673 research outputs found

    Identifying Real Estate Opportunities using Machine Learning

    Full text link
    The real estate market is exposed to many fluctuations in prices because of existing correlations with many variables, some of which cannot be controlled or might even be unknown. Housing prices can increase rapidly (or in some cases, also drop very fast), yet the numerous listings available online where houses are sold or rented are not likely to be updated that often. In some cases, individuals interested in selling a house (or apartment) might include it in some online listing, and forget about updating the price. In other cases, some individuals might be interested in deliberately setting a price below the market price in order to sell the home faster, for various reasons. In this paper, we aim at developing a machine learning application that identifies opportunities in the real estate market in real time, i.e., houses that are listed with a price substantially below the market price. This program can be useful for investors interested in the housing market. We have focused in a use case considering real estate assets located in the Salamanca district in Madrid (Spain) and listed in the most relevant Spanish online site for home sales and rentals. The application is formally implemented as a regression problem that tries to estimate the market price of a house given features retrieved from public online listings. For building this application, we have performed a feature engineering stage in order to discover relevant features that allows for attaining a high predictive performance. Several machine learning algorithms have been tested, including regression trees, k-nearest neighbors, support vector machines and neural networks, identifying advantages and handicaps of each of them.Comment: 24 pages, 13 figures, 5 table

    Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model

    Get PDF
    This study presents an extension of the Gaussian process regression model for multiple-input multiple-output forecasting. This approach allows modelling the cross-dependencies between a given set of input variables and generating a vectorial prediction. Making use of the existing correlations in international tourism demand to all seventeen regions of Spain, the performance of the proposed model is assessed in a multiple-step-ahead forecasting comparison. The results of the experiment in a multivariate setting show that the Gaussian process regression model significantly improves the forecasting accuracy of a multi-layer perceptron neural network used as a benchmark. The results reveal that incorporating the connections between different markets in the modelling process may prove very useful to refine predictions at a regional level.Peer ReviewedPostprint (author's final draft

    Modelling cross-dependencies between Spain's regional tourism markets with an extension of the Gaussian process regression model

    Get PDF
    This study presents an extension of the Gaussian process regression model for multiple-input multiple-output forecasting. This approach allows modelling the cross-dependencies between a given set of input variables and generating a vectorial prediction. Making use of the existing correlations in international tourism demand to all seventeen regions of Spain, the performance of the proposed model is assessed in a multiple-step-ahead forecasting comparison. The results of the experiment in a multivariate setting show that the Gaussian process regression model significantly improves the forecasting accuracy of a multi-layer perceptron neural network used as a benchmark. The results reveal that incorporating the connections between different markets in the modelling process may prove very useful to refine predictions at a regional level

    Affective image content analysis: two decades review and new perspectives

    Get PDF

    Affective Image Content Analysis: Two Decades Review and New Perspectives

    Get PDF
    Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.Comment: Accepted by IEEE TPAM

    Access Windows by Iris Recognition

    Get PDF
    This project aims to design and develop an iris recognition system for accessing Microsoft Windows. The system is built using digital camera and Pentium 4 with SVGA display adapter. MATLAB ver. 7.0 is used to preprocess the taken images convert the images into code and compare the picture code with the stored database. The project involves two main steps: (1) applying image processing techniques on the picture of an eye for data acquisition. (2)applying Neural Networks techniques for identification .The image processing techniques display the steps for getting a very clear iris image necessary for extracting data from the acquisition of eye image in standard lighting and focusing. In a use of your images, the images are enhanced and segmented into 100 parts. The standard deviation is computed for every part in which the values are used for identification using NN techniques. Locating the iris is done by following the darkness density of the pupil. For all networks, the weights and output values are stored in a text file to be used later in identification. The Backprobagation network succeeded in identification and getting best results because it attained to (False Acceptance Rate = 10% - False Rejection Rate = 10%), while the Linear Associative Memory network attained to (False Acceptance Rate = 20% - False Rejection Rate = 20%

    Intelligent road lane mark extraction using a Mobile Mapping System

    Get PDF
    102 p.During the last years, road landmark in- ventory has raised increasing interest in different areas: the maintenance of transport infrastructures, road 3d modelling, GIS applications, etc. The lane mark detection is posed as a two-class classification problem over a highly class imbalanced dataset. To cope with this imbalance we have applied Active Learning approaches. This Thesis has been divided into two main com- putational parts. In the first part, we have evaluated different Machine Learning approaches using panoramic images, obtained from image sensor, such as Random Forest (RF) and ensembles of Extreme Learning Machines (V-ELM), obtaining satisfactory results in the detection of road continuous lane marks. In the second part of the Thesis, we have applied a Random Forest algorithm to a LiDAR point cloud, obtaining a georeferenced road horizontal signs classification. We have not only identified continuous lines, but also, we have been able to identify every horizontal lane mark detected by the LiDAR sensor
    • …
    corecore