g, b). Second, the conformal factor λ and mean cur-
vature H are independent, while the three channels of GVs are not
independent. Third, CGVs show stronger spatial and temporal co-
herence than GVs and NVs (see Section 5.2 for discussion).

Figure 4 demonstrated the CGV and GV of the deformed cloth.
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Since the cloth deformation is perfectly isometric, the λ channel
characterizing the intrinsic property is pose-invariant (see Row 2).
Thus, CGVs only need to keep one frame of λ and all frames of H .
GVs, however, differ significantly for all channels for every frame.

(a) (b) (c) (d)
Figure 4: Geometry videos vs conformal geometry videos. The
given cloth deformation (row 1) is perfectly isometric, so the
conformal factor λ (row 2) is pose-invariant. As a result, CGVs
only need to capture the mean curvature H (row 3), which char-
acterizes the extrinsic feature. The traditional geometry video
(row 4), in sharp contrast, differs significantly in all channels.

4. CONFORMAL PARAMETERIZATION OF
3D ARTICULATED MOTIONS

As mentioned in Section 2.2, there are many conformal param-
eterization algorithms available. However, most of them parame-
terize the 3D models into charts with irregular boundaries, which
may cause numerical issues when reconstructing the curved bound-
ary. In this paper, we use conformal polycube parameterization for
two reasons: First, the parametric domain is a 3D shape that mim-
ics the geometry of the input model, thus, the area distortion can
be controlled in an easy and intuitive manner. Second, polycube
has regular atlas in that each polycube face is the union of squares.
Thus, each chart has axis-aligned boundaries, which facilitates the
encoding and decoding.

The input of our algorithm is a sequence of captured 3D mo-
tion, each frame is represented by a triangle mesh. Note that the
scanned 3D motion data are usually given in the reference system
of the scanner without registration in object space, thus, they do
not have correspondence between two frames. To construct confor-
mal geometry videos, all the salient features must be consistently
parameterized to the desired locations on the parametric domain,
otherwise, the conformal factor may not be pose-invariant.

(a) (b) (c)
Figure 5: Feature detection and tracking. (a) The heat kernel
signature (HKS), where blue (resp. red) represents low (resp.
high) HKS value, and the detected feature points. (b) Feature
points tracking between two adjacent frames. (c) By our con-
strained polycube mapping algorithm, different poses can be
parameterized to the polycube in a consistent manner.

Feature detection For each frame Mi, we compute the Heat
Kernel Signature (HKS) [22] kMi

t (x, x) for each point x ∈ M ,
with a short diffusion time (t = 0.007 in our experiments). Then
we use the local maxima of the HKS to identify the feature points [18].
In practice, we consider a point p to be a feature point on Mi if
kMi
t (p, p) > kMi

t (x, x) for all x in the two-ring neighborhood of
point p. Figure 5(a) shows the computed HKS with relative large
time and the detected geometric feature points.

Feature tracking Give two adjacent frames Mi and Mi+1, we
detect the set of feature points P ⊆ Mi and Q ⊆ Mi+1 by geo-
metric feature detection. For each point p ∈ P , we find the corre-
spondence q ∈ Q using the method [18] and record the distance of
the candidate pair (p, q). We then choose the pair with the short-
est distance as the ground truth matching, and find the correspon-
dence of feature points between Mi and Mi+1 by isometric match-
ing [18]. Note that not every feature point in P is mapped to Q and
vice versa. In practice, we discard the pairs with distance 4 times
lager than that of the pair with the shortest distance. Figure 5(b)
shows the correspondence among the feature points between Mi

and Mi+1.

Constrained conformal polycube parameterization Once we
find the correspondence of the salient features in the 3D motion, we
can parameterize it to the polycube domain by using the editable
polycube map approach [33]. This method is able to parameterize
a complex 3D model to the polycube such that the user-specified
constraints on the 3D model can be accurately mapped to the de-
sired location on the polycube. Given the first frame Mi with the
detected features (e.g., head, hands, feet, etc), we sketch their de-
sired locations on the polycube, and compute the polycube map
using [33]. Then we parameterize Mi, i > 1, to the same poly-
cube domain with the feature constraints tracked by the heat kernel
signature. Next, we apply a Laplacian smoothing to the computed
polycube maps, which leads to high quality conformal parameteri-
zation (see Figure 6(d)). Finally, we cut the 3D polycube open and
flatten it to a rectangle domain in R

2 (see Figure 6(c)).

387



(a) (b) (c) (d) (e) (f) (g) (h)
Figure 6: The samba sequence. (a) 3D motion. (b) Conformal polycube parameterization. (c) Flattened polycube to R

2. (d)
Checkerboard texture mapping induced by the polycube parameterization. (e) Geometry videos (x, y and z channels). (f) and (g)
show the λ and H channels of conformal geometry videos. To better visualize the pose-dependent feature of mean curvature, we
render H with color in (h).

5. COMPRESSION WITH CGVS

5.1 Encoding
In the continuous setting, the conformal factor measures the scal-

ing of the infinitesimal patches of the surface. In discrete setting,
each 3D pose Mi is represented by a quadrilateral mesh. Let Nb(v)
denote the four neighbors of vertex v (if v is a polycube corner,
Nb(v) contains 3 or 5 elements). We approximate conformal fac-
tor of a vertex v as the average lengths of the edges adjacent to v,
i.e.,

λ(v) =
1

|Nb(v)|
∑

p∈Nb(v)

l(v, p),

where l(v, p) is the length of edge {v, p}. The discrete mean cur-
vature of vertex v is approximated as

H(v) = (�v,n),

where the discrete Laplace-Beltrami operator is

�v = v − 1

|Nb(v)|
∑

p∈Nb(v)

p.

As mentioned before, the conformal factor λ is pose-invariant if
the 3D motion is perfectly isometric. However, such isometric mo-
tion is quite rare in real-world applications. In fact, most of the 3D
articulated motions are approximate isometric, thus, the conformal
factor λ is not a constant. To accurately reconstruct Mi (i > 1), we
choose a set of key frames in the 3D motion, and then define the
conformal factor image for each key frame. In practice, k/10 key
frames (i.e., one key frame in every 10 frames) of conformal factor
lead to satisfactory results in our experiments (see Section 6 for the
details).

5.2 Compression
The conformal geometry video contains k frames of mean curva-

ture H and m key frames of conformal factor λ, where m(� k) is
specified by the user. We partition conformal geometry video into
two independent grayscale video sequences, each of them is com-
pressed by H.264/AVC in 4:0:0 YUV format at various bitrates.
For comparison, the compression of traditional geometry videos
with three channels is compressed similarly except in 4:4:4 YUV
format.

We have conducted a statistical analysis on the samba sequence
in the format of CGVs, GVs and NVs, respectively. As shown
in Figure 7(a)-(c), the conformal factor λ and mean curvature H
of CGVs are more concentrated into a smaller number of buck-
ets. We also compared CGV to GV and NV in Figure 7(d) by us-
ing the Prewitt based histograms [35]. It has been observed that
CGVs also provide more concentrated results in the histogram dis-
tributions. Furthermore, Figure 7(e) compares the mean square
errors (MSEs) for the conformal factor (only applied to the key
frames) and mean curvature (all frames) of CGVs, GVs, and the
corresponding NVs after a 32x32 full search motion estimation at
a given QP(=8). Clearly, the MSEs of CGVs are smaller than that
of the NVs and GVs. This proves that the redundancy in CGVs can
be significantly removed by motion estimation, which is the most
powerful and effective tool in H.264/AVC. The above statistical re-
sults show that CGV pixels are highly correlated in both spatial and
temporal domain. The results are also consistent with our subjec-
tive observations - we found that the neighboring frames of CGV
are very similar in appearance, and the neighboring pixels share
similar pixel values. On the other hand, the H.264/AVC standard
mainly takes advantage of removing the spatial and temporal redun-
dancies of video sequences to achieve compression. Consequently,
our CGV is very suitable to be compressed with H.264/AVC.
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(a) Pixel value distribution of natural videos (NVs)

(b) Pixel value distribution of geometry videos (GVs)

(c) Pixel value distribution of conformal geometry videos (CGVs)

(d) Prewitt-based histogram comparison

(e) Mean square error (MSE) after a 32x32 full search motion estimation

Figure 7: CGVs are fundamentally different than GVs and NVs
in that CGVs have stronger spatial and temporal coherence as
shown by the smaller MSE. Also, the pixel values of CGVs are
concentrated on a small number of buckets.

5.3 Decoding
To reconstruct the 3D geometry from the conformal geometry

video, we solve the following optimization problem:

min
∑
vi

(‖ � vi‖2 −H2
i )

2 +
∑
vi

|λ(vi)2 − λ2
i |2, (1)

where λi is the decoded conformal factor of vi, and �vi gives the
mean curvature vector of vertex vi. Note that one can reconstruct
the geometry uniquely up to rigid motion (i.e., rotation and transla-
tion) from (λ,H). We eliminate the ambiguity of rigid motion by
using the locations of four non-degenerate anchor points.

Note that Eqn. 1 is a non-linear programming, thus, it is difficult
to obtain the global optimal in general. In our implementation, we
take advantage of the spatial and temporal coherence of conformal
geometry videos. As the location of four anchor points are already
known, we compute the rigid motion between the anchor points of
the frame Mi−1 and frame Mi. Next we apply this rigid motion to

the reconstructed geometry Mi−1 and then use it as the initial guess
for the current frame. This strategy works very well in practice.

6. EXPERIMENTAL RESULTS
This section presents the experimental results of modeling 3D

motions using our conformal geometry video framework. We also
compare our CGVs with the traditional GVs.

Test sequences: We conducted experiments on 5 real-world hu-
man motion datasets (samba, march, squat, handstand and bounc-
ing) and 1 synthetic dataset (cloth deformation). The human mo-
tion is approximately isometric transformation where the motion is
composed of a few non-rigidly moving parts. The samba sequence
consists of 200 frames, the march and squat 250 frames, the hand-
stand and bouncing 174 frames. Each of frame in human motion
datasets has 250k vertices. The synthetic cloth deformation is iso-
metric, and consists of 450 frames with 160k vertices in each frame.

H.264/AVC configuration: We have used the H.264/AVC refer-
ence software (JM14.2 version) to encode the test sequences. The
compression procedure is as we described in Section 5.2. To have
different video qualities, we encoded each sequence at different bi-
trates by changing the quantization parameters (QPs) in the range
of -24 to -4 (please note that we have adopted the negative QPs
in order to encode high-quality videos). Each test sequence is en-
coded at 30 frames per second with IPBPB GOP structure, 32x32
full search motion estimation and CABAC entropy coding. The
intra-frame period was set to 30 and the Rate Distortion Optimiza-
tion (RDO) was turned on.

3D motion compression results: To make a fair comparison be-
tween GVs and CGVs, we chose the compressed GVs and the com-
pressed CGVs with similar file sizes (i.e., similar bitrates). Table 1
shows the low, medium and high bitrates of GVs and CGVs that
we chose for the comparison on 5 human motion sequences and
the cloth sequence. Then we reconstructed the 3D motion from the
compressed GVs and CGVs. For the synthetic cloth deformation
which is isometric, we only need one frame of the conformal fac-
tor. For the 3D human motions which are approximate isometric,
we set k/10 key frames (i.e., one key frame every 10 frames) for
the conformal factor.

Table 1: The bitrates of GVs and CGVs of 6 tested sequences
Low Bitrate Medium Bitrate High Bitrate

GV samba 1526.86 2616.42 5594.50
CGV samba 1463.30 2433.94 5013.71
GV march 1104.69 1886.72 3060.75
CGV march 965.73 1852.06 2975.82
GV squat 1148.10 1960.72 3308.69
CGV squat 1097.78 1870.92 3290.72
GV handstand 1087.69 1939.89 3241.26
CGV handstand 940.54 1606.60 2820.94
GV bouncing 1270.20 2247.14 3745.29
CGV bouncing 1184.47 2223.89 3826.06
GV cloth 1249.14 2173.03 3763.88
CGV cloth 1212.08 2137.01 3004.56

Figures 8 and 9 show the experimental results on two real datasets
and one synthetic dataset. We observed that both CGVs and GVs
perform well in high bitrates. However, GVs perform poorly in low
bitrates, see the artifacts (non-smoothness, self-intersection, fold-
over, etc) in the reconstructed 3D motion. In contrast, CGVs gen-
erate 3D motions with much better quality even in low bitrates. For
quantitative comparison between GVs and CGVs, we measured the
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Figure 8: Experimental results on the samba (top) and squat (bottom) sequences with high, medium and low bitrates for GVs and
CGVs. Note that the quality of CGVs generated 3D motion does not drop too much when bitrate is reduced. In contrast, GVs
perform poorly on low bitrates. Images are rendered in high resolution that allows close-up evaluation.

390



Figure 9: The cloth sequence with high, medium and low bitrates for GVs and CGVs. Note the artifacts (such as non-smoothness,
self-intersection, fold-over, etc) on the GVs with low bitrates, while CGVs with similar bitrates lead to visually pleasing results
without obvious artifacts.

compression quality by computing the smoothness metric [12],
√√√√ 1

|V |
|V |∑
i=1

‖ � vi −�v
′
i‖2,

where vi and v
′
i are the vertices in the original and reconstructed

meshes respectively. This smoothness metric characterizes the lo-
cal change of differential coordinates and is used for measurement
of shape quality. The smaller the value of the smoothness metric,
the closer the reconstructed model to the original model and visu-
ally more pleasing. Conversely, the larger the value of the smooth-
ness metric, the less smooth the reconstructed data(e.g. blocking
artifacts) and visually less pleasing. As we show in the Table 2
the normalized smoothness metric of all the datasets, CGVs con-
sistently outperform GVs since GVs encode x/y/z directly which
is very sensitive to the block artifacts in low and medium bitrates.
In sharp contrast, CGVs encode the 3D geometry into conformal
factor and mean curvature, and reconstruct x/y/z by solving an op-
timization problem that naturally preserves the smoothness of the
3D motion (based on the assumption that 3D articulated motions
are spatially smooth, which is true for 3D human and animals).
Thus, CGVs are visually more pleasing than GVs.

The time statistics were measured in seconds on a PC with 2.66
GHz CPU and 4GB RAM: Feature detection takes 9s on the first
frame and tracking in subsequent frames is done in real time, pa-
rameterization 1s/frame, compression 12s/frame, decompression
real time, 3D reconstruction 23s/frame. In reconstruction part, our
current solver is conjugate gradient with linear convergence rate.
Other advanced solvers (e.g. BFGS) can significantly improve the
performance.

7. CONCLUSIONS
This paper presented conformal geometry videos (CGVs), a novel

extension of the traditional geometry videos by taking into the con-
sideration of the isometric nature of 3D articulated motions. We
showed that the 3D articulated motion can be uniquely determined

Table 2: The normalized smoothness metric of GVs and CGVs
of 6 tested sequences, with unit 10−4

Low Bitrate Medium Bitrate High Bitrate
GV samba 6.51 2.69 1.79
CGV samba 2.97 1.96 1.72
GV march 8.68 4.91 3.20
CGV march 3.46 2.01 1.85
GV squat 6.86 4.01 2.75
CGV squat 2.21 1.17 1.16
GV handstand 9.82 5.55 3.53
CGV handstand 3.71 2.89 2.68
GV bouncing 9.54 5.36 3.40
CGV bouncing 5.63 4.49 4.24
GV cloth 2.20 1.19 0.73
CGV cloth 0.76 0.56 0.46

(up to rigid motion) by (λ,H), where λ is the conformal factor
characterizing the intrinsic property of the 3D motion, and H the
mean curvature characterizing the extrinsic feature (i.e., embedding
or appearance). The rigid motion ambiguity can be easily elimi-
nated by the locations of four non-degenerate anchor points. Since
the conformal factor λ is pose-invariant, CGVs take only 1/3 the
storage requirement of the traditional GVs. Our statistical tests
showed that CGVs have strong spatial and temporal coherence,
which is highly desirable for H.264/AVC compression. We applied
conformal geometry videos to model real-world 3D human motions
and synthetic cloth deformation and demonstrated that that CGVs
outperform GVs with better quality and less space complexity.

There are several research directions that are worth to investigate
in the future. First, as the real-world 3D motions are only approxi-
mate isometric, we need to define the conformal factor for a certain
number of key frames. In our current implementation, we set one
key frame among every 10 frames. Although simple, this strategy
is obviously far from optimal, as the locations of key frames are
data dependent. We will develop an optimization approach to deter-
mine the locations of the key frames. Second, decoding 3D motion
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from λ and H is to solve a degree 4 nonlinear programming. We
use the conjugate gradient approach in our current implementation.
Adopting advanced solvers or GPU based solvers can improve the
performance. Third, we assume that the input 3D motion data are
closed and error-free. However, the captured 3D motions always
have various defects, such as holes, noise, etc. It would be interest-
ing to investigate techniques for parameterizing and modeling such
incomplete data.
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