
RECONFIGURABLE PRODUCTION CONTROL SYSTEMS: BEYOND 
ADACOR 

 
 

 Paulo Leitão 1, João Mendes2, Armando W. Colombo3, Francisco Restivo2 

 
 

1 Polytechnic Institute of Bragança,  
Quinta Sta Apolónia, Apartado 1134, 5301-857 Bragança, Portugal, pleitao@ipb.pt 

2 Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, 
Portugal, {joao.mendes,fjr}@fe.up.pt 

3 Schneider Electric - HUB & Globalization of Technology, Steinheimer Str. 117, 63500 
Seligenstadt, Germany, armando.colombo@ de.schneider-electric.com 

 
 

Abstract: In the recent evolution of production control systems, the emergence of 
decentralized systems capable of dealing with the rapid changes in the production 
environment better than the traditional centralized architectures has been one of the 
most significant developments. The agent-based and holonic paradigms symbolize this 
approach, and ADACOR holonic control architecture is a successful example of such a 
system. In this paper, authors discusses the current challenges and the way to go in the 
direction of new, reconfigurable, evolvable and ubiquitous systems, able to respond to 
current production environment demands and variability. Copyright © 2007 IFAC. 
 

 
1. INTRODUCTION 

Production control systems have evolved 
dramatically during the last few years. One of the 
most significant facts is the emergence of 
decentralized systems capable of dealing with the 
rapid changes in the production environment better 
than the traditional centralized architectures. The 
quest for agility and re-configurability requires a new 
class of production control systems, characterized by: 

− A community of distributed and intelligent 
building blocks, designated by control units. 

− Each control unit is autonomous, having its own 
objectives, knowledge and skills, and 
encapsulating intelligent functions; however, 
none of them has a global view of the system. 

− Global decisions (e.g. scheduling and diagnosis) 
are obtained by more than one control unit, i.e. 
control units need to work together to reach a 
production decision. 

− Control units should exhibit some emergent 
behavior, such as to adapt to changes without 
external intervention. 

− Control units representing mechatronic devices, 
such as sensors or robots, are part of the 
production control system architecture. 

The agent-based and holonic paradigms symbolize 
this new approach, and ADACOR (ADAptive 
holonic COntrol aRchitecture for distributed 

manufacturing systems) [1], as others (see e.g. 
PROSA [2], HCBA [3] and Bussmann [4]), is a 
successful example of such a system. ADACOR 
deals with the re-configurability in manufacturing 
systems by introducing an adaptive production 
control system that evolves dynamically between a 
more hierarchical and a more heterarchical control 
architecture, based in self-organization and learning 
capabilities embedded in individual holons. 

Re-configurability, that is the ability of the system to 
dynamically change its configuration, usually to 
respond to dynamic changes in its environment, e.g. a 
new production scenario, assumes a key role in the 
new generation of production control systems, 
providing the way to achieve a rapid and adaptive 
response to change, which is a key enabler of 
competitiveness. 

Starting with an overview of how re-configurability 
is supported by ADACOR architecture, this paper 
presents the current challenges and the way to go in 
the direction of new, reconfigurable and ubiquitous 
systems, able to integrate networked production 
resources to respond to the variability of production 
scenarios beyond those that were envisaged at design 
time. For this purpose, the paper introduces the 
guidelines for the new generation of re-configurable 
production systems and discusses how to implement 
these systems, pointing out the benefits of combining 
multi-agent systems with service-oriented 
architectures. 
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2. RE-CONFIGURABILITY IN ADACOR 
ARCHITECTURE 

ADACOR is built upon a society of autonomous and 
cooperative holons, each one representing a 
manufacturing component. ADACOR defines four 
holon classes [1]: product (PH), task (TH), 
operational (OH) and supervisor (SH). The product 
holons represent the available products in the factory 
catalogue, the task holons represent the production 
orders launched to execute the requested products 
and the operational holons represent the physical 
resources available at shop floor. Supervisor holons 
bring hierarchy to these otherwise decentralized 
systems by providing co-ordination to the holons 
under their supervision. 

ADACOR addresses the reaction of the control 
system to unexpected disturbances, specifically those 
that have impact at planning and scheduling level, 
such as machine failures and rush orders. In these 
situations, local information is more important than 
global information to assure a fast reaction to the 
problem, and decentralized architectures behave 
better than centralized ones in terms of short term 
production loss. ADACOR solves this problem 
through a simple reconfiguration mechanism that 
balances between a more hierarchical and a more flat 
approach, combining the global production 
optimization with the agile reaction to unpredictable 
disturbances [1]. In other words, the designed 
adaptive mechanism intends to be as centralized as 
possible and as decentralized as necessary, i.e. using 
a hierarchical approach when the objective is the 
optimization, and a more heterarchical approach in 
presence of unexpected scenarios. 

The autonomy, self-organization and learning 
capabilities exhibited by ADACOR holons, and the 
role of supervisor holons are the keys to achieve this 
adaptive production control approach, which 
supports the dynamic evolution and re-configuration 
of the organizational control structure [1]. Briefly, in 
normal operation, the holons are organized in a 
hierarchical structure, with the presence of supervisor 
holons, acting as coordinating entities. Supervisor 
holons elaborate, periodically, optimized schedules 
that are proposed to the operational holons, which 
follow the suggestions issued by the central entity. 

When an unexpected disturbance is detected, the 
system is forced to evolve to a heterarchical 
structure, operating without the presence of 
coordination levels, with each holon assuming the 
control of its own activity. This re-organization is 
supported by the self-organization capability of each 
holon, mapped with the increase of its level of 
autonomy and the propagation of the disturbance to 
the neighbor holons using ant-based techniques [5]. 
In this turbulent stage, the manufacturing re-
scheduling is achieved in a distributed manner, 

resulting from the direct interaction between task and 
operational holons. 

After the disturbance recovery, the system evolves to 
a new control structure. Learning mechanisms 
embedded in each holon are responsible for the 
distinction between abnormal situations and normal 
evolution of the system environment. 

3. TOWARDS NEW RECONFIGURABLE 
PRODUCTION SYSTEMS 

The demand for intelligent and distributed control 
systems that exhibit high degree of re-configurability 
will obviously impose strong requirements on the 
way the systems are designed, installed and operated. 
Current approaches being applied within the 
reconfiguration domain will not suffice. Indeed, in 
spite of the success of some agent-based and holonic 
approaches, of which ADACOR is one example, a 
significant incursion in manufacturing plants in use 
today is still missing. The reasons for this situation 
are many, from the lack of answer to several basic 
questions in terms of development and performance 
of these systems (e.g. distributed thinking, 
interoperability, re-configurability, robustness and 
scalability) to the unavailability of methodologies for 
manufacturing control software development and 
verification, before the final implementation, 
including methods for effective reuse and/or 
reconfiguration of control solutions.  

If there is still a long way to go in the direction of 
new, reconfigurable and ubiquitous systems, able to 
integrate networked production resources to respond 
to the variability of production scenarios beyond 
those that were envisaged at design time, for sure that 
self-organization and emergent behavior will be key 
issues to support the new generation of 
reconfigurable production control systems. Two 
types of architectures, with different granularity, 
must be considered: 

− The individual architecture of each autonomous 
entity, which must exhibit intelligence, learning, 
self-organization and pluggable capabilities. 

− The overall manufacturing control system 
architecture emerged from the interaction among 
these autonomous entities, which must be able to 
support efficiently the adaptation to the new 
unexpected scenarios and to respond to new 
business opportunities. 

This dynamic and evolvable reconfiguration is one 
step ahead of traditional re-configurability, 
considering also the evolution of the system and its 
components during its life-cycle, e.g. by offering new 
services or learning to differentiate normal from 
abnormal situations. 



3.1 Building Smart Control Components 

Intelligent and distributed manufacturing control 
systems can be seen as compositions of smart 
manufacturing components that can be reused 
whenever necessary. The composition of components 
is achieved by introducing electronics, intelligence 
and communication in each mechanic device (e.g. a 
sensor, a gripper, an actuator or a PLC), leading to 
the concept of smart control component, Fig. 1. 
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Fig. 1 – Smart Control Component 

The smart control components have embedded 
control and intelligence in processing units (for 
example microcontrollers) with possibly more 
computational power than personal computers had 
some years ago. Each smart control component must 
encapsulate functions and services that the physical 
device can perform, e.g. open or close the gripper. 
These services, that can be modified, added or 
removed (e.g. a new piece can be handled by a robot 
after the aggregation of a new gripper), are then 
exposed to be invoked by other smart control 
components that want to use them.  

Self-organization (i.e. the capability to dynamically 
re-organize itself in presence of disturbances) and 
learning (i.e. the capability to acquire new knowledge 
supporting the dynamic behavior evolution) 
mechanisms should be considered to provide each 
component with capability to dynamically evolve 
during its life-cycle. Additionally, re-configurability 
is only completely achieved if smart control 
components can enter or exit the system on the fly, 
i.e. without the need to re-initialize and re-program 
the other control components of the system. 

The integration of mechatronic devices in such smart 
control components still presents some problems, 
mainly due to the heterogeneity of these devices. In 
fact, the majority of agent-based laboratorial control 
applications use software agents without the need to 
integrate physical devices (for example in the supply 
chain case) or emulators when they are needed (for 
example, in manufacturing control systems). But in 
the real situations, industrial applications require the 
integration of physical mechatronic devices, 
normally tens or hundreds. Methodologies to support 
an easy, fast, transparent and re-usable integration of 
mechatronic devices is then required.  

The design of a system based in distributed smart 
control components raise a pertinent question related 
to the granularity of the system. In fact, fine-
granularity, considering simple local units, implies a 
high complexity of the system due to the high degree 
of interactions involved. On the other hand, coarse-

granularity, considering large units, implies a lower 
complexity of the system but a higher difficulty to 
evolve and to adapt to change. The best solution 
depends on the envisaged scenarios, the short or long 
term perspectives, and may require a careful balance 
of the weak and strong points of each view. 

3.2 Smart Control Components Working Together 

The smart control components, as parts of a complex 
and distributed real-time system, are distributed 
autonomous entities which only have local 
knowledge and act to fulfill their own goals. The 
desired production process is achieved by putting 
these smart control components working together to 
achieve global production objectives.  

Orchestration mechanisms may be of crucial 
importance to coordinate the complex and emergent 
behaviors of individual smart control components. 
These coordination mechanisms, that include 
orchestration engines for service composition, 
coordination and collaboration, must also consider 
interaction mechanisms that combine the component 
level with higher-levels of supervision to achieve 
cohesive distributed intelligent control. 

In distributed manufacturing environments it is 
important to guarantee the interoperability between 
the distributed entities or applications and to verify 
that the semantic content is preserved during the 
exchange of messages between them. In fact, a study 
commissioned by NIST (National Institute of 
Standards and Technology) reported that the U.S. 
automotive sector alone expends one billion dollars 
per year to solve interoperability problems [6]. The 
solution to those problems requires the use of 
standard platforms that support transparent 
communication between distributed smart control 
components or applications. Ontologies play a 
decisive role to support interoperability problems. 
Their ultimate goal is the description, possibly 
without ambiguity, of a certain “reality” of interest, 
in this case related to production systems. The 
development of an ontology may take from a few 
hours up to months or even years depending on the 
choice of the language, the covered topics, and the 
level of formality and precision [7]. 

3.3 Dynamic and Evolvable Reconfiguration 

The needs for re-configuration can appear in several 
manufacturing situations, from the virtual 
organization level, where reconfiguration of partners 
is frequent, to the shop floor level, for example in the 
re-configuration of the part transportation flow, 
passing by the machine level, for example by 
changing the set of grippers aggregated to a robot. 

The application of multi-agent systems and holonic 
architectures by themselves does not solve the 
current manufacturing problems, being necessary to 



combine them with mechanisms to support the 
dynamic structure re-configuration, thus dealing 
more effectively with unexpected disturbances and 
minimizing their effects. In other words, questions 
like how the global production optimization is 
achieved in decentralized systems, how temporary 
hierarchies are dynamically formed, evolved and 
removed, how individual smart components self-
organize and evolve to support evolution and 
emergency, and how to adapt their emergent 
behavior using learning algorithms, are yet far from 
being answered. 

The achievement of dynamic evolution and 
reconfiguration requires the introduction of self-
organization mechanisms associated to emergent 
behaviors that support the evolution and 
reconfiguration of the system based in the self-
organization of each individual smart control 
component. Ideally, re-configuration should appear 
to users like “drag-and-drop” applications where 
complexity and details are handled by background 
services. The reconfiguration of any smart control 
component should be done on the fly, maintaining 
unchanged the behavior of the entire system which 
should continue to run smoothly after the change.  

Another requirement to support the dynamic 
evolution of the system is the introduction of learning 
mechanisms, allowing the evolution of the 
functionalities and behavior of individual smart 
control components and consequently the evolution 
of entire system. Indeed, learning mechanisms 
strongly influence the performance of the self-
organization mechanism, being critical to support the 
identification of re-configuration opportunities. 

Local and global mechanisms are required to identify 
the reconfiguration and evolution opportunities, 
while maintaining system behavior predictable and 
stable. During the reconfiguration process, some 
instability can appear as the result of not properly 
synchronized evolution processes. This implies the 
need to build up the reconfigurable production 
system from simple to self-organized and emergent 
reconfiguration. 

4. A NEW PERSPECTIVE TO IMPLEMENT 
RE-CONFIGURABLE PRODUCTION 

SYSTEMS 

Multi-agent systems [8] is a suitable approach to 
develop the new class of reconfigurable production 
systems since they already support the idea of 
interaction within a society of individual agents, 
fitting well with the idea of a community of smart 
control components. Additionally, emergence can be 
mapped to the evolution of the society of agents 
when identifying re-configuration opportunities and 
defining new complex functionalities and behavior. 
The great advantage of this approach is the 

possibility to create complex functionalities and 
behaviors based on the interaction among distributed 
smart control components. 

However, some unanswered problems in multi-agent 
systems, namely those related to interoperability, 
how knowledge is shared during the interaction 
processes and reconfiguration of the control 
components, by removing, adding or modifying the 
services they provide, still constitute a barrier to the 
easy development of such kind of systems. 

A current challenge in production control, in the 
opinion of the authors, is to approach multi-agent 
systems with new emergent technologies, such as 
Service-Oriented Architectures (SOA). The best 
features of these technologies will hopefully support 
the development of more powerful re-configuration 
mechanisms, using more complex self-organization 
and learning techniques. In fact, web services 
technologies have potential to solve problems 
concerning heterogeneity of knowledge 
representation between distributed agents; on the 
other hand, agent technologies brings solutions in 
issues that are now becoming important in SOA, such 
as coordination, negotiation and agreement [11]. 

In this chapter, the basic concepts about SOAs will 
be reviewed and the benefits of combining these 
concepts to support re-configurability and 
interoperability will be discussed. 

4.1 Basic Concepts about SOA 

A SOA [9-10] is a middleware that faces the 
problems of interoperability in autonomous, 
heterogeneous and distributed systems in the form of 
service requester and service provider mechanisms, 
see Fig. 2.  A provider hides its internal structure and 
shows only the necessary functionalities to the 
outside world, in the form of services. The list of 
provided services must be published, so they can be 
discovered by the service requester. A service 
discovery facility acts like a directory in which 
services can be added, removed and located. 

 
Fig. 2 – Illustration of SOA’s Concepts 

Commonly SOAs are based on web services (WS), 
using standard and open protocols to provide a 
communication platform between distributed and 
heterogeneous systems and applications. Most of the 
web service platforms are made of SOAP (Simple 
Object Access Protocol), WSDL (Web Services 



Description Language) and UDDI (Universal 
Description, Discovery and Integration) that use the 
combination of HTTP (Hypertext Transfer Protocol) 
and XML (Extensible Markup Language) as the basic 
foundation of WS (Fig. 3). 

 
Fig. 3 – Web Service's Building Blocks 

One of the challenges of SOA is to reconcile the 
opposing principles of autonomy and interoperability 
[12]. Autonomous units have an independent 
condition, each of them regarding its own structure 
and conditions. By bridging them together, there is a 
path that allows the interoperability in a mutual 
service offer and request.  

4.2 Service Orchestration and Choreography 

In SOAs, a pertinent question is about how services 
interact. Service composition [13] is the combination 
of single services and all the interaction patterns 
between them. Commonly, terms as service 
orchestration and choreography are used for this 
purpose. Orchestration is the practice of sequencing 
and synchronizing the execution of services, which 
encapsulate business or manufacturing processes [12-
13]. An orchestration engine implements the logic for 
workflow-oriented execution and sequencing of 
atomic services, and provides a high-level interface 
for the composed process. Service choreography is a 
complementary concept, which considers the rules 
that define the messages and interaction sequences 
that must occur to execute a given process through a 
particular service interface. Additionally, 
choreography can be used independently in a 
collaborative system without a centralized approach. 
Fig. 4 illustrates the service orchestration and 
choreography concepts. 

 

Fig. 4 – Example of Service Orchestration and 
Choreography 

In this example, different available resources in the 
system expose their services. The workflow model, 
representing the high-level service, is interpreted by 

the orchestration engine, which is responsible to call 
the necessary services in the way described by the 
model. The choreographed sequences are used for the 
interaction between the elements and therefore the 
correct execution of individual services when 
required. When the workflow model reaches the final 
stage, the high level service is concluded and the 
external requester notified. 

The Petri nets formalism is a mathematical and 
graphical oriented language for the design, 
specification, simulation and validation of systems, 
particularly those in which concurrency and 
parallelism, synchronization, resource sharing and 
mutual exclusion are important. Petri nets can be 
used to design and validate the process model, i.e. the 
workflow model, which translates the system goal. 
Orchestration engines have to interpret the workflow 
model expressed in Petri nets and execute it. In real-
time execution, the enabled transition must be 
detected, services associated with the enabled 
transition must be called and, after that, the workflow 
model has to be updated to reflect the actual state of 
the system. Orchestration engines synchronize and 
control the whole process until it reaches the goal, 
based on the elaborated model, i.e. they have to 
orchestrate the production system. 

As shown in the Fig. 5, the workflow modeled using 
Petri nets has two parallel processes, e.g. two 
different products are produced independently, but 
for reaching the goal, the two products must be 
concluded successfully. The production is behind the 
two services (one for each type of product) that only 
exposes the required operations to the outside. The 
transition produce1() should be invoked to begin the 
production of product #1 and the transition finish1() 
doesn’t fire until that production is concluded. 

work flow
model

produce2()

begin

produce1() finish1()

finish2()

end
(objective
reached)

 
Fig. 5 – Service Orchestration by using the Petri Nets 

Formalism 

The same is also valid for the production of the 
product #2, but asynchronously from the product #1. 
The process is terminated only if the last place (end) 
is marked with a token, i.e. after firing the transitions 
finish1() and finish2(). 

4.3 Multi-agent Systems using Web Services 

The integration of web services with software agents 
will bring benefits from both technologies. From the 
perspective of agents, web services are a way to 



communicate and interoperate using web-specific 
protocols. To web services, agents can form a 
powerful means of indirection and control decision 
by masking the web service. With these aspects in 
mind, the control architecture may be improved in 
terms of software flexibility and self-configuration. 

The adoption of web services by multi-agent systems 
satisfies the following requirements: 

− Resources (e.g. physical devices, software 
modules, intelligent units, sub-systems) can be 
encapsulated with a service provider that acts like 
a bridge between the internal structure and the 
exposed interface to the outside world. The access 
to this kind of resource is via the invocation of the 
services described by its interface. 

− Some services can be composed by other 
services, creating a leveled structure of services. 

− Interoperability in a heterogeneous environment 
can be addressed by using common 
communication semantics based on the use of 
open protocols, namely web technologies, e.g. 
web services. The distributed nature of the 
architectures suggests the definition of 
interoperability functionalities based on service-
oriented architecture and the realization of 
efficient, flexible and robust overall plant control. 

− Fault-tolerant systems can consider anomalies 
that may occur during the production process, 
identifying in advance possible future occurrence 
of disturbances. 

The re-configurability and evolution of the system is 
facilitated using multi-agent systems supported by 
web services technology since it is possible to add, 
remove and modify dynamically resources and 
services without interrupting the processes. This 
allows changing on fly the agents in the system, the 
services provided by each one of them and the way 
they are organized. 

5. CONCLUSIONS 

The objective of this paper was to discuss the main 
guidelines of the next generation of reconfigurable 
production systems, based in the experience gained 
with the ADACOR holonic control architecture, 
which in its time proved to be an innovative and 
successful approach to address the re-configurability 
at shop floor level.  

Reconfigurable production systems will be built upon 
the concept of smart control components, whose 
individual self-organization and emergent behavior 
will contribute for the re-configurability and 
evolution of entire production system. For this 
purpose, concepts like self-organization, learning and 
emergent theory should be considered. Multi-agent 
systems technology appears to be a good solution to 

develop these systems, which supported by web 
service technology may deal completely with 
interoperability and re-configurability needs. 

The development of orchestration and choreography 
mechanisms and tools, including orchestration 
engines, for service composition, coordination and 
collaboration, will play a crucial role to support 
intelligent, re-configurable and modular production 
control systems. 

An important aspect to be taken in the future for the 
success of this new generation of production control 
systems, is to proof its real applicability and merits, 
since industry has afraid to introduce, in its 
production processes, emergent technologies that are 
not yet proved, and particularly from the usage of 
emergent terms like ontologies, self-organization, 
emergence, distributed thinking and learning. The 
solution is to demonstrate that reconfigurable 
production systems based in those concepts, work 
better than the existing ones. 
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