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Abstract:  9 
The response of the quartz crystal microbalance (QCM) to loading with a diverse set of samples 10 

is reviewed in a consistent frame. After a brief introduction to the advanced QCMs, the governing 11 
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late samples, rheology is replaced by contact mechanics. The contact stiffness can be derived. Be- 15 
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studied in detail. Advanced topics include structured samples and the extension of the small-load 17 
approximation to its tensorial version.  18 
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1. Introduction 23 

The use of the quartz crystal microbalance (QCM) in diverse areas keeps growing. Among 24 

its advantages is simplicity. It is not difficult to mount the resonator plate in one way or 25 

another. Electrical interrogation of the resonance parameters is not difficult either. The 26 

QCM can be a simple solution to simple problems. Simplicity entails versatility. The QCM 27 

can easily be combined with electrochemistry, optical reflectometry, scanning force mi- 28 

croscopy, and many other instruments of interface analysis.  29 

Reviews on the QCM can be found in references [1,2,3,4,5,6]. Like other simple tools 30 

of science, the QCM becomes slightly more complicated on second glance. That concerns 31 

intricacies in the operation as well as pitfalls in interpretation. This text is meant to give 32 

practitioners a quick start. The QCM can be explained without diving deep, but on occa- 33 

sion the basics are not covered well by the Sauerbrey picture. Familiarizing oneself with 34 

the concepts is particularly important when carrying the QCM to non-standard applica- 35 

tions (such as the freezing of droplets or the impact of spheres). The QCM has much po- 36 

tential for applications other than gravimetry. Speaking of applications: This text covers 37 
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the underlying principles. Reviewing the applications themselves would much expand 38 

the text.  39 

The quartz crystal microbalance is about 60 years old. In 1959, Günter Sauerbrey at 40 

Berlin turned a conventional wisdom of the time into an equation and an instrument [7]. 41 

People in the field knew that one can lower the frequency of a quartz resonator by scrib- 42 

bling onto it with a pencil. That was the quick and easy way to tune frequency. The fre- 43 

quency decreases, following the time-honored relation ω0  (κR/mR)1/2 with κR some ef- 44 

fective stiffness and mR some effective mass. By making the crystal heavier, one slows 45 

down its resonant vibration. Put differently, the resonator can sense mass (Figure 1).  46 

 47 

Figure 1: A) The simplest possible harmonic resonator. A mass is linked to a rigid wall across 48 
a spring. The resonance frequency is ω0  (κR/mR)1/2. If mR increases, the resonance frequency 49 
decreases in consequence. B) A resonator abandoning the rigid wall. Two masses are linked 50 
across a spring. The resonance frequency is given as ω0  (κR/µ)1/2, where µ is the reduced 51 
mass (µ = m1m2/(m1 + m2)). Again, increasing one of the two masses will lower the resonance 52 
frequency. The diagram in B) contains discrete elements, similar to the equivalent lumped- 53 
element circuits discussed in section 8.4. 54 
C) Contrasting to the resonators in A and B, the bell does not consist of discrete masses and 55 
springs. It is an elastic body with a certain shape, made from materials with a certain density 56 
and stiffness. Finding its resonance frequencies (plural) is a classical problem of acoustics. For 57 
any given resonance, one may construct an equivalent lumped-element model containing dis- 58 
crete elements (as in A or B), which reproduces this one resonance.  59 
In principle, one might tune the bell by gluing weights to its rim. The common practice rather 60 
is to remove metal in annular rings, usually from the inside [8]. That changes both the effective 61 
mass and the effective spring constant. The focus then is not usually on the absolute frequency 62 
of the fundamental mode, but rather on the ratios between the overtone frequencies and the 63 
fundamental frequency. These ratios govern the perception of the bell’s sound. 64 

Sauerbrey realized that the relation between mass and frequency shift is particularly 65 

simple if, firstly, the resonator is a plate oscillating in the thickness-shear mode and if, 66 

secondly, the sample consists of a thin film. The resonators at the time indeed were thick- 67 

ness-shear resonators. Thin films were routinely coated onto these as electrodes. Based on 68 

Sauerbrey’s insight, quartz crystals turned into film-thickness monitors for deposition 69 

processes of various kinds.  70 

Sauerbrey’s famous formula is  71 

 72 

Δf/f
ref

 is the fractional frequency shift. mf and mq are the mass per unit area of the film 73 

and the resonator, respectively. One might also talk about “mass” rather than “mass per 74 

unit area”, but the latter term is more practical. For instance, mass per unit area is easily 75 

converted to thickness, once the density is known. The resonator’s mass per unit area, mq, 76 

may be replaced by Zq/(2nf
0
), where Zq = 8.8106 kg/(m2s) is the resonator’s shear-wave 77 

impedance, f
0
 is the frequency of the fundamental (often 5 MHz), and n is the overtone 78 

order. The wave impedance, Zq, is the product of the density and the speed of sound. 79 

These relations inserted into Equation (1) lead to 80 


R

m
R


R

m
1

m
2

A B C

Δf

f
ref

 = –
mf

mq
 (1) 
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The reasoning behind the Sauerbrey equation is sketched in Figure 2. The interesting vi- 82 

bration modes are standing transverse waves with antinodes at the surfaces. Figure 2 83 

shows the displacement patterns of the fundamental mode and the 3rd overtone as dashed 84 

lines.I The wavelength is 2dq/n with dq the thickness of the plate and n the number of 85 

nodal planes.II It is customary to label the overtones (the “overtone order”) with indices 86 

equal to the number of nodal planes. The frequency is f
res

 = ncq/(2dq) with cq the speed 87 

of sound.  88 

 89 

Figure 2: A film increases the wavelength of the standing wave, thereby decreasing the 90 

resonance frequency. 91 

The Sauerbrey mass, mf, is often quoted in units of µg/cm2. More intuitive would be 92 

a thickness (the “Sauerbrey thickness”), the calculation of which, however, requires 93 

knowledge of the density. With 5 MHz crystals and a density of 1 g/cm3, a 1 nm film shifts 94 

the frequency by Δf/n = −5.7 Hz. With this density, 1 µg/cm2 corresponds to 10 nm. 95 

Consider a film with the exact same acoustic properties as the resonator itself (top in 96 

Figure 2 B). In acoustic terms, the film makes the plate thicker. The wavelength increases 97 

correspondingly and the frequency decreases. If the film is much thinner than the plate, 98 

one expects the relation. 99 

 100 

Equation (3) is not the Sauerbrey equation. The Sauerbrey equation makes a statement 101 

about mass, not about thickness. Above, the film was assumed to have the same acoustic 102 

properties as the plate (same density, ρ, same shear modulus, G). If this is not the case, the 103 

displacement pattern has a kink at the resonator-film interface (bottom in Figure 2 B). Sau- 104 

erbrey went through the mathematics and realized that the fractional thickness needs to 105 

be replaced by the fractional mass in order to let the relation be applicable to arbitrary 106 

materials. 107 

Assume a resonator with a fundamental frequency of 5 MHz. Assume that the fre- 108 

quency can be determined with a precision of 0.5 Hz. This precision in frequency trans- 109 

lates to a precision in mass of about 10 ng/cm2. Because the unit has the prefix “nano”, 110 

people have advocated the term “quartz crystal nanobalance”. In the end, the “quartz 111 

 
I  An “overtone” here is an eigenmode, that is, a solution to the boundary value problem, not to be confused with second-har-

monic generation or third-harmonic generation. The latter terminology is also common in acoustics. 

II  Only odd overtones (n = 1, 3, 5,…) can be excited piezoelectrically, because the even overtones lead to a surface charge with 

the same sign on both sides. 

Δf = –
2nf

0

2

Zq
mf (2) 

Δf

f
ref

?
 ≈ 
 

–
df

dq
 (3) 
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crystal microbalance” stuck. With a density of about 1 g/cm3, the thickness resolution of 112 

this QCM is 0.1 nm. The QCM has “submonolayer sensitivity”. Monomolecular layers of 113 

typical bio-adsorbates are slightly thicker than 1 nm. The QCM has submonolayer sensi- 114 

tivity, but the sensitivity is not deep in the submonolayer range. In order to study the 115 

kinetics of adsorption in detail, one would wish for an even better limit of detection (LOD 116 

section 3.6). The LOD of the QCM is good, but not strictly fantastic.  117 

Two competitors are worth a mention. For gas sensing, the surface acoustic wave 118 

devices (SAW devices [9]) have a better LOD. These are used in some electronic noses. For 119 

label-free biosensing in liquids, surface plasmon resonance spectroscopy (SPR spectros- 120 

copy [10]) also has an LOD better than the QCM. It is a question of both white noise and 121 

drift. Among the reasons to use the QCM is simplicity. Other reasons are connected to the 122 

depth of information. The QCM gives access to physical parameters beyond the mass per 123 

unit area. This is sometimes emphasized by calling the QCM an “instrument of surface 124 

analysis”, rather than a “sensor”. 125 

Gravimetric use of the QCM in air or vacuum was the state of affairs until the early 126 

1980s [11]. At that time, Nomura in References [12,13] and also Bruckenstein and Shay in 127 

Reference [14] combined a QCM with an electrochemical cell and measured the mass 128 

transfer during electrodeposition. Similar attempts have been reported earlier but were 129 

less successful [15]. The first experiments with this “electrochemical QCM” (EQCM) were 130 

analyzed with the Sauerbrey equation. As was shown later, the Sauerbrey equation also 131 

applies in liquids as long as the layer is rigid (Equation (52), Reference [16]). Of course, 132 

the liquid itself also takes an influence. This influence is described by what today is called 133 

the Gordon-Kanazawa equation [17]. The Gordon-Kanazawa equation is a rediscovery. In 134 

slightly implicit form, it has for instance been written down in Reference [18]. Quite gen- 135 

erally, a considerable body of experience on acoustic resonators in liquids was gathered 136 

in the 1930s to 1950s, using torsional resonators. Part of this knowledge is collected in 137 

Mason’s book from 1948 [19]. The concepts, which underlie our current understanding of 138 

the liquid-phase QCM, mostly date from that period.  139 

Later, there were two more additions to the techniques. Firstly, the resonance band- 140 

width was analyzed in addition to the resonance frequency [20] and the shifts of frequency 141 

and bandwidth were compared between overtones. Secondly, the oscillator circuits were 142 

largely replaced by passive interrogation (impedance analysis [21,22], and ring-down 143 

[23,24,25]). These changes lead to what the authors call the “second-generation QCM”. 144 

Another term is “QCM-D” for “QCM with Dissipation monitoring”.  145 

In recent years, the cost of impedance analyzers has come down [26]. One can plug, 146 

play, and postpone interpretation.  147 

2. Forced Vibrations, Complex Resonance Frequencies 148 

The following section motivates the complex frequency shift [27], Δf̃ = Δf + iΔΓ. The 149 

variable Γ denotes the half bandwidth at half height (“bandwidth” for short). The tilde 150 

denotes a complex parameter. 151 

Start from the equation of motion of the forced resonator: 152 

 153 

mR, ξR, and κR are the mass, the friction coefficient (also: “drag coefficient”III), and the 154 

spring constant. We bring all terms containing x(t) to the left-hand side. The source term 155 

(the external force, Fext) shall be of the form F̂ exp(iωt). The hat ( ̂^) denotes a complex 156 

amplitude. Instead of exp(iωt), one might have also written exp(−iωt). That is a matter of 157 

convention, addressed in Box 1.  158 

 
III  In interfacial sliding, the „friction coefficient“ is a ratio of two forces (tangential to normal). In liquid friction, it is a ratio of 

force to velocity. Renaming the force-velocity ratio as „drag coefficient“ avoids this ambiguity. 

mRẍ(t) = − ξRẋ(t) −  κRx(t) + Fext(t) (4) 
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For stationary oscillations of the form x(t) = x̂ exp(iωt), the time derivative turns into 159 

a multiplication with iω: 160 

 161 

We divide by exp(iωt), divide by mR, rename ξR/mR as 2γ, and rename κR/mR as ω02:  162 

γ is the damping coefficient and ω0  is the natural frequency. Both have units of inverse 163 

seconds. The amplitude of displacement depends on ω as: 164 

Because the resonances of the QCM are extraordinarily sharp, the frequency of excitation, 165 

ω, is close to the natural frequency, ω0 .IV If that is the case, the denominator can be 166 

simplified following (ω0
2 − ω2)  (ω0 + ω) (ω0 − ω)  2ω0(ω0 − ω). Equation (7) simplifies 167 

to 168 

A complex resonance frequency can be defined as:[V]  169 

 170 

Γ = γ/(2π) is the half bandwidth at half height. Expressed in terms of the complex reso- 171 

nance frequency, Equation (8) turns into  172 

The prefactor is often multiplied with an i and then hidden behind some normalization 173 

constant. Proceeding this way and separating the real and the imaginary part leads to: 174 

The first and the second term are shown as a black and a red line in Figure 3. 175 

The complex resonance frequency plays out its strength when it comes to shifts 176 

thereof [27], called Δf̃ in the following (Δf̃̃ = Δf + iΔΓ). Just about all equations predicting 177 

frequency and bandwidth can be formulated in terms of Δf̃. These equations cover Δf and 178 

ΔΓ in one line.  179 

The half bandwidth, Γ, is related to the energy dissipated per unit time, Ė, as  180 

 181 

E is the energy contained in the oscillation.  182 

In the authors’ opinion, Γ is the best parameter for quantification of dissipative pro- 183 

cesses at the QCM surface. Γ puts frequency and bandwidth on equal grounds. For 184 

 
IV  For sharp resonances, the frequency of maximum displacement is the natural frequency. The natural frequency is called the 

“resonance frequency”, here. For broad resonances, there is a slight difference between the natural frequency and the reso-

nance frequency. The latter then is also called the “ringing frequency”, equal to 0(1 – 22/02)1/2. One can always compute the 

ringing frequency from the natural frequency and the bandwidth. The difference is not of practical importance for the QCM. 
V  The complex resonance frequency makes the algebra easier if the resonances are sharp and if  + 0  20. Otherwise, it can 

cause confusion. 

–ω2mR x̂ exp(iωt)  + iωξRx̂ exp(iωt)  + κRx̂ exp(iωt)  = F̂ext exp(iωt) (5) 

–ω2x̂ + 2iωγx̂ + ω0
2x̂ = 

F̂ext

mR
 (6) 

 𝑥̂ = 
1

ω0
2 – ω2 + 2iγω

⋅
𝐹̂ext

𝑚R
 (7) 

x̂(ω) = 
 1

ω0
2 – ω2 + i2γω

⋅
𝐹̂ext

mR
≈

1

(ω0 – ω) + iγ
⋅

𝐹̂ext

2ω0mR
 (8) 

f̃
res

 = 
ω0 + iγ

2π
 = f

res
 + iΓ (9) 

x̂(f) ≈ 
F̂ext

8π2f
res

mR
  

1

f̃
res

 – f
   (10) 

x̂(f) ∝  
Γ

(f – f
res

)
2
 + Γ2

 + i
f – f

res

(f – f
res

)
2
 + Γ2

 
 

(11) 

Γ = 
Ė

4πE
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instance, the noise on Δf and ΔΓ is similar. Other parameters are in use. Some researchers 185 

use the full bandwidth, w = 2Γ, others use the Q-factor Q = f
res

/(2Γ), and still others use the 186 

inverse Q-factor Q−1 = 2Γ/f
res

 and give it a new name and a new letter, namely “dissipation 187 

factor”, D. Sometimes “dissipation factor” is called “dissipation”, for short. Δf̃ may also 188 

be expressed in terms of the dissipation factor. The conversion is simplest for the overtone- 189 

normalized frequency shift:  190 

If ΔD is expressed in units of 10−6 and if f
0
 is 5 MHz, the conversion from ΔD [10−6] to 191 

ΔΓ/n [Hz] amounts to a multiplication with 2.5.  192 

3. Techniques of Read-Out 193 

Different options for driving a QCM have been reviewed in References [28,29,30]. A 194 

few general remarks follow below. 195 

3.1. Oscillator circuits 196 

Oscillator circuits are the method of choice for clocks [31]. Oscillators can be cheap. 197 

For sensors, the use of oscillators is problematic because the relation between the fre- 198 

quency of oscillation and the frequency at the peak of the conductance curve is unclear. 199 

The latter frequency (the acoustic resonance frequency, also “series resonance frequency”) 200 

is the frequency of relevance for interpretation. The oscillation frequency is somewhere 201 

close to this frequency, but not necessarily equal to it. Oscillator circuits are available, 202 

which output bandwidth in addition to frequency (bandwidth being often converted to 203 

the dissipation factor) [32,33]. Oscillator circuits usually run on one harmonic only, often 204 

the fundamental. 205 

Δf̃

n
 = 

Δf

n
 + i

ΔΓ

n
 = 

Δf

n
 + i

f
0

2
ΔD (13) 

Box 1: Sign conventions  

When describing oscillations with complex numbers, one exploits Euler’s relations, which 

imply that cos(ωt) = 1/2(exp(iωt) + exp(−iωt)). In principle, all calculations containing the cosine 

should be carried out on the sum of exp(iωt) and exp(−iωt). However, the two calculations with 

+iωt and with –iωt run in similar ways. One therefore carries out the calculation just once and 

eventually computes the (real) outcome of the calculation as Re(ỹ) = 1/2 (ỹ + ỹ*) where ỹ is the 

outcome of the calculation for exp(iωt) and the asterisk denotes complex conjugation.  

If entropy is supposed to always increase, the imaginary parts of certain complex response 

functions must have certain signs. The sign depends on whether the calculation is carried out 

with exp(iωt) or with exp(−iωt). If exp(iωt) is chosen, the signs are: 

G̃ = G' + iG''  σ̂shear= G̃ γ̂shear  shear modulus 

σshear: stress 

γshear: strain 

η̃ = η' – iη''  G̃ = iωη̃  viscosity 

J̃ = J' – iJ''  J̃ = 1/G̃  shear compliance 

c̃ = c' + ic''  c̃ = (G̃/ρ)
1/2

 = (iωη̃/ρ)1/2  speed of shear sound 

𝑘̃ = k' – ik''  𝑘̃ = ω/𝑐̃  wave number, wave 

travels towards +z  

Z̃ = Z' + iZ''  Z̃ = ρc̃ = (ρG̃)
1/2

 = (iωρη̃)1/2  wave impedance 

𝜔̃res = ω0 + iγ = 2π(fres+iΓ) 

    = 2π(fres + ifresD/2)  

 resonance frequency 

ω is real  

A wave propagating towards +z is written as exp(i(ωt – k𝑧̃)) = exp(iωt) exp(−ikz) exp(−kz).  
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An oscillator circuit is an amplifier with a resonator in the feedback loop. Because the 206 

resonator’s impedance is small on the resonance frequency, the circuit spontaneously os- 207 

cillates at this frequency. However, the clock frequency is slightly displaced from the se- 208 

ries resonance frequency because the parallel electrical capacitance (C0 , see Figure 42) 209 

takes an influence. There are more intricacies in the details. These would not be a problem, 210 

if the small difference between the oscillation frequency and the series resonance fre- 211 

quency was constant, but this difference depends on damping and on details of the elec- 212 

tronics.  213 

3.2. Impedance analysis 214 

Impedance analysis [21] avoids the complications inherent to oscillator circuits. An 215 

impedance analyzer (used here synonymously to “vector network analyzer”, “VNA”) 216 

sweeps the frequency of excitation across the resonance. The resonance parameters are 217 

obtained from a fit of a resonance curve to the admittance trace. A suitable fit function is 218 

the phase-shifted Lorentzian, which is: 219 

Gmax is an amplitude.VI The phase shift, φ, accounts for an asymmetry of the resonance 220 

curve. Such asymmetries are caused by imperfect calibration. The asymmetry can be 221 

small, but it rarely vanishes. Impedance analysis is sometimes portrayed as a passive tech- 222 

nique. “Passive”, however, does not imply that the impedance analyzer would not affect 223 

the resonance frequency, at all. The analyzer’s output resistance, its input resistance, and 224 

the length of the cables all take an influence on frequency and bandwidth because of pie- 225 

zoelectric stiffening. A second caveat: The resonance frequency as determined from the 226 

admittance trace depends on the sweep rate. Impedance analysis is not quite as foolproof 227 

as one would wish.  228 
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Figure 3: A typical output from impedance analysis. Panel A shows the conductance Gel 230 
(black) and the susceptance Bel (red). Together, they form the complex electrical admittance, 231 

Ỹel = Gel + iBel, which is equal to Z̃el
−1

 with Z̃el the impedance. The real part of the admittance 232 
forms the well-known, symmetric resonance curve (assuming perfect calibration). This is dif- 233 
ferent for the real part of Z̃el because of the parallel electrical capacitance, C0. Gel(f) peaks at 234 
the series resonance frequency, f

res
. Panel B shows the polar diagram. Of interest in sensing 235 

are the shifts in frequency and bandwidth, Df and ΔΓ (C). 236 

For measurements in liquids, the through (“thru”) configuration is advantageous be- 237 

cause it leads to a small current into the impedance analyzer. The small current is 238 

 
VI  The parameter Gmax does not contribute much to sensing. The product GmaxΓ is proportional to the effective area of the plate 

(Equation (113)). GmaxΓ sometimes varies slightly during experiment. How these variations depend on the sample’s proper-

ties, is poorly understood. 

Gfit = GmaxΓ (
Γ

(f
res

 − f)
2
 + Γ2

cos φ  + 
f
res

 − f

(f
res

 − f)
2
 + Γ2

sin φ)  + Goff 

Bfit = GmaxΓ (−
Γ

(f
res

 − f)
2
 + Γ2

sin φ  + 
f
res

 − f

(f
res

 − f)
2
 + Γ2

cos φ)  + Boff 

(14) 
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measured against zero background and may by amplified. The background is nonzero in 239 

the “shunt” configuration, which is also common and works well for experiments in air. 240 

In the shunt configuration (depicted in Figure 4 C), a large impedance of the device under 241 

test lets the voltage from the output go straight to the input of the VNA. If the resonator’s 242 

impedance is much larger than 50 Ώ, it causes small changes to this input against a large 243 

background. Because the background is amplified as well, amplification lets the detector 244 

run into overload. A resonator immersed in a liquid has a large impedance on resonance 245 

and should be wired in thru configuration. If grounding the front electrode is an issue, a 246 

transformer as shown in Figure 4B can be employed. Grounding the front electrode is ad- 247 

visable because the electrical properties of the sample may otherwise affect the resonance 248 

via piezoelectric stiffening. 249 

 250 

Figure 4: When working in liquids, wiring the resonator in the thru configuration lowers the 251 
noise. A balun transformer (such as the unit ADT1-1 from Minicircuits) can be used to ground 252 
the front electrode. The shunt configuration (C) is not recommended for use in liquids. 253 

3.3. Ring-down 254 

Resonant phenomena can always be probed in either the frequency domain or the 255 

time domain. As long as the dynamical equations are linear, the two modes of interroga- 256 

tion yield equivalent information (Figure 5). One may either sweep the frequency of an 257 

AC excitation across the resonance (as in impedance analysis) or abruptly shut off the 258 

driving signal and watch the decay as a current trace on an oscilloscope (as in ring-down). 259 

The latter principle is implemented in the instrument marketed by Biolin.  260 

time

T = 1/fres

t = 1/(2pG)

Fourier 

Transform

frequency

fres

G

x(f) x(t)

 261 

Figure 5: The time trace in ring-down and the resonance curve as a function of frequency are 262 
related to each other by a Fourier transform. The resonance parameters (mostly f

res
 and Γ or 263 

D) can be obtained from both sets of data. The precision is similar.  264 

3.4. Multi-frequency lock-in amplification 265 

The multi-frequency lock-in amplifier (MLA) stands between ring-down and imped- 266 

ance analysis. The MLA applies a comb of frequencies to the resonator. The resonance 267 

curve can be reconstructed from the currents at these frequencies. Transformed to the time 268 

domain, the excitation amounts to a series of pulses. The current as displayed on an oscil- 269 

loscope (lower right in Figure 6) visualizes the ring-down. The left-hand side and the 270 

right-hand side in Figure 6 describe the same process in the frequency domain and the 271 

time domain, respectively. 272 
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 273 
Figure 6: Excitation and response of a resonator in the frequency domain and the time domain 274 
as determined with the MLA. The instrument applies a comb of up to 32 frequencies. The cur- 275 
rent response shows the resonance curve (bottom left). Transformed to the time domain (right), 276 
the excitation amounts to a sequence of pulses with a spacing in time of 1/(Δfcomb). The response 277 
is similar to a ring-down process (lower right).  278 
Downloaded from https://www.intermodulation-products.com/applications/lock-in, on 279 
13.02.2019. 280 

The time between two pulses, Δtcomb, sets the time resolution of this setup. Δtcomb is 281 

equal to the inverse frequency spacing between two members of the comb, Δfcomb. The 282 

frequency spacing, in turn, must be smaller than the bandwidth of the resonance. Other- 283 

wise, the comb will miss the resonance. Using 32 frequencies, which are evenly distributed 284 

over a resonance with a width of about 3 kHz, one achieves a time resolution of 10 ms. 285 

However, one may also let the comb consist of only 5 frequencies and space those 500 Hz 286 

apart. The time resolution then improves to 2 ms.  287 

Should a comb covering one particular resonance contain only – let’s say − 5 frequen- 288 

cies, the other 27 frequencies can be invested in the other overtones. The MLA can inter- 289 

rogate multiple overtones at the same time. In principle, one might worry about crosstalk 290 

between the different overtones excited in parallel, but this does not appear to be a prob- 291 

lem, in practice [34].  292 

3.5. Fast measurements 293 

Data acquisition rate is critical for the study of transient phenomena. It is particularly 294 

important in analytical electrochemistry, which often exploits transients [35]. Most current 295 

advanced QCM’s are not particularly powerful in terms of time resolution. Typical data 296 

acquisition rates are between 1 and 10 data points per second (for experiments in liquids) 297 

[36]. While the MLA in the comb mode is faster than most other instruments, one would 298 

still wish for more.  299 

The data acquisition rate can be further improved, if the analysis is based on the elec- 300 

trical admittance at one, fixed frequency [37,38]. (Oscillators also allow for fast data acqui- 301 

sition [39].) As sketched in Figure 7, there is a one-to-one correspondence between the 302 

electrical admittance at this one frequency and the complex resonance frequency, f
res

 + iΓ. 303 

This mode of data acquisition suffers from electrical artifacts, though. The conversion 304 

from Gel + iBel to f
res

 + iΓ assumes that the other parameters of the fit function in Equa- 305 

tion (14) (Gmax, φ, Goff, and Boff) are constant, which is not always true.  306 

Even in the single-frequency mode, it is difficult to achieve data acquisition rates be- 307 

yond 2πΓ because the resonator rings up and rings down on a time scale of (2πΓ)−1 , 308 

where the details are complicated. Deconvolution should be possible but has not been 309 

done so far. Without deconvolution, the time per data point cannot be less than about 310 

100 µs (for experiments in water, where Γ is a few kHz). 311 
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Figure 7: Impedance analysis requires a determination of the entire admittance trace (full and 313 
dashed lines), which takes time. Fast measurements can build on the conductance, Gel, and 314 
the susceptance, Bel, at one single frequency close to the center of the resonance, f

c
. Shifts in 315 

Gel and Bel are converted to shifts in f
res

 and Γ (blue arrows). As the top panel shows, a shift 316 

in resonance frequency changes Bel, but leaves Gel unchanged. Conversely, an increase in 317 
bandwidth lowers Gel, but leaves Bel unchanged (bottom). 318 

Fast measurements may be combined with accumulation and averaging. This re- 319 

quires an experimental setting, where the sample responds to a periodic stimulus of some 320 

kind. A suitable parameter for modulation is the electrical DC potential of the front elec- 321 

trode when this electrode at the same time is the working electrode of an electrochemical 322 

setup. The instrument then operates as an electrochemical QCM (an EQCM, section 9.1).  323 

Figure 8 shows an example. The sample is an aqueous electrolyte. When the voltage 324 

of the front electrode is switched, Δf and ΔΓ respond, but they do so with a delay. The 325 

delay is linked to the kinetics of double layer recharging [40]. 326 
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Figure 8: Shifts in frequency and bandwidth obtained in a modulation experiment, using the 328 
single-frequency mode. The stimulus was the electrical potential of the front electrode, varied 329 
between +0.3 V and −0.3 V vs. a platinum pseudo-reference electrode. The sample was an 330 
electrochemically inert electrolyte. After accumulation overnight, the noise was around 331 
20 mHz, based on a time interval of 100 µs per data point.  332 

Modulation and accumulation avoid a critical problem of the QCM, which is drift. 333 

Typical QCMs drift by about 1 Hz/h when the crystal was mounted carefully and when 334 

all static stresses have relaxed. Otherwise, the drift (caused by migration of crystal defects) 335 

can be much larger. The drift can hardly be prevented, but it can be circumvented by 336 

choosing the target of research suitably. The study of fast, repetitive processes does not 337 

suffer from drift because the average (taken over the period of the repetitive process) can 338 
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be subtracted from the time traces. The averages will drift, but the differences from the 339 

average can be accumulated over extended periods of time. The data shown in Figure 8 340 

have been accumulated overnight. 341 

3.6. Noise and drift 342 

To the best of the authors’ knowledge, the different techniques and instruments driv- 343 

ing the liquid-phase QCM reach a frequency noise in a similar range. A convenient way 344 

to calculate a drift-corrected noise from any data set builds on the Hadamard variance, 345 

which is 346 

The Hadamard variance is zero for a straight, sloped line. After a linear fit was subtracted 347 

from a sloped line with added white noise, the square root of the Hadamard variance is 348 

equal to the root-mean-square noise (rms noise). Basing the definition of the noise on the 349 

Hadamard variance avoids the linear fit. The drift-corrected rms noise is (δf
Hadamard

 2 )
1/2

. 350 

In the authors’ laboratory, measurements in water lead to an rms noise on Δf/n of 351 

30 mHz/Hz1/2. The noise depends on the time interval of data acquisition, hence the Hz1/2 352 

in the denominator. One can always lower the noise by averaging over longer times. 353 

30 mHz is the noise, if the instrument outputs one data point per second. Similar noise is 354 

seen in most figures in the published literature (which is a rough estimate, evidently). 355 

Reference [41] reports similar noise for resonators in liquids driven with an oscillator cir- 356 

cuit (as opposed to impedance analysis or ring-down).  357 

In time and frequency control, the Allan variance is employed more commonly than 358 

the Hadamard variance. When frequencies are determined in time intervals of τ = 1 s, the 359 

Allan variance is  360 

y is the fractional frequency shift. Good quartz clocks achieve σy(τ = 1 s)  10−11 [42]. For 361 

the QCM in water, the noise is larger by a factor of about 1000. With a noise of 30 mHz on 362 

a 5 MHz signal, σy(1 s) is 610−9. The Q-factor, on the other hand, decreases by only a factor 363 

of about 30. The noise is not proportional to Q−1 ,as one might expect. 364 

Noise has in depth been studied for clocks [43], but not to the same extent for the 365 

liquid-phase QCM. One can understand that the frequency noise increases stronger than 366 

Q−1 on a qualitative level. The discussion can build on the single-frequency mode (section 367 

3.5). In a liquid environment, the large damping increases Γ and it also decreases Gmax 368 

(Equation (14), Figure 10). More generally, the noise has a white component, which scales 369 

as the ratio of the thermal energy, kBT, to the power going into the device. When immers- 370 

ing a resonator into a liquid, the power into the device decreases because the resistance 371 

(R1) increases. This amounts to a first factor of about Q−1. A second factor of Q−1 enters, 372 

when a noise on Ỹel is translated to a noise on frequency. With Q decreasing by about a 373 

factor of 30, the noise – following this rough argument – increases by about a factor of 302.  374 

There may be other sources of noise. For instance, the liquid-phase QCM is suscepti- 375 

ble to acoustic vibrations. Slamming the door leaves a trace in Δf(t). The coupling is me- 376 

diated by bending of the plate as described in Reference [44]. More generally: There prob- 377 

ably is room for improvements on the frequency noise of the liquid-phase QCM. 378 

According to the conventions in sensing, the limit of detection, LOD, is three times 379 

the rms noise. Using a density of 1 g/cm3, an LOD in frequency of 90 mHz corresponds to 380 

an LOD in adsorbate thickness of ~0.05 nm. Noise is one of the reasons, why surface plas- 381 

mon resonance spectroscopy (SPR spectroscopy) is more widespread in label-free biosens- 382 

ing than the QCM. A second reason is drift.  383 
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Figure 9: When a resonance becomes broader, this lowers the precision in the determination of 384 
the frequency shift twice. Γ increases and Gmax decreases (both in proportion to the inverse 385 
Q-factor). The noise on δB is assumed to be independent of Q in this argument. 386 

4. The Acoustic Multilayer Formalism and its Consequences 387 

4.1. Qualitative data inspection 388 

The following sections describe the quantitative analysis of QCM data acquired on 389 

planar samples in due detail. As long as the samples are homogeneous in the surface 390 

plane, the acoustic multilayer formalism achieves the modeling. Before starting a fit, some 391 

qualitative considerations are worthwhile:  392 

•  Is –Δf ≫ ΔΓ and is –Δf/n  const.? Did the experiment occur in air? If so, the response 393 

is probably dominated by inertia in the sense of the Sauerbrey equation (“inertial 394 

loading”). With a density of 1 g/cm3 and 5 MHz crystals, a layer thickness of 1 nm 395 

leads to –Δf/n = 5.7 Hz. Did the experiment occur in liquid? If so, the response is prob- 396 

ably dominated by the formation of a thin layer. However, –Δf/n may be smaller than 397 

5.7 Hz per nanometer in case the film is soft (Equation (52)). 398 

• Is –Δf  ΔΓ, is –Δf/n1/2  const., and was the resonator immersed in a liquid? If so, the 399 

response is probably dominated by changes in viscosity (Equation (29), “viscous 400 

loading”). With 5 MHz crystals, –Δf/n1/2 = 716 Hz corresponds to a viscosity of 401 

1 mPa s (slightly more than the viscosity of water). 402 

• Is Δf > 0 and is Δf·n  const.? If so, the response may be dominated by point contacts 403 

(“elastic loading”, section 5.1). 404 

• Do Δf and ΔΓ show unexpected patterns? Plot ΔΓ versus Δf. If these plots show circles 405 

or spirals, you may be studying a coupled resonance (Equation (79), Figure 33).  406 

4.2. The small-load approximation in 1D (parallel-plate model)  407 

In the following, we go beyond the (too) simple equation ω0  (κR/𝑚R)1/2 and for- 408 

mulate a continuum model. The lumped-element description from Figure 1 B is aban- 409 

doned (no discrete spring, no discrete masses). We treat the resonator as a vibrating body, 410 

similar to the bell shown in Figure 1 C. Piezoelectric stiffening is ignored, for now. Piezo- 411 

electricity at this level simply is a convenience, which allows to probe acoustic resonances 412 

by electrical means.  413 
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In the continuum picture, a resonance amounts to a displacement pattern, which oc- 414 

curs time-harmonically and which is easily excited to a large amplitude. The deformation 415 

pattern u(x,y,z,t) is 416 

 417 

The amplitude û(x,y,z) is the mode of vibration. Because the displacement always occurs 418 

along x, û may be viewed as a scalar (rather than a vector). Further simplifying the prob- 419 

lem, we let all gradients in the plane vanish. The “parallel plate” can be viewed as an 420 

“infinite parallel plate”. It can also be a plate with finite area, Aeff, but the edges must not 421 

affect the mode of vibration (which is unrealistic for AT-cut quartz because of its aniso- 422 

tropic elasticity). Within the parallel-plate model, the amplitude of displacement, û ≡ ûx, 423 

is a function of z, only. 424 

The resonant modes of vibration are solutions of a boundary value problem. The 425 

boundary condition here are surfaces, which are free of stress. Because the shear stress is 426 

proportional to the shear strain, the shear strain must vanish at the surface (at z = 0 and 427 

z = dq) 428 

Gq is the shear modulus of the plate. In principle, the shear stiffness is a tensor. Gq is the 429 

linear combination of tensor elements, which applies to the thickness-shear deformation 430 

of AT-cut plates.VII The origin of the z-axis is at the back of the plate. For the parallel plate, 431 

the modes of vibration are standing waves: 432 

 ûS is the displacement amplitude at the surface.  433 

The boundary condition fixes the wavenumber to discrete values, which are 434 

n is the overtone order. Expressed differently, the wavelength, λ, must be an integer frac- 435 

tion of twice the plate’s thickness. Such discrete sets of solutions are characteristic of 436 

boundary value problems. Small deviations of the overtone frequencies from the integer 437 

multiples of the fundamental frequency are discussed in section 8.1. 438 

Critical to the above argument was the fact that the resonator surface was stress-free. 439 

The surface must coincide with an antinode. When a sample exerts a periodic stress onto 440 

the surface, the resonance condition changes. Within linear acoustics, the stress, σ̂S, is pro- 441 

portional to the displacement, ûS. In acoustics, is customary to not discuss the stress-dis- 442 

placement ratio, but rather the stress-velocity ratio, which is the impedance. Velocity, v̂S, 443 

and displacement, ûS, are related as v̂S = iωûS. The stress-velocity ratio at the resonator 444 

surface is the load impedance, Z̃L. The load impedance is a key variable in the physics of 445 

the QCM. The displacement and the stress at z = dq  are ûS cos (k̃qdq)  and 446 

ûSGqk̃q(− sin (k̃qdq)), respectively. The stress-velocity ratio follows as:  447 

 
VII  The AT cut is the most common crystal cut in QCM-based sensing. It leads to a thickness-shear vibration with a 

small dependence of the resonance frequency on temperature. 

 u(x,y,z,t) = û(x,y,z) exp(iωt) (17) 

σ̂(z = 0, 𝑑𝑞) = Gq

dû

dz
|
z = 0,dq

 = 0 (18) 

un(z,t) = ûS cos(knz) exp(iωt) (19) 

kn=
nπ

dq
 (20) 
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The first minus sign occurs because the stress is exerted by the sample onto the resonator 448 

surface (in the direction of −z). It follows that 449 

The relations cq = (Gq/ρ
q
)1/2 and Zq = (Gqρ

q
)1/2 were used. Zq, cq, and f

ref
 are complex, 450 

in principle. However, the resonator’s intrinsic losses are not of interest in sensing. Writ- 451 

ing them as real parameters certainly affects the absolute value of the bandwidth, but not 452 

its shift induced by the sample. The use of an effective complex k̃q (rather than kq = 𝜔/cq) 453 

is justified in appendix D.. 454 

The relation dq = cq/(2f
0
) leads to 455 

Equation (23) is an implicit equation in Δf̃, which can be solved numerically. It can be 456 

turned into an explicit equation in Δf̃ = Δf + iΔΓ by: 457 

 − linearizing the tangent as tan(πΔf̃/f
0
)  πΔf̃/f

0
 458 

 − evaluating the load impedance Z̃L(f) at the frequency of the unloaded crystal, rather 459 

than the resonance frequency in the presence of the load.  460 

This explicit equation is 461 

 462 

Equation (24) is the small-load approximation applied to the parallel plate.  463 

This section deals with stratified layer systems. For those, the stress-velocity ratio 464 

follows from how the shear wave bounces back and forth inside the sample. Three simple 465 

cases are sketched in Figure 10. However, Equation (24) is more general. Should the sam- 466 

ple be structured, laterally, the load impedance may be replaced by its area average:  467 

Area averaging is possible at this level of approximation, because Equation (24) is linear 468 

in the load impedance. Within the parallel-plate model, ⟨…⟩area is an unweighted area 469 

average. For more realistic resonators, the square of the local amplitude, |ûS(rS)|2, must 470 

be included as a weight function (section 8.1): 471 

rS is a point on the resonator surface.  472 

The calculation of the stress-velocity ratio is rather simple for thin rigid films and it 473 

is also simple for semi-infinite media. For layered systems, there are analytical equations 474 

(not all equally simple) [45,46,47]. Some of them are discussed below. For single contacts 475 

with small contact area, the stress can be replaced by the ratio of the restoring force, F, 476 

and the acoustically active area, Aeff. Should the sample have a more complicated 477 

Z̃L = 
– σ̂S

v̂S
 = 

– Gqd/dz(û(𝑧))|z = dq

i𝜔̃resû(𝑧)|z = dq

 = 
ûSGqk̃q sin(k̃qdq)

i𝜔̃resûS cos(k̃qdq)
  

= 
Gqk̃q

i𝜔̃res
tan(k̃qdq)  = – i Zq tan(k̃qdq) 

(21) 

Z̃L = – i Zq tan(k̃qdq) = – i Zq tan (2π(f
ref

+Δf̃)
dq

cq
)  = – i Zq tan (2πΔf̃

dq
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structure, the stress-velocity ratio needs to be calculated numerically, solving the equa- 478 

tions of continuum viscoelasticity for the given geometry (section 5.3). 479 

 480 

Figure 10:Three simple cases, allowing for analytical predictions of Δf + iΔΓ. The dashed lines 481 
show the displacement pattern. The graph is not to scale. The penetration depth of the shear 482 
wave in water, δ, is about 200 nm for a 5 MHz crystal. Films with a displacement pattern as 483 
shown in C are a few tens of nanometers thick. 484 

4.3. Inertial loading 485 

For a thin rigid film as shown in Figure 11, the stress at the resonator surface is gov- 486 

erned by inertia. From Newton’s third law (force = mass  acceleration) it follows that the 487 

stress exerted onto the surface is iωmfv̂S with mf the mass per unit area. The load imped- 488 

ance is Z̃L = iωmf. This leads to the Sauerbrey equation: 489 

Angle brackets denote area averaging as before. 490 

 491 

Figure 11: The Sauerbrey equation applies to thin rigid films and other rigid samples. In the 492 
latter case, the mass per unit area must be area-averaged. 493 

4.4. Semi-infinite viscoelastic media 494 

For semi-infinite, homogeneous viscoelastic media, the load impedance is equal to 495 

the shear-wave impedance, Z̃bulk:  496 

The load impedance and the shear-wave impedance must not be confused. Z̃L is the area- 497 

averaged ratio of stress and velocity at the resonator surface. The shear-wave impedance, 498 

Z̃ or Z̃bulk, is the stress-velocity ratio of a propagating shear wave. Z̃ is a materials con- 499 

stant, given as Z̃ = (ρG̃)
1/2

 = ρ(G̃/ρ)
1/2

 = ρc̃. The wave impedance governs the reflectivity 500 

at interfaces (Equation (37)).  501 
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The relations Z̃bulk =  (ρG̃)
1/2

 = ρc̃ and G̃ = iωη̃ inserted into Equation(28) lead to  502 

Equation (29) is the Gordon-Kanazawa-relation [17,18]. If η̃ is independent of frequency, 503 

Δf and ΔΓ scale as 𝑛1/2. The Gordon-Kanazawa relation can be inverted for viscosity as  504 

 505 

In more compact notation, one may write 506 

The density was moved to the left-hand side in order to emphasize that the QCM 507 

measures the viscosity-density product (or, equivalently, the product ρG̃). The density 508 

often is known and it often varies less than the shear modulus. For instance, adding a 509 

polymer to a solvent much increases the viscosity but leaves the density unchanged within 510 

a few percent. Still: ρ and η cannot be determined separately, using the Gordon-Kana- 511 

zawa relation. (Such a separate determination can be achieved with porous coatings [48].)  512 

The reference state must be the resonator in air, if the target of the study is a small 513 

change in the viscosity (for instance caused by a change in pH). That is so, because ρG̃ 514 

and ρη̃ depend on the square of Δf̃. If a change in pH causes a slight change in viscosity, 515 

δη̃, this causes a change in frequency, δf̃, following δ(ρη̃) ≈ – 1/(iω) (πZq/f
0
)

2
[2Δf̃ δf̃]. The 516 

term in square brackets is the mixed term of the binomial. A term of the form δf̃ 2 was 517 

neglected. Δ and δ have different meanings. Δ is the difference from the dry state, δ is the 518 

small shift induced by varying pH. 519 

For viscoelastic media, ΔΓ is larger than –Δf. For a purely elastic medium (η′ = 0, 520 

η′′ > 0, or G′ > 0, G′′ = 0) the frequency shift vanishes and ΔΓ is equal to (ρG′)1/2f
0
/(πZq). 521 

This result may appear as counterintuitive, given that the bandwidth is usually associated 522 

with dissipative processes. However, ΔΓ quantifies all forms of energy withdrawn from 523 

the resonator (Equation (12)). The energy may or may not be dissipated inside the me- 524 

dium. (Of course, it is dissipated eventually, somewhere.) For the semi-infinite elastic me- 525 

dium, the energy is radiated away towards z = +∞ and ΔΓ is nonzero for that reason. 526 

 527 

Figure 12: Displacement versus distance for a Newtonian liquid. The blue solid line is the real 528 
part, the red dashed line is the imaginary part of the shear wave. The depth of penetration is 529 
about 200 nm. 530 
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The displacement pattern in a Newtonian liquid is shown in Figure 12. It is of the 531 

form 532 

In the last step, a Newtonian liquid was assumed (η'' = 0, η' independent of frequency). 533 

The wave number is then given as k̂ = (1 − i)/δ, where δ is the depth of penetration 534 

With ρ  = 103 kg/m3, η  = 10−3 Pa s, and ω = 2πn  5 MHz, the depth of penetration is 535 

δ = 252 nm/n1/2. These values inserted into the Gordon-Kanazawa relation predict 536 

−Δf = ΔΓ = 716 Hz / n1/2. Figure 12 clarifies what “semi-infinite” means for the QCM. The 537 

sheared layer seen by the QCM is around 200 nm thick (depending on overtone order and 538 

viscosity).  539 

The finite thickness of the sheared layer turns the liquid-phase QCM into a surface- 540 

specific instrument. This is expressed diagrammatically in Figure 13. If exposed to a fluid, 541 

the QCM does not see the bulk outside the sheared layer. This is strictly correct to the 542 

extent that the QCM indeed vibrates in a pure thickness-shear mode. There are small flex- 543 

ural admixtures to the mode of vibration (section 8.1). Because of these, Δf and ΔΓ are 544 

slightly sensitive to objects outside the sheared layer, whenever these scatter compres- 545 

sional waves. 546 

 547 

Figure 13: When shear waves dominate the resonator’s response, the QCM is surface-specific. 548 
Flexural admixtures to the mode of vibration and the concomitant compressional waves may 549 
spoil surface specificity. Compressional waves may be reflected somewhere in the bulk and 550 
return to the crystal. 551 

Can the quartz crystal microbalance be turned into a quartz crystal viscometer? 552 

Firstly, there are other, simple ways to measure viscosity. (Practical sensors must be 553 

cheap.) Further working against the QCM are artifacts, which are caused by compres- 554 

sional waves (Figure 13) and by the adsorption of debris to the resonator surface, acting 555 

as a Sauerbrey load. The Sauerbrey load and the Gordon-Kanazawa load can be separately 556 

quantified with the second-generation QCM’s, but only with those. Problems with mass 557 

deposition have a characteristic signature in QCM-based viscometry, which is an apparent 558 

negative η’’. η’’ is proportional to ΔΓ2 − Δf 2 (Equation (30)). If some adsorbate lowers the 559 

frequency following Sauerbrey, this may drive the apparent η’’ to the negative range, 560 

when data are analyzed with Equation (30).  561 

More conceptually, the QCM determines the viscosity at a frequency of a few MHz. 562 

For small-molecule liquids, the steady-shear viscosity and oscillatory-shear viscosity at a 563 

few MHz are similar. The more interesting fluids, however, often contain soft matter with 564 

shear wave
decays

compressional wave
propagates, is reflected,
and returns to the resonator

û(z,t) = Re (ûS exp (i(ωt − k̃z))) 

        = ûS cos(ωt − k'z) exp(−k''z) 

        = ûS cos (ωt − 
z

δ
) exp (−

z

δ
) 

(32) 

δ = √
2η

ρω
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varying degrees of complexity, which entails relaxation and viscoelastic dispersion. The 565 

high-frequency viscosity then may be different from what the engineer cares about.  566 

Torsional resonators [49,50,51,52] mitigate these problems by virtue of their lower 567 

frequency. They are less sensitive to the deposition of mass than the thickness-shear reso- 568 

nators and their frequency (tens of kHz) is closer to the frequencies and time scales of 569 

practical relevance. Torsional resonators are commercially available as viscosity sensors 570 

[53]. References [54,55,56] report on the use of kHz resonators for an array of other pur- 571 

poses.  572 

One may envisage a role for the QCM in viscometry, when it comes to small sample 573 

volumes. The problem is of much technical relevance and was addressed with other min- 574 

iaturized sensors, as well [57]. One may deposit small droplets onto the resonator surface. 575 

The shifts in frequency and bandwidth are correspondingly small, but they are still well 576 

above the noise. One may determine the contact area, Ac, with a camera and attempt to 577 

derive the viscosity from the relation [58,59] 578 

 579 

Aeff is the acoustically active area of the plate and KA is a function of the droplet area, 580 

which takes the amplitude distribution, v̂S(rS), into account (Figure 38). Typically, this 581 

function would be determined by calibration using liquids with known viscosity. A simi- 582 

lar analysis can be applied to a combination of a QCM with a JKR apparatus [59]. The JKR 583 

apparatus pushes a lens of a soft material against a substrate and determines the contact 584 

radius as a function of the normal force. The JKR apparatus targets the contact-mechanics 585 

of soft materials. The substrate may be a QCM, in which case the complex frequency shift 586 

reports the material’s high-frequency shear modulus. 587 

From Equation (34), one would expect the prefactors to be the same for frequency 588 

and bandwidth. If that was so, the ratio ΔΓ/(−Δf) would be independent of contact area 589 

and related to the material’s loss tangent, tan(δL) = G′′/′. Experiment shows, however, that 590 

the ratio slightly depends on contact area. The problem has to do with the fact that the 591 

degree of energy trapping changes when a sample contacts the resonator in the center, 592 

only. Energy trapping increases the resonance frequency (see the discussion around Fig- 593 

ure 38). Its effect on bandwidth is different from its effect on frequency [60]. These prob- 594 

lems must be kept in mind when analyzing Δf̃ with Equation (34).  595 

There is another niche for QCM-based viscometry, which is high-frequency rheology. 596 

When applied to engine oils, the QCM’s high frequency is a disadvantage. For other com- 597 

plex fluids, the high-frequency viscoelasticity actually is of interest because it depends on 598 

the fluid’s internal organization. Pharmaceuticals for parenteral administration are often 599 

formulated as concentrated protein solutions, which display viscoelastic relaxation in the 600 

MHz range [61]. Protein-protein interactions (PPIs) may turn these solutions into weak 601 

gels. High-frequency rheology is among the techniques probing such interactions 602 

[61,62,63]. Figure 14 shows an example. For the pharmaceutical formulation at the top, the 603 

shear modulus as derived with Equation (31) displays viscoelasticity with a characteristic 604 

dependence on frequency. The data could be fitted with the Maxwell model (a lumped- 605 

element model consisting of a spring in series with a dashpot). The relaxation time was in 606 

the range of a few tens of nanoseconds. The sample at the bottom did not show this kind 607 

of viscoelasticity. It looked like a Newtonian liquid to the QCM.  608 

Note that time-temperature-superposition (TTS) is not needed to interpret these ex- 609 

periments [64]. For certain types of polymers, one may study the “high-frequency” visco- 610 

elasticity with conventional, low-frequencies rheometers by cooling the sample, such that 611 

the relaxations of interest slow down and then are accessible to the instrument. Complex 612 

liquids often are not thermorheologically simple in that sense. For these, acoustic instru- 613 

mentation operating at high frequencies (such as the QCM, but not limited to the QCM 614 

[65]) is needed. 615 
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Figure 14: The complex shear modulus of two concentrated antibody solutions as determined 616 
with a QCM and Equation (31). The lines are fits with a Maxwell model (G'+iG''=G∞'/(1 − ωτ)). 617 
The top and the bottom show data obtained on a viscoelastic liquid and on a Newtonian liquid, 618 
respectively. Adapted from Reference [61]. 619 

4.5. Films in air 620 

If the sample contains interfaces with an impedance contrast, the reflected wave contrib- 621 

utes to the periodic stress at the resonator surface in proportion to –Z̃fv̂←, where v̂← is 622 

the amplitude of the reflected wave, evaluated at the resonator surface (Figure 15). Z̃f is 623 

the film’s wave impedance. There is a minus sign because the reflected wave travels to- 624 

wards –z. Dividing by the total velocity, v̂→ + v̂←, the load impedance is found to be 625 
   626 

The ratio r̃S = v̂←/v̂→ is the complex reflectivity evaluated at the resonator surface. The 627 

QCM may be viewed as an acoustic reflectometer (and may compete with other reflec- 628 

tometers, for instance described in References [66,67]). In particular, there is a close corre- 629 

spondence between the physics of the QCM and optical reflectometry (section 9.2). The 630 

reflectivity of the sample can be inferred from Equation (35), solved for r̃S:  631 

Equation (24) was used when expressing α̃ as a function of Δf + iΔΓ.  632 

 633 

Figure 15: The stress at the surface of a resonator coated with a film contains a contribution 634 
from the reflected wave.  635 

The calculation of r̃S  for a film in air is sketched in Figure 15. r̃S  is given as 636 

exp(−2ik̃fdf)  r̃ where the exponential covers the propagation through the film (twice, 637 

hence the factor of 2) and r̃ is the reflection amplitude at the film-air interface. The reflec- 638 

tivity of a wave at an interface between two media with different wave impedances, Z̃1 639 

and Z̃2, is  640 

Z̃L = Z̃f

v̂→ − v̂←
v̂→ + v̂←

 = Z̃f

1 − 
v̂←
v̂→

1 + 
v̂←
v̂→

 = Z̃f

1 − r̃S

1 + r̃S
 (35) 

r̃S = 
1 − α̃

1 + α̃
,      α̃ = 

πZq

iZ̃f

(Δf + iΔΓ)

f
0

 (36) 

 

r̃ = 
Z̃f − Z̃bulk

Z̃f + Z̃bulk

  

air: r̃ = 1 

film bulk 

exp(−ik̃fdf) 

exp(ik̃fdf) 
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The proof exploits that the velocity and the stress are continuous at the interface.VIII  641 

Because Z̃air = 0, the reflectivity at the film-air interface is unity. From The load im- 642 

pedance follows as  643 

 644 

Euler’s relation implies 645 

 646 

This result inserted into Equation (23) yields  647 

 648 

Equation (40) was first derived by Lu and Lewis [68]. It is an implicit equation in 649 

Δf + iΔΓ, which must be solved numerically. An analysis of frequency shifts based on the 650 

Lu-Lewis equation is implemented in some commercial film-thickness monitors. The al- 651 

gorithm is called “Z-match method” [69,70]. Film-thickness monitors often become heav- 652 

ily loaded when crystals are not replaced between deposition runs.IX In order to apply the 653 

Z-match algorithm to these data (Δf determined on a single overtone), the wave imped- 654 

ance of the layer must be known. Some values for metals are tabulated in Reference [71]. 655 

One might also use a numerical solution of the Lu-Lewis-equation as part of a fitting pro- 656 

cess, determining not only the thickness, but also the layer’s viscoelastic parameters [72]. 657 

This analysis of course requires experimental values of frequency and bandwidth on a 658 

few overtones as input. Otherwise, the problem is underdetermined. 659 

Inserting Equation (39) into Equation (24) yields an explicit relation for the frequency 660 

shift: 661 

Figure 16 shows Δf and ΔΓ as predicted by Equation (41). 662 

 
VIII  Equivalently, the reflectivity can be calculated from the conservation of energy and momentum.  

It is worthwhile to remind oneself of two related situations: 
− When an optical wave hits an interface at normal incidence, the reflectivity is (nr,1 − nr,2)/(nr,1 − nr,2). While one might 

think so, the refractive index, nr, is not strictly the same as the impedance of the optical wave, but it is related to this imped-

ance. 

− Upon a central elastic collision of two spheres, the velocity of the first sphere after collision is v̂← = v̂→ (m1 − m2)/(m1 + m2). 

The mass takes the role, which the impedance has for waves. 
IX  The frequency shift can be above 1 MHz. Resonators with plane-convex surfaces are used, which tolerate large loading but 

only work reliably on the fundamental. This is one of the cases, where the small-load approximation does not apply. The 

Lu-Lewis equation does not invoke the small-load approximation. In its original form, it uses a real-valued kq.  

 

r̃12 = 
 v̂←
v̂→

 = 
Z̃1 − Z̃2

Z̃1 + Z̃2

 (37) 

Z̃L = Z̃f

1 − exp(−2ik̃fdf)

1 + exp(−2ik̃fdf)
 (38) 

Z̃L = Z̃f

exp(+ik̃fdf)  − exp(−ik̃fdf)
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2i sin(k̃fdf)

2 cos(k̃fdf)
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0
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Figure 16: Δf and ΔΓ as a function of thickness, following Equation (41). The medium is as- 664 
sumed to be lossy, hence the broad film resonance. The loss tangent used in the calculation 665 
was tan(δL) = G’’/G’ = 0.84. 666 

The following sections address the four different regimes indicated with arrows in Fig- 667 

ure 16,.  668 

4.5.1. Very thin films (Sauerbrey limit)  669 

At very low thickness, a Taylor expansion of the tangent in Equation (41) as tan(x)  x 670 

leads to: 671 

 672 

This is the Sauerbrey result. The relations Z̃f = ρ
f
𝑐f̃ and 𝑘̃f = ω/𝑐̃f were used. −Δf/n is pro- 673 

portional to the film’s mass per unit area. ΔΓ vanishes because the film does not undergo 674 

shear deformation to any appreciable extent under its own inertia. Again, the Sauerbrey 675 

result is more general than Equation (42) because area averaging may be applied.  676 

4.5.2. Infinite thickness 677 

In the limit of infinite thickness, Z̃f turns into Z̃bulk. The tangent turns into −i as long 678 

as kf´´ > 0:  679 

The Gordon-Kanazawa relation is recovered. 680 

4.5.3. Thin viscoelastic films 681 

If the film is thin, but still thick enough to let viscoelasticity be noticeable, the tangent 682 

can be expanded to 3rd order as tan(k̃fdf)    k̃fdf + (k̃fdf)
3
/3. This regime is of much practi- 683 

cal importance. The Taylor expansion leads to: 684 

 685 
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The relations k̃f  = ω/c̃f = ω(ρ
f
J̃
f
)

1/2
, ω = 2πnf

0
 = πnZq /mq , and Z̃f = (ρ

f
/J̃

f
)
1/2

 were used. 686 

J̃ = 1/G̃ is the shear compliance.  687 

It is instructive to express Δf̃/n as a function of n2: 688 

689 
Clearly, both −Δf/n and ΔΓ/n depend on n2 [73]. If (!) J

f
' and J

f
'' themselves do not de- 690 

pend on frequency, Equation (45) describes a linear relation between −Δf/n and ΔΓ/n, on 691 

the one hand, and n2, on the other. The slopes then are proportional to the elastic compli- 692 

ance, J
f
', and the viscous compliance, J

f
'' (Figure 17). However, J

f
' and J

f
'' may depend 693 

on frequency, in which case the lines in Figure 17 have some curvature. 694 

When the film is not much softer than the crystal, a correction to Equation (45) is 695 

needed because the assumptions inherent to the small-load approximation produce a size- 696 

able error. In the derivation of Equation (24), the term tan(πΔf̃/f
0
) was linearized, while 697 

tan(k̃fdf) from Equation (41) was expanded to 3rd order. This is an inconsistency, which 698 

can be removed with a systematic perturbation calculation [74]. Box 2 addresses the issue 699 

in more detail.  700 

Δf̃
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−2f
0
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Zq
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f
(

π2Zq
2

3ρ
f

) (
mf

mq
)

2

] (45) 

Box 2: 3rd-order perturbation applied to the films on a parallel plate 
On the way to Equation (44), a tangent contained in the load impedance was Taylor-ex-

panded to 3rd order, while a similar tangent contained in the Lu-Lewis equation (Equation (40)) 

was linearized. This is an inconsistency, which can be removed [74]. At the same time, one needs 

to deal with the fact that the load should be evaluated at the resonance frequency of the loaded 

crystal, rather than the reference frequency. Busying oneself with these complications, one might 

also take electrode effects into account, that is, treat the 2-layer system (electrode plus film).  

For the 2-layer system, the Lu-Lewis equation turns into 

− i Zq tan (π
Δf̃

f
0

)  = i
Z̃e tan(k̃ede) + Z̃f tan(k̃fdf)

1 − Z̃f/Z̃e tan(k̃fdf) tan(k̃ede)
 

The indices e and f denote the electrode and the film, respectively. The equations become more 

compact if the following variables are used: 

µ
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3rd-order perturbation leads do  
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3
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3 

Importantly, the coefficient to n2 contains the thickness and the wave impedance of the electrode. 

If the electrode is neglected, the equation simplifies as  

Δf̃

nf
0

 ≈ −µ
f
 + µ

f
2 − (1 + 

(nπ)2

3
ζ̃f) µ

f
3 

The terms independent of n slightly modify the Sauerbrey equation. They are negligible in prac-

tice. The n-dependent term leads to Equation (46).  

And if matters are that difficult, one might as well go back to the Lu-Lewis equation, solve 

it numerically, and use this solution when fitting a model to experimental data. The Python code 

in Appendix C.2 solves the Lu-Lewis equation.  

The above remarks mostly concern films in air. For films in liquids, Equation (49) can be 

trusted. At least it is not grossly invalidated in quantitative terms by the full numerical solution 

to the Lu-Lewis equation.  

Piezoelectric stiffening is not covered by this formalism. Piezoelectric stiffening does affect 

the result, in principle, but the changes are small [72].  
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Figure 17: Plots of Δf/n and ΔΓ/n versus n2 as motivated by Equation (46). The film thickness 702 
as derived from the offset in panel A is about 1.6 µm. The slope d(Δf/n)/d(n2) is almost con- 703 
stant, indicating that Jf' only weakly depends on frequency. The data were taken on a spin- 704 
cast film of poly-isobutylene. Adapted from Reference [73]. 705 

3rd-order perturbation leads to: 706 

 707 

The difference between Equation (45) and Equation (46) is essential for stiff films (with 708 

small J̃). Analyzing data from thin, glassy polymer films with Equation (45) can easily 709 

produce a negative apparent shear modulus. The analysis becomes even more compli- 710 

cated if the viscoelastic properties of the electrode are taken into account. For more details 711 

see Reference [72].  712 

Equation (46) is the basis of quantitative rheometry on thin films [75,76]. The QCM 713 

as an instrument is unique in this regard because it does not require a clamp on the other 714 

side of the film. Thin layers can be clamped from both sides [77], in principle, but these 715 

experiments are much more demanding than the QCM.  716 

Films in air shear under their own inertia, hence the proportionality to mf
2 in the 717 

viscoelastic correction. A film thickness of a few tens of nanometers is needed to see visco- 718 

elasticity. Thinner films would have to be extremely soft to show such effects. If −Δf/n 719 

does not agree between overtones for such films, this may go back to an overtone-depend- 720 

ent modal mass (section 8.6). An increase in bandwidth has been seen in experiments on 721 

monolayers of noble gases [78]. This increase in damping is not easily explained in the 722 

standard framework of molecular interactions. Superlubricity may be an explanation [79]. 723 

4.5.4. The film resonance 724 

At df  λ/4, Equation (41) hits the “film resonance” [80,81,82]. The film resonance is an 725 

example of a coupled resonance (section 6) and is therefore labeled with subscript CR. In 726 

the thickness range of the film resonance, Δf increases with thickness and ΔΓ goes through 727 

a maximum. The dependence of Δf + iΔΓ on df looks like a resonance (cf. Figure 3 A) and 728 

we briefly convince ourselves that the algebra confirms that. If the imaginary part of k̃f is 729 

small, the real part of the tangent at the pole first goes to +∞ and later returns from −∞. 730 

Close to the pole, one may write tan(x) = 1/cot(x) = 1/cot(y + π/2). The variable x was sub- 731 

stituted by y = x − π/2. Taylor expansion of the cotangent to 1st order in y leads to 732 

cot(y + π/2) = −y. The tangent turns into −1/(x − π/2) and Equation (41) is approximated by  733 
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The resonance frequency of the film, ω'CR, is governed by the condition kf′df = π/2. An 735 

experimental example of a film resonance is shown in Figure 18.  736 

 737 

Figure 18: An experimental example of a film resonance. The sample consisted of a poly- 738 
electrolyte multilayer, the thickness of which was gradually increased by repeated dipping. 739 
When displayed in polar form, the data form a spiral. These authors display the load imped- 740 
ance rather than the complex frequency shift. The load impedance here has the unit “Rayl”, in 741 
the honor of John William Strutt, 3rd Baron Rayleigh. 1 MKS-Rayl is equal to 1 kg/(m2s).  742 
Adapted from Reference [83]. 743 

For the study of soft films, the film resonance mostly is a problem. The data can rarely 744 

be fitted well by Equation (41).  745 

The film resonance is among the examples, where the small-load approximation is 746 

not quite good enough. The problem occurs if the film is not lossy, that is, if kf′′ ≪ kf′. In 747 

the range of the film resonance, the Lu-Lewis equation then has two solutions, corre- 748 

sponding to a “symmetric” and an “antisymmetric” mode (Figure 19). For kf′𝑑f < π/2, the 749 

mode with negative Δf has the larger amplitude. When kf′𝑑f  π/2, the mode with positive 750 

Δf grows in amplitude and eventually takes over. This picture emerges in the frame of 751 

parallel-plate model (without the small-load approximation). More specifically, it 752 

emerges, when the calculation of the electrical admittance is done with the Mason equiv- 753 

alent circuit, briefly mentioned at the end of section 8.4. For the details, we refer the reader 754 

to the literature [45,84].  755 

Modes growing and shrinking in magnitude are seen in experiment when swelling 756 

polymer films with df  λ/4 in solvent vapor. However, an antisymmetric mode as shown 757 

in Figure 19 is not easily identified. Most often, one of the anharmonic sidebands grows 758 

and eventually is the largest peak in the conductance trace. A full understanding of the 759 

film resonance would require a realistic model of the resonator in 3D. That is difficult, in 760 

the first place. Also, the patterns of the anharmonic sidebands (Figure 41) show some var- 761 

iability between crystals and batches. Crystal imperfections play a role. 762 

If the details of the film resonance are so difficult, why even bother? Firstly, the film 763 

resonance is an instructive example of a coupled resonance. The coupled resonance will 764 

concern us further in section 6. Also, the film resonance – whether we like it or not – is 765 

occasionally seen in experiment. Figure 20 shows an example. These authors were inter- 766 

ested in the dissolution of polymer films (and even more in the preservation of old paint- 767 

ings). The QCM worked fine, basically, but the frequency suddenly jumped and there was 768 

nothing to be done about it. 769 
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Figure 19: If the small-load approximation is abandoned, a film resonance produces two sep- 771 
arate peaks in the conductance trace, Gel(ω), corresponding to two separate modes of vibra- 772 
tion. The shear gradients inside the film have opposite sign for the two modes, hence the labels 773 
“symmetric” and “antisymmetric”. Far away from the coupling condition, ω0 and ωCR are 774 
not affected by coupling (to the right and to the left in panel A). If the two frequencies match 775 
and if the two modes indeed couple, anticrossing results. For a more quantitative treatment 776 
see chapter 4.63 in Reference [5].  777 
Panel B shows an enlargement of panel A in the region of anti-crossing. If the bandwidth is 778 
large, the two modes are not actually resolved (sketched in orange in panel B). When the film 779 
becomes thicker, ωCR approaches the coupling condition from above (green arrow). Δf is less 780 
than zero, following Sauerbrey. Because the two modes are not resolved at the coupling con- 781 
dition, the peak in Gel(ω) is broad. The center of the peak gradually moves up, because the 782 
antisymmetric mode becomes stronger. Eventually, the peak sharpens again and returns to the 783 
original frequency from above. A similar behavior is shown in Figure 16, based on Equa- 784 
tion (41). 785 

I  786 

Figure 20: An example of a film resonance. At some point, the frequency jumped as discussed 787 
in the caption to Figure 19. Reprinted with permission from Reference [88]. Copyright 2017 788 
American Chemical Society.  789 
These experiments occurred in liquid. Film resonances can occur in liquids, as well, because 790 
Equation (49) also contains terms of the form tan(k̃fdf). 791 

4.6. Layers adsorbed from a liquid phase 792 

4.6.1. General 793 

Many adsorbates from the liquid phase do not have a sharp interface with the bulk. 794 

Still, the viscoelastic box profile (that is, the homogeneous film with thickness df) is a good 795 

starting point. Using the reflectivity at an interface from Equation (37), the frequency shift 796 

is [85,86] 797 
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Applying Euler’s relation to the right-hand side (similar to Equation (39)) yields 798 

While not immediately evident, Equation (49) is equivalent to the Voigt-model from Ref- 799 

erence [47] and, also, to Reference [87]. 800 

Equation (49) also leads to a film resonance, where the resonance condition is not 801 

strictly equal to kf′df = π/2, as for dry films. The film resonance can be seen while films 802 

grow from a liquid phase or while they dissolve into a liquid phase [88]. It is also observed 803 

when surface-attached gels [89] or polymer brushes [80] swell and deswell. In the latter 804 

case, however, the layer becomes softer as it swells. k̃f and Z̃f vary strongly.  805 

For thick gels swelling in a solvent, Equation (49) applies, in principle, but the Δf̃ as 806 

a function of swelling degree can also be qualitatively portrayed as a transition from Sau- 807 

erbrey-type behavior to Gordon-Kanazawa-type behavior. The compact layer follows the 808 

Sauerbrey relation. –Δf/n becomes larger as the compact layer swells. At some point, the 809 

layer thickness is comparable to the depth of penetration of the shear wave. Beyond this 810 

point, the layer appears as a soft semi-infinite medium. Δf and ΔΓ then report the me- 811 

dium’s complex shear modulus, regardless of its thickness. The shear wave no longer 812 

reaches to the top of the film. An example for this behavior is shown in Reference [89]. 813 

A side remark: Cell cultures behave like soft gel layers in this regard. The shear wave 814 

usually does not reach to the top. It probes the layer’s shear stiffness at the bottom rather 815 

than the layer thickness. Cell cultures have been extensively studies with the QCM 816 

[90,91,92, and others]. The interpretation usually occurs based on certain correlations be- 817 

tween Δf and ΔΓ, on the one hand, and the conditions of the experiment, on the other. 818 

Quantitative modeling is difficult. −Δf/n may certainly be converted to an apparent mass, 819 

but the emphasis here is on “apparent”. 820 

4.6.2. Thin adsorbates 821 

We now turn to thin viscoelastic layers. When the tangent in Equation (49) is ex- 822 

panded to 1st order in df, one arrives at 823 

 824 

It is convenient to choose the resonator immersed in the liquid as the reference state, 825 

which results in: 826 

 827 

The relation k̃fZ̃f = ωρ
f
 was used in line 2. Equation (51) can be rearranged as  828 
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If the film is much stiffer than the liquid (if |Z̃f| ≫ |Z̃bulk|), this relation reduces to the 829 

Sauerbrey equation. For rigid layers and even moderately rigid layers, the Sauerbrey con- 830 

tribution and the Gordon-Kanazawa contribution to the complex frequency shift simply 831 

are additive [93,94]. This is exploited heavily in electrogravimetry [95]. Electrodeposition 832 

and electroetching can be analyzed with the Sauerbrey equation. (Roughness may take an 833 

effect, though [96].) 834 

The term in square brackets in Equation (52) is a viscoelastic correction. This term 835 

differs characteristically from the viscoelastic correction in Equation (46) (experiments in 836 

air). The difference goes back to the fact that a film immersed in a liquid feels a stress from 837 

the other side. It is partially clamped by the liquid. In air, films are sheared under their 838 

own inertia, only. For films in air, viscoelastic effects are seen after expanding the tangent 839 

to 3rd order as k̃fdf + (k̃fdf)
3
/3. In liquids, viscoelastic effects enter the picture in 1st order 840 

Taylor expansion, already. Even molecularly thin films are sheared by the adjacent liquid 841 

and can be studied with regard to their softness.  842 

For soft films in liquids, the apparent mass as derived with the Sauerbrey equation 843 

is smaller than the film’s mass [97]. Voinova et al. call this the “missing-mass effect” [98]. 844 

Viscoelastic effects can be recognized by plotting Δf/n and ΔΓ/n versus n (Figure 21). A 845 

positive slope indicates a finite J
f
''. A nonzero ΔΓ/n indicates finite J

f
'.   846 
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Figure 21: Soft adsorbates from a liquid phase produce slopes in plots of Δf/n and ΔΓ/n versus 848 
n. As opposed to the case of a soft film in air (Figure 17), the apparent mass as derived with the 849 
Sauerbrey equation is smaller than the true mass. Panel C shows ΔΓ/(−Δf) normalized to over- 850 
tone order, which is proportional to Jf'. The slope in this log-log plot is the power law exponent 851 
β’ (section 4.7). The sample is a block copolymer adsorbed to the gold surface, where the solu- 852 
ble part forms a brush-like structure.  853 
Data kindly shared by Anna M.C. Maan, University of Groningen, FSE-Zernike Institute for 854 
Advanced Materials. 855 

Why does the slope have positive sign? (It has negative sign in air, Figure 17.) The 856 

missing-mass effect is caused by the film being clamped from the other side. The stress 857 

exerted by the liquid is proportional to ωη, meaning: increases with overtone order. 858 

Ideally, one would wish to derive Jf' and Jf'' (or equivalently, the moduli, Gf' and 859 

Gf'') on each overtone. This would amount to a rheological spectrum, albeit in a limited 860 

frequency range. Unfortunately, the problem is underdetermined as long as the film thick- 861 

ness is not known. The elastic compliance alone, however, can be determined on each 862 

overtone, at least approximately. In the thin-film limit, mf can be eliminated from Equa- 863 

tion (52) by taking the ratio of ΔΓ and –Δf:  864 
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It was assumed that ρ
bulk

  ρ
film

. For such thin layers, the ratio ΔΓ/(– Δf) is independent 866 

of layer thickness. It is a materials parameter. Equation (53) further simplifies if the de- 867 

nominator is about unity. That is often an acceptable approximation because polymer 868 

films (even when swollen) are much stiffer than the ambient liquid. (They are stiffer at 869 

MHz frequencies than at low frequencies.) The denominator in Equation (53) can be re- 870 
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is the liquid’s viscous compliance. If 871 
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bulk
'', the denominator is unity, leading to [99] 872 

J
f
' can be rather robustly inferred from QCM data. This will be important for the discus- 873 

sion at the end of section 4.7. 874 

In linear rheology, viscoelasticity is commonly expressed in terms of the shear mod- 875 

ulus G̃ = G' + iG''. For the QCM, it is more convenient to instead use the shear compliance, 876 

J̃ = 1/G̃ = J' − iJ'', because the compliance occurs in the numerator in Equations (51) and 877 

(46). The trivial case (Sauerbrey-like behavior) corresponds to zero compliance. The con- 878 

version between G̃ and J̃ is nontrivial because they are complex:  879 

Writing J'  1/G' often is grossly inaccurate. The conversion is easier for the absolute val- 880 

ues and the loss tangent: 881 

The loss tangent is the same for the modulus and the compliance. Another relation worth 882 

remembering is η̃ = G̃/(iω) with η̃ = η′ − iη′′ = G′′/ω − iG′/ω the viscosity.  883 

Because the film thickness enters Equation (51) as a linear term, shifts in frequency 884 

and bandwidth resulting from multiple films are additive (assuming 𝑘𝑖
′𝑑i ≪ 1 for all lay- 885 
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ρ(z)  ρbulk was assumed in lines 3 and 4. Equation (58) may also be expressed in terms of 888 

density and viscosity:  889 

The term in square brackets is a contrast function. The integral can be viewed as a “shear- 890 

wave acoustic moment” of a profile of the polymer volume fraction, ϕ(z), as displayed in 891 

Figure 22. 892 

  893 
Figure 22: The frequency response induced by thin adsorbates is proportional to an integral of 894 
the response function from Equation (59). The z-range, in which ρ(z) and η(z) are significantly 895 
different from the corresponding bulk values, must be much below the depth of penetration 896 
of the shear wave, δ, in order to let the integral formulation be applicable. The displacement 897 
profile is sketched at the bottom. For most polymers, ρ(z) is similar to ρbulk. The dependence of 898 
the viscosity, η̃(z), on the polymer volume fraction, ϕ(z), is strong and not easily guessed 899 
based on simple models. 900 

A side remark: If the near-surface viscosity is lower than the bulk viscosity, Equa- 901 

tion (59) predicts a negative apparent Sauerbrey thickness. This situation is further dis- 902 

cussed in section 4.8. 903 

Separating real and imaginary parts in Equation (59) leads to 904 

One can apply the Sauerbrey equation to adsorbates and derive an apparent mass, 905 

m̃app(n), which is  906 

In principle, the parameter m̃app is a complex function of n. Application of the Sauerbrey 907 

equation is most meaningful, if the imaginary part of m̃app is small and if m̃app weakly 908 

depends on n.  909 

For sufficiently rigid layers, the apparent acoustic thickness is close to the geometric 910 

thickness. It is slightly smaller because of the missing mass (Equation (52)). There is, 911 
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however, another situation which also lets m̃app be real and independent of n. If there is 912 

a near-surface layer of a purely Newtonian liquid with increased viscosity (possibly also 913 

with an increased density), the contrast function in Equation (59) is again real and inde- 914 

pendent of n. In this case, the apparent acoustic thickness may be much smaller than the 915 

range with increased viscosity because the contrast function is less than unity. This situa- 916 

tion is encountered in electrochemistry. The diffuse double layer is viscoelastic, in princi- 917 

ple, but sometimes modeling it as a layer with increased Newtonian viscosity (no elastic- 918 

ity) matches the experimental data well [40]. The frequency shift may then be misinter- 919 

preted as the consequence of adsorption and desorption. 920 

Similar to the apparent mass, an apparent elastic shear compliance can be derived 921 

following Equation (54) as 922 
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' may well depend on n. If it does, this may have to do with viscoelastic dispersion 923 

(Figure 21C, section 4.7). 924 

It is instructive to remind oneself of the differences between Equation (52) (thin film 925 

in liquids) and Equation (46) (thin film in air): 926 

• For thin films in air, the Sauerbrey mass is larger than the true mass. It is smaller for 927 

films in liquids (because of the missing-mass effect). 928 

• The viscoelastic correction scales as n2 in air, while it scales as n in liquids (constant 929 

compliance assumed). 930 

• In both cases, J
f
' and J
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'' are the coefficients to the viscoelastic correction. In air, J

f
' 931 

enters the correction for −Δf/n, while J
f
'' enters the correction for ΔΓ/n. The roles of 932 

J
f
' and J

f
'' are reversed in liquids. 933 

• In air, the viscoelastic correction scales as the square of the film’s mass because the 934 

film shears under its own inertia. Viscoelastic effects are only seen for films with a 935 

thickness of at least a few tens of nanometers. The film in a liquid is clamped from 936 

the other side. Viscoelastic effects are seen even for layers with a thickness corre- 937 

sponding to a few molecules. 938 

• In air, the 3rd-order perturbation analysis (Box 2) makes a significant difference to the 939 

outcome. In liquids, this difference exists, in principle, but it is negligible in practice. 940 

4.6.3. Thick layers 941 

We now turn to adsorbates which are comparable in thickness to the depth of pene- 942 

tration, δ. One might apply the multilayer formalism and depict the profiles, G̃(z) and 943 

ρ(z), as a sequence of many thin films with the wave being reflected at the numerous 944 

interfaces. It is easier to solve the wave equation directly. If the functions G’(z), G’’(z), and 945 

ρ(z) are given, one may calculate the displacement, û(z), with one of the software pack- 946 

ages, which numerically solve ordinary differential equations (Scipy being among them). 947 

One infers the complex frequency shift from û(z = 0) and dû/dz(z = 0) as 948 

The function û(z) is obtained by solving the wave equation, which is 949 

Note that the shear modulus appears inside the outer derivative because G̃(z) itself is a 950 

function of z. Appendix C.1. contains Python code, solving this problem. The bottom of 951 

Figure 23 shows a velocity profile, v̂(z), obtained with this code. The top shows the shear 952 

modulus, G’(z) + iG’’(z), which entered this calculation. 953 
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 954 
Figure 23: Top: The shear modulus as assumed in the Python code in Appendix C.1. 955 
Bottom: Normalized velocity profile resulting from a numerical solution of the wave equation 956 
(Equation (64)) with G̃(z) as shown at the top. The density was assumed as constant. Δf and 957 
ΔΓ are computed from the slope of the velocity profile at z = 0.  958 

4.7. Viscoelastic dispersion and high-frequency rheology 959 

Given that the QCM can determine shear stiffness, one wonders whether it can also 960 

do viscoelastic spectroscopy. The term “viscoelastic spectroscopy” here is synonymous to 961 

“high-frequency rheology”. The viscoelastic constants depend on frequency if the sample 962 

undergoes relaxations with rates comparable to the frequencies of excitation. (G̃ and J̃ 963 

then are complex for the same reason.) The QCM can yield spectroscopic information, but 964 

only to a limited extent. Firstly, the frequency range is only about one decade wide. Also, 965 

it is impossible to determine J' and J'' on every overtone separately, because this prob- 966 

lem is underdetermined. As long as the thickness is not a priori known, 2n + 1 parameters 967 

would have to be derived from Δf and ΔΓ on n overtones.  968 

At this point, one can exploit the narrow frequency range and the fact that rheological 969 

spectra usually are smooth. Rheological spectra are displayed on a logarithmic scale (Fig- 970 

ure 24). Over a single decade, the frequency dependence of Gf' and Gf'' can be approxi- 971 

mated by power laws with power law exponents γ' and γ'': 972 
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Figure 24: The shear modulus of viscoelastic media depends on frequency. The plot shows a 980 
typical rheological spectrum of a solution of a long-chain linear polymer. The frequency scale 981 
extends over many decades, while the QCM only covers about one decade. In this limited fre- 982 
quency range, G'(ω) and G''(ω) can be approximated by power laws (dashed blue lines). 983 
The chosen example displays what is called the rubber plateau. Would the frequency scale 984 
extend further to the right, there would be a second maximum in G''(ω), caused by segmental 985 
relaxations and the glass transition. 986 

Following from the Kramers-Kronig relations, β', β'', γ', and γ'' must be in certain 987 

ranges. If viscoelasticity is expressed in terms of compliance ( J
f
'  and J

f
''as in Equa- 988 

tion (66)), one has −2 < β' < 0 and −1 < β'' < 1. If moduli are used (Gf' and Gf''), one has 989 

0 < γ' < 2 and −1 < γ'' < 1. The software packages supplied by Biolin use the variables “µ” 990 

and “η”. µ is equal to Gf' and η is equal to Gf''/ω. The power law exponent for η is be- 991 

tween −2 and 0. 992 

In the context of the QCM, power laws applied to the compliance, J̃, are closer to 993 

experiment because one of the exponents (only one) can then be determined from experi- 994 

ment with good accuracy. It is often difficult to obtain a robust fit with all five fit param- 995 

eters free (thickness, |𝐽𝑓|, tan(δL), β', β''). Robust fits are obtained, though, if β'' is fixed.X 996 

β' often is fitted with fair accuracy, because the film’s mass, mf, enters the imaginary part 997 

of Equation (52) as a prefactor, only. (It enters the real part of Equation (52) as a prefactor 998 

as well as an additive term.) 999 

A side remark: For experiments in air, the situation is reversed. β'' rather than β' can 1000 

be determined with good confidence from the curvature in Figure 17 B. One may read a 1001 

curvature from Figure 17 A, as well, but the accuracy suffers from the unknown offset 1002 

(proportional to the mass). 1003 

The QCM cannot explicitly do viscoelastic spectroscopy on thin films, even if one 1004 

makes peace with power laws. It can, in principle, but the error bars are large. Determi- 1005 

nation of both β' and β'' would be attractive because thin films are not easily studied with 1006 

conventional rheology. Demanding equipment is needed [77 and others]. Again: the un- 1007 

known layer thickness is the spoiler. If the layer thickness can be determined inde- 1008 

pendently, this will help. The power law exponents give access to spectroscopic infor- 1009 

mation. One of them (β') can be derived from the fits. With a model at hand (Zimm, Rouse, 1010 

reptation, …) the value of β' can be interpreted.  1011 

 

X  Rather than fixing β'', one might also fix the difference between β' and β''. For polymers, the Rouse model and the Zimm 

model both predict β'  β'' in the high-frequency regime. 
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4.8. Slip 1012 

“Slip” here denotes slip of a simple liquid at a solid wall. Slip in that sense is the 1013 

exception rather than the rule. Often, the “no-slip condition” is a suitable boundary con- 1014 

dition for liquid flows. In the following, slip does not denote sliding between solid sur- 1015 

faces and, also, does not denote wall slip of complex liquids, induced by shear thinning 1016 

under large stress [100]. Slip in simple liquids is associated with a near-surface layer of 1017 

reduced viscosity. The above statements are phrased in terms of the continuum picture. 1018 

Arguably, a molecular description would be more appropriate. That would not make a 1019 

difference for experiment.  1020 

Given constant shear stress, the shear gradient in the low-viscosity region is larger 1021 

than the shear gradient in the bulk (Figure 25). When extrapolating the linear portion of 1022 

the velocity profile to v(z) = 0, the intercept is negative. The negative intercept is the “slip 1023 

length”, bsl [101]. The reverse situation with a near-surface viscosity higher than the bulk 1024 

viscosity causes a positive intercept, which may be viewed as the hydrodynamic thickness 1025 

of the respective adsorbate.  1026 

  1027 

Figure 25: A decreased viscosity close to an interface moves the extrapolated plane of zero 1028 
shear to negative z. The distance between the plane of zero shear and the surface is the slip 1029 
length, bsl. 1030 

More quantitatively, the slip length is defined as 1031 

Slip of this kind might appear as exceptional because the density of a liquid close to a wall 1032 

tends to be larger than the density of the bulk because the attractive forces exerted by the 1033 

wall compress the medium. The question has caused much debate, but the evidence for 1034 

slip in special situations has now solidified [102]. These include water at hydrophobic 1035 

surfaces [103] and various flows inside hollow carbon nanotubes [104]. The slip length 1036 

typically is of the order of a few diameters of the respective molecules, meaning: a few 1037 

nanometers. Experimentally determining the slip length therefore is a challenge. At this 1038 

point, the QCM plays out an advantage, which is the small depth of penetration of the 1039 

shear wave. To the QCM, slip looks like an apparent negative Sauerbrey thickness. A 1040 

Sauerbrey thickness (positive or negative) is easily determined with an accuracy of 1 nm 1041 

or better. This being said: The slip length as determined with the QCM is different from 1042 

bsl as defined in Equation (67). Following Equation (59), the negative Sauerbrey thickness 1043 

(termed bsl,ac here, “ac” for acoustic) is  1044 

 1045 

For the QCM, the density enters. The density of a slipping layer may be lower than the 1046 

density of the bulk if slip is caused by nanobubbles or nanopancakes [105]. There are two 1047 

more complications with nanobubbles: 1048 

• Nanobubbles constitute a sample with lateral structure, while Equation (68) assumes 1049 

lateral homogeneity.  1050 

bsl = ∫ (
η

liq

η(z)
 − 1)  

∞

0

dz (67) 
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bulk
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 − 
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ρ
bulk

)  
∞

0
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=
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• This discussion ignores the surface energy of air-water interfaces (between the nano- 1051 

bubbles and the bulk liquid). Surface tension does play a role on the nanoscale. Surface 1052 

tension turns nanobubbles into stiff objects [106]. (For macroscopic droplets or bubbles, 1053 

the surface energy does not affect the resonance frequency because the associated os- 1054 

cillatory capillary pressure is small compared to the viscous stress.)  1055 

5. Non-Planar Samples 1056 

5.1. Point contacts with large objects clamped in space by inertia 1057 

By touching the resonator with a sharp tip, one increases the resonance frequency. 1058 

This was first recognized by Dybwad in 1985 [107]. On an elementary level, the increase 1059 

can be explained with the relation ω0  (κR/mR)1/2 . When operated in the gravimetric 1060 

mode, κ𝑅 is about constant and the added mass lets the frequency decrease. When the 1061 

resonator is touched with a tip (or with a sphere), the restoring force exerted by the contact 1062 

lets the effective stiffness increase more strongly than the effective mass, thereby increas- 1063 

ing the frequency.  1064 

The small-load approximation makes this understanding more quantitative. Within 1065 

the parallel-plate model, the load impedance of a point contact is 1066 

nP is the number of contacts and Aeff is the plate’s effective area. The subscript elas stands 1067 

for elastic loading (to be distinguished from inertial loading). The transverse stress is re- 1068 

placed by the transverse force, F̂, multiplied by the number density of the particles, 1069 

nP/Aeff. The contact is modeled as a Hookean spring (F = κ̃PûS = κ̃Pv̂S/(iω)) with ûS the 1070 

displacement). The spring constant, κ̃P, can be complex, in which case the contact in- 1071 

creases the bandwidth. The term κ̃P/iω is the mechanical equivalent of a capacitor’s elec- 1072 

trical impedance, which is 1/(iωC). Within Mindlin-theory, the contact stiffness of a 1073 

sphere-plate contact is κ̃P = 2G̃*rC with G̃* an effective modulus, similar in magnitude 1074 

to the shear modulus, and rC the contact radius [108].  1075 

 1076 

Figure 26: Point contacts and sheet contacts are characterized by spherical waves and planar 1077 
waves, respectively. 1078 

The contact stiffness results from a small-scale deformation in the immediate vicinity 1079 

of the contact. The deformation involves both in the external object in the substrate (close 1080 

to the contact). The relation κ̃P = 2G̃*rC requires a small contact area, that is, a “point 1081 

contact“. Contacts are small if the displacement pattern has spherical symmetry and de- 1082 

cays as about 1/r2  with r the distance from the contact. This requires rC  to be much 1083 

smaller than the local radius of curvature of the external object (often called R) and it also 1084 

requires rC to be much smaller than the wavelength of sound, . In the opposite limit of 1085 

rC ≫  (“sheet contact” in Figure 26) the resonator launches a plane wave into the external 1086 

object and Δf̃ should be analyzed with Equation (34). 1087 

Inserting the load from Equation (69) into the small-load approximation leads to 1088 

point contact 

Df > 0

sheet contact 

Df < 0

Z̃L,elas = 
nP

Aeff

F̂ 

v̂S
 = 

nP

Aeff

κ̃PûS

iωûS
 = 

nP

Aeff

κ̃P

iω
 (69) 

Δf + iΔΓ = 
1

2nπ2Zq

nP
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(κP' + iκP'') (70) 
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Δf is positive and scales as 1/n, which is indeed observed [109]. The contact stiffness as 1089 

derived with Equation (70) was compared to the expectations resulting from JKR theory 1090 

in Reference [110]. 1091 

Equation (70) neglects effects of added mass. It also assumes that the object support- 1092 

ing the contact from the back is fixed in space. This assumption is reasonable for contacts 1093 

with sufficiently large spheres (R  200 µm). These are clamped by inertia. 1094 

5.2. Large amplitudes, partial slip 1095 

Many piezoelectric devices can act as both sensors and actuators. The piezo effect 1096 

works in both directions. The QCM, on the contrary, rarely is an actuator. Concerning 1097 

static actuation, the piezoelectric coefficient of quartz is small compared to the competing 1098 

materials such as lead zirconate titanate, PZT. One might still hope that the vibration 1099 

would take some effect. A typical application would be sonolubrication ([111,112,113]). 1100 

Sliding of powders induced by a QCM has been studied experimentally in Reference [114]. 1101 

Generally speaking, kHz vibrations are better suited to sonolubrication than MHz waves 1102 

[111].  1103 

Amplitude effects have been studied with the QCM on a few occasions. An incom- 1104 

plete list follows:  1105 

• Unbinding of virus particles at high amplitudes was studied in Reference [115]. 1106 

• Adsorption was prevented at high amplitudes in Reference [116] and other publications 1107 

by the same group. 1108 

• Cell adhesion as a function of amplitude was studied in Reference [117]. Cell adhesion 1109 

was delayed by high amplitudes, but cells, which had already adhered, did not detach 1110 

when shaken vigorously.  1111 

• High amplitudes can induce steady streaming, as shown in Reference [118]. More gen- 1112 

erally, the Reynolds number at high amplitude can be large enough to let the nonlinear 1113 

term in the Navier-Stokes equation (of the form ρ(v ∙ 𝛁)v) be significant. This term can 1114 

cause an oscillatory Bernoulli pressure. There may be a net attractive force onto colloi- 1115 

dal particles, mediated by a high-frequency version of the Magnus force [119]. 1116 

The following text is concerned with a quantitative discussion of nonlinearities in 1117 

high-frequency contact mechanics as evidenced in QCM experiments. For linear resona- 1118 

tors (also: “simple harmonic resonators”, SHOs), the resonance frequency is independent 1119 

of amplitude. A “linear resonator” is characterized by the restoring force being propor- 1120 

tional to displacement. An example for a slightly nonlinear resonator is the pendulum. 1121 

The restoring force is mRg sin(θ), where g = 9.81 m/s2 is the earth’s gravitational accelera- 1122 

tion and θ is the angle of swing. If θ ≪ 1, one has sin(θ)  θ and the pendulum operates 1123 

as a linear resonator. The “grandfather clock” (named that way in Wikipedia) employs a 1124 

long pendulum in order to ensure small angles. The amplitude is constant. Should the 1125 

amplitude become large, this will decrease the clock’s frequency. The effect can also be 1126 

observed when watching children on a swing.  1127 

Speaking of clocks: The current quartz clocks are slightly nonlinear, as well. The 1128 

stress inside a deformed quartz plate is not strictly proportional to the strain. The devia- 1129 

tions are small, but they are noticed when driving quartz clocks with too much electrical 1130 

power. The problem carries the name “drive level dependence”, DLD [120]. The nonline- 1131 

arity is such that the resonance frequency increases quadratically with the driving voltage. 1132 

The DLD is of considerable concern in time and frequency control. Actually, the nonlinear 1133 

elasticity of crystalline quartz is only of concern in this context because it can only be meas- 1134 

ured based on the resonance frequency. This is an example, where frequency-based 1135 

metrology plays out its strength. 1136 

A nonlinear force displacement relation may also originate from the sample. This is 1137 

not usually the case with films, with liquids, or with adsorbates from the liquid phase 1138 

because the amplitude is too small. Typical amplitudes are a few nanometers at most (sec- 1139 

tion 8.5). With a penetration depth of 200 nm, the shear angle is less than 1%. Shear 1140 
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gradients of this magnitude typically are in the linear regime (stress proportional to 1141 

strain). This is good news in some ways (no need to worry) and is a disappointment in 1142 

others. Nonlinear rheology is of much interest in polymer science, but high-frequency 1143 

rheology on polymer films using the QCM [64] is bound to be linear rheology.  1144 

Nonlinear force displacement relations are commonplace in contact mechanics 1145 

[109,121]. In contact mechanics, the local stress at the points of contact is large. Also, the 1146 

contact area can vary in response to the load. Nonlinear high-frequency contact mechanics 1147 

can be studied with the QCM. The experiments are rather simple. Frequency and band- 1148 

width are determined as a function of amplitude. Figure 27 sketches one particular 1149 

mechanism (partial slip), which softens contacts at large amplitudes. Partial slip lets the 1150 

resonance frequency decrease. 1151 

 1152 

Figure 27: At the edge of a contact under a transverse load, one often finds a sharp peak in 1153 
transverse stress. If the local stress exceeds a certain critical stress, sliding sets in. This is re- 1154 
ferred to as partial slip [122]. Panel C sketches the force-displacement relation of a sphere-plate 1155 
contact with partial slip as calculated with the Cattaneo-Mindlin model [123]. The differential 1156 
contact stiffness is indicated as a dashed line. It decreases with increasing displacement.  1157 

When rough surfaces make contact, the stress distribution is strongly heterogeneous. 1158 

The stress is large at the tips of the asperities, giving rise to nonlinear force-displacement 1159 

relations and even plastic flow, also called “asperity creep” [124]. Less well known is the 1160 

heterogeneous stress distribution at contacts between smooth spheres and plates (more 1161 

generally, at the edges of extended contacts between smooth surfaces). When these con- 1162 

tacts are sheared or loaded in some other way, a stress singularity develops at the edge. 1163 

A similar singularity exists at crack tips in fracture mechanics. The stress – under certain 1164 

conditions – scales as r−1/2 with r the distance from the crack tip. The open wedge outside 1165 

the sphere-plate contact in Figure 27 B can be viewed as a crack. 1166 

When the resonator exerts a periodic transverse force onto a sphere-plate contact, the 1167 

stress at the edge may be so high that the contact starts sliding at the edge. Partial slip is 1168 

useful when heavy objects hit piles of gravel. Such piles rarely fall over because the energy 1169 

of the impact is dissipated efficiently in partial slip (and, also, in gross slip, which is still 1170 

local)[125]. Partial slip can be detrimental in engineering. Contacts, which have seen pro- 1171 

longed vibrations, may suddenly fail because partial slip has turned into what is called 1172 

“fretting wear” [126]. 1173 

Partial slip was modelled in the 1950s by Mindlin [123], building on earlier work by 1174 

Cattaneo [127]. The calculation leads to a friction loop as shown in Figure 28 B (a lens- 1175 

shaped loop, rather than an ellipse). The target is to turn this function into a prediction for 1176 

Δf and ΔΓ as a function of oscillation amplitude. The oscillation amplitude will be called 1177 

uS in the following (no hat, because its complex nature is unessential). One may guess that 1178 

Δf and ΔΓ will decrease and increase with uS, respectively, because the force-displacement 1179 

relation in Figure 27 C bends downward and because energy is dissipated in sliding. The 1180 

Cattaneo-Mindlin model will confirm that. Further, it will predict these changes to be pro- 1181 

portional to amplitude.  1182 

Some background is needed. If the relation between stress and displacement is non- 1183 

linear, the area average (always inherent to the small-load approximation) must be com- 1184 

plemented by a time average, following 1185 
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The derivation of Equation (71) makes use of the two-timing approximation [128]. As in 1186 

Equation (69), stress was replaced by the transverse force acting onto the contact, F(t), 1187 

normalized to area. F(t) is assumed to be periodic with the frequency of excitation, but not 1188 

necessarily time-harmonic. If F(t) is time-harmonic, Equation (71) reduces to Equa- 1189 

tion (70). In the calculation of F(t) from the force-displacement relation, it is assumed that 1190 

the motion of the substrate is close to time-harmonic (of the form cos(ωt). This type of 1191 

displacement control (rather than force control or mixed control) is inherent to the small- 1192 

load approximation. 1193 

Relations similar to Equation (71) are exploited in scanning force microscopy [129]. 1194 

In that context, the function F(z) (with z the distance between the tip and the surface) can 1195 

be explicitly reconstructed from the resonance properties of the cantilever as a function z. 1196 

Such an explicit reconstruction of a force-displacement relation is not possible for partial 1197 

slip. Partial slip is hysteretic and hysteresis spoils the explicit reconstruction. 1198 

Again, the force-displacement relation cannot be explicitly derived from Δf̃(uS), but 1199 

certain models can be formulated and can be used to predict the functions Δf(uS) and 1200 

ΔΓ(uS), which can be checked against experiment. Figure 28 sketches three such models. 1201 

For the viscoelastic contact (Figure 28 A), Δf and ΔΓ are independent of amplitude. Fig- 1202 

ure 28 B shows the prediction from the Cattaneo-Mindlin model for partial slip [123]. 1203 

There are other models of partial slip, one of them described in Reference [130]. Fig- 1204 

ure 28 C depicts the transition to gross slip [131]. When gross slip sets in, ΔΓ decreases at 1205 

large amplitudes and Δf levels off to a small value.  1206 

 1207 

Figure 28: The top panels show friction loops for three different contacts. ΔΓ is strictly propor- 1208 
tional to the area inside the loop, divided by uS

2. Δf is nearly (but not strictly) proportional to 1209 
the maximum force divided by the maximum displacement (blue dots).  1210 
The left-hand side (A) shows the linear viscoelastic contact. Δf and ΔΓ are constant. 1211 
For partial slip (B) the ellipse-shaped loop turns into a lens-shaped loop. The area inside the 1212 
loop increases with amplitude as uS

3 and ΔΓ increases with amplitude, in consequence. The 1213 
sketch in B is based on a quantitative model.  1214 
The right-hand side (C) sketches the transition to gross slip. The diagram is motivated by ex- 1215 
perimental results [132], not by a quantitative model. ΔΓ decreases at large amplitude because 1216 
the friction force in steady sliding weakly depends on velocity. Dividing by uS

2 causes ΔΓ to 1217 
decrease with 𝑢𝑆. 1218 

The following discussion is concerned with partial slip (Figure 28 B). In order to cal- 1219 

culate Δf and ΔΓ from Equation (71), the function F(t) must be derived from the functions 1220 
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F®(uN, uS,ω) and F(uN, uS, ω) as predicted by the Cattaneo-Mindlin model. (For their 1221 

algebraic form, see, for instance, Reference [121].) The parameter uN is the displacement 1222 

normalized to the peak displacement, uS. The subscripts ® and  denote increasing and 1223 

decreasing uN. Because these two forces are different, the force-displacement relation 1224 

forms a loop.  1225 

The calculation leads to [132]: 1226 

The term uN(1 − uN
2 )

−1/2
 in line 1 can be viewed as statistical weight. Δf is proportional to 1227 

a weighted average of |F® + F|, where the weight function has a sharp peak at the turn- 1228 

ing point. Following this argument, Δf is roughly proportional to the force-displacement 1229 

ratio at maximum displacement (blue dots in the top row in Figure 28). Following line 2, 1230 

ΔΓ is proportional to the area inside the friction loop, divided by 𝑢S
2. (One divides by uS

2 1231 

because d uN  in Equation (72) is equal to d(u/ uS )). The latter result is exact, no 1232 

approximations involved.  1233 

For partial slip following Cattaneo and Mindlin, the calculation leads to [132] 1234 

 1235 

κ̃P is the contact stiffness in the low-amplitude limit. FN is the normal force. The model’s 1236 

one free parameter is µ (the “friction coefficient”), which is the ratio of the critical tangen- 1237 

tial stress for sliding to the normal stress. µ should not be naively identified with the fric- 1238 

tion coefficient in macroscopic sliding. It turns out, though, that µ is of order unity, similar 1239 

to the conventional friction coefficient [110].  1240 

Equation (73) was found to apply in some experiments [133,132]. Others rather show 1241 

a quadratic dependence, which actually was predicted by another model of partial slip, 1242 

put forward by Savkoor [130]. Still other experiments (mostly on granular media) show 1243 

an increase of Δf with uS, which can be explained with shear stiffening.  1244 

There is a caveat: Equation (73) results from an integration over the friction loop. All 1245 

models making use of Equation (71) involve such an integration. The shape of the friction 1246 

loop cannot be inferred from the dependence of Δf and ΔΓ on amplitude. Also, the force- 1247 

displacement relation leading to Equation (73) was derived assuming a quasistatic situa- 1248 

tion. The dynamics at MHz frequencies might be different. Even a response, which is lin- 1249 

ear on the sub-µs time scale and therefore leads to an elliptical friction loop (Figure 28 A), 1250 

can produce an amplitude dependence of Δf and ΔΓ if the width and angle of the ellipse 1251 

depend on amplitude.  1252 

5.3. Structured samples, numerical calculations 1253 

Many samples of interest in soft matter physics have some in-plane structure (Figure 1254 

29). This includes proteins [134], dendrimers [135], biological cells [136], and colloidal par- 1255 

ticles [137,138]. Adsorbed vesicles, which may or may not rupture and flatten out into 1256 

supported lipid bilayers (SLBs), have been studied in much detail [139,140,141].  1257 

Predicting shifts in frequency and bandwidth induced by such samples from the 1258 

structure and the viscoelastic parameters requires a numerical model. As long as the area 1259 

Δf(uS,ω) = α  ∫ (F®(uN,uS,ω) + F(uN,uS,ω))
uN
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duN
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average in Equation (25) can be applied, the shifts in frequency and bandwidth can be 1260 

computed numerically. The input to the small-load approximation is the area-averaged 1261 

amplitude of the periodic stress at the resonator surface. The stress field at the surface can 1262 

be extracted from a solution of the equations of continuum viscoelasticity.  1263 

 1264 

Figure 29: Top: Typical objects to be modeled numerically are adsorbed particles of various 1265 
kinds (proteins, micelles, vesicles, not drawn to scale).  1266 
Bottom: Results from a finite element method (FEM) simulation in 2D. Left: tangential velocity. 1267 
Right: normal velocity. The truncated cylinder is rigid. The simulation outputs the periodic 1268 
stress at the resonator surface (not shown), which can be converted to Δ𝑓 with Equation (25). 1269 

The medium obeys the Stokes equation expressed in the frequency domain, which is: 1270 

The pressure, p̂, follows from the modulus of compression, K̃, and the divergence of the 1271 

velocity field as  1272 

ν̃ = η̃/ρ in Equation (74) is the kinematic viscosity. The density was assumed as constant 1273 

in Equation (74), but may also depend on position. The complex dynamic viscosity, η̃(r), 1274 

can take any value. Elastic objects have η’’ ≫ η’. Rigid objects are represented as objects 1275 

with large |η̃| or, equivalently, with small η̃−1. Such objects are hardly deformed by the 1276 

shear stress. For rigid objects, the question of viscous or elastic response does not occur, 1277 

because it does not matter whether a negligible deformation occurs in-phase or out-of- 1278 

phase to the stress. This argument reiterates the previous statement that the nontrivial 1279 

samples to the QCM are the soft samples. 1280 

The Stokes equation is a linearization of the Navier-Stokes equation. The Reynolds 1281 

number is assumed to be so small that the nonlinear term (ρ(v̂ ∙ ∇)v̂) in the Navier-Stokes 1282 

equation can be neglected. Actually, effects of finite Reynolds number can be seen in QCM 1283 

experiments at high amplitude. Because these effects are weak, they can be modeled, 1284 

based on the algorithms described below. Call the solution to the linear problem v̂(0). The 1285 

nonlinear term then generates a Bernoulli pressure of the form ρ(v̂(0) ∙ ∇)v(0) . This 1286 

pressure vanishes for pure shear flow because it contains the dot-product of the velocity 1287 

and its gradients. It does not vanish for structured samples. It occurs at 𝜔 = 0 (steady 1288 

streaming) and at 2𝜔  (2nd harmonic generation) because cos2(ωt) = 1/2(1 + cos(2ωt)) . 1289 

The Bernoulli pressure drives a weak 2nd-order flow, which can be computed from v̂(0). 1290 

Figure 30 sketches a simulation volume. It is a few tens of nanometers wide and con- 1291 

tains a few adsorbed particles (if this is the problem of interest). Periodic boundary con- 1292 

ditions (“b.c.”) apply at the side walls. A Dirichlet boundary condition applies at the bot- 1293 

tom (v̂(z = 0) = (v̂S,0,0)) . The boundary condition at the top should be an impedance 1294 

boundary condition (also: “Robin boundary condition” [142]), meaning that the ratio of 1295 

iωv̂(r) = ν̃(r)∇2v̂(r) − 
1

ρ
∇p̂(r) (74) 

p̂(r) = 
−K̃(r)

iω
(∇ ⋅ v̂(r)) (75) 
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the velocity gradient to the velocity should be such that the stress-velocity ratio inside the 1296 

boundary is equal to the wave impedance outside the boundary. 1297 

There is ongoing research turning these concepts into practical and efficient algo- 1298 

rithms. Computational techniques applicable to this problem include the Finite Element 1299 

Method (FEM) [143,144], the Finite Volume Method (FVM) [145], and the Lattice-Boltz- 1300 

mann Method (LBM) [146,147].  1301 

If the sample is much thinner than the wavelength of sound, it may look to the QCM 1302 

like a film. The QCM then does not actually recognize the structure. One may infer an 1303 

apparent mass, m̃app, and an apparent compliance (J
app

', J
app

'') from plots of Δf/n and ΔΓ/n 1304 

versus n (as in Figure 21). The problem to the experimentalist is to interpret these param- 1305 

eters. For instance, the apparent mass is different from the true mass because a certain 1306 

amount of liquid, which is trapped in the space between the particles, takes part in the 1307 

resonator’s motion [148,149,150]. Likewise, the apparent compliance has a contribution 1308 

from the flow of the liquid around the particles. 1309 

 1310 

Figure 30: An example of a simulation box. An impedance boundary condition should be 1311 
applied at the top in order to let the simulation volume be small. 1312 

Calculating Δ f and ΔΓ from a known structure is one thing, inferring the structure 1313 

from experimentally determined values {Δf/n, ΔΓ/n} is another. The reverse problem is 1314 

underdetermined, in general. The formalism can only run backwards, if the structure is 1315 

known to a significant extent with few free parameters, so that the experimental values of 1316 

{Δf/n, ΔΓ/n} can be exploited to determine these parameters. Such a situation is (for exam- 1317 

ple) encountered, when rigid spheres of known size adsorb to the QCM surface, following 1318 

random sequential adsorption [135]. If coverage can be estimated independently, the only 1319 

free parameter of this problem is the stiffness of the sphere-plate contacts. Arguably, con- 1320 

tact stiffness involves a total of four free parameters, which are the real and the imaginary 1321 

parts of the shear stiffness, κ̃Sh, and the bending stiffness, κ̃b (related to translation and 1322 

rotation of the sphere). For spheres in air, the problem is amenable to an analytical treat- 1323 

ment (section 6.2). In liquids, hydrodynamic comes into play. For this problem, a calibra- 1324 

tion curve relating contact stiffness to the sets of {Δf/n, ΔΓ/n} can be obtained from simu- 1325 

lation. These calibration curves can be used to analyze experiments. A related problem is 1326 

the fractional trapped mass as a function of coverage. The trapped mass may also be esti- 1327 

mated from calibration curves obtained with simulations on structures, which are well- 1328 

defined, on the one hand, but still reasonably close to experiment, on the other.  1329 

5.4. Roughness 1330 

Roughness is always a worry in QCM experiments. Gold surfaces prepared by phys- 1331 

ical vapor deposition (PVD) have an rms roughness of a few nm. Spin-cast polymer films 1332 
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usually ae considered to be smooth. One might model roughness effects numerically as in 1333 

section 5.3, but there is a wide range of possible geometries. 1334 

We limit the discussion to small-scale, shallow roughness as modelled analytically in 1335 

References [151,152]. The vertical scale of roughness is assumed to be smaller than the 1336 

lateral scale, which is realistic for gold surfaces prepared by PVD. The lateral scale is as- 1337 

sumed to be smaller than δ, which again often is realistic. The model has two free param- 1338 

eters, which are the vertical scale, hr, and the lateral scale, lr. One might also use the ver- 1339 

tical scale, hr, and the aspect ratio, hr/lr. The aspect ratio is assumed to be smaller than 1340 

unity (“shallow roughness”).  1341 

There is an interesting experimental statement in the literature, which is that the 1342 

bandwidth is less affected by small-scale roughness than the frequency [153]. This finding 1343 

is corroborated by the analytical treatment of shallow roughness following [152]. These 1344 

authors Fourier-decompose the height profiles into sinusoidal corrugation waves with 1345 

wave vector q. They solve the hydrodynamics problem for the different Fourier compo- 1346 

nents, separately, and calculate Δf and ΔΓ. The total frequency shift is follows from inte- 1347 

gration over all wave vectors, where the weight function is square of the respective am- 1348 

plitude. A Gaussian distribution is assumed, the center of which is much larger than the 1349 

inverse penetration depth (“small-scale roughness”). The following equations are ob- 1350 

tained: 1351 

Equation (76) can be reorganized as 1352 

The term in square brackets modifies to the Gordon-Kanazawa term and it does so in 1353 

proportion to hr
2. This term affects both frequency and bandwidth. The second term only 1354 

affects the frequency shift. It can be thought of as a Sauerbrey-like term, covering trapped 1355 

mass. In principle, this terms scale as hr
2, as well. However, if the aspect ratio is constant, 1356 

one factor of hr is absorbed in the aspect ratio (given as hr/lr), which leaves the other hr 1357 

as a linear term. Roughness is often created in a way, which leaves the aspect ratio con- 1358 

stant. The amount of trapped mass then depends linearly on the cluster size. The authors 1359 

of Reference [153] did experiments of that kind. Because effects in bandwidth are propor- 1360 

tional to hr
2, they are hardly seen at small roughness. 1361 

6. Coupled Resonances 1362 

6.1. The sphere with moderate mass 1363 

One example of a coupled resonance (the film resonance) was already discussed in 1364 

section 4.5.4. Here, we start from another example, which is the sphere attached to the 1365 

resonator. Contrasting to section 5.1, the sphere has moderate size. It is neither clamped 1366 

in space by inertia (elastic loading), nor is it a nanoparticle in the sense that it would be 1367 

rigidly attached to the resonator and constitute a Sauerbrey load. 1368 

Figure 31 shows a lumped-element circuit. The link between the particle and the res- 1369 

onator is depicted as a spring with stiffness κCR. A dashpot with drag coefficient ξCRwas 1370 

placed in parallel to the spring, accounting for dissipative processes. The subscript CR 1371 

denotes the coupled resonance. Written that way, the circuit suggests that the spring con- 1372 

stant and the drag coefficient were independent of frequency. They may well depend on 1373 

frequency. The spring constant may also be written as a frequency-dependent complex 1374 
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f
0

 = 
−1

πZq

√
ωρη

2
(1 + 3√π

hr

lr
 
hr

δ
 − 2 (

hr

δ
)

2

) 

ΔΓ

f
0

 = 
1

πZq

√
ωρη

2
(1 + 2 (

hr

δ
)

2

) 

(76) 

Δf + iΔΓ

f
0

 = 
i

πZq
√iωρη [1 − 2i (

hr

δ
)

2

]  − 
1

πZq
ωρhr

3√π

2

hr

lr
 (77) 



Sensors 2021, 21, x FOR PEER REVIEW 43 of 81 
 

 

parameter κ̃CR(ω) = κCR'(ω) + iκCR''(ω) . κ̃CR(ω)  then is a response function similar to 1375 

G̃(ω). κ̃CR(ω) has different units, though (force/displacement rather than stress/strain).  1376 

 1377 

Figure 31: A lumped-element representation of a load giving rise to a coupled resonance. This 1378 
mechanical circuit implicitly invokes the small-load approximation insofar, as the resonator 1379 
has been drawn as a plate. It might also have been drawn as two large spheres, coupled to each 1380 
other by another spring (Figure 1 B). Had it been drawn as in Figure 1 B, the solution to the 1381 
full set of dynamical equations would have predicted anticrossing (as for the film resonance, 1382 
section 4.5.4). Anticrossing is not further discussed in the following. Coupled resonances 1383 
caused by particles will usually be too broad to let anticrossing be visible. 1384 

The elements in Figure 31 represent mechanical impedances, which are ratios of force 1385 

to velocity (rather than stress to velocity). Mechanical impedances and the electromechan- 1386 

ical analogy [154] are discussed in Box 3. In mechanics, the total impedance of two ele- 1387 

ments arranged in parallel is the sum of the two individual impedances according to the 1388 

“mechanical Kirchhoff rules”. Application of these rules to the circuit in Figure 31 leads 1389 

to 1390 

 1391 

F̂ is the transverse force exerted by the sphere onto the resonator surface. Inserting Equa- 1392 

tion (78) into Equation (25) leads to 1393 

np is the number of particles.  1394 

A side remark: One might be tempted to write ω̃CR
2  − ω2 as (ω̃CR + ω)(ωCR − ω) and 1395 

(ω̃CR + ω)  2ω̃CR as in the mathematics leading to Equation (8). This is problematic be- 1396 

cause the coupled resonance is not usually a narrow resonance. For the same reason, polar 1397 

diagrams of the complex frequency shift as in Figure 33 usually show spirals (as opposed 1398 

to circles, Figure 3 B). 1399 

Equation (79) contains the Sauerbrey case and the elastic-load case in the limits of 1400 

ω ≪ ωCR′ and ω ≫ ωCR′, respectively (Figure 32). When ω ≪ ωCR′, the right-hand side in 1401 

Equation (79) is about −nPωmCR/(AeffπZq), which is equivalent to the Sauerbrey equation. 1402 

When ω ≫  ωCR′, the right-hand side becomes nP/(A
eff

πZq)(κ̃R/ω), which is the elastic 1403 

load limit (Equation (69)). 1404 
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Figure 32: The frequency shift induced by a coupled resonance, following Equation (79). At 1406 
low and high ω, the Sauerbrey limit and the elastic-load limit are recovered. The overtone 1407 
scaling in these limits is −Δf/n  const and +Δf·n  const. In a range next to the Sauerbrey re- 1408 
gime, the softness of the contact can be inferred from a non-trivial the overtone dependence of 1409 
Δf/n + iΔΓ/n. 1410 

 1411 

 1412 

Box 3: The electromechanical analogy 

Electrical Mechanical 

Voltage U Force F 

Current I Velocity v 

Resistor

 

Z̃el = R 

Dashpot 

 

Z̃m = ξ 

Capacitor
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Mass      
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1
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Elements in 

parallel 
Z̃m, tot = Z̃m, A + Z̃m, B 

Elements in series 
Z̃el, tot = Z̃el, A + Z̃el, B 

Elements in series 1

Z̃m, tot

= 
1

Z̃m, A

+
1

Z̃m, B

 

Ground U = 0 Open end F = 0 

Open end I = 0 Wall v = 0 

Differing from electricity, mechanical impedances are additive when two elements are ar-

ranged in parallel. Inverse impedances are additive, when the elements are arranged in 

series. These are the mechanical Kirchhoff rules. In electricity, the reverse rules apply. Cur-

rent (the analog of velocity) is additive, when two resistors are placed in parallel. For dash-

pots arranged in parallel, the forces (the analogs of voltage) are additive.  
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 1414 
Figure 33: Shifts of frequency and bandwidth caused by the deposition of micron-sized silica 1415 
spheres. The polar diagram on the right displays spirals, characteristic for the coupled 1416 
resonance. The ion strength as indicated in the legend tunes the stiffness of the contact, where 1417 
large ion strength leads to stiff contacts. Adapted from Reference [157]. 1418 

When the frequency of the coupled resonance is in the range covered by the QCM, 1419 

Δf crosses from negative to positive [155,156]. An example is shown in Figure 33, adapted 1420 

from Reference [157]. The resonators were in contact with silica spheres with a radius of 1421 

2.5 µm. The spheres were attracted to the surface by gravity and by van-der-Waals forces. 1422 

Both the spheres and the resonator surface carried negative charge, resulting in an elec- 1423 

trostatic repulsion, which competes with the attractive forces. Variation of ion strength as 1424 

indicated in the legend tuned this repulsive force [158]. Adding salt has two consequences. 1425 

Firstly, the frequency of zero crossing increases. This can be understood as the conse- 1426 

quence of increased contact stiffness, which in turn is the consequence of reduced electro- 1427 

static repulsion. Also, the radius of the semi-circle (more precisely, the semi-spiral) de- 1428 

creases. A closer look at Equation (79) shows that this radius is proportional to the ratio 1429 

κ'CR/ξCR. Why electrostatic screening decreases this ratio is nontrivial. 1430 

There actually is a frequency range, in which the response is close to Sauerbrey-like, 1431 

but in which the dynamics of the sphere is still seen as a small deviation from Sauerbrey 1432 

behavior (compare to Figure 16 and section 4.5.3). If ω is less than ωCR' but not much less 1433 

than ωCR', Δf̃/𝑛 deviates from Sauerbrey-type behavior. This becomes evident when ex- 1434 

panding Equation (79) to 3rd order in ω as 1435 

The parameters mCR and κ̃CR will need interpretation because the motion of the particle 1436 

combines translation and rotation. mCR and κ̃CR are a modal mass and a modal stiffness. 1437 

Section 6.2 elaborates on that problem. 1438 

The deviations from Sauerbrey behavior are proportional to the softness of the con- 1439 

tact (the inverse contact stiffness). In this regard, Equation (80) is the analog to Equation 1440 

(45), where the latter equation describes a soft film, rather than a soft link to a particle.  1441 

6.2. Influence of rotation on the frequency shift 1442 

Incorporating rotation into the formalism is worth the effort. Similar work was re- 1443 

ported by Tarnapolsky et al. in Reference [159]. Differing from the text below, these au- 1444 

thors were concerned with large spheres (bacteria) in a liquid environment. The text below 1445 

addresses small spheres (ωCR' ≳ ω) and avoids hydrodynamics by sticking to a dry envi- 1446 

ronment.  1447 
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The sphere has two degrees of freedom, which are translation (with velocity ûP) and 1448 

rotation about the sphere center (with rate Ω̂). Inertia is balanced against the force and the 1449 

torque exerted by the contact, F̂C and M̂C, by the relations 1450 

The inertial terms are iωmPûP for translation and iωmP(2/5)R2Ω̂ for rotation. The sub- 1451 

script P denotes the particle. mP(2/5)R2 is the moment of inertia of a solid sphere rotating 1452 

about its center. The transverse restoring force exerted by the contact is 1453 

F̂C = −κ̃Sh/(iω) ((ûP − R̂) − ûS) . κ̃Sh  is the shear stiffness of the contact. Following 1454 

Mindlin theory, κ̃Sh is given as 2G̃*rC where G̃* is an effective modulus and rC is the 1455 

contact radius. The term (ûP − RΩ̂) − ûS  is the difference between the velocity of the 1456 

sphere and the velocity of the substrate at the point of contact (Figure 34).  1457 

 1458 

Figure 34: The sphere undergoes both translation and rotation. The transverse force at the 1459 
contact is proportional to the displacement at the contact, which is different from the dis- 1460 
placement of the sphere center.  1461 

The torque has two components. The first component is F̂CR. The second component 1462 

follows from the contact’s bending stiffness. Following Reference [159], we write the 1463 

torque as M̂C =− κ̃b/(iω)R2Ω̂, where κ̃b is the bending stiffness. Defined this way, κ̃b has 1464 

the same units as κ̃Sh. Defined this way, κ̃b is not a ratio of torque to angle (as elsewhere, 1465 

the ratio of torque to angle here is κ̃bR2). Following Dominik and Tielens [160], the bend- 1466 

ing stiffness is: 1467 

With these relations, the force and the torque are 1468 

Inserting Equation (83) into (81) and reorganizing terms, the following equation system 1469 

results: 1470 

The terms in brackets in Equation (84) form a matrix, which must be inverted in order to 1471 

obtain the vector (𝑢̂P,Ω̂) from the source term (κ̃Sh (iω)⁄ ûS, κ̃ShR (iω)⁄ ûS).  1472 
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A resonance occurs, when (û𝑃,Ω̂) is nonzero even in the absence of a source term. The 1473 

resonance frequencies are found by demanding that the determinant of the coefficient 1474 

matrix be zero. There are two resonance frequencies, because there are two dynamic var- 1475 

iables. They are given as:  1476 

Both modes combine translation and rotation, but one is predominantly translational, 1477 

while the other is predominantly rotational. Note that the two resonance frequencies are 1478 

not vastly different unless rC ≪ R. A search for two coupled resonances in experimental 1479 

QCM data is difficult because the experiment must involve an ensemble of spheres and 1480 

because there will be a distribution in the parameters κ̃Sh and rC. The heterogeneous line 1481 

broadening caused by the distribution of parameters often lets the two resonances merge.  1482 

The above remarks concerned situations, in which the frequency of the resonator is 1483 

close to one of the frequencies of the coupled resonances. In general, the particles will be 1484 

driven off-resonance. Setting ûS on the right-hand side in Equation (84) to unity fixes û𝑃 1485 

and Ω̂ (to off-resonance values). The force, F̂C, follows from Equation (83). Inserting F̂C  1486 

into the small-load approximation yields Δf and ΔΓ. Plotting Δf and ΔΓ versus frequency, 1487 

yields two resonances. This graph is not shown here because it looks very similar to Fig- 1488 

ure 36, which was obtained with a numerical simulation.  1489 

In the following, we are concerned with small spheres, which are still large enough 1490 

to show some dynamics. These spheres are almost Sauerbrey loads (are almost rigidly 1491 

attached to the plate). Similar to equation (80), we expand Δf̃ to 3rd order in ω. In equation 1492 

(80), the coefficient to ω2 was named mCR/κ̃CR and it was left open, what these parame- 1493 

ters mean. This gap can now be closed. The 3rd order expansion in ω of Δf̃ calculated from 1494 

F̂C leads to  1495 

Clearly, mCR is equal to mP (in this limit). With regard to contact stiffness, Equation (86) 1496 

shows that κ̃CR
−1  from Equation (80) is given as  κ̃CR

−1 = κ̃Sh
−1  + κ̃b

−1 (as also noted in Reference 1497 

[159]).  1498 

Figure 35 and Figure 36 illustrate the situation at hand of an FEM simulation. The 1499 

simulation modeled a cylinder (rather than a sphere) because the simulation occurred in 1500 

two dimensions. Also, the environment was a liquid. In agreement with Equation (85), 1501 

two coupled resonances are found. For the higher frequency, the axis of rotation is close 1502 

to the center of the sphere. For the lower frequency, the sphere rotates about the point of 1503 

contact. Such a rotation is equivalent to a superposition of a rotation about the sphere 1504 

center and a translation.  1505 
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Figure 35: Velocity fields as determined with an FEM simulation in two dimensions. A cylin- 1507 
der attached to a plate gives rise to two coupled resonances.  1508 
The diameter of the cylinder was 4 µm. The link to the substrate is 600 nm wide and 100 nm 1509 
thick. Its shear modulus is 1 GPa. The colors encode the local tangential velocity.  1510 
The frequencies are 1 MHz, 4.2 MHz, 54 MHz, and 90 MHz in panels A, B, C, and D, respec- 1511 
tively. In panels A and C, the motion of the sphere is locked to the substrate and to the bulk, 1512 
respectively. The sphere forms an inertial load in (A) and an elastic load in (D). In panels B and 1513 
C, the amplitude of motion of the sphere is large. In (B) the sphere rotates about the contact, in 1514 
(C) it rotates about its center.  1515 
Adapted from Reference [161]. 1516 

Figure 36 shows Δf and ΔΓ versus frequency as derived from the FEM calculation. 1517 

Because this is a simulation, the frequency is not limited to the odd integers of the funda- 1518 

mental. One observes two coupled resonances, one stronger than the other.  1519 

Figure 36 looks similar to an absorption spectrum form IR spectroscopy, which is no 1520 

coincidence [161]. Molecules can vibrate in different ways, just like the sphere on the plate 1521 

may combine translation and rotation in different ways. When probed with IR waves, 1522 

some vibrational modes (like the carbonyl stretching mode) show prominently in the spec- 1523 

trum, while others are weaker. Some vibrations are not seen in IR light at all. These are 1524 

“forbidden”, meaning that the vibration is not linked to an oscillating dipole. The vibra- 1525 

tions of homonuclear diatomic molecules are forbidden. They are only seen in Raman 1526 

spectroscopy. They are not seen in IR spectroscopy because the vibration “does not cou- 1527 

ple” to the electromagnetic wave. Some vibrations are “weakly allowed”. They appear to 1528 

be not coupled to IR light, at first glance, but there is a loophole. The overtone vibrations 1529 

in IR spectroscopy are forbidden in the frame of the harmonic resonator. The selection 1530 

rule is Δv = 1 (with v the vibration quantum number). Anharmonicity weakens the selec- 1531 

tion rule. The overtones are seen, albeit with a small integrated line strength.  1532 

The coupled resonance to the left in Figure 36 is weakly allowed in that sense. The 1533 

vibration mostly is a rotation about the point of contact. The restoring force mostly 1534 

amounts to a torque. Torques are not seen by the QCM. The QCM only sees transverse 1535 

forces. If the axis of rotation would intersect the point of contact, exactly, this coupled 1536 

resonance would be “forbidden”. The vibration would not couple to the substrate’s trans- 1537 

verse motion. Looking at the mode a little closer (Figure 35 B), one finds that the axis of 1538 

rotation is slightly displaced from the contact. For that reason, the vibration does exert a 1539 

small transverse force and is seen by the QCM, although with a small line strength. (Cou- 1540 

pling across the liquid phase may also play a role.) 1541 
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Figure 36: Shifts of frequency and bandwidth as computed with an FEM simulation for the 1543 
configuration shown in Figure 35. There are two separate coupled resonances. These are the 1544 
consequence of two dynamical variables, which are translation and rotation. Translation and 1545 
rotation are always coupled, but there are two special linear combinations of translation and 1546 
rotation, which both produce a resonance. Only the transverse force at the point of contact 1547 
shifts Δf and ΔΓ, a torque does not take an influence. The relative importance of the force com- 1548 
pared to the torque is larger for the high-frequency mode. The sphere rotating about the point 1549 
of contact mostly exerts a torque. This low-frequency mode therefore appears as less pro- 1550 
nounced when probed with the QCM. Adapted from Reference [161]. 1551 
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6.3. Other types of coupled resonances 1552 

This text elaborates in some depth on coupled resonances caused by films and cou- 1553 

pled resonances caused by particles. More generally, a “coupled resonance” can denote 1554 

any load, which lets Δf̃ be described by Equation (79). Two other noteworthy examples 1555 

are the following: 1556 

• Standing compressional waves (section 8.1) give rise to coupled resonances, when 1557 

the distance to the opposite cell wall is an integer multiple of half the wavelength. At  1558 

these distances, the compressional wave is a standing wave and the damping is large. 1559 

This phenomenon can be exploited to check for the magnitude of compressional 1560 

wave effects. The experiment is simple. One lets the water level in an open cell slowly 1561 

decrease by evaporation overnight. Figure 7 in Reference [162] shows data of this 1562 

kind. In this example, the compressional wave effects were much stronger on the 1563 

fundamental than at 15 MHz. This is a general rule and one of the reasons, why data 1564 

from the fundamental often are discarded from the analysis.  1565 

• The vibration of interest may couple to other modes of vibration of the crystal, where 1566 

the exact mechanism of coupling is unclear and where even the nature of the other 1567 

mode is unclear. These so-called “activity dips”, which sometimes occur when ramp- 1568 

ing temperature up or down, can be a problem in time and frequency control [163]. 1569 

An activity dip lets the bandwidth increase at a certain temperature and lets the fre- 1570 

quency go through a corresponding antisymmetric pattern. Activity dips are not dis- 1571 

cussed further here, even though they are occasionally seen in sensing, mostly during 1572 

temperature sweeps. 1573 

7. Piezoelectric Stiffening 1574 

Piezoelectric stiffening may be called a blessing in time and frequency control. It is 1575 

closer to a curse in sensing. Piezoelectric stiffening also is instructing from a fundamental 1576 

point of view.  1577 

When a bare piezoelectric plate is sheared, an electrical polarization is created in ad- 1578 

dition to the strain. The electrical energy contained in the polarization contributes to the 1579 

overall energy of the sheared plate, thereby increasing the plate’s stiffness. When the crys- 1580 

tal surfaces are plated with electrodes and when these electrodes are short-circuited, the 1581 

piezoelectrically induced polarization is compensated by a corresponding charge in the 1582 

electrodes. Shearing the crystal then becomes easier because no electrical work is done. 1583 

The spring constant decreases and so does the resonance frequency because of 1584 

ω0  (κR/mR)1/2. Situations between those two limits are created by connecting the elec- 1585 

trodes across a capacitor or some other electrical impedance. 1586 

The situation is reminiscent of the difference between the two heat capacities of a gas, 1587 

Cp and CV. Cp and CV are determined at constant pressure and constant volume, respec- 1588 

tively. Cp is larger than CV because the volume expansion, which occurs when pressure is 1589 

kept constant, amounts to a mechanical work. The open-circuit stiffness of the piezoelec- 1590 

tric plate and the stiffness with short-circuited electrodes correspond to boundary condi- 1591 

tions of constant charge (total charge in the bulk and at the surface) and of constant elec- 1592 

trical potential, respectively. If the voltage between the two electrodes is zero, the creation 1593 

of charge at the surfaces is not linked to an electrical work. 1594 

One can include a voltage-tunable capacitor (a varicap diode) into the circuitry and 1595 

tune the resonator’s frequency this way. This device is the voltage-controlled crystal 1596 

oscillator (VCXO [42] or VCO). An approximative relation connects the frequency shift to 1597 

the external capacitance, Cext, as  1598 
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C0 is the resonator’s electrical capacitance (the “parallel capacitance”) and C1 is the mo- 1599 

tional capacitance (section 8.4). The subscript PE stands for piezoelectric stiffening, ∞ 1600 

stands for infinite Cext . An infinite external capacitance amounts to short-circuit elec- 1601 

trodes (constant potential). Note that Cext = ∞ is not a practical references state because 1602 

the current is then entirely absorbed in Cext and does not cause a vibration of the crystal.  1603 

C0 and C1 are related as 1604 

kt  is the electromechanical coupling coefficient, e26  = 9.65×10−2 C/m2 is the piezoelectric 1605 

stress coefficient, εq = 4.54 is the dielectric constant, and Gq = 29×109 Pa is the shear mod- 1606 

ulus. For AT-cut quartz, kt
2 is about 0.8 %. Piezoelectric coupling is not particularly strong 1607 

for quartz. The tuning range of quartz resonators is smaller than the tuning range of res- 1608 

onators made from competing materials such as langasite [164]. Equation (88) distin- 1609 

guishes between an “ideal” coupling coefficient (derived from the material constants) and 1610 

an “effective” coupling coefficient (derived C0 and C1). The two are different because the 1611 

geometry (electrode shape, energy trapping, …) takes an influence. Inserting numbers 1612 

into Equation (87), one finds the pulling range to be around 1 kHz.  1613 

In a sensing context, all kinds of stray capacitances (more generally: all kinds of elec- 1614 

trical boundary conditions) enter Cext. For sensing, piezoelectric stiffening mostly is an 1615 

annoyance. In particular, the cables must not move while the experiment is running. If 1616 

they do, this will affect the capacitance seen by the crystal. A second problem are electric 1617 

fields permeating the sample from the surface of the resonator. One avoids that by making 1618 

the front electrode larger than the back electrode and by grounding the front electrode 1619 

well.  1620 

For the sake of formal consistency, we formulate a modified version of Equation (88), 1621 

which lets the sample’s electrical impedance look like any other load entering the small- 1622 

load approximation. This equation is 1623 

Z̃ext is the sample's electrical impedance. The term in square brackets converts between 1624 

an electrical and an acoustic impedance (section 8.4). The hypothetical reference state with 1625 

short-circuited electrodes was replaced by a more realistic reference state with some ex- 1626 

ternal electrical impedance, Z̃ext,ref. For more details see chapter 5 in Reference [5].  1627 

In principle, piezoelectric stiffening might provide for a scheme to measure the sam- 1628 

ple’s electrical impedance in addition to its shear-wave impedance. That has turned out 1629 

to be difficult [165,166]. In practice, one will usually determine electrical impedances with 1630 

electrical equipment (as in electrochemical impedance spectroscopy, EIS, or, more gener- 1631 

ally, electrical impedance spectroscopy). 1632 

8. Beyond the Parallel-Plate Model 1633 

8.1. Energy trapping, compressional waves 1634 

The limitations of the laterally infinite parallel plate as a model for the QCM come in 1635 

two forms. Firstly, the edges take an influence on the mode of vibration for AT-cut quartz. 1636 

Secondly and more importantly, the practical resonators do not actually have parallel sur- 1637 

faces, at least in acoustic terms (Figure 37). In order to mount the resonator between 1638 

O-rings with little damping, the resonator’s vibration amplitude at the edge must be as 1639 

small as possible. That is achieved by making the resonator slightly thicker in the center 1640 

than at the edge [167,168]. The mechanism is called energy trapping. The resonator may 1641 

be viewed as an acoustic lens. The concave surfaces focus the acoustic energy to the center. 1642 

The situation has been analyzed with analytical theory in considerable depth [169,170]. 1643 

C1

C0
 = 

8

(nπ)2
kt,eff

2    with  kt,ideal
2  = 

 e26

εqε0Gq
 (88) 

Δf̃
PE

f
0

 = 
i

πZq
[
4e26

2 Aeff

dq
2

] ((iωC0 + Z̃ext
−1

)
−1

 − (iωC0 + Z̃ext,ref
−1

)
−1

) (89) 
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Resonators designed for use on the fundamental indeed have concave surfaces. The 1644 

resonators used in sensing mostly achieve energy trapping with keyhole-shaped elec- 1645 

trodes. Often the back electrode is smaller and thicker than the front electrode, so that the 1646 

back electrode defines the amplitude distribution. If convex surfaces are employed, the 1647 

amplitude distribution is similar to a Gaussian (circular or elliptical) [171]. With key-hole 1648 

electrodes, there is small-scale variability (bottom in Figure 37). The displacement pattern 1649 

can be visualized in a few different ways, none of them being simple [162,172,173,174]. 1650 

These images reveal rather complex patterns with a considerable amount of irregularity 1651 

[175,176]. In particular, the patterns may deviate from what symmetry would dictate in 1652 

the absence of crystal defects. 1653 

 1654 
Figure 37: Energy trapping allows to mount resonators at the edge with little damping. 1655 
When the resonator is thicker in the center than at the edge, the shear vibration is confined to 1656 
the center. Ideally, the amplitude distribution is smooth (top). Experiments often evidence 1657 
small-scale variability (bottom, References [162,175]). u2(r) is the weight function to be ap- 1658 
plied in area averaging following Equation (26).  1659 

Energy trapping has two important consequences, which are an increased resonance 1660 

frequency and flexural contributions to the mode of vibration.  1661 

Why would energy trapping increase the frequency? The apparent stiffness of a vi- 1662 

brating body depends not only on the material’s elastic modulus but also on the steepness 1663 

of the gradients in displacement. For instance, the effective spring constant of the parallel 1664 

plate is given as: 1665 

High overtones have a large effective spring constant because the shear gradients are 1666 

strong. The more deformation is contained in a mode, the higher is the energy in the elastic 1667 

deformation.  1668 

Increased energy trapping increases the steepness of the in-plane gradients, thereby 1669 

increasing frequency. This effect is noticed when comparing the resonance frequencies of 1670 

the different overtones. These do not occur at the exact integer multiples of the fundamen- 1671 

tal because of energy trapping (and, also, because of piezoelectric stiffening, but the latter 1672 

influence is smaller) [177]. The influence, which energy trapping takes on the resonance 1673 

frequency, is problematic when a sample contacts the resonator at the center, only, be- 1674 

cause the sample then increases energy trapping, thereby increasing frequency (Figure 1675 

38). This effect is superimposed onto the sample’s load impedance (see the discussion be- 1676 

low Equation (34)). 1677 

A second consequence of energy trapping are flexural contributions to the displace- 1678 

ment pattern. Because the amplitude of shear varies between the center and the edge, the 1679 

resonator bends (Figure 39 A, B, C). On the high overtones, bending is reduced for the 1680 

u(r)

u(r)

O-rings

κR = 
AeffGq

dq

(nπ)2

2
 = 

(nπ)2

2
κq,stat (90) 
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reasons discussed in Reference [162]. Because bending is particularly strong on the fun- 1681 

damental, data from the fundamental often are discarded from the analysis. Bending is 1682 

reduced in a liquid environment because the liquid itself is compressed in the regions with 1683 

in-plane gradients of the transverse displacement. It exerts a pressure onto the plate, re- 1684 

ducing the flexural displacement (green in Figure 39 B).  1685 

 1686 

 1687 

Figure 38: Application of a load to the center of the plate, only, increases energy trapping, 1688 
thereby increasing the resonance frequency.  1689 

Flexural motion launches compressional waves and standing compressional waves 1690 

can cause coupled resonances. Figure 39 D shows an example (from Reference [178], see 1691 

also [179,[180]). The crystal and the wall of the liquid cell opposite to the crystal form a 1692 

cavity for compressional ultrasound. The cavity resonates when the distance between the 1693 

two surfaces is equal to nλcomp/2 with n an integer. The wavelength and the dimensions of 1694 

the cell vary with temperature, which causes the nightmare shown in Figure 39 D. In order 1695 

to not let that happen, one may design the cell such that the resonator surface is inclined 1696 

relative to the opposite wall. That does not remove the compressional waves, it only 1697 

avoids the coupled resonances. This recommendation was actually formulated as early as 1698 

1987 by Eggers and Funk in the same paper, in which they propose to analyze QCM data 1699 

in terms of the shift of the complex resonance frequency [27]. Eggers and Funk placed a 1700 

“spoiler” (an irregular piece of Teflon) in front of the crystal in order to deflect the com- 1701 

pressional waves. When working with open cells, one may place a paper clip onto the air- 1702 

water interface (held there by surface tension). Few researchers have reported on temper- 1703 

ature sweeps employing liquid cells. It is always difficult to say why certain experiments 1704 

were not done or not reported, but one may guess that compressional waves were a prob- 1705 

lem.  1706 

 1707 

Figure 39: A and B) When a parallel plate experiences a hypothetical pure thickness-shear de- 1708 
formation with in-plane gradients, volume is not conserved at those places, where the in-plane 1709 
gradient is large. The pure thickness-shear mode therefore is not realized: The plate bends. In 1710 
liquids, the bending is reduced because the liquid is compressed as well.  1711 
C) A map of the vertical displacement as determined with laser Doppler velocimetry (LDV). 1712 
Adapted from Reference [162]. 1713 
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D) Δf and ΔΓ determined in a temperature ramp. The opposite wall of the liquid cell was par- 1714 
allel to the resonator surface, which generated standing compressional waves with  depend- 1715 
ing on temperature. Adapted from Reference [178]. 1716 

Effects of compressional-waves can never be eliminated in measurements of viscosity 1717 

because one compares frequencies measured in air to frequencies measured in liquid. 1718 

With regard to adsorption experiments in liquid, one can hope that the effects of compres- 1719 

sional waves are constant, regardless of whether or not there is an adsorbed film. They 1720 

then disappear from the frequency shift. Probably, the matter should be phrased more 1721 

optimistically: If compressional waves were as detrimental as they might be, the liquid- 1722 

phase QCM would not be as successful as it actually is.  1723 

A historical note: Soft matter was studied with acoustic resonators in the 1930s to 1724 

1950s, already. Mason’s book is an interesting read [19]. The frequencies mostly were in 1725 

the kHz range. Torsional resonators and reflection devices [67] were used, mostly. Thick- 1726 

ness shear resonators were available at that time as clocks. Mason and McSkimin did use 1727 

these when they expanded their frequency range to beyond 1 MHz, but they used them 1728 

in an indirect way. In 1949 they glued AT-cut crystals to the ends of cylindrical rods of 1729 

fused quartz. The crystals were excited by a radio pulse, thereby launching a transverse 1730 

acoustic wave. The wave travelled down the cylinder, was reflected at the other end (at 1731 

the interface to the liquid under study, see the remarks around Equation (37)) and re- 1732 

turned to the crystal, which transduced the reflected shear wave to a voltage. The liquid’s 1733 

viscosity was inferred from the reflected amplitude. In the introduction, the authors ex- 1734 

plain why they did not use the plates as such: “Consideration was given to the use of a thick- 1735 

ness vibrating shear crystal of the AT or BT type, but it was found that the shear motion was too 1736 

closely coupled to other modes of motion, such as flexure modes, to give reliable results. Hence 1737 

another method had to be used.” In hindsight, the worries of Mason and McSkimin were 1738 

justified, in principle, but the problems are less severe than they thought. 1739 

With a bit of diligence, crystals not employing energy trapping can be mounted such 1740 

that they are only weakly damped by the O-rings. Such crystals have electrodes covering 1741 

the entire area rather than key-hole electrodes. Unfortunately, such resonators immersed 1742 

in liquids still display compressional-wave effects. This can be tested with open cells, the 1743 

water level of which slowly decreases due to evaporation [162]. Coupled resonances as 1744 

shown in Figure 39 D are still seen. Evidently, the edges of the resonator alone give rise 1745 

flexure modes because of the anisotropy of the elastic constant. 1746 

Experiments in the dry can occur even with no electrodes at all. An electrodeless res- 1747 

onator blank can be placed on a rough metal surface. The other electrode can be placed 1748 

above the resonator, leaving an air gap. The rough surface supports the blank across small 1749 

asperities, which hardly dampen the resonance [73]. The problem with this arrangement 1750 

is that the resonance frequency depends on the width of the air gap. The upper electrode 1751 

must be mounted rigidly. Once this problem is solved, the experiment is rather clean and 1752 

well-defined. 1753 

8.2. Anharmonic sidebands 1754 

Anharmonic sidebands are solutions to the acoustic boundary value problem, which 1755 

contain nodal planes perpendicular to the surface. Figure 40 shows examples. The maps 1756 

of the displacement amplitude were produced by Sauerbrey, based on a somewhat intri- 1757 

cate optical method [181]. Anharmonic sidebands have been exploited for sensing [182], 1758 

but the examples are scarce. The important modes for sensing do not have nodal planes 1759 

perpendicular to the plate surface. They might be called n-00-modes, where n is the num- 1760 

ber of nodal planes parallel to the surface and the two other indices count the number of 1761 

radial and elliptical nodal planes.  1762 

Anharmonic sidebands are a problem if they overlap with the n-00-modes. They then 1763 

couple to these modes with detrimental consequences. By and large, the 13-00-mode, 1764 

shown in Figure 41 is useless for sensing. A resonance curve can certainly be fitted to the 1765 
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admittance trace, but Δf and ΔΓ as derived from these fits are bound to vary erratically in 1766 

experiment. Overlap with anharmonic sidebands is much less of a problem in air than in 1767 

liquid because of the smaller bandwidth. In air, overtone orders up to 19 can be evaluated.  1768 

 1769 

Figure 40: Vibrational patterns of the 1-00-mode (“1”) and a few anharmonic sidebands. The 1770 
top shows |Z̃el| versus frequency. The mode shape was determined with a variant of optical 1771 
reflectometry. Adapted from Reference [172]. 1772 
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Figure 41: If the anharmonic sidebands are not well separated from the n-00-mode, there will 1774 
be coupling. The frequency and the bandwidth of the n-00-mode then vary unsystematically 1775 
in experiment. The 13-00-mode shown in B is of little use for sensing.  1776 

8.3. Towards 3D-modelling: the small-load approximation in tensor form 1777 

The following section borrows from quantum mechanics. In quantum mechanics, a 1778 

small perturbation (for instance caused by a magnetic field or by neighboring molecules) 1779 

is sometimes superimposed onto a stronger, unperturbed Hamiltonian. If the perturbation 1780 

is small, the Schrödinger equation does not have to be solved again from scratch. One 1781 

starts from the solution to the unperturbed Schrödinger equation and computes small cor- 1782 

rections to the orbitals and energies. Importantly, the 1st-order shift in energy does not 1783 

require knowledge of the 1st-order shifts of the corresponding orbital. It can be computed 1784 

from the unperturbed orbital. 1785 

Let the total Hamiltonian consist of an unperturbed operator, H
0
, and a small per- 1786 

turbation, H
1
: 1787 

Let the solution to the unperturbed Hamiltonian, ψ(0), be unique (no degeneracy). Pertur- 1788 

bation theory predicts the 1st-order correction of the energy eigenvalue, E(1), as  1789 

H = H
0
 + H

1
 (91) 
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Superscript (0) denotes the solution to the unperturbed Hamiltonian. “” denotes complex 1790 

conjugation. If the wave function is normalized, the denominator is unity (and is not ac- 1791 

tually needed). It was included for the sake of generality. (The 0th-order solution will be 1792 

non-normalized further down.) Again, the 1st-order correction to the energy can be com- 1793 

puted from the unperturbed wave function. 1794 

In the acoustics problem, the Hamilton operator is replaced by the ω2-operator, ω2. 1795 

Standing elastic waves in the unloaded crystal follow the relation:  1796 

The indices i, j, k, and l run over x, y, and z. As before, superscript (0) denotes the solution 1797 

to the unperturbed problem. Equation (93) is an eigensystem, similar to the time-inde- 1798 

pendent Schrödinger equation. The wave function is replaced by the displacement field, 1799 

û (a vector, rather than a scalar). σ̂𝑖𝑗
(0)

/drj is the force density. σ̂ij is the stress tensor, given 1800 

as  1801 

ϵ̂kl is the deformation tensor and cijkl is the stiffness tensor. Because Equation (94) holds 1802 

generally, the superscript (0) was omitted. The stiffness tensor of the unperturbed prob- 1803 

lem must be real (no internal friction).XI For that reason, the eigenvalue to the unperturbed 1804 

problem, (−ω2)(0), and the 0th-order displacement field, 𝐮̂(0), also are real. A similar situ- 1805 

ation was encountered below Equation (22), when Zq, cq, and f
ref

 were written as real 1806 

parameters. 1807 

When a sample exerts a periodic stress onto the surface, this stress amounts to a per- 1808 

turbation. The eigensystem with surface traction is  1809 

The i in iω is the imaginary unit (not an index). δ(r − S) is the Dirac δ-function, where S 1810 

is a position on the resonator surface. nj are the components of the surface normal. The 1811 

eigenvalue, (−ω2̃)
tot

, is complex because Z̃L,ijkis complex. Z̃L,ijk is the load impedance in 1812 

tensor form, defined by 1813 

As in Equation (21), there is a minus sign in front of the stress because the stress is exerted 1814 

into the direction of –z.  1815 

 
XI  That must be so because perturbation theory requires the unperturbed operator to be self-adjoint. An unperturbed operator 

including dissipation would violate self-adjointness. Self-adjointness is not required, however, for the small perturbation oper-

ator. Internal dissipation can therefore be included in the formalism as a perturbation. This perturbation is separate from the 

perturbation by the sample (Equation (95)). 

E(1) = 
∫ ψ(0)H

1
ψ(0)dV

Volume

∫ ψ(0)ψ(0)dV
Volume

 (92) 

(−ω2)(0)ûi
(0)

 = ω2 ûi
(0)

 = 
1

ρ
q

∑
dσ̂𝑖𝑗

(0)

drj
j

 = 
1

ρ
q

∑
d

drj
(cijkl

1

2
(

d𝑢̂𝑙
(0)

drk
 + 

d𝑢̂𝑘
(0)

drl
))

jkl

 (93) 

σ̂ij = ∑ cijklϵ̂kl

kl

 = ∑ cijkl

1

2
(
dûl

drk
 + 

dûk

drl
)

kl

 (94) 

(−ω2̃)
tot

ûi = ((ω2)
0
+(ω2)

1
) ûi = 

=
1

ρ
q

∑ (
d

drj
(cijkl

1

2
(
dûl

drk
 + 

dûk

drl
))  + njZ̃L,ijkiωûkδ(r − S))

jkl

 
(95) 

−σ̂S,ij = ∑ Z̃L,ijkv̂S,k

k

 = ∑ Z̃L,ijkiωûS,k

k

 (96) 



Sensors 2021, 21, x FOR PEER REVIEW 56 of 81 
 

 

The displacement field in Equation (95), 𝐮̂ ≠ 𝐮̂(0), is the solution to the total ω2-op- 1816 

erator. One might write 𝐮̂ ≈ 𝐮̂(0) +  𝐮̂(1) with 𝐮̂(1) the 1st-order correction, but the 1st-or- 1817 

der correction to the displacement field does not concern us any further. We are only in- 1818 

terested in the shift of the eigenvalue. The eigenvalue also is approximated as the sum of 1819 

a 0th-order and a 1st-order term: 1820 

Following perturbation theory, the 1st-order term can be computed from the 0th-order dis- 1821 

placement field 𝐮̂(0) as 1822 

The denominator is needed because 𝐮̂(0) is not normalized. (It is not even dimensionless.) 1823 

In the numerator, the volume integral has turned into a surface integral because of the 1824 

δ-function. Complex conjugation as in Equation (92) is not needed because 𝐮̂(0) is real. In 1825 

line 3, the center-dot is the vector product (contraction over one index, “dot product”). “:” 1826 

denotes contraction over two indices and “⊗” is the outer product.  1827 

This concludes the perturbation calculation. We are left with the task to compute 1828 

Δf̃ from (ω2̃)
(1)

 and (ω2)(0). This calculation proceeds as  1829 

Taylor expansion ((1 + ε)1/2  1 + ε/2 for ε ≪ 1) was applied. Combining Equation (99) with 1830 

Equation (98) and using ω  ω(0) leads to 1831 

This is the small-load approximation in tensor form. It was first written down in slightly 1832 

different form by Pechhold in Reference [183]. 1833 

We briefly convince ourselves that Equation (100) reduces to Equation (25) for the 1834 

parallel plate. For the parallel plate, the displacement occurs along x and is of the form 1835 

ûScos(kqz). The integral in the denominator turns into ûS
2A

eff
dq/2. The only nonzero com- 1836 

ponent of Z̃L,ijk is Z̃L,xzx, called Z̃L in Equation (25). The surface normal is along z. The 1837 

displacement in the numerator is ûS. For the parallel plate, Equation (100) turns into 1838 

With ρ
q
dq = mq = Zq (2f

0
)⁄  this relation is equivalent to Equation (25). 1839 

(−ω2̃)
tot

 ≈ (−ω2)(0) + (−ω2̃)
(1)

 (97) 
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(1)
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ρ
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∑ ∫ 𝑢̂S,i
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3
r

Volumeijk

∑ ∫ 𝑢̂i
(0)
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(0)

d3r
Volumei
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iω

ρ
q

∑ ∫ 𝑢̂S,i
(0)

njZ̃L,ijk𝑢̂S,k
(0)

d2rSSurfaceijk

∑ ∫ 𝑢̂i
(0)

𝑢̂i
(0)

d3r
Volumei
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iω

ρ
q

∫ (𝐮̂S
(0)

⊗ 𝐧) : Z̃L ⋅ 𝐮̂S
(0)

d2rSSurface

∫ 𝐮̂(0) ⋅ 𝐮̂(0)d3r
Volume

 

(98) 

2πΔf̃ = √(ω2)(0) + (ω2̃)
(1)

 − ω(0)   

= ω(0) (√1 + 
(ω2̃)

(1)

(ω2)(0)
 − 1)  ≈ ω(0) (1 + 

1

2

(ω2̃)
(1)

(ω2)(0)
 − 1)  = 

1

2

(ω2̃)
(1)

ω(0)
 

(99) 

Δf + iΔΓ ≈ 
i

4πρ
q

∑ ∫ 𝑢̂S,i
(0)

njZ̃L,ijk𝑢̂S,k
(0)

d2rSSurfaceijk

∑ ∫ 𝑢̂i
(0)

𝑢̂i
(0)

d3r
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 (100) 

Δf + iΔΓ ≈ 
i

4πρ
q

ûS
2Aeff〈Z̃L〉

ûS
2A

eff
dq/2

 (101) 



Sensors 2021, 21, x FOR PEER REVIEW 57 of 81 
 

 

Limitations of the formalism are: 1840 

• Piezoelectric stiffening is not included. That can be done (in tensor form). It is simply 1841 

a matter of not letting oneself be intimidated by large equation systems. 1842 

• Some perturbations may actually be large perturbations. Among these are the com- 1843 

pressional waves, because the plate’s stiffness under bending (not shear) may be too 1844 

small to let the normal pressure exerted by compressional waves be a small pertur- 1845 

bation [118]. 1846 

• The above mathematics covers the 1st-order perturbation, only. 3rd-order perturbation 1847 

is sometimes needed (Box 2).  1848 

• Calculating the vibration pattern of the unloaded crystal with electrodes is a chal- 1849 

lenge. If such a calculation is not feasible, the mode of vibration can still be deter- 1850 

mined experimentally with laser Doppler vibrometry (LDV, Figure 39 C). 1851 

Among the benefits linked to Equation (100) are: 1852 

• Equation (100) is general. It also applies to other resonators (such as torsional reso- 1853 

nators [51,52,56], or nanoresonators [184]).  1854 

• It clarifies, why the statistical weight in area averaging in Equation (26) is the square 1855 

of the local amplitude of oscillation.  1856 

• It explains why the Sauerbrey relation is slightly incorrect on the low overtones, even 1857 

for rigid films in dry environments. The problem is linked to the modal mass (section 1858 

8.6).  1859 

• It allows to quantitatively estimate the effects of increased energy trapping discussed 1860 

around Figure 38. In particular, it explains why the freezing of a liquid drop on the 1861 

resonator surface (water, hexadecane, …) lets the resonance frequency increase [185]. 1862 

The limitations acknowledged: Equation (100) is the starting point for full-fledged 1863 

3D-modelling.  1864 

8.4. The 4-element circuit and the electromechanical analogy  1865 

An equivalent circuit (also “lumped-element circuit”) contains discrete elements, net- 1866 

worked together in some way. This involves two separate approximations. Firstly, the 1867 

real-world device may or may not consist of discrete elements. Printed circuit boards 1868 

(PCBs) often contain discrete elements, linked by conductive tracks with small resistance. 1869 

Even then, a stray capacitance – often needed for a faithful representation with an equiv- 1870 

alent circuit – has no corresponding element on the PCB. In real-word acoustics and me- 1871 

chanics, discrete elements are rare. Two masses linked together with a spring are an ex- 1872 

ample (Figure 1 B). The bell is a counter example (Figure 1 C). A second approximation 1873 

concerns discrete elements in the real world, which are represented with two impedances 1874 

in the equivalent circuit. A real-world inductor has some ohmic resistance and is therefore 1875 

depicted as an inductor in series with an ohmic resistor. In mechanics, a contact often 1876 

dissipates energy and is therefore depicted as a spring in parallel to a dashpot (Figure 31). 1877 

Figure 42 A shows an electrical equivalent circuit of a quartz resonator (or some other 1878 

piezoelectrically driven resonator). When drawn without the load (in red on the right- 1879 

hand side), this is the Butterworth-van-Dyke circuit (BvD-circuit, also: “4-element cir- 1880 

cuit”). The upper branch (the motional branch) contains an inductance, a capacitance, and 1881 

a resistance. This circuit exploits the electromechanical analogy, which maps the mass, the 1882 

spring, and the dashpot onto the inductance, the capacitance, and the resistance. The mo- 1883 

tional branch can be modeled with electrical impedances because piezoelectricity acts an 1884 

impedance converter. While the discrete impedances certainly are an idealization, Fig- 1885 

ure 42 A reproduces the resonator’s overall impedance close to the resonances well. Note 1886 

that the values of L1, R1, and C1 differ between overtones.  1887 

There is a more general circuit (the Mason circuit [84]), which covers the entire fre- 1888 

quency range (on-resonance and off-resonance, all overtones, parallel-plate model). In the 1889 

Mason circuit, the impedances of the elements are not just inductances, resistances, or 1890 

capacitances. For instance, one of them is iAeffZq tan(k̃qdq/2) . The Mason circuit also 1891 
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covers piezoelectric stiffening. (The 4-element circuit from Figure 42 A does not.) Models 1892 

of the QCM loaded with planar films can entirely be based on the Mason circuit [45,186]. 1893 

The Mason circuit is interesting in a few ways, but working one’s way from the diagram 1894 

to the frequency shift is laborious [187]. 1895 

The capacitance at the bottom in Figure 42 is a genuinely electrical element. It is the 1896 

“parallel capacitance”, formed by the electrodes on both sides of the plate. C0 is larger 1897 

than C1 by about a factor of 1000 (Equation (88)). When the (electrical) Kirchhoff rules are 1898 

applied to Figure 42 A, an electrical admittance as shown in Figure 3 results. 1899 

It is instructive to also draw the corresponding mechanical circuit. A mechanical cir- 1900 

cuit of that kind was already shown in the introduction (Figure 1). The mechanical circuit 1901 

contains a spring, a mass, and a dashpot. These mechanical impedances (such as iωmR for 1902 

the mass and κR/(iω) for the spring) have dimensions of force to velocity. The acoustic 1903 

impedances, on the other hand, are ratios of stress to velocity. Within the parallel-plate 1904 

model, one converts between the two by multiplication with the area, Aeff. (The 4-element 1905 

is not does necessarily outside the parallel-plate model. It is general.) 1906 

Figure 42 B makes the mechanical nature of the elements in the upper branch explicit. 1907 

Importantly, the elements must be arranged in parallel (see Box 3). Following the mechan- 1908 

ical Kirchhoff rules, impedances are additive, when the elements are arranged in parallel, 1909 

while inverse impedances are additive, when the elements are arranged in series.  1910 

 1911 

Figure 42: A) The Butterworth-van-Dyke equivalent circuit (also: “4-element-circuit”). 1912 
This version of the 4-element-circuit actually contains 5 elements because the load (ΔR + iΔX) 1913 
was included.  1914 
B) A version of the circuit, where the motional branch is drawn with mechanical elements. 1915 

A side remark: Not everyone draws mechanical elements as in Figure 42 B. If drawn 1916 

as in Figure 43 on the right-hand side, the electrical Kirchhoff rules apply. The difficulty 1917 

here is to always remember that the elements in this circuit are arranged differently from 1918 

the elements in the real world. That would not problem in the context of Figure 42 B be- 1919 

cause the discrete elements do not exist in the real world. It would be a problem in Figure 1920 
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 1922 

Figure 43: Electrical engineers sometimes draw mechanical equivalent circuits, such that the 1923 
electrical Kirchhoff rules apply [42]. This is not the convention followed in Figure 42.  1924 

The values of the circuit elements in Figure 42 B are 1925 

Within the parallel-plate model, δq is the plate’s loss angle, Gq''/Gq'. For practical reso- 1926 

nators, the energy dissipated in the electrodes also contributes to ξR.  1927 

Figure 42 B represents piezoelectric coupling as a transformer. A key parameter of a 1928 

transformer is the turns ratio, ϕ = n2/n1. n1 and n2 are the numbers of turns. Voltage, U, 1929 

and current, I, are transformed as  1930 

Following Equation (103), an impedance on one side of the transformer takes a different 1931 

value when seen from the other side. The converted impedance is  1932 

The transformer in Figure 42 B is an impedance converter in this sense. It converts be- 1933 

tween an electrical and a mechanical impedance (Z̃mech = ϕ2Z̃el, with ϕ = e26Aeff/dq).  1934 

The following equations derive the small-load approximation from Figure 42 B. In 1935 

the absence of a load, the resonance condition is 1936 

Neglecting the dashpot, the resonance frequency is 1937 

In the presence of the load, the resonance condition is 1938 

Before solving this equation for ω, we turn it into a more familiar form, which is  1939 

 1940 

Again neglecting the dashpot, the shifted resonance frequency is  1941 

mR = 
Aeffmq

2
,  κR = 

AeffGq

dq

(nπ)2

2
,  ξR = √κRmR tan δq (102) 

U2 = 
n2

n1
U1,      I2 = 

n1

n2
I1       (103) 

Z2 = 
n2

2

n1
2

Z1 = ϕ2Z1 (104) 

iωmR + 
κR

iω
 + ξR = 0 (105) 

ω0 = √
κR

mR
 = √

AeffGq(nπ)2/(2dq)

(Aeffmq)/2
 = 

nπ

dq
√

Gq

ρ
q

 = nπ
cq

dq
 (106) 

iωmR + 
κR

iω
 + ξR + AeffZ̃L = 0 (107) 

ω2 + ω (− (
 iξR

mR
 + 

iAeffZ̃L

mR
))  + (− 

κR

mR
)  = 0 (108) 

ω̃0,L = 
iAeffZ̃L

2mR
 ± √(

iAeffZ̃L

2mR
)

2

 + 
κR

mR
 ≈ 

iAeffZ̃L

2mR
 + √

κR

mR
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In the second step, the meaningful solution (out of the two solutions of the quadratic equa- 1942 

tion in ω) was selected. The quadratic term under the root was neglected because the load 1943 

impedance is small. With mq = ρ
q
dq and Zq = (ρ

q
Gq)

1/2

, Equation (109) turns into 1944 

This is the small-load approximation.  1945 

8.5. Amplitude of oscillation, effective area 1946 

The parameters of the transformer in Figure 42 B lead to a relation between the cur- 1947 

rent into the electrodes and the velocity at the resonator surface. On resonance, the veloc- 1948 

ity, v̂S, and the current, 𝐼, are related as [188] 1949 

A factor of 1/2 enters because the current is proportional to the difference in velocity be- 1950 

tween the front and the back (which is 2v̂S). The relation between the current into the 1951 

electrodes, Î, and the nominal external voltage, Ûext, may be nontrivial. Further compli- 1952 

cating the situation, vector network analyzers often control the power (in units of dBm), 1953 

rather than voltage or current. With 5 MHz resonators on the fundamental, an area of 1954 

Aeff = 10 mm2, a voltage of 100 mV, and a motional resistance of R1 = 500  (typical for 1955 

experiments in liquids), an amplitude of oscillation of 0.1 nm results. The shear angle is 1956 

ûS/δ, which is below 10−3. A more detailed calculation of the amplitude would have to 1957 

account for energy trapping. The current through the motional branch may also be af- 1958 

fected by the analyzers output resistance and by the current through the parallel capaci- 1959 

tance, C0. For that reason, “” was written on the right-hand side in Equation (111).  1960 

If the resonator is under voltage control, one may also remember the relation  1961 

d26 = 3.110−12 m/V is the piezoelectric strain coefficient of AT-cut quartz. Equation (112) 1962 

was confirmed experimentally in Reference [189].  1963 

The transformer’s parameters, ϕ = e26Aeff/dq, also lead to an equation for the plate’s 1964 

effective area, which is  1965 

For the proof see section 7.4 in Reference [5]. The same approximations as in Equation 1966 

(111) apply. 1967 
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√
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8.6. Modal mass, Sauerbrey equation for plates with energy trapping 1968 

Flexural admixtures not only affect measurements in liquids (because of compres- 1969 

sional waves), but also measurements of the mass of a film in the dry. Start from the clas- 1970 

sical formula for the resonance frequency of a harmonic oscillator, ω0  (κR/mR)1/2. This 1971 

formula holds for discrete objects. Applied to elastic bodies vibrating in some vibration 1972 

mode, equivalent parameters must be defined. The definition of κR is unessential here. 1973 

Write the total mass as mR + Aeffmf with mR the “modal mass” and mf the film’s mass 1974 

per unit area. Assuming Aeffmf ≪ mR
 and applying the Taylor expansions 1975 

(1 + ε)1/2  1 + ε/2 and (1 + ε)–1  1 – ε leads to 1976 

At first glance, Equation (114) appears to differ by a factor of 1/2 from the Sauerbrey result, 1977 

which is 1978 

mq is the mass per unit area of the resonator plate. The solution to this puzzle is that the 1979 

modal mass, mR, is only half the mass of the resonator plate, Aeffmq. This is so because a 1980 

plate in thickness-shear motion contains nodal planes. The kinetic energy is 1981 

1/2Aeffmq〈vS
2〉t,V. Averaging occurs over time, t, and volume, V. Volume averaging pro- 1982 

duces a factor of 1/2 because 〈cos2(𝑥)〉 = 1/2, which implies mR = Aeffmq/2. Importantly, 1983 

the factor of 1/2 turns into some other numerical factor when flexural modes are present 1984 

because the flexural motion also happens at the nodal planes of the shear motion. The 1985 

modal mass increases and –Δf/n decreases in consequence. This slightly modifies the Sau- 1986 

erbrey equation.  1987 

Figure 44 shows an experimental example. The sample was a polymer film in air. 1988 

Because this film is viscoelastic, −Δf/n decreases in proportion to 𝑛2 at large n (see Equa- 1989 

tion (46)). From the slope, one can infer 𝐽f′. If interpreted with Equation (45), the positive 1990 

slope would indicate negative shear compliance, but Equation (46) solves that problem. 1991 

Regardless of the slope: The low overtones must be excluded from this analysis, because 1992 

the respective vibration modes have an increased modal mass.  1993 

The above argument started from ω0  (κR/mR)1/2. The argument can also start from 1994 

the tensor form of the small-load approximation. The denominator in Equation (100) is 1995 

proportional to the modal mass. 1996 

Δf = 
Δω

2π
 = 

1

2π
(√

κR
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 − √
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mR
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1
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 − 1) 
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 − 1) 
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1
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(
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Figure 44: Overtone-normalized shifts of frequency and bandwidth obtained after depositing 1998 
a polymer film with a thickness of about 500 nm onto the resonator plate. The area in green 1999 
denotes values of –Δf/n which deviate from the prediction by Equation (46). The deviations go 2000 
back to flexural motion. Adapted from Reference [72]. 2001 

9. Combined Instruments 2002 

Because the QCM is simple, it can be easily combined with other instruments. For 2003 

instance, it is quite trivial to push a QCM sensor against the prism of an ATR-IR spectrom- 2004 

eter and obtain an IR spectrum from the sample on the resonator with monolayer sensi- 2005 

tivity (ex-situ, evidently). One can rather easily do AFM, XPS, and Raman spectroscopy 2006 

on a QCM, either in-situ or ex-situ. The examples are numerous. Two problems are worth 2007 

a mention: 2008 

• When combining a QCM with an AFM [190], the QCM does not usually respond to 2009 

the contact with the AFM tip because the contact is too small. That can be understood 2010 

from Equation (70) together from the Mindlin result for the transverse contact stiff- 2011 

ness, which is κP = 2G*rC with G* an effective modulus and rC the contact radius 2012 

[191] (see section 5). Inserting values (G*  10 GPa, rC  5 nm) leads to a frequency 2013 

shift below 0.1 Hz (at 5 MHz). An AFM tip tapping onto the resonator amounts to a 2014 

nanoscopic object perturbing the motion of a macroscopic object. It does so, in prin- 2015 

ciple, but the effects usually disappear in the noise. 2016 

In the reverse direction (the QCM perturbing the motion of the tip), there is a strong 2017 

influence [192]. However, experiments of this kind can also be done with any other 2018 

actuator. Nanoscale dynamical-mechanical studies based on an AFM tip in contact 2019 

with a vibrating substrate are commonplace ([193] and others).  2020 

• In-situ combination with dielectric spectroscopy [194,195,196,197] or electrical cell- 2021 

substrate impedance spectroscopy (ECIS [198]) is possible. A difficulty arises, when 2022 

the sample requires an oxidic substrate, such as SiOx, because the commercially avail- 2023 

able SiOx coatings may be too thick. The electric field then does not reach to the sam- 2024 

ple. More technically, the coating’s capacitance, CSiOx, is so small, that its impedance 2025 

dominates the sample’s overall electrical impedance. The properties of the sample 2026 

are then masked by the term 1/(iωCSiOx). Thin dielectric coatings are needed.  2027 

The text proceeds with two particularly well studied combinations, which are the 2028 

electrochemical QCM and the combination with optical reflectometry. 2029 
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9.1. The electrochemical QCM (EQCM)  2030 

Among the combinations with other techniques, the combination with electrochem- 2031 

istry is most advanced. For early work see References [10,12,13,199]. More recent reviews 2032 

are provided in References [200,201,202]. 2033 

Electrogravimetry can be rather complicated and we do not elaborate on the details. 2034 

Matters are transparent as long as one sticks to electrodeposition [203] or electroetching 2035 

[204] with layer thicknesses of many nanometers. The QCM then operates in the gravi- 2036 

metric regime. The charge passed through the electrode surface may be converted to a 2037 

mass, using Faraday’s law [95,205]. If this mass equals the mass as inferred from the Sau- 2038 

erbrey equation, the “current efficiency” is unity. If this current efficiency is less than 2039 

unity, one suspects side reactions or soft layers. For soft layers, the bandwidth and the 2040 

overtone dependence of −Δf/n can be analyzed to derive the layer’s viscoelastic constants 2041 

(Equation (52), Reference [96]). If the current efficiency is larger than unity, roughness 2042 

may be a reason [206]. 2043 

Unfortunately, there are numerous sources of artifacts at the low end of the QCM’s 2044 

sensitivity range. Among these are the viscoelasticity of the double layer [40,207], nano- 2045 

bubbles [208], slip [209], roughness [206], piezoelectric stiffening [165,210], and static 2046 

stress, which bends the plate [44].  2047 

The difficulties admitted, there is additional information available for interpretation. 2048 

Firstly, there is the electrical current as a function of time (or the voltage, in case the ex- 2049 

periment occurs under current control). If the experiment occurs outside the gravimetric 2050 

range, charge and frequency shift are not simply related by Faraday’s law, but they should 2051 

still be related in some other way. Also, kinetics comes to help. The fast QCM discussed 2052 

in section 3.5 resolves the kinetics with a time resolution down to 100 µs. The response 2053 

times determined this way give clues to the nature of the processes involved. Finally, the 2054 

frequency resolution can be improved by running the experiment repetitively and accu- 2055 

mulating data. If a certain process occurs in response to a change in electrode potential on 2056 

the time scale of – let’s say – one second, accumulation overnight improves the resolution 2057 

in frequency by a factor of about (40000)1/2 (by N1/2 with N the number repeats). The fre- 2058 

quency resolution readily drops to below 1 mHz. A caveat: For the conventional QCM, 2059 

dirt, scratches, or even small bubbles are not necessarily detrimental because the QCM 2060 

averages over the entire active area (~10 mm2). A minute response (of a few mHz) to a 2061 

jump in electrode potential, however, may entirely result from such local heterogeneities.  2062 

The Paris group has exploited the combination of electrochemical impedance spec- 2063 

troscopy (EIS) with the QCM in numerous papers (Reference [95] and others). They call 2064 

the technique “AC electrogravimetry”. The electrode potential is modulated sinusoidally. 2065 

The QCM is driven by an oscillator circuit, the output of which is fed into a frequency-to- 2066 

voltage converter. The respective voltage oscillates with the modulation frequency. It is 2067 

displayed together with the electrical current, often in the same diagram, often showing 2068 

similar features. 2069 

The molecular details of electrochemistry can be enormously complex and the EQCM 2070 

(similar to EIS) will not usually be able to make conclusive statements with regard to the 2071 

details. It still can aid the structural investigations (examples in References [211,212]) and 2072 

provide for constraints to the models. 2073 

9.2. Combination with optical reflectometry 2074 

With regard to label-free biosensing, SPR spectroscopy [9] outperforms the QCM in- 2075 

sofar, as SPR has a lower limit of detection and smaller baseline drifts. Irrespective of the 2076 

competition, there are interesting conceptual similarities between the QCM and optical 2077 

reflectometry. Also, there are benefits in the combination of the two [85,142,213]. 2078 

Similar to the QCM, SPR spectroscopy exploits a shift of a resonance condition, where 2079 

the frequency is replaced by the kx-vector of the surface plasmon. The analogy is illustrated 2080 

in Figure 45.  2081 
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 2082 

Figure 45: Both the QCM and SPR spectroscopy exploit the shift of a resonance condition. The 2083 
peak in the conductance curve is the analog of a dip in the reflectance curve. The resonance 2084 
frequency is replaced by the coupling angle (that is, the angle of incidence with minimum 2085 
reflectance). The coupling angle is related to the plasmon’s kx-vector. The shift in the coupling 2086 
angle is proportional to the adsorbed amount. 2087 

If the adsorbed layer is thinner than the decay depth of the plasmon, δopt, (which 2088 

happens to be similar to the decay depth of the shear wave of the QCM), the shift in kx is 2089 

proportional to the 1st invariant of the refractive index profile, J1, given as [214] 2090 

Subscripts sub and bulk denote the substrate and the bulk liquid, respectively. nr is the 2091 

refractive index. nr
2 is equal to the dielectric constant at optical frequencies, ε. While ε and 2092 

nr
2 are complex, in principle, they are treated as real parameters, here. In SPR spectros- 2093 

copy, the substrate is a metal (often gold), which has a large, negative ε. The term 2094 

nsub
2  − nr

2(z) may be approximated as nsub
2  − nbulk

2  (equal to εsub − εbulk) and be pulled out 2095 

of the integral. Neglecting prefactors, the shift in kx induced by the adsorbate obeys [215] 2096 

Both Δf + iΔΓ (in QCM experiments, Equation (58)) and Δkx (in SPR spectroscopy, 2097 

Equation (117)) depend on an integral of a response function. Algebraically, the response 2098 

functions are similar. Differing from SPR spectroscopy, the response function to be used 2099 

for the QCM saturates to unity. This happens whenever the viscosity in the layer is much 2100 

larger than the viscosity of the bulk. The contrast function in optics, on the contrary, is 2101 

mostly proportional to concentration because the refractive index increment, dnr/dc, is 2102 

small. The SPR response is roughly proportional to the adsorbed amount, while the QCM 2103 

probes the distance to the surface, at which the contrast function finally falls out of satu- 2104 

ration (dac in Figure 46). When the layer expands, the SPR response changes by a small 2105 

amount because the increase in thickness is compensated by a decrease in concentration. 2106 

The QCM mostly notices an increase in acoustic thickness. These remarks apply to all var- 2107 

iants of optical reflectometry. Because SPR and QCM see the adsorbed amount and the 2108 

thickness, respectively, the degree of swelling may be inferred from the combination of 2109 

J
1
 = ∫

(nsub
2  −  nr

2(z))(nr
2(z) − nbulk

2 )

nr
2(z)

dz
∞

−∞

 (116) 
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λ
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nr
2(z) − nbulk

2

nr
2(z)

] dz
∞

0

 (117) 
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SPR and QCM (more generally: from the combination of optical reflectometry with shear- 2110 

wave acoustic reflectometry).  2111 

SPR can be combined with the QCM in-situ, but that requires grating coupling on the 2112 

surface of a resonator crystal, which is expensive [216,217]. Ellipsometry is an option (Ref- 2113 

erence 142 and others), but ellipsometry can be challenging in the details, especially when 2114 

the beam passes through windows. Given that the electrodes often consist of gold, vari- 2115 

ants of optical reflectometry can be employed, which are simpler than full-fledged ellip- 2116 

sometry [218,219]. If it shall be SPR on the side of optical reflectometry, it can be Love 2117 

wave sensors on the side of shear-wave acoustics [220]. Love wave sensors are a variant 2118 

of the surface acoustic wave devices [221,222]. For reasons in the details, these are more 2119 

easily combined with SPR than the QCM. The remarks above on saturation of the contrast 2120 

function apply to Love waves and to shear waves as excited by the QCM in essentially 2121 

same way [223].  2122 

A last remark: The comparison between data acquired with optical reflectometry and 2123 

with shear-wave acoustic reflectometry can be based on separate experiments with sepa- 2124 

rate instruments, as long as the sample preparation is sufficiently reproducible [224 and 2125 

others]. 2126 
 2127 

Figure 46: The contrast functions from Equation (58) and Equation (117) are similar, algebraically. 2128 
The difference is in the numerical values. In optics, the refractive index varies by a few percent. 2129 
The denominator is nearly constant. Because the change in nr

2 is about proportional to concen- 2130 
tration, the integral of the contrast function is roughly proportional to the adsorbed amount. In 2131 
the case of the QCM, the viscosity of an adsorbate layer easily exceeds the viscosity of the bulk 2132 
by a factor of 10 or more. The contrast function saturates to unity and the integral of the contrast 2133 
function is about proportional the acoustic thickness, dac. dac is the distance, at which the sam- 2134 
ple’s viscosity has decreased to about twice the viscosity of the bulk. 2135 
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Appendix A: Summary of Essencial Equations 2152 
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Small-load approximation Δf̃
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(r) ûi
(0)

(r)d
3
r

Volumei

 

Piezoelectric stiffening Δf̃
PE

f
0

 = 
i

πZq
[
4e26

2 Aeff

dq
2

] ((iωC0 + Z̃ext
−1

)
−1

 − (iωC0 + Z̃ext,ref
−1

)
−1

) 
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Appendix B: Glossary of Variables and Relations 2155 

Variable Definition  

~ Tilde: a complex parameter  

^ Hat: a complex amplitude  

Aeff Effective area of the resonator  
Aeff = 

nπ

32Zqd26
2 f

0

 2

Gmax

Q
 (118) 

 

C0 Resonator’s electrical capacitance 

(parallel capacitance)  C0 = 
εqε0Aelectrode

dq
 (119) 

 

C1 Motional capacitance  
C1 = 

8ϕ2

nπAeffZq

1

2πnf
0

     with       ϕ = 
Aeffd26

dq
 

C1 = 
8kt,eff

2

(nπ)2
C0     with     kt,eff

2   0.8% 

(120) 

 

D Dissipation factor 
D = 

1

Q
 = 

2Γ

f
res

 (121) 

 

G̃  Shear modulus G̃ = G' + iG''= 1/J̃ = (𝐽′ − 𝑖𝐽′′)−1 = iω𝜂  

G̃ = |G|(𝑐𝑜𝑠(𝛿𝐿)  +  𝑖 𝑠𝑖𝑛(𝛿𝐿)) 

𝑡𝑎𝑛(𝛿𝐿)  = G''/G' = J''/J' 

(122) 

 

Gq Shear modulus of AT-cut quartz Gq  29  109 Pa 

J̃  Shear compliance J̃ = 1/ G̃ = (J' − iJ'') (123) 
 

L1 Motional inductance 
L1 = 

1

4ϕ2
Aeff

mq

2
          ϕ = 

Aeff𝑒26

dq
 (124) 

 

Q Quality factor 
Q = 

f
res

2Γ
 (125) 

 

R1 Motional resistance,  

the inverse of Gmax (Equation (14))  
 

Z̃  Shear-wave impedance  
Z̃ = ρc̃ = √ρG̃ =√iωρ𝜂 = 

i𝜂k̃

ω
 

 

(126) 

 

Z̃L Load impedance 
Z̃L = 

−σ̂S

v̂S
 (127) 

 

Z𝑞 Shear-wave impedance of AT-cut 

quartz 
Z𝑞 = 8.8×106 kg m−2 s−1 

c̃f, cq, c̃bulk  Speed of shear sound  
c̃ = √G̃ ρ⁄  

𝑑26 Piezoelectric strain coefficient of 

AT-cut quartz 
𝑑26 = 3.1×10−12 m/V 

𝑒26 Piezoelectric stress coefficient of 

AT-cut quartz 
𝑒26 =  𝑑26Gq = 9.65×10−2 C/m2 

𝑑𝑓 , 𝑑𝑞  Thickness of film and resonator  
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k̃f,  kq, k̃bulk  Wave vector in the film, the resona-

tor plate, and the bulk k̃bulk = 
ω

c̃bulk
 = √

ωρ
bulk

iη
bulk

 = √−2i
1

δ
 = (1 − i)√

ωρ
bulk

2η
bulk

 (128) 

 

kt Electromechanical coupling  

coefficient kt,ideal
2  = 

 e26

εqε0Gq
 

kt,eff
2  = 

C1

C0

(nπ)2

8
 

(129) 

 

f
cen

 A frequency in the center of the 

QCM’s frequency range (section 4.7) 
 

f
ref

 Resonance frequency in reference 

state  
 

f
res

 Resonance frequency f
res

 = nf
0
 

f
0
 Fundamental frequency 

f
0
 = 

Zq

2mq
 

mf , mq Mass per unit area of the film and 

the resonator plate mq = ρ
q
dq = 

Zqλ

2
 = 

1

2

Zqcq

f
0

 = 
Zq

2f
0

 (130) 

 

mR Effective mass of a resonator 
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑝𝑙𝑎𝑡𝑒:    mR = 

Aeffmq

2
 (131) 

 

n Overtone order  

nP Number of particles in contact with 

the resonator  
 

nr Refractive index  

u, 𝑢̂ 

 uS, ûS 

Displacement,  

amplitude of displacement (^)  

subscript S: at the surface  

û = 
v̂

iω
       v̂S = 

dq

2e26Aeff
Î (132) 

 

 v, v̂, vS, v̂S Velocity, amplitude of velocity (^) v̂ = iωû (133) 
 

β,β   

γ,γ 

Power law exponents, 

section 4.7 

 

Jf'(f) ≈ Jf'(f
cen

) (
f

f
cen

)

β'

      Gf'(f) ≈ Gf'(f
cen

) (
f

f
cen

)

γ'

 

Jf''(f) ≈ Jf''(f
𝑐𝑒𝑛

) (
f

f
cen

)

β''

       Gf''(f) ≈ Gf''(f
cen

) (
f

f
cen

)

γ''

 

(134) 

 

η̃  Viscosity  

η̃ = 
G̃

iω
 = η'− iη''  (135) 

 

Γ Imaginary part of resonance  

frequency, half-band half width 
 

ΔR + iΔX  Load impedance in electrical units  

(in older publications)  ΔR + iΔX = 
Aeff

4ϕ2
Z̃L = −i

π

16

Zq
3

Aeffe26
2 εq 

2 f
0

 3
(Δf + iΔΓ) (136) 

 

εq Dielectric constant of AT-cut quartz εq = 4.54 

κR  Effective spring constant  
κR = 

AeffGq

dq

(nπ)2

2
 = 

(nπ)2

2
κq,stat (137) 

 

ρ
q
  Density of α-quartz ρ

q
 = 2.65×103 kg/m3 

σ, σ̂, σS, 𝜎̂S  Tangential stress, amplitude thereof  

ξR  Effective drag coefficient   
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Appendix C: Python Code 2156 

C.1. Calculation of Δf + iΔΓ resulting from a continuous viscoelastic profile 2157 

The code in Box 4 prescribes a function G̃(z) and the derivative dG̃(z)/dz (calcu- 2158 

lated analytically). The density is assumed as constant. The code solves the wave equa- 2159 

tion (Equation (64)), normalizes the solution to unit velocity at the surface, and evaluates 2160 

the ratio of stress to strain at the surface (Equation (63)). 2161 

Two comments: 2162 

• The algorithm solve_ivp from scipy requires the 2nd-order differential equation from 2163 

Equation (64) to be turned into a system of two 1st-order equations. This is achieved 2164 

by defining the function û'(z) = dû(z)/dz. The 1st-order equations are: 2165 

• One choses an “initial” condition at large z and integrates backwards. In this way, it 2166 

is ensured that the solution decays to zero as z→∞. The initial condition consists of 2167 

values for the velocity and the velocity gradient. The velocity can take any value. It 2168 

later cancels during normalization. The velocity gradient is the velocity multiplied by 2169 

ik̃0 where k̃0 = (iωρ/η)
1/2

 is the wave number in the bulk liquid. 2170 

 2171 

  2172 

d

dz
û = û' 

d

dz
û' = −

ρω2

G̃
û − 

1

G̃

dG̃

dz
û' 

(138) 

Box 4: Calculation of Df + iDG resulting from a continuous viscoelastic profile 

import numpy as np 

from scipy.integrate import solve_ivp 

z_max = 1500e-9; z_infl = 300e-9; width = 100e-9; 

eta_Liq = 1e-3; rho = 1e3; Gp_surf  = 1e5; Gpp_surf = 1e4; 

f0 = 5e6; om = 2 * np.pi * f0; Zq = 8.8e6; ik0 = 1j * (1 + 1j)/252e-9 

 

def G(z_rev): # "rev" because the z-scale is reversed 

    z = z_max - z_rev 

    Gp  = Gp_surf  * 1./2.*(1. - np.tanh((z-z_infl)/width)) 

    Gpp = Gpp_surf * 1./2.*(1. - np.tanh((z-z_infl)/width))+om*eta_Liq 

    return Gp + 1j * Gpp 

 

def G_deriv_rev(z_rev):  

    z = z_max - z_rev 

    Gpderiv_rev = Gp_surf *1./2.*(-1./np.cosh((z-z_infl)/width)/width) 

    Gppderiv_rev= Gpp_surf*1./2.*(-1./np.cosh((z-z_infl)/width)/width) 

    return -(Gpderiv_rev + 1j*Gppderiv_rev) # “-“ : z-scale is reversed 

 

def second_deriv_of_u(z_rev, u_uprime):  # u_uprime : veloc., deriv. 

    u, uprime = u_uprime 

    return [uprime,\ 

    -rho*om**2/G(z_rev)*u-G_deriv_rev(z_rev)/G(z_rev)*uprime] 

 

GridPoints = np.arange(0,z_max,10e-9) 

u_ini = [1+0*1j,ik0] #ini vals, solution is later normalized to 1  

sol = solve_ivp(second_deriv_of_u, [0, z_max],u_ini,t_eval= GridPoints) 

u  = sol.y / sol.y[0,-1] # normalize, so that velocity at surface is 1 

ZL = G(z_max)*u[1,-1] / (1j * om * u[0,-1]) 

dfc = f0 * 1j /(np.pi * Zq) * ZL 

print('Df: {:.3f} Hz DG: {:.3f} Hz'.format(dfc.real,dfc.imag)) 
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C.2. Calculation of Δf + iΔΓ for a film in air, starting from the Lu-Lewis equation 2173 

The Python code below computes Δf + iΔΓ from the Lu-Lewis equation (Equation (40). 2174 

dfc_LuLewis might be recomputed numerous times and used as a model for fitting. The free 2175 

parameters are ρ
f
 (rho_f), Gf' (Gprime_f), tan(δf) (tandel_f), and df (thickness_f). 2176 

  2177 

Box 5: Calculation of Df + iDG for a film in air, starting from the Lu-Lewis equation 

import numpy as np; from scipy import optimize 

def Calc_dfc_SLA(rho_f,Gprime_f,tandel_f,thickness_f): 

    G_f = Gprime_f * (1 + 1j * tandel_f);  Z_f = (rho_f * G_f)**0.5; 

    c_f = (G_f/rho_f)**0.5;       k_f = omegaref / c_f; 

    ZL = 1j * Z_f * np.tan(k_f*thickness_f) 

    dfc_SLA = f0 * 1j / (np.pi*Zq) * ZL; 

    return dfc_SLA 

 

def Calc_dfc_LuLewis (rho_f,Gprime_f,tandelf,thickness_f): 

    G_f = Gprime_f * (1 + 1j * tandel_f);  Z_f = (rho_f * G_f)**0.5; 

    c_f = (G_f/rho_f)**0.5; 

 

    def fun(x): 

        dfcL = x[0] + 1j*x[1] 

        k_f = (omegaref + 2*np.pi*dfcL.real) / c_f; 

        ZL = 1j * Z_f * np.tan(k_f*thickness_f) 

        rhs_m_lhs = -1j*Zq*np.tan(np.pi*dfcL/f0) - ZL 

        return rhs_m_lhs.real,rhs_m_lhs.imag 

    

    dfc_SLA = Calc_dfc_SLA(rho_f,Gprime_f,tandel_f,thickness_f) 

    sol = optimize.root(fun, [dfc_SLA.real,dfc_SLA.imag]) 

    dfc_LuLewis = sol.x[0] + 1j* sol.x[1] 

    return dfc_LuLewis 

 

f0 = 5e6; n = 1; fref = n*f0; omegaref = 2*np.pi*fref; Zq = 8.8e6;  

rho_f = 1e3; thickness_f = 100e-9; Gprime_f = 1e7; tandel_f = 0.3; 

dfc_LuLewis = Calc_dfc_LuLewis (rho_f,Gprime_f,tandel_f,thickness_f) 

print('Df = ' + str(np.round(dfc_LuLewis.real,3))) 

print('DG = ' + str(np.round(dfc_LuLewis.imag,9))) 
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C.3. Fit of a box profile to experimental data 2178 

The code in Box 6 reads in data from a file. The file is assumed to contain overtone-nor- 2179 

malized frequency shifts and dissipation factors. Adjustments may be needed with regard to 2180 

data format. The algorithm fits Equation (49) to the data. It accounts for viscoelastic dispersion. 2181 

Following the remarks around Figure 24, β′′  is fixed. The free parameters are df  (d_f), |J| 2182 

(J_abs), tan(δL) (loss_tan), and β' (PL_exp_p). 2183 

 2184 

Box 6: Fit of a box profile to experimental data 

GuessPars = [3e-9,1e-6,0.7,-0.5] #[thickness, |J|,tan(del),PL exp J'] 

PL_exp_pp = -0.5; #Power law exponent for J'' better be fixed 

Correct_for_Drift = 'yes'; filename ='test.txt'        

 

def read_dfcs(): 

    f = open(filename,'r'); lines = f.readlines(); f.close(); 

    times = np.zeros(len(lines)-1); 

    dfc_expt_in=np.zeros((len(lines)-1,len(ovt_ord_in)),dtype=complex); 

    for i in range(len(lines)-1): 

        columns = lines[i+1].split(); 

        times[i] = np.float(columns[0].replace(',','.')); 

        for i_ovt in range (len(ovt_ord_in)): 

            dfc_expt_in[i,i_ovt]=\ 

                   np.float(columns[2*i_ovt+1]) * ovt_ord_in[i_ovt]+\ 

             1j*2.5*np.float(columns[2*i_ovt+2]) * ovt_ord_in[i_ovt]; 

    if Correct_for_Drift == 'yes' :  

        for j in range(1, len(times)) : 

            for i_ovt in range(len(ovt_ord_in)) : 

                dfc_expt_in[j,i_ovt] -= (1. + i_ovt)/len(ovt_ord_in)*\ 

                (dfc_expt_in[j,i_ovt] - dfc_expt_in[j-1,i_ovt]) 

    dfc_expt = dfc_expt_in[:,1:-1]  # omit 5 MHz, ignore 55 MHz 

    return times,dfc_expt 

     

def Calc_dfc_from_Box_Profile(ovt_order, Pars):   

    d_f = Pars[0]; J_abs = Pars[1]; 

    loss_tan = Pars[2]; PL_exp_p = Pars[3];  

    f = ovt_order * f_fund; om = 2 * np.pi * f;  

    J_f =       J_abs * np.cos(loss_tan) *  (f/f_Jref)**PL_exp_p + \ 

           -1j * J_abs * np.sin(loss_tan) *  (f/f_Jref)**PL_exp_pp 

    c_f = 1/(rho * J_f)**0.5; k_f = om / c_f; Z_f = rho * c_f 

    Z_Liq = (1j * om * rho * eta_Liq)**0.5  

    dfc_tot = f_fund * 1j / (np.pi*Zq) * (1j * Z_f) * \ 

      (Z_f * np.tan(k_f * d_f) - 1j * Z_Liq) /\ 

      (Z_f + 1j * Z_Liq * np.tan(k_f * d_f))  

    dfc = dfc_tot - f_fund * 1j / (np.pi*Zq) *  Z_Liq    

    return dfc   

 

def fit_model(X_arr, Y_arr):   

    y_real=np.hstack((np.real(Y_arr),np.imag(Y_arr)))#Compl. fit func. 

    def func(Pars): 

        ymodel = Calc_dfc_from_Box_Profile(X_arr,Pars) 

        ymodel_real = np.hstack((np.real(ymodel), np.imag(ymodel)))  

        return y_real - ymodel_real 

    FitPars, ier = leastsq(func, GuessPars)   

    Y_fit = Calc_dfc_from_Box_Profile(X_arr,FitPars) 

    dev_sqr = np.sum(np.abs(Y_arr - Y_fit)**2) 

    return FitPars,Y_fit,dev_sqr 

 

 2185 

  2186 
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def Analyze (): 

    times,dfc_expt = read_dfcs(); 

    dfc_fit=np.zeros*np.zeros((len(times),len(ovt_ord)),dtype=complex); 

    d_f_fit      = np.nan * np.zeros(len(times)) 

    J_abs_fit    = np.nan * np.zeros(len(times)) 

    dev_sqr_fit  = np.nan * np.zeros(len(times)) 

    loss_tan_fit = np.nan * np.zeros(len(times)) 

    PL_exp_p_fit = np.nan * np.zeros(len(times)) 

    for i in range(len(times)): 

        FitPars,Y_fit,dev_sqr=fit_model(ovt_ord,dfc_expt[i]) 

        d_f_fit[i]      = FitPars[0];  

        J_abs_fit[i]    = FitPars[1] 

        loss_tan_fit[i] = FitPars[2];  

        PL_exp_p_fit[i] = FitPars[3] 

        dev_sqr_fit[i]  = dev_sqr; 

        dfc_fit[i]      = Y_fit; 

         

import numpy as np; from scipy.optimize import leastsq 

eta_Liq = 1e-3; rho = 1e3; f_fund = 5e6; f_Jref = 30e6; Zq = 8.8e6;   

ovt_ord_in = np.array([1.,3.,5.,7.,9.,11.,13]) # data from 5-65 MHz 

ovt_ord = ovt_ord_in[1:-1]# ignore the 5-MHz and 55-MHz overtone 

Analyze(); 

Appendix D: Justification of a complex k̃q in the Lu-Lewis equation 2187 

The original form of the Lu-Lewis equation was based on a real-valued wave vector 2188 

in the resonator, kq. In order to account for lossy samples, kq was turned in to an effective 2189 

complex k̃q  in Equation (21). The imaginary part is not linked to the resonator’s intrinsic 2190 

losses. If the sample is lossy, the displacement at z = dq is of the form 2191 

A phase contained in the complex resonance frequency ω̃res was lumped into kq. The 2192 

phase is caused by the lossy sample. Again, k̃q is an effective wave number, introduced 2193 

to keep the algebra simple. Because the apparent kq'' is small, the errors can be tolerated. 2194 
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û(dq,t) = ûScos(kq'dq)exp(iω̃rest) 
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