40 research outputs found

    EUSPEN : proceedings of the 3rd international conference, May 26-30, 2002, Eindhoven, The Netherlands

    Get PDF

    Thermomechanical and mechanical characterization of a 3-axial MEMS gyroscope

    Get PDF
    Työn tavoitteena oli automaattisten, tehokkaiden ja edullisten testauslaitteistojen ja -menetelmien kehittäminen kolmiakselisten mikroelektromekaanisten (MEMS) gyroskooppien mekaaniseen ja termomekaaniseen karakterisointiin. Työn painotuksena oli testausmenetelmien ja -laitteistojen kehittäminen ja gyroskooppien vaurioanalyysit jäävät tämän työn ulkopuolelle. Gyroskooppi on kulmanopeuden mittaamiseen ja asennon aistimiseen käytettävä anturi. Mekaaninen karakteristointi kattaa gyroskooppien korkean G-arvon iskumaiset kuormitukset ja tärinäkuormitukset. Lämpömekaaninen karakterisointi kattaa gyroskooppien ympäristöolojen kontrolloimista lämpö-, kosteus- tai monikaasu -kaapissa. Tässä työssä kehitettiin menetelmä kolmiakselisten MEMS-gyroskooppien karakterisointiin lämpö- ja kosteuskaapissa. Menetelmä koostuu yksiakselisesta servomoottorista, servo-ohjaimesta ja ohjaussovelluksesta, jonka avulla voidaan samanaikaisesti mitata ja tallentaa gyroskooppien kulmanopeus kaikilta kolmelta (X, Y ja Z) akselilta sekä mitata ympäristön lämpötilaa. Korkean G-arvon iskumaisiin kuormituksiin tarkoitettu laitteisto koostuu pneumaattisesta iskutestauslaitteesta, jossa käytetään mekaanista iskua korkean G-arvon saavuttamiseen. Olemassa olevaa laitteistoa muutettiin siten että sillä voidaan saavuttaa suurempia G-arvoja (aina 80 000G:hen asti) ja mahdollistaa gyroskooppien tutkiminen eri asennoissa. Tärinäkuormituslaittesto koostuu signaaligeneraattorista ja täristinmoottorista, joka soveltuu gyroskooppien tärinätestaukseen. Signaaligeneraattoria käytetään eri taajuisten signaalimuotojen syöttämiseen täristinmoottorille, joka tärisee annetun syötteen mukaisesti. Pyörityslaitteen toiminnallisuutta testattiin yhdellä gyroskoopilla huoneenlämmössä. Gyroskoopin X, Y ja Z-akselien kulmanopeuksien keskiarvot sekä -hajonta mitattiin. Korkean g-arvon iskutestauslaitteistoa testattiin kuudella mittauksella, jossa gyroskoopit rikkoutuivat ensimmäisellä iskulla. Tärinätestauslaitteistoa testattiin yhdellä gyroskooppi-piirilevyllä. Gyroskooppi-piirilevyn päälle asetettiin kiihtyvyysanturi, jolla mitattiin tärinästä aiheutuvan kiihtyvyyden RMS-arvo, huippuarvo ja kokonaisenergia. Tulevat jatkotutkimukset keskittyvät pyöritys-, isku- ja tärinälaitteistoilla testattujen MEMS-gyroskooppien vaurioanalyysiin.The purpose of this thesis was to develop automated, efficient and economical methods for the mechanical and thermomechanical characterization of a digital 3-axial microelectromechanical systems (MEMS) gyroscope. The development of the test equipment and methods was the emphasis of this thesis, but the failure analyses of MEMS gyroscopes are beyond the scope of this work. A gyroscope is a device for measuring angular velocity and sensing change in orientation around its X, Y and Z-axis. The experimental part is divided into two sections, of which the first one is focused on high-G shock impact and vibration loading and the second on thermomechanical characterization. A rotation device was developed for the characterization of the MEMS gyroscopes in a temperature and humidity chamber. The rotation device consists of a oneaxial servo-motor, a servo-drive and a control program for the readout of angular velocity. The device is capable of simultaneously recording the angular velocities of the gyroscopes from all three axes while rotating the gyroscopes around a single axis. The device also records the temperature of the environment. The high-G shock impact equipment consists of a pneumatically assisted shock tester that relies on mechanical impact to generate the high-G shock pulse. An existing mechanical shock impact system was modified to gain higher G-values (up to 80 000G) and to enable the inspection of gyroscopes in different orientations. The vibration test equipment consists of a waveform generator and a vibration shaker, for the vibration testing of gyroscopes. The waveform generator is capable of outputting different waveforms with different frequencies to the shaker that vibrates with the given output. The functionality of the rotation device was tested with rotating one gyroscope board at room temperature. Respective averages and standard deviations of angular velocities were measured in the direction of X, Y and Z axes. The functionality of the high-G shock impact test equipment was verified with six measurements where all of the gyroscopes failed on first impact. The vibration test equipment was tested with one gyroscope board. Root mean square (RMS), peak value and total energy of acceleration were measured with an accelerometer placed on top of the vibrating gyroscope board

    Micro-mechanical sensor for the spectral decomposition of acoustic signals

    Get PDF
    An array of electret-biased frequency-selective resonant microelectromechanical system (MEMS) acoustic sensors was proposed to perform analysis of stress pulses created during an impact between two materials. This analysis allowed classification of the stiffness of the materials involved in the impact without applying post-impact signal processing. Arrays of resonant MEMS sensors provided filtering of the incident stress pulse and subsequent binning of time-domain waveforms into frequency-based spectra. Results indicated that different impact conditions and materials yielded different spectral characteristics. These characteristics, as well as the resulting sensor array responses, are discussed and applied to impact classification. Each individual sensor element in the array was biased by an in situ charged electret film. A microplasma discharge apparatus embedded within the microsensor allowed charging of the electret film after all device fabrication was complete. This enabled electret film integration using high-temperature surface micromachining processes that would typically lead to discharge of traditionally formed electret materials. This also eliminated the traditional wafer-bonding and post-fabrication assembly processes required in conventional electret integration approaches. The microplasma discharge process and resulting electret performance are discussed within the context of the MEMS acoustic sensor array.Ph.D.Committee Chair: Allen, Mark; Committee Member: Brand, Oliver; Committee Member: Michaels, Jennifer; Committee Member: Michaels, Thomas; Committee Member: Ready, Jud W

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    A FEEDBACK-BASED DYNAMIC INSTRUMENT FOR MEASURING THE MECHANICAL PROPERTIES OF SOFT TISSUES

    Get PDF
    In this paper, a novel feedback-based dynamic instrument integrated into a Minimally- Invasive-Surgery (MIS) tool to evaluate the mechanical impedance of soft tissues is presented. This instrument is capable of measuring viscoelasticity of tissues if specific boundary conditions are known. Some important advantages of the proposed instrument are that it is robust and simple in comparison to other similar instruments as it does not require magnitude information of plant’s displacement output and no force sensor is used. The precision and accuracy of the measurements of the proposed instrument for soft tissues is noticeably higher than similar instruments, which are not optimized to work with soft tissues. The proposed dynamic instrument is designed to detect the frequency shifts caused by contacting a soft tissue using an improved phase-locked loop feedback system (closed loop). These frequency shifts can then be used to evaluate the mechanical properties of the tissue. The closed-loop method works fast (with an approximate resonance-frequency-shift rate of 15 Hz per second), and is capable of measuring dy­ namic mechanical properties of viscoelastic tissues, while previous focus was mostly on static/quasi-static elastic modulus. The instrument is used to evaluate the equivalent stiffness of several springs and cantilever beams, mass of reference samples, and also the frequency shifts of several phantoms with injected tumors, noting that these frequency shifts can be used to measure the viscoelasticity of the tissues. It is also shown that the instrument can be used for tumor localization in these phantoms

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    Studying Soft Interfaces with Shear Waves: Principles and Applications of the Quartz Crystal Microbalance (QCM)

    Get PDF
    The response of the quartz crystal microbalance (QCM) to loading with a diverse set of samples is reviewed in a consistent frame. After a brief introduction to the advanced QCMs, the governing equation (the small-load approximation) is derived. Planar films and adsorbates are modeled with the acoustic multilayer formalism. In liquid environments, viscoelastic spectros-copy and high-frequency rheology are possible, even on layers with a thickness in the monolayer range. For particulate samples, rheology is replaced by contact mechanics. The contact stiffness can be derived. Because the stress at the contact is large, nonlinear effects are seen. Partial slip, in particular, can be studied in detail. Advanced topics include structured samples and the extension of the small-load approximation to its tensorial version

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    NASA Tech Briefs, December 1994

    Get PDF
    Topics: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Report

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog
    corecore