4 research outputs found

    Foreword to the Special Issue: "Semantics for Big Data Integration"

    Get PDF
    In recent years, a great deal of interest has been shown toward big data. Much of the work on big data has focused on volume and velocity in order to consider dataset size. Indeed, the problems of variety, velocity, and veracity are equally important in dealing with the heterogeneity, diversity, and complexity of data, where semantic technologies can be explored to deal with these issues. This Special Issue aims at discussing emerging approaches from academic and industrial stakeholders for disseminating innovative solutions that explore how big data can leverage semantics, for example, by examining the challenges and opportunities arising from adapting and transferring semantic technologies to the big data context

    Scalable Data Integration for Linked Data

    Get PDF
    Linked Data describes an extensive set of structured but heterogeneous datasources where entities are connected by formal semantic descriptions. In thevision of the Semantic Web, these semantic links are extended towards theWorld Wide Web to provide as much machine-readable data as possible forsearch queries. The resulting connections allow an automatic evaluation to findnew insights into the data. Identifying these semantic connections betweentwo data sources with automatic approaches is called link discovery. We derivecommon requirements and a generic link discovery workflow based on similaritiesbetween entity properties and associated properties of ontology concepts. Mostof the existing link discovery approaches disregard the fact that in times ofBig Data, an increasing volume of data sources poses new demands on linkdiscovery. In particular, the problem of complex and time-consuming linkdetermination escalates with an increasing number of intersecting data sources.To overcome the restriction of pairwise linking of entities, holistic clusteringapproaches are needed to link equivalent entities of multiple data sources toconstruct integrated knowledge bases. In this context, the focus on efficiencyand scalability is essential. For example, reusing existing links or backgroundinformation can help to avoid redundant calculations. However, when dealingwith multiple data sources, additional data quality problems must also be dealtwith. This dissertation addresses these comprehensive challenges by designingholistic linking and clustering approaches that enable reuse of existing links.Unlike previous systems, we execute the complete data integration workflowvia a distributed processing system. At first, the LinkLion portal will beintroduced to provide existing links for new applications. These links act asa basis for a physical data integration process to create a unified representationfor equivalent entities from many data sources. We then propose a holisticclustering approach to form consolidated clusters for same real-world entitiesfrom many different sources. At the same time, we exploit the semantic typeof entities to improve the quality of the result. The process identifies errorsin existing links and can find numerous additional links. Additionally, theentity clustering has to react to the high dynamics of the data. In particular,this requires scalable approaches for continuously growing data sources withmany entities as well as additional new sources. Previous entity clusteringapproaches are mostly static, focusing on the one-time linking and clustering ofentities from few sources. Therefore, we propose and evaluate new approaches for incremental entity clustering that supports the continuous addition of newentities and data sources. To cope with the ever-increasing number of LinkedData sources, efficient and scalable methods based on distributed processingsystems are required. Thus we propose distributed holistic approaches to linkmany data sources based on a clustering of entities that represent the samereal-world object. The implementation is realized on Apache Flink. In contrastto previous approaches, we utilize efficiency-enhancing optimizations for bothdistributed static and dynamic clustering. An extensive comparative evaluationof the proposed approaches with various distributed clustering strategies showshigh effectiveness for datasets from multiple domains as well as scalability on amulti-machine Apache Flink cluster

    High Performance Methods for Linked Open Data Connectivity Analytics

    No full text
    The main objective of Linked Data is linking and integration, and a major step for evaluating whether this target has been reached, is to find all the connections among the Linked Open Data (LOD) Cloud datasets. Connectivity among two or more datasets can be achieved through common Entities, Triples, Literals, and Schema Elements, while more connections can occur due to equivalence relationships between URIs, such as owl:sameAs, owl:equivalentProperty and owl:equivalentClass, since many publishers use such equivalence relationships, for declaring that their URIs are equivalent with URIs of other datasets. However, there are not available connectivity measurements (and indexes) involving more than two datasets, that cover the whole content (e.g., entities, schema, triples) or “slices” (e.g., triples for a specific entity) of datasets, although they can be of primary importance for several real world tasks, such as Information Enrichment, Dataset Discovery and others. Generally, it is not an easy task to find the connections among the datasets, since there exists a big number of LOD datasets and the transitive and symmetric closure of equivalence relationships should be computed for not missing connections. For this reason, we introduce scalable methods and algorithms, (a) for performing the computation of transitive and symmetric closure for equivalence relationships (since they can produce more connections between the datasets); (b) for constructing dedicated global semantics-aware indexes that cover the whole content of datasets; and (c) for measuring the connectivity among two or more datasets. Finally, we evaluate the speedup of the proposed approach, while we report comparative results for over two billion triples
    corecore