243 research outputs found

    ADACOR: a holonic architecture for agile and adaptive manufacturing control

    Get PDF
    In the last decades significant changes in the manufacturing environment have been noticed: moving from a local economy towards a global economy, with markets asking for products with higher quality at lower costs, highly customised and with short life cycle. In these circumstances, the challenge is to develop manufacturing control systems with intelligence capabilities, fast adaptation to the environment changes and more robustness against the occurrence of disturbances. This paper presents an agile and adaptive manufacturing control architecture that addresses the need for the fast reaction to disturbances at the shop floor level, increasing the agility and flexibility of the enterprise, when it works in volatile environments. The proposed architecture introduces an adaptive control that balances dynamically between a more centralised structure and a more decentralised one, allowing combining the global production optimisation with agile reaction to unexpected disturbances

    Towards autonomy, self-organisation and learning in holonic manufacturing

    Get PDF
    This paper intends to discuss self-organisation and learning capabilities in autonomous and cooperative holons that are part of a holonic manufacturing control system. These capabilities will support the dynamic adaptation of the manufacturing control to the manufacturing evolution and emergency, specially the agile reaction to unexpected disturbances

    The holonic approach for flexible production: a theoretical framework

    Get PDF
    This paper discusses the body of knowledge about Holonic Approach to theoretically demonstrate how Holonic Production System (HPS) can be a convincing choice to overcome the problems of traditional production systems? architectures. Today, enterprises are trying to find ways to manage the growing environmental complexity that is well described by Complex Systems Theory (CST). After the focus on the main problem regarding environmental complexity, the Holonic system and the Holonic Production System will be analyzed. The paper will focus the potential of HPS to adapt and react to changes in the business environment whilst being able to maintain systemic synergies and coordination through the holonic structure where functional production units are simultaneously autonomous and cooperative

    Robustness Analysis of Holonic Multi-Agent Systems: Application to Traffic Signals Control

    Get PDF
    Multi-Agent Systems (MASs) provide a powerful tool to model distributed systems. Large-scale systems contain many autonomous agents, and therefore, the agents should be able to work in a group and collaborate toward common objectives. Holonic Multi-Agent Systems (HMASs) present a suitable organization, especially in large-scale systems. The idea behind HMASs is a division of a system into smaller sub-systems in a recurrent way. A holon is defined as a self-similar structure that comprises holons as sub-structures. Therefore, a holarchy is a hierarchy of holons that act as autonomous wholes in super-ordination to their parts and as dependent parts in sub-ordination to controls on higher levels. There are two main attributes for a holarchy, the first attribute ensures that holons are in stable forms, which are robust against disturbances. The second one confirms that the holons are in intermediate forms, which provide the proper functionality for the whole. In this paper, we study the robustness of a holarchy for traffic signals control. Robustness is an essential feature for providing reliable solutions, especially in real world applications. We show that holonic MAS can be effectively used for traffic signals control as a robust modeling method

    Reconfigurable production control systems: beyond ADACOR

    Get PDF
    In the recent evolution of production control systems, the emergence of decentralized systems capable of dealing with the rapid changes in the production environment better than the traditional centralized architectures has been one of the most significant developments. The agent-based and holonic paradigms symbolize this approach, and ADACOR holonic control architecture is a successful example of such a system. In this paper, authors discusses the current challenges and the way to go in the direction of new, reconfigurable, evolvable and ubiquitous systems, able to respond to current production environment demands and variability

    From the Internet of Things to Cyber-Physical Systems: The Holonic Perspective

    Get PDF
    The paper presents a distributed model for implementing Cyber-Physical Systems aimed at controlling physical entities through the Internet of Things. The model tames the inherent complexity of the task by a recursive notion of modularity which makes each module both a controller and a controlled entity. Modules are arranged along part-whole tree-like hierarchies which collectively constitute the system. The behaviour of each module is strictly local since it has visibility only on its controlled modules, but not on the module which controls it. Each behaviour can be thus checked locally at design time against safety and liveness formulas, which still hold when component holons are composed into more complex ones, thus contributing, without the need of additional checks, to the overall safety and liveness of the final system

    Adaptive scheduling based on self-organized holonic swarm of schedulers

    Get PDF
    Scheduling plays an important role in the companies’ competiveness, dealing with complex combinatorial problems subject to uncertainty and emergence. In particular, in the ramp-up phase of small lot-sizes of complex products, scheduling is more demanding, e.g. due to late requests and immature technology products and processes. This paper presents the principles of a distributed scheduling architecture based on holonic and swarm principles and implemented using multi-agent system technology. In particular, it is described the coordination among the network of the swarm of schedulers and analysed the impact of embedded self-organization mechanisms.The research leading to these results has received funding from the European Union Seventh Framework Programme FP7 ARUM project, under grant agreement n° 314056.info:eu-repo/semantics/publishedVersio

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port
    corecore