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Abstract This study presents an extension of the Gaussian process regression model for 
multiple-input multiple-output forecasting. This approach allows modelling the cross-
dependencies between a given set of input variables and generating a vectorial 
prediction. Making use of the existing correlations in international tourism demand to 
all seventeen regions of Spain, the performance of the proposed model is assessed in a 
multiple-step-ahead forecasting comparison. The results of the experiment in a 
multivariate setting show that the Gaussian process regression model significantly 
improves the forecasting accuracy of a multi-layer perceptron neural network used as a 
benchmark. The results reveal that incorporating the connections between different 
markets in the modelling process may prove very useful to refine predictions at a 
regional level. 
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1 Introduction 
 
In recent years there has been a growing interest in machine learning (ML) techniques 
for economic forecasting (Weron, 2014; Gharleghi et al., 2014; Kock and Teräsvirta, 
2014; Ben Taieb et al., 2012; Crone et al., 2011; Andrawis et al., 2011; Carbonneau et 
al., 2008). ML is based on the construction of algorithms that learn through experience. 
The main ML forecasting methods are support vector regression (SVR) and artificial 
neural network (ANN) models. Plakandaras et al. (2015) propose a hybrid forecasting 
methodology that combines an ensemble empirical mode decomposition algorithm with 
a SVR model to forecast the U.S. real house price index. Lin et al. (2012) also combine 
an algorithm for time series decomposition with a SVR model for foreign exchange rate 
forecasting. Kao et al. (2013) and Kim (2003) use different SVR models for stock index 
forecasting. Tay and Cao (2001, 2002) apply support vector machines in financial time 
series forecasting. 

Stasinakis et al. (2015) use a radial basis function ANN to forecast U.S. 
unemployment. Feng and Zhang (2014) and Aminian et al. (2006) use ANN models in 
forecasting of economic growth. Sermpinis et al. (2012) and Lisi and Schiavo (1999) 
make exchange rates predictions by means of several ANNs. Sarlin and Marghescu 
(2011) generate visual predictions of currency crisis by means of a self-organizing map 
ANN model. Adya and Collopy (1998) evaluate the effectiveness of ANN models at 
forecasting and prediction. A complete summary on the use of ANNs with forecasting 
purposes can be found in Zhang et al. (1998). 

Whilst SVR and ANN models have been widely used in economic modelling and 
forecasting, other ML techniques such as Gaussian process regression (GPR) have been 
barely applied for forecasting purposes (Andrawis et al., 2011; Ahmed et al., 2010; 
Banerjee et al., 2008; Chapados and Bengio, 2007; Brahim-Belhouari and Bermak, 
2004; Girard et al. 2003). GPR was originally devised for interpolation. The works of 
Smola and Barlett (2001), MacKay (2003), and Williams and Rasmussen (2006) have 
been key in the development of GPR models. By expressing the model in a Bayesian 
framework, the authors extend GPR applications beyond spatial interpolation to 
regression problems. GPR models are supervised learning methods based on a 
generalized linear regression that locally estimates forecasts by the combination of 
values in a kernel (Rasmussen, 1996). Thus, GPR models can be regarded as a non-
parametric tool for regression in high dimensional spaces. One of the limitations of the 
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current methods for GPR is that the framework is inherently one dimensional, i.e. the 
framework is designed for multiple inputs and a single output. GPR models present one 
fundamental advantage over other ML techniques: they provide full probabilistic 
predictive distributions, including estimations of the uncertainty of the predictions. 
These features make GPR an ideal tool for forecasting purposes. 

This paper presents an extension of the GPR model for MIMO forecasting. This 
approach allows to preserve the stochastic properties of the training series in multiple-
step ahead prediction (Ben Taieb et al., 2010). By extending conventional local 
modelling approaches we are able to model the cross-dependencies between a given set 
of time series, returning a vectorial forecast. The structure of the proposed model, 
consists of a batch of univariate forecasting modules based on Gaussian regression, 
followed by a linear regression that takes into account the cross-influences between the 
different forecast. 

ML methods are particularly suitable to model phenomena that presents nonlinear 
interactions between the input and the output. The complex nature behind the data 
generating process of economic variables such as tourism demand, explains the 
increasing use of of ML methods in this area. There is wide evidence in favour of ML 
methods when compared to time series models for tourism demand forecasting (Akin, 
2015; Claveria and Torra, 2014; Wu et al., 2012, Hong et al., 2011; Chen and Wang, 
2007; Giordano et al., 2007; Cho, 2003; Law, 2000 and Law and Au, 1999). Tsaur and 
Kuo (2011) and Yu and Schwartz (2006) use fuzzy time series models to predict 
tourism demand. Celotto et al. (2012) and Goh et al. (2008) apply rough sets algorithms. 
Other authors combine different ML techniques in order to refine forecasts of tourism 
demand (Cang 2014; Cang and Yu 2014; Pai et al. 2014; Shahrabi et al. 2013). Peng et 
al. (2014) use a meta-analysis to examine the relationships between the accuracy of 
different forecasting models and the data characteristics in tourism forecasting studies. 
Athanasopoulos et al. (2011) carry a thorough evaluation of various methods for 
forecasting tourism data. 

In spite of the desirable properties of GPR models, there is only one previous study 
that uses GPR for tourism demand forecasting (Wu et al., 2012). The authors use a 
sparse GPR model to predict tourism demand to Hong Kong and find that its forecasting 
capability outperforms those of the autoregressive moving average (ARMA) and SVR 
models. We attempt to cover this deficit, and to break new ground by proposing an 
extension of the GPR model for MIMO modelling, and assessing its forecasting 
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performance. We make use of international tourist arrivals to all seventeen regions of 
Spain. By incorporating the connections in tourism demand to all regions, we generate 
forecasts to all markets simultaneously. We finally compare the forecasting 
performance of the GPR model to that of a multi-layer perceptron (MLP) ANN in a 
MIMO setting. This strategy is cost-effective in computational terms, and seems 
particularly indicated for regional forecasting. 

Several regional studies have been published in recent years (Lehmann and 
Wohlrabe, 2013), but only a few regarding tourism demand forecasting. Gil-Alana et al. 
(2008) use different time-series models to models international monthly arrivals in the 
Canary Islands. Bermúdez et al. (2009) generate prediction intervals for hotel 
occupancy in three provinces of Spain by means of a multivariate exponential 
smoothing model. The first attempt to use ML methods for tourism demand forecasting 
in Spain is that of Palmer et al. (2006), who design a MLP ANN to forecast tourism 
expenditure in the Balearic Islands. Medeiros et al. (2008) develop an ANN-GARCH 
model to estimate demand for international tourism also in the Balearic Islands. 
Claveria et al. (2015) compare the forecasting performance of three ANN architectures 
to forecast tourist arrivals to Catalonia. 

The main aim of this study is to provide researchers with a novel approach for 
MIMO forecasting, and a method for modelling cross-dependencies. The proposed 
extension of the GPR model to the MIMO framework allows incorporating the 
relationships between the different response variables in order to generate a a vector of 
predictions. 

The study is organized as follows. The next section presents the proposed extension 
of the GPR model to the MIMO case. In section 3 we briefly describe the data. Section 
4 reports the results of the multiple-step ahead forecasting comparison carried out to test 
the effectiveness of the model. The last section provides a summary of the theoretical 
and practical implications, and potential lines for future research. 
 
2 Methodology – Forecasting models 
 
2.1 Gaussian Process Regression (GPR) 
 

GPR was conceived as a method for multivalued interpolation, and was first 
developed by Matheron (1973) based on the geostatistic works of Krige (1951). The 
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works of MacKay (2003), Williams and Rasmussen (2006) and Smola and Barlett 
(2001) have been crucial in the development of GPR. By expressing the model in a 
Bayesian framework, different statistical methods can be implemented in GPR models. 
Therefore GPR applications can be extended beyond spatial interpolation to regression 
problems, estimating the weights of observed values form temporal lags and spatial 
points using the known covariance structures. Detailed information about GPR can be 
found in Williams and Rasmussen (2006). 

The GPR model assumes that the inputs ix  have a joint multivariate Gaussian 
distribution characterized by an analytical model of the structure of the covariance 
matrix (Rasmussen, 1996). The key point of the GPR is the possibility of specifying the 
functional form of the covariance functions, which allows to introduce prior knowledge 
about the problem into the model. Note that the functional dependency between 
variables in the covariance function does not need to be a cross product, but can be any 
function that takes into account the similarity between the input data points and also 
complies with the properties of a covariance. 

An important point in which GPR differs from linear regression, is that the method 
assumes a probability distribution over the set of functions to be estimated, which 
allows for determining families of regression functions with specific functional forms. 
Formally, the training set       nn yxyxyxD ,,,,,, 2211   consists of a set of tuples, and 
it is assumed to be drawn from the following process: 

  εxfy ii  , with  2,0~ σNε , (1) 
being ix  an input vector in an Euclidean space of dimension d , i.e. dR ; and iy  the 
target, which is a scalar output in 1R . This framework allows to estimate a function 
from 1RRd  . For notational convenience, we aggregate the inputs and the outputs 
into matrix  nxxxX ,,, 21   and vector  nyyyy ,,, 21   respectively. 

The joint distribution of the variables is the conditional Gaussian distribution 
 Xyp , which has the following form: 
    IσXXKNXyp 2,,0  ,  (2) 

where I  is the identity matrix, and  XXK ,  the covariance matrix, also referred to as 
the kernel matrix, with elements  jiij xxK , . The kernel function  xxk ,  is a measure of 
the distance between input vectors. The kernel function should reflect the a priori 
knowledge about the problem at hand. 



 6 

The kernel does not need to be strictly a matrix of cross-products between the input 
vectors. Kernels may incorporate a distance, or an exponential of a distance. In this 
study we make use of a radial basis kernel with a linear trend, which assumes a local 
continuity of the response variable: 

       



  j

T
i

ji
T

ji
jiij xxxxxxxxkK 2

2
2exp, , (3) 

where 2υ  controls the prior variance, and λ  is a parameter that controls the rate of 
decay of the covariance by determining how far away ix  must be from jx  for if  to be 
unrelated to jf . Note that the underlying operation is framed in the field of 
interpolation. For other examples of kernels see MacKay (2003) and Williams and 
Rasmussen (2006). The hyperparameters  κγλυ ,,,  are estimated by maximum 
likelihood in: 

        πnIσXXKyIσXXKyxyp T 2log2,log2
1,2

1log 212   . (4) 
Given the subscripts of the variables that determine the covariance matrix, f  and the 

predictive outputs *f , by making use of the Bayesian inference, the joint posterior 
distribution is: 
      Xyp

ffpfypyffp ** ,,  ,  (5) 
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   IfNfyp 2,~  ,  (7) 
where ffK ,  is the covariance matrix of the training data, ffK *,  a matrix that gives the 
the mapping of the kernel on the combinations of test and train inputs, and **, ffK  the 
kernel matrix of the test inputs. 

The output given by the the GPR consists of a Gaussian predictive distribution  yfp *  that is characterized by mean μ  and variance  . Therefore, the GPR model 
specification is given by equations: 

     yIσXXKXXKμ 12,*,  ,  (8) 
        *,,*,**, 12 XXKIσXXKXXKXXK  . (9) 
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In this research, we use the mean value of the distribution as the predicted value of 
the GPR. For a given set of inputs  **2*1 ,,,* nxxxX  , which optionally could consist of 
a single observation, we compute the output *f  as μ . 

In this study we propose an extension of the GRP model for MIMO modelling, 
basing this extension on an analogy to radial basis functions. In this analogy, each single 
GPR gives a prediction of the value of each individual predictor, and a multivariate 
linear regression combines these outputs into a new output vector. That is, we use a set 
of univariate predictors followed by a matrix product that takes into account the cross-
dependencies of the outputs in order to improve the performance of each single GPR. In 
this case we have a Md RR   mapping, where M  is the dimension of the output. This 
extension is applied by following a two-step training: 

(i) First, we train and generate supervised forecasts for each time series. That is for 
each multivariate input, we compute a vector of outputs *f  of the trained GPR. 

(ii) In the second step, we estimate a regularized linear regression (Haykin, 2008) 
from a training set that consists of tuples,       nnf yfyfyfD ,,,,,, 2211  . The 
coefficients of the matrix corresponding to this regularized linear regression will be 
denote as regW . Therefore, the predictions, which we denote as *y , are generated by 
means of the following expression: 

** fWy reg .  (10) 
This procedure will be referred to as MIMO GPR. 
 
2.2 Multi-layer Perceptron (MLP) Artificial Neural Network (ANN) 
 
Many different NN models have been developed since the 1980s. The most widely used 
feed-forward topology in tourism demand forecasting is the MLP network (Liang, 2014; 
Teixeira and Fernandes, 2012; Lin et al., 2011; Zhang and Qi, 2005). In feed-forward 
networks the information runs only in one direction. MLP networks are supervised 
neural networks that use a simple perceptron model as a building block. The topology is 
based on layers of parallel perceptrons, with a nonlinear function at each perceptron. 
The specification of a MLP network with an input layer, a hidden layer, and an output 
layer is defined by: 
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where ty  is the output vector of the network at time t ; itx   is the input value at time 
it  , where i  stands for the number of lags that are used to introduce the context of the 

actual observation; jβ  are the weights connecting the output of the neuron j  at the 
hidden layer with the output neuron; ijw  stand for the weights of neuron j  connecting 
the input with the hidden layer, and g  is the nonlinear function of the neurons in the 
hidden layer. We denote q  as the number of neurons in the hidden layer, which 
determines the MLP network’s capacity to approximate a given function. We use values 
from 5 to 30 with an increase proportional to the length of the forecasting horizon. 

As with the GPR model, we also apply a MIMO approach by estimating a regularized 
linear regression (Haykin, 2008), and generate the vectorial forecasts using the set of 
regularized coefficients. 

The estimation of the parameters is done by cross-validation (Bishop, 2006). We 
divide the database into three sets: training, validation and test. The validation set is 
used to determine the stopping time for the training and the number of neurons in the 
hidden layer. The test set is used to estimate the generalization performance of the 
network, that is the performance on unseen data (Bishop, 1995; Ripley, 1996). 

Once the topology of the model is specified, the estimation of the weights of the 
networks can be done by means of different algorithms. In this study we use the 
Levenberg-Marquardt (LM) algorithm. To avoid the possibility that the search for the 
optimum value of the parameters finishes in a local minimum, we use a multi-starting 
technique that initializes the NN several times for different initial random values, trains 
the network and chooses the one with the best result on the validation set. 

Based on these considerations, the first ninety-six monthly observations (from 
January 1999 to December 2006) are selected as the initial training set, the next sixty 
(from January 2007 to December 2011) as the validation set, and the last 15% as the test 
set. For an iterated multi-step-ahead forecasting comparison the partition between train 
and test sets is done sequentially: as the prediction advances, past forecasts are 
successively incorporated to the training database in a recursive way. 
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3 Dataset 
 
Tang and Abosedra (2015), Pérez-Rodríguez et al. (2015) and Chou (2013) have shown 
the important role of tourism in economic growth. In this study we use data on 
international tourism demand to all regions of Spain provided by the Spanish Statistical 
Office (National Statistics Institute – INE – www.ine.es). Data include the monthly 
number of tourist arrivals at a regional level over the time period 1999:01 to 2014:03. A 
MIMO approach to regional economic modelling is particularly appropriate when the 
desired outputs are connected (Claveria et al., 2015). In Fig. 1 we present the frequency 
distribution of tourist arrivals by region during the sample period. We can see that most 
tourist arrivals are concentrated in the Mediterranean coast and the islands, being 
Catalonia, the Balearic Islands and Andalusia the regions that received the higher 
number of tourist arrivals, which almost amounted to 60% of total tourist demand. 
 

 
Fig. 1 Frequency distribution of tourist arrivals to Spain by region (mean from 1999:01 to 2014:03) 
 

Table 1 shows a descriptive analysis of the data for the out-of-sample period 
(2012:01 to 2014:03). The mean of tourist arrivals shows that the main destinations are 
Catalonia, the Balearic Islands and Andalusia. The Balearic Islands and Catalonia 
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present the highest peaks in demand. Arrivals to the Balearic Islands show the highest 
dispersion. 
Table 1. Descriptive analysis of foreign tourist arrivals (2012:01-2014:03) 
Region Minimum Maximum Mean Standard 

deviation Skewness Kurtosis 
Andalusia 237,744 770,987 496,549.3 192,639.5 -0.13 -1.70 
Aragon 14,792 59,194 31,359.3 12,915.7 0.46 -0.97 
Asturias 3,347 33,714 14,092.4 9,597.3 0.56 -1.11 
Balearic Islands 23,446 1,387,491 551,636.0 545,838.5 0.44 -1.63 
Canary Islands 385,225 619,311 499,375.4 56,536.1 0.07 -0.35 
Cantabria 3,577 32,070 14,870.8 10,503.4 0.42 -1.49 
Castilla-Leon 23,317 134,683 67,108.0 36,092.0 0.25 -1.51 
Castilla-La Mancha 13,209 36,444 24,822.6 8,266.0 -0.16 -1.65 
Catalonia 336,275 1,442,017 801,443.7 369,301.5 0.28 -1.42 
Valencia 103,522 322,857 207,634.5 67,098.1 -0.10 -1.40 
Extremadura 6,797 24,817 14,115.8 5,045.3 0.15 -1.00 
Galicia 15,890 126,066 60,342.3 40,727.1 0.30 -1.63 
Madrid  240,349 432,430 342,618.9 62,420.2 -0.17 -1.47 
Murcia 8,607 22,480 15,126.3 3,763.6 0.11 -0.90 
Navarra 4,416 35,152 16,346.1 10,355.8 0.49 -1.27 
Basque Country 31,597 142,644 70,214.0 34,130.0 0.59 -0.83 
La Rioja 2,157 15,404 6,824.1 4,190.2 0.58 -0.78 
Total 1,583,237 5,283,691 3,234,479 1,337,386 0.17 -1.69 
 
4 Results of the experiment 
 
In a recent and comprehensive comparison on the M3 dataset for the major ML models 
for time series forecasting, Ahmed et al. (2010) find that MLP ANN and GPR models 
present the best results. Therefore, to assess the forecasting performance of the proposed 
extension of the GPR model, we compare it to that of a MLP ANN in a MIMO setting. 
First, we estimate the models and generate forecasts for different forecast horizons 
(h=1, 2, 3 and 6 months). Then, by means of several forecast accuracy measures, we 
summarize the results for the out-of-sample period. First, we compute the relative mean 
absolute percentage error (rMAPE) statistic (Table 2), that ponders the MAPE of the 
model under evaluation against the MAPE of the benchmark model. Next, we run the 
Diebold-Mariano (DM) test (Diebold and Mariano, 1995) using a Newey-West type 
estimator, and a modified DM (M-DM) test (Harvey et al., 1997) to analyse whether the 
reductions in MAPE are statistically significant (Table 2). The null hypothesis of the 
test is that the difference between the two competing series is non-significant. A 
negative sign of the statistic implies that the MLP ANN model has bigger forecasting 
errors.  
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Table 2 
Forecast accuracy – MIMO GPR vs. MIMO ANN model - rMAE and DM test (2013:01-2014:01) 
Region Statistic Forecast horizon   

h=1 h=2 h=3 h=6 
Andalusia rMAE 0.803 0.724 0.821 0.977 
 DM -3.828 -5.386 -4.619 -2.113 
 M-DM -15.312 -22.948 -20.894 -11.242 
Aragon rMAE 0.805 0.781 0.825 1.219 
 DM -0.376 -2.204 -2.294 2.192 
 M-DM -1.504 -9.391 -10.377 11.663 
Asturias rMAE 0.683 0.742 0.889 0.845 
 DM -1.301 -2.823 -2.517 0.660 
 M-DM -5.204 -12.028 -11.386 3.512 
Balearic 
Islands 

rMAE 1.074 0.54 0.562 1.586 
DM -1.102 -3.404 -3.553 -0.239 

M-DM -4.408 -14.504 -16.072 -1.272 
Canary 
Islands 

rMAE 1.132 1.073 1.01 0.967 
DM 2.768 0.891 0.256 -0.898 

M-DM 11.072 3.796 1.158 -4.778 
Cantabria rMAE 0.785 0.852 0.689 0.769 
 DM -2.499 -3.326 -3.798 0.058 
 M-DM -9.996 -14.171 -17.180 0.309 
Castilla-Leon rMAE 0.751 0.632 0.601 0.934 
 DM -1.948 -4.885 -3.15 1.040 
 M-DM -7.792 -20.814 -14.249 5.533 
Castilla-La 
Mancha 

rMAE 0.623 0.432 0.47 0.669 
DM -2.987 -4.548 -3.781 -2.239 

M-DM -11.948 -19.378 -17.103 -11.913 
Catalonia rMAE 0.756 0.71 0.857 1.145 
 DM -1.635 -2.107 -1.683 2.405 
 M-DM -6.540 -8.977 -7.613 12.796 
Valencia rMAE 0.902 0.942 0.835 0.981 
 DM -1.341 -2.429 -3.153 -2.744 
 M-DM -5.364 -10.349 -14.262 -14.599 
Extremadura rMAE 0.915 0.919 0.954 0.861 
 DM -0.685 -1.863 -2.259 -1.933 
 M-DM -2.740 -7.938 -10.218 -10.285 
Galicia rMAE 0.812 0.761 0.862 0.775 
 DM -1.536 -3.409 -2.314 -0.4 
 M-DM -6.144 -14.525 -10.467 -2.128 
Madrid  rMAE 1.182 0.986 1.078 1.014 
 DM 0.361 0.325 0.950 0.962 
 M-DM 1.444 1.385 4.297 5.118 
Murcia rMAE 1.019 0.845 0.959 0.967 
 DM -0.007 -3.069 -4.365 -3.397 
 M-DM -0.028 -13.076 -19.745 -18.074 
Navarra rMAE 0.735 0.643 0.925 1.205 
 DM -1.395 -3.052 -2.534 2.11 
 M-DM -5.580 -13.004 -11.462 11.226 
Basque 
Country 

rMAE 0.838 0.801 0.808 1.074 
DM -2.142 -1.76 -1.416 1.008 

M-DM -8.568 -7.499 -6.405 5.363 
La Rioja rMAE 0.951 0.653 0.6 0.908 
 DM -0.533 -3.585 -3.221 -0.046 
 M-DM -2.132 -15.275 -14.570 -0.245 
Note: The rMAPE ponders the MAPE of the model under evaluation against the MAPE of the 
benchmark model. We use a MIMO MLP ANN model as a benchmark. The 5% level critical value 
for the Diebold-Mariano (DM) loss-differential test statistic for predictive accuracy is 2.028.   
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Table 2 shows the overall performance of the compared forecasting models on all 
regions. The best forecasting performance is obtained with the MIMO GPR model. 
Nevertheless, in Catalonia, Extremadura and the Basque Country, the improvement of 
the GPR model is not statistically significant. There are only two regions in which the 
ANN model presents lower MAPE values: the Canary Islands and Madrid, but the 
differences between both methods are not significant in three out of the four forecasting 
horizons. In spite of the fact that we obtain the most accurate predictions for longer 
forecasting horizons (h=6), we find that the improvement of the MIMO GPR model 
with respect to the MIMO ANN becomes more prominent for intermediate forecasting 
horizons (2 and 3 months). 

In Fig. 2 we compare the rMAPE results for one- and three-month ahead forecasts 
(h=1 and h=3). The graph indicates that there are only four regions in which the rMAPE 
is higher than one for h=1, that is the ANN outperforms the GPR model for one-month 
ahead forecasts: the Balearic and the Canary Islands, Madrid and Murcia. Of these four 
regions, just two (the Canary Islands and Madrid) still obtain a rMAPE higher than one 
for h=3. The fact that these two regions do not present seasonal patterns, suggests that 
GPR are more suitable for seasonal forecasting than ANN models. 

 

 
Fig. 2 Dispersion graph between rMAPFE for h=1 and h=3 
 

Finally, in Table 3 we present the results of the percentage of periods with lower 
absolute error (PLAE) statistic proposed by Claveria et al. (2015). The PLAE can be 
regarded as a variation of the ‘percent better’ measure used to compare the forecast 
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accuracy of the models to a random walk (Makridakis and Hibon, 2000). See 
Makridakis et al. (1998) and Witt and Witt (1992) for an appraisal of different 
forecasting accuracy measures. The PLAE is a dimensionless measure based on the CJ 
statistic for testing market efficiency (Cowles and Jones, 1937). In this study we use the 
naïve model as a benchmark. 

 
Table 3 
Forecast accuracy - PLAE - GPR with respect to MLP ANN model (2013:01-2014:01) 
Region Forecast horizon   

h=1 h=2 h=3 h=6 
Andalusia 69.2 53.8 61.5 61.5 
Aragon 38.5 53.8 69.2 15.4 
Asturias 61.5 76.9 53.8 23.1 
Balearic Islands 76.9 69.2 76.9 61.5 
Canary Islands 30.8 23.1 46.2 53.8 
Cantabria 76.9 69.2 76.9 46.2 
Castilla-Leon 69.2 69.2 76.9 46.2 
Castilla-La Mancha 76.9 61.5 76.9 69.2 
Catalonia 38.5 69.2 53.8 7.7 
Valencia 38.5 46.2 53.8 53.8 
Extremadura 53.8 53.8 61.5 69.2 
Galicia 69.2 76.9 53.8 53.8 
Madrid  23.1 38.5 30.8 23.1 
Murcia 30.8 61.5 53.8 61.5 
Navarra 76.9 76.9 69.2 15.4 
Basque Country 53.8 61.5 53.8 30.8 
La Rioja 69.2 76.9 61.5 38.5 
Note: Percentage of PLAE values. The PLAE ratio measures the number of out-of-sample periods with 
lower absolute errors than the benchmark model (MLP ANN)  

The PLAE allows us to compare the forecasting performance between two competing 
models. This accuracy measure consists of a ratio that gives the proportion of periods in 
which the model under evaluation obtains a lower absolute forecasting error than the 
benchmark model. Let us denote ty  as actual value and tŷ  as forecast at period 

nt ,,1 . Forecast errors can then be defined as ttt yye ˆ . Given two competing 
models A  and B , where A  refers to the forecasting model under evaluation and B  
stands for benchmark model, we can then obtain the proposed statistic as follows: 

,1
nPLAE nt t    where 

  otherwise.   
 if   

0
,1 ,, BtAt

t
ee   (12) 

Table 3 shows that the MIMO GPR is the model that outperforms the naïve model in 
more cases. Special mention should be made of the Canary Islands and the Community 
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of Madrid, where neither model outperforms the naïve model regardless of the forecast 
horizon. This result can be explained by the fact that they are the only regions that do 
not show seasonal patterns. For short term forecasts, the naïve method is hard to beat. 
There is ample evidence in the literature that the no-change model generates more 
accurate one-period-ahead predictions than other more sophisticated models (Witt et al., 
1994). 

To summarize, we find that the overall forecasting performance improves for longer 
forecast horizons. This evidence confirms previous research by Teräsvirta et al. (2005), 
who obtain more accurate forecasts with ANN models at long forecast horizons. This 
result is indicative that ML techniques are particularly suitable for medium and long 
term forecasting. 

Regarding the different methods, we obtain better predictions with the GPR model 
than with the ANN. This improvement is more generalized for intermediate forecast 
horizons. Despite being the first study to apply a MIMO approach for GPR forecasting, 
our results are in line with those obtained by Wu et al. (2012), who find evidence that a 
sparse GPR model yields better forecasting results than ARMA and SVR models. 
 
5 Concluding remarks and future work 
 
As more accurate predictions become crucial for effective management and policy 
planning, new forecasting methods provide room for improvement. Machine learning 
techniques are playing a pivotal role in the refinement of economic predictions. With 
this objective, we propose an extension of the Gaussian process regression model for 
multiple-input multiple-output forecasting. This approach allows modelling the cross-
dependencies between a given set of input variables and generating a vector prediction. 

The main theoretical contribution of this study to the economic literature is the 
development of a new approach to improve the forecasting accuracy of computational 
intelligence techniques based on machine learning. The increasing economic importance 
of the tourism industry worldwide has led to a growing interest in new approaches to 
tourism modelling and forecasting. Making use of the interdependencies in international 
tourism demand to all seventeen regions of Spain, we design a multiple-input multiple-
output framework that incorporates the existing cross-correlations in tourist arrivals to 
all markets, and allows to estimate tourism demand to all destinations simultaneously. 

We evaluate the performance of the new method by comparing it to a standard neural 
network in a multiple-step-ahead forecasting comparison. We find that the proposed 
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extension of the Gaussian process regression outperforms the benchmark model. We 
obtain the best forecasting results for the longest forecast horizons, suggesting the 
suitability of machine learning techniques for mid and long term forecasting. As a 
result, our research reveals the suitability of a multiple-output Gaussian process 
regression model for regional economic forecasting, and highlights the importance of 
taking into account the connections between different markets when modelling regional 
variables with machine learning techniques. The assessment of alternative kernel 
functions on the forecasting accuracy is a question to be addressed in further research. 
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