
Towards Autonomy, Self-Organisation and Learning in 
Holonic Manufacturing 

Paulo Leitão1 and Francisco Restivo2 

1 Polytechnic Institute of Bragança,  
Quinta Santa Apolónia, Apartado 134, P-5301-857 Bragança, Portugal, pleitao@ipb.pt 

2 Faculty of Engineering, University of Porto 
Rua Dr. Roberto Frias, P-4200-465 Porto, Portugal, fjr@fe.up.pt 

Abstract. This paper intends to discuss self-organisation and learning 
capabilities in autonomous and cooperative holons that are part of a holonic 
manufacturing control system. These capabilities will support the dynamic 
adaptation of the manufacturing control to the manufacturing evolution and 
emergency, specially the agile reaction to unexpected disturbances. 

1. Introduction 

The manufacturing systems are complex non-linear systems, since the occurrence of a 
disturbance causes non-linear impact in the system. As some of the effects of the 
disturbance can remain in the system after the resolution of the event that originated 
the disturbance, their occurrence may have severe impact in the performance of 
manufacturing systems. For this reason, it is necessary to measure the system 
performance also in terms of response to change and capability to learn. 
The unpredictability of disturbances and the need to keep the system at work 
independently of their size and rate puts new requirements to manufacturing control 
systems, which have to handle them dynamically and to tell the difference between an 
occasional disturbance and the evolution of the system environment. Additionally, the 
assessment of potential impact of identified disturbances assumes a crucial factor. 
Holonic manufacturing concepts and multi-agent systems implementations seem to 
have the capability to answer to these new problems, due to their decentralisation, 
autonomy and cooperation features. 
This paper describes a manufacturing control architecture, designated by ADACOR, 
based in holonic manufacturing concepts, that aims to address the dynamic adaptation 
of the manufacturing control to the manufacturing evolution, specially the agile 
reaction to unexpected disturbances, by introducing the concepts of autonomy, 
cooperation, learning and self-organisation in each holon and in whole system. 
 
 
                                                           
 
 



2      Paulo Leitão  and Francisco Restivo 

2. Holonic Manufacturing and Multi-Agent Systems 

The emergent requirements for distributed manufacturing systems, namely the 
dynamic adaptation to the manufacturing evolution and emergency, lead to the 
development of dynamic and adaptive manufacturing control systems based in new 
paradigms such as holonic manufacturing and multi-agent systems. 

2.1 Overview of Multi-Agent Systems and Holonic Manufacturing Systems 

The multi-agent system paradigm is characterised by decentralization and the parallel 
execution of activities based on autonomous entities, called agents. The definition of 
agent concept is neither unique nor consensual, existing some discussion in the 
scientific community about the issue, such as described in [1-3]. Despite the several 
definitions and interpretations for agents, a possible definition for agent is [4]: 

An autonomous component, that represents physical or logical objects in the system, 
capable to act in order to achieve its goals, and being able to interact with other 
agents, when it doesn’t possess knowledge and skills to reach alone its objectives. 
Multi-agent system can be defined as a set of agents that represent the system objects, 
capable to interact between themselves, in order to achieve its individual goals.  
The Holonic Manufacturing System (HMS) is a paradigm that translates to the 
manufacturing world the concepts developed by Koestler to living organisms and 
social organizations, mainly that complex systems are hierarchical systems formed by 
intermediate stable forms, being simultaneously a part and a whole [5]. The word 
holon is the representation of this hybrid nature, allowing that a holon can be part of 
another holon, e.g., a holon can be broken into several others holons, which in turn 
can be broken into further holons, which allows the reduction of the problem 
complexity. A holarchy is defined as a system of holons that can cooperate to achieve 
a goal or objective. A HMS is a holarchy, which integrates the entire range of 
manufacturing activities, where key elements, such as machines, products and robots, 
have autonomous and cooperative properties. 
The agent-based and holonic manufacturing systems approaches are developed under 
the same principles of autonomy and cooperation, exploring the distribution and 
decentralisation of entities and functions. Although the similarity of the both 
concepts, there are some few differences that tend to be reduced, since at the moment 
the agent and holonic communities seem to be converging rapidly at the moment. 

2.2 Open Challenges 

In spite of the research developed using the holonic manufacturing paradigm, such as 
referred in [5-9], the holonic manufacturing paradigm presents some open questions 
on the design and implementation of manufacturing applications.  
The first question is related to how it is achieved the global optimisation, since the 
holonic manufacturing approach is based in autonomous entities. In case of formation 
of hierarchies to achieve global optimisation, an open question is related to how 
temporary hierarchies are formed, managed and removed. 



Towards Autonomy, Self-Organisation and Learning in Holonic Manufacturing      3 

In order to be able to integrate different holarchies, other open question is related with 
the definition of common ontologies to support inter-operability and knowledge 
sharing during the interaction processes. This inter-operability has two different 
levels: inter-operability within the same control platform and a more complex inter-
operability related to the integration of different (distributed) control platforms. 
In order to adapt to disturbances, the implementation of self-organisation capabilities 
and the integration of planning, scheduling and plan execution functions, are yet far 
from trivial. The definition of how the learning capabilities of each holon should be 
improved to support the manufacturing evolution and emergency, also remains an 
open challenge.  
At last, one drawback of holonic manufacturing paradigm is the few implementations 
using real industrial scenarios that can prove the advantages of the holonic approach. 

3. ADACOR Holonic Control Architecture 

The ADACOR architecture addresses the dynamic and agile adaptation to 
disturbances and the integration of all manufacturing functions, namely the process 
planning, the scheduling and the plan execution. 

3.1 Architecture Entities 

The architecture, based on the holonic manufacturing systems paradigm, is supported 
by a set of autonomous and intelligent holons, each holon being a representation of a 
manufacturing entity, such as a numerical control machine, a robot or an order. The 
ADACOR architecture considers four classes of manufacturing holons: the product, 
task, operational and supervisor holon [10]. Each product is represented by a product 
holon that contains all knowledge related to the product and process. Manufacturing 
orders to be executed in the factory plant are represented by task holons, which are 
responsible for the control and supervision of their execution. The operational holons 
represent the manufacturing resources, such as operators and robots, managing its 
behaviour and agenda according the resource goals, constraints and skills. 
The product, task and operational holons are quite similar to the product, order and 
resource holons, presented at the PROSA reference architecture [5]. The supervision 
holon, not present in PROSA, introduces coordination and global optimisation in 
decentralised control approaches, coordinating several operational and supervisor 
holons. In normal operation, the supervisor holon supervises and regulates the activity 
of the holons under its domain, while when a disturbance occurs, these holons may 
have to find their way without the help of the supervisor holon. The supervisor holon 
is also responsible for the group formation, based in pre-defined clusters of holons, 
combining synergies, aggregating skills and offering the combined services to 
external entities in the manufacturing system. These groups can be formed to build a 
shop floor, a manufacturing cell, or a machine equipped with a set of tools, assuming 
the supervisor holon the control role of each group. 
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3.2 Fractal Holarchies 

ADACOR architecture presents self-similarity features, since each holon possesses a 
structure and behaviour similar to the ones of the holon where it is encapsulated. An 
operational holon can be a set of several operational or supervisor holons, allowing to 
build holarchies upon fractal holarchies. As an example, a manufacturing cell can be 
represented by an operational holon that comprises several other operational holons, 
each one representing a manufacturing resource, and one supervisor holon 
representing the manufacturing cell controller. In this case the supervisor holon acts 
as the logic component, and the several operational holons act as the physical part of 
the holon. Additionally, each one of those operational holons that represent a 
manufacturing resource can comprise several other operational holons, such as the 
numerical control machine itself and the several tools stored in its tool magazine. 
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Fig. 1. Fractal Feature in ADACOR Approach 

This fractal feature allows high flexibility in the organisation of the control structure, 
creating foundations to support the combination of global optimisation with agile 
reaction to disturbances. Additionally, it allows a modular development through the 
encapsulation of several functions or manufacturing components represented by 
holons in other holons. 

4. Self-Organisation Capability 

The industrial manufacturing systems are stochastic, volatile and dynamic 
environments. The heterarchical control architectures present good reaction to 
disturbances but degrade the global production optimisation; on the other hand, the 
hierarchical approach presents good global optimisation but weak reaction to 
disturbances. The challenge is to develop dynamic and adaptive manufacturing 
control approaches that improve the agility and reaction to unexpected disturbances 
without compromising the global optimisation.  
The ADACOR architecture is neither completely decentralised nor hierarchical, but 
balances between one and the other [4], being the self-organisation crucial to reach 
the dynamic and adaptive control approach. 
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4.1 Autonomy Factor and Propagation Mechanisms 

The self-organisation capability presented in all ADACOR holons allows the dynamic 
adaptation of each holon and the system as a whole to the emergent contexts and the 
quick reaction to the occurrence of unexpected disturbances. This capability supports 
the re-organisation into different control architectures more appropriated to the 
current situation. Self-organisation is supported basically by the autonomy factor and 
the propagation of re-organisation concepts. 
The autonomy factor, α, associated to each operational holon is a parameter that 
introduces a fuzzy degree of autonomy in each holon, and evolves dynamically in 
order to adapt the holon behaviour according its goals and constraints and with the 
environment where it is placed. The autonomy factor is a continuous or discrete 
variable. Currently it is implemented using fuzzy logic, represented by the linguistic 
fuzzy sets {Low, High} and by a fuzzy-rule base. Normally, the operational holons 
have a {Low} autonomy factor, allowing the operational holon to follow the 
supervisor holon coordination [4]. The emergency triggers the change of the 
autonomy factor to {High}, the re-organisation into a heterarchical control structure, 
and the selection of one adequate behaviour to handle the disturbance.  
The need for re-organisation, using pheromone-like techniques, is disseminated to the 
supervisor holons through the propagation and deposit of pheromone to the 
neighbourhood supervisor holons [10]. While spreading the need for re-organisation, 
the holon passes a parameter that reflects the estimated reestablishment time (τ), 
similar to the odour from the pheromone-like techniques, and that is calculated 
according with the type of disturbance and with the historic data. The holons 
associated to each supervisor holon receive the need for re-organisation by sensing 
the pheromone, propagating this need to neighbourhood holons. The dissemination of 
the need for re-organisation, allows the dynamic and continuous adaptation of the 
system to disturbances, reducing the communication overhead and improving the 
reaction to disturbances. 

Table 1. Fuzzy Rule Behaviour for the Adaptive Mechanism 

ρ α τ  New α Action triggered 
High Low - High Trigger selection behaviour. 
High High Elapsed High Reload reestablishment time. 
Low High Elapsed Low Re-organise into default DF. 

- High Not Elapsed - - 
Low Low - - - 

 
The autonomy factor, the reestablishment time and with the pheromone parameter (ρ), 
that is concerned to the odour level of the pheromone or disturbance, jointly allow to 
regulate the adaptive behaviour of the operational holon. The adaptive mechanism 
determines the autonomy and the action to trigger according with Table 1.  
In case that the action triggered be the selection of behaviour, it is necessary to know 
the disturbance type, the actual state of the holon and the historic data in order to 
select the appropriate behaviour and to estimate some required parameters. 
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4.2 Dynamic Production Control Structure Evolution 

The production control is shared between the supervisor holon and the operational 
holons, in order to balance the control structure from a more centralised approach to a 
more flat approach, passing through other intermediate forms of control [4]. 
The proposed adaptive control splits the control evolution into alternative states: 
stationary state, where the behaviour of the system uses coordination levels and the 
supervisor role to get global optimisation of the production process, and the transient 
state, triggered with the occurrence of disturbances and presenting a behaviour quite 
similar to the heterarchical approach in terms of agility to react to disturbances. 
In stationary state the autonomy factor of each operational holon is {Low}, allowing 
the operational holon to follow the schedule proposals sent by the supervisor holon. In 
this state, aiming the global production optimisation, the holons are organised in a 
federated architecture, with the supervisor holons interacting directly with the task 
holons during the operation allocation process. The supervisor holon, as coordinator, 
elaborates optimised schedule plans that proposes to the task holons and to the 
operational holons under its coordination domain [10]. The operational holons see 
these proposals as advices, having enough autonomy to accept or reject the proposed 
schedule. After the allocation of the manufacturing operations, the task holons interact 
directly with the operational holons during the execution of the operations, such as to 
ask for availability of space in the buffer. 
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Fig. 2. Dynamic Re-organisation in Reaction to a Machine Failure 

If, for any reason, the system deviates from planned, it is triggered a control system 
re-organisation, and it enters into the transient state. As illustrated in Fig. 2 for the 
case of a machine failure, the operational holon who detects the disturbance tries to 
recover locally the failure, but if it cannot recover from the failure, the operational 
holon increases the autonomy factor, disseminates the need for a re-organisation to 
the other holons in the system, and according with the type of disturbance selects an 
appropriate behaviour to handle the disturbance. 
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The other holons that sense the propagation, also increase their autonomy factor and 
re-organise themselves into a heterarchical structure. In this state, the task holons can 
interact directly with operational holons to re-schedule their operations, achieving a 
faster but not optimised schedule plan. The operational holons remain in this transient 
state during the reestablishment period, typically a short period of time. When the 
time is elapsed, they verify if the odour is already dissipated or remains active. In case 
that the pheromone remains active, the operational holons stay in the transient phase 
during an additional proportional reestablishment time, until the pheromone be 
dissipated. 
After the disturbance recovery, the operational holons end the reinforcement of the 
pheromone, and the reestablishment and recover times are adjusted and tuned using 
appropriated learning mechanisms. The other holons don’t sense anymore the 
dissemination, reducing their autonomy factor, returning the system to the previous 
control structure. The supervisor holon returns to its coordination function, re-
scheduling the operations in an optimised point of view, and the optimised schedule 
to the operational holons. 

5. Learning Capability 

As an autonomous entity, an ADACOR holon is requested to take decisions about 
what actions it should perform. The introduction of learning capabilities in the holon 
behaviour intends to improve the holon and system performance. 

5.1 Learning to Support the Emergency and Evolution 

According to [12], learning in a multi-agent environment can help agents to improve 
their performance, namely to learn about the partner’s knowledge and strategic 
behaviour, and to react to unexpected events by generalising what they have learned 
during a training stage.  
Learning can be defined as a way to acquire knowledge and skills to adapt the 
behavioural tendencies, and it is crucial to respond to the dynamic evolution of the 
environment where it is placed and to improve the system ability to act in the future, 
by taking better decisions and performing better the required actions. 
Learning is normally performed in result of a decision-making process allowing to 
adjust the decision parameters or even to update the behaviour rules. In the 
manufacturing control context, the learning mechanisms are triggered mainly in the 
following situations: when a process finishes (such as task allocation process and the 
end of the task holon life cycle), when the system configuration changes and when 
unexpected disturbances occur. 
The ADACOR holons are self-optimised since they have the capability to 
continuously increase its performance using learning mechanisms. In spite of the wide 
range of learning techniques, such as described in [1, 11-12], the proposed learning 
mechanism in ADACOR uses simple and reliable techniques. The mechanism stores 
the decision taken and uses the posterior results to learn. In the decision-making 
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process, holons use the new knowledge acquired from previous experience to support 
the following decision-making, which will probably lead to better decisions and 
actions. 
Depending of situation where learning is used, different learning techniques are 
applied, such as rote learning (simple memorisation) and unsupervised learning. 

5.3 Learning in the Prediction of Future Disturbances 

To exemplify the application of learning mechanisms in ADACOR holons, it will be 
described how to apply learning to predict future disturbances. As previously referred, 
the occurrence of disturbances degrades the system performance. The control system 
should be able to analyse the unexpected events and decide when an unexpected event 
is a real disturbance or a normal situation. The objective is to use appropriated 
learning mechanisms to find patterns in the occurrence of disturbances, foreseeing the 
stochastic effects of industrial environment, making predictable the occurrence of 
future disturbances, preparing the system to support these events. 
The proposed approach uses an unsupervised learning mechanism based in the 
statistical clustering technique [11], to predict the time interval between consecutive 
disturbances. Cluster analysis aggregates objects (a vector of n feature values) in 
clusters by analysing the similarity between them. A similarity metrics treats each 
object as a point in n-dimensional space, the similarity of two objects being the 
Euclidean distance between them in this space. The cluster formation is achieved such 
that the distance between any two instances in the cluster is less than the distance 
between any point in the cluster and any point not in it. 
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Fig. 3. Clustering of the Disturbances 

The procedure involves, in a first step, the creation of groups of disturbances 
according to the similarities in the type of disturbances. In the next step each group is 
analysed individually, in order to find a pattern in the occurrence of that type of 
disturbance. In each group, obtained in previous step, the clustering algorithm 
described in [13] is applied, allowing to create clusters using the notion of a cluster 
diameter. This algorithm requires all data to be available prior to clustering, grouping 
the fault events in clusters, according to the similarities in the time between 
consecutive occurrences, as in Fig.3. In case that the distance between any two input 
pairs be the same, the location within the sorted list will be arbitrary and could lead to 
different classifications being produced. 
After the detection of similarities between the historical disturbance events and the 
consequent creation of clusters, it is necessary to analyse all created clusters in order 
to detect the predominant cluster, which reflects the tendency of the disturbance 
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sequence. A pertinent question is how to select the predominant cluster, since several 
parameters that characterize the disturbance sequence are not known in advance. The 
predominant cluster is selected taking in consideration the number of elements or the 
presence of the last disturbances. If the last disturbance events belong to the same 
cluster, that cluster reflects the tendency and it is considered predominant. Otherwise, 
the predominant cluster is the one whose contains the highest number of elements. 
The last step is concerned to the analysis of the selected cluster and extraction of the 
predictability of occurrence of future disturbance, which based in estimation of the 
mean value of the cluster. 
In order to validate the learning mechanism in the prediction of disturbances, its 
response was tested for several disturbance sequence inputs, as illustrated in Fig. 4.  
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Fig. 4. Experimental Results 

From the experimental analysis it is possible to verify that the proposed clustering 
mechanism presents a satisfactory precision in the prediction of the next disturbance, 
with precision over 95%. Comparing with a particular non-learning technique, the one 
that predicts based in an average of past events, it is possible to verify the 
improvement achieved by using the learning mechanism in this situation.  
In opposite to some techniques that require initial training, the clustering dispenses 
this training, achieving faster a prediction value. However, the clustering technique 
presents low performance in case of fewer fault events and is highly dependent of the 
cluster formation and selection. In order to improve the performance of the prediction 
mechanism, in further research work it will be considered not only the values of the 
time between the disturbances but also the feedback related to the precision about the 
prediction, applying for example a reinforcement learning technique. 

6. Conclusions 

The manufacturing systems are complex non-linear systems, since the occurrence of a 
disturbance causes non-linear impact and some effects of the disturbance can remain 
in the system after the resolution of the event that originated the disturbance. The 
development of manufacturing control systems that handle efficiently and quickly to 
the occurrence of disturbances is an actual and open challenge. 
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The ADACOR architecture, based in holonic manufacturing paradigm, introduces the 
concepts of autonomy, cooperation, self-organisation and learning to support the agile 
reaction to unpredictable disturbances, such as machine failures and rush orders.  
The self-organisation, based in the autonomy factor and propagation mechanism, 
allows to balance the control between different control structures, reaching an 
adaptive control approach that combines the agile reaction to disturbances with the 
global optimisation. The introduction of learning capabilities in manufacturing holons 
allows to improve the holon´s ability to act in future and to support the dynamic 
evolution of the environment where it is placed. 
As ADACOR is an open framework based on holons that can be built upon several 
building blocks (similar to Legos® components), further work should focus on the 
application of learning mechanisms for the identified situations using more powerful 
learning algorithms. 
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