15,784 research outputs found

    Consistent SDNs through Network State Fuzzing

    No full text
    The conventional wisdom is that a software-defined network (SDN) operates under the premise that the logically centralized control plane has an accurate representation of the actual data plane state. Nevertheless, bugs, misconfigurations, faults or attacks can introduce inconsistencies that undermine correct operation. Previous work in this area, however, lacks a holistic methodology to tackle this problem and thus, addresses only certain parts of the problem. Yet, the consistency of the overall system is only as good as its least consistent part. Motivated by an analogy of network consistency checking with program testing, we propose to add active probe-based network state fuzzing to our consistency check repertoire. Hereby, our system, PAZZ, combines production traffic with active probes to continuously test if the actual forwarding path and decision elements (on the data plane) correspond to the expected ones (on the control plane). Our insight is that active traffic covers the inconsistency cases beyond the ones identified by passive traffic. PAZZ prototype was built and evaluated on topologies of varying scale and complexity. Our results show that PAZZ requires minimal network resources to detect persistent data plane faults through fuzzing and localize them quickly

    Consistent SDNs through Network State Fuzzing

    Full text link
    The conventional wisdom is that a software-defined network (SDN) operates under the premise that the logically centralized control plane has an accurate representation of the actual data plane state. Unfortunately, bugs, misconfigurations, faults or attacks can introduce inconsistencies that undermine correct operation. Previous work in this area, however, lacks a holistic methodology to tackle this problem and thus, addresses only certain parts of the problem. Yet, the consistency of the overall system is only as good as its least consistent part. Motivated by an analogy of network consistency checking with program testing, we propose to add active probe-based network state fuzzing to our consistency check repertoire. Hereby, our system, PAZZ, combines production traffic with active probes to periodically test if the actual forwarding path and decision elements (on the data plane) correspond to the expected ones (on the control plane). Our insight is that active traffic covers the inconsistency cases beyond the ones identified by passive traffic. PAZZ prototype was built and evaluated on topologies of varying scale and complexity. Our results show that PAZZ requires minimal network resources to detect persistent data plane faults through fuzzing and localize them quickly while outperforming baseline approaches.Comment: Added three extra relevant references, the arXiv later was accepted in IEEE Transactions of Network and Service Management (TNSM), 2019 with the title "Towards Consistent SDNs: A Case for Network State Fuzzing

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    SmartUnit: Empirical Evaluations for Automated Unit Testing of Embedded Software in Industry

    Full text link
    In this paper, we aim at the automated unit coverage-based testing for embedded software. To achieve the goal, by analyzing the industrial requirements and our previous work on automated unit testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the engineering requirements that take place in our partner companies. SmartUnit is a dynamic symbolic execution implementation, which supports statement, branch, boundary value and MC/DC coverage. SmartUnit has been used to test more than one million lines of code in real projects. For confidentiality motives, we select three in-house real projects for the empirical evaluations. We also carry out our evaluations on two open source database projects, SQLite and PostgreSQL, to test the scalability of our tool since the scale of the embedded software project is mostly not large, 5K-50K lines of code on average. From our experimental results, in general, more than 90% of functions in commercial embedded software achieve 100% statement, branch, MC/DC coverage, more than 80% of functions in SQLite achieve 100% MC/DC coverage, and more than 60% of functions in PostgreSQL achieve 100% MC/DC coverage. Moreover, SmartUnit is able to find the runtime exceptions at the unit testing level. We also have reported exceptions like array index out of bounds and divided-by-zero in SQLite. Furthermore, we analyze the reasons of low coverage in automated unit testing in our setting and give a survey on the situation of manual unit testing with respect to automated unit testing in industry.Comment: In Proceedings of 40th International Conference on Software Engineering: Software Engineering in Practice Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEIP '18), 10 page

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints
    • …
    corecore