
RECONFIGURABLE PRODUCTION CONTROL SYSTEMS: BEYOND
ADACOR

 Paulo Leitão 1, João Mendes2, Armando W. Colombo3, Francisco Restivo2

1 Polytechnic Institute of Bragança,
Quinta Sta Apolónia, Apartado 1134, 5301-857 Bragança, Portugal, pleitao@ipb.pt

2 Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto,
Portugal, {joao.mendes,fjr}@fe.up.pt

3 Schneider Electric - HUB & Globalization of Technology, Steinheimer Str. 117, 63500
Seligenstadt, Germany, armando.colombo@ de.schneider-electric.com

Abstract: In the recent evolution of production control systems, the emergence of
decentralized systems capable of dealing with the rapid changes in the production
environment better than the traditional centralized architectures has been one of the
most significant developments. The agent-based and holonic paradigms symbolize this
approach, and ADACOR holonic control architecture is a successful example of such a
system. In this paper, authors discusses the current challenges and the way to go in the
direction of new, reconfigurable, evolvable and ubiquitous systems, able to respond to
current production environment demands and variability. Copyright © 2007 IFAC.

1. INTRODUCTION

Production control systems have evolved
dramatically during the last few years. One of the
most significant facts is the emergence of
decentralized systems capable of dealing with the
rapid changes in the production environment better
than the traditional centralized architectures. The
quest for agility and re-configurability requires a new
class of production control systems, characterized by:

− A community of distributed and intelligent
building blocks, designated by control units.

− Each control unit is autonomous, having its own
objectives, knowledge and skills, and
encapsulating intelligent functions; however,
none of them has a global view of the system.

− Global decisions (e.g. scheduling and diagnosis)
are obtained by more than one control unit, i.e.
control units need to work together to reach a
production decision.

− Control units should exhibit some emergent
behavior, such as to adapt to changes without
external intervention.

− Control units representing mechatronic devices,
such as sensors or robots, are part of the
production control system architecture.

The agent-based and holonic paradigms symbolize
this new approach, and ADACOR (ADAptive
holonic COntrol aRchitecture for distributed

manufacturing systems) [1], as others (see e.g.
PROSA [2], HCBA [3] and Bussmann [4]), is a
successful example of such a system. ADACOR
deals with the re-configurability in manufacturing
systems by introducing an adaptive production
control system that evolves dynamically between a
more hierarchical and a more heterarchical control
architecture, based in self-organization and learning
capabilities embedded in individual holons.

Re-configurability, that is the ability of the system to
dynamically change its configuration, usually to
respond to dynamic changes in its environment, e.g. a
new production scenario, assumes a key role in the
new generation of production control systems,
providing the way to achieve a rapid and adaptive
response to change, which is a key enabler of
competitiveness.

Starting with an overview of how re-configurability
is supported by ADACOR architecture, this paper
presents the current challenges and the way to go in
the direction of new, reconfigurable and ubiquitous
systems, able to integrate networked production
resources to respond to the variability of production
scenarios beyond those that were envisaged at design
time. For this purpose, the paper introduces the
guidelines for the new generation of re-configurable
production systems and discusses how to implement
these systems, pointing out the benefits of combining
multi-agent systems with service-oriented
architectures.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. RE-CONFIGURABILITY IN ADACOR
ARCHITECTURE

ADACOR is built upon a society of autonomous and
cooperative holons, each one representing a
manufacturing component. ADACOR defines four
holon classes [1]: product (PH), task (TH),
operational (OH) and supervisor (SH). The product
holons represent the available products in the factory
catalogue, the task holons represent the production
orders launched to execute the requested products
and the operational holons represent the physical
resources available at shop floor. Supervisor holons
bring hierarchy to these otherwise decentralized
systems by providing co-ordination to the holons
under their supervision.

ADACOR addresses the reaction of the control
system to unexpected disturbances, specifically those
that have impact at planning and scheduling level,
such as machine failures and rush orders. In these
situations, local information is more important than
global information to assure a fast reaction to the
problem, and decentralized architectures behave
better than centralized ones in terms of short term
production loss. ADACOR solves this problem
through a simple reconfiguration mechanism that
balances between a more hierarchical and a more flat
approach, combining the global production
optimization with the agile reaction to unpredictable
disturbances [1]. In other words, the designed
adaptive mechanism intends to be as centralized as
possible and as decentralized as necessary, i.e. using
a hierarchical approach when the objective is the
optimization, and a more heterarchical approach in
presence of unexpected scenarios.

The autonomy, self-organization and learning
capabilities exhibited by ADACOR holons, and the
role of supervisor holons are the keys to achieve this
adaptive production control approach, which
supports the dynamic evolution and re-configuration
of the organizational control structure [1]. Briefly, in
normal operation, the holons are organized in a
hierarchical structure, with the presence of supervisor
holons, acting as coordinating entities. Supervisor
holons elaborate, periodically, optimized schedules
that are proposed to the operational holons, which
follow the suggestions issued by the central entity.

When an unexpected disturbance is detected, the
system is forced to evolve to a heterarchical
structure, operating without the presence of
coordination levels, with each holon assuming the
control of its own activity. This re-organization is
supported by the self-organization capability of each
holon, mapped with the increase of its level of
autonomy and the propagation of the disturbance to
the neighbor holons using ant-based techniques [5].
In this turbulent stage, the manufacturing re-
scheduling is achieved in a distributed manner,

resulting from the direct interaction between task and
operational holons.

After the disturbance recovery, the system evolves to
a new control structure. Learning mechanisms
embedded in each holon are responsible for the
distinction between abnormal situations and normal
evolution of the system environment.

3. TOWARDS NEW RECONFIGURABLE
PRODUCTION SYSTEMS

The demand for intelligent and distributed control
systems that exhibit high degree of re-configurability
will obviously impose strong requirements on the
way the systems are designed, installed and operated.
Current approaches being applied within the
reconfiguration domain will not suffice. Indeed, in
spite of the success of some agent-based and holonic
approaches, of which ADACOR is one example, a
significant incursion in manufacturing plants in use
today is still missing. The reasons for this situation
are many, from the lack of answer to several basic
questions in terms of development and performance
of these systems (e.g. distributed thinking,
interoperability, re-configurability, robustness and
scalability) to the unavailability of methodologies for
manufacturing control software development and
verification, before the final implementation,
including methods for effective reuse and/or
reconfiguration of control solutions.

If there is still a long way to go in the direction of
new, reconfigurable and ubiquitous systems, able to
integrate networked production resources to respond
to the variability of production scenarios beyond
those that were envisaged at design time, for sure that
self-organization and emergent behavior will be key
issues to support the new generation of
reconfigurable production control systems. Two
types of architectures, with different granularity,
must be considered:

− The individual architecture of each autonomous
entity, which must exhibit intelligence, learning,
self-organization and pluggable capabilities.

− The overall manufacturing control system
architecture emerged from the interaction among
these autonomous entities, which must be able to
support efficiently the adaptation to the new
unexpected scenarios and to respond to new
business opportunities.

This dynamic and evolvable reconfiguration is one
step ahead of traditional re-configurability,
considering also the evolution of the system and its
components during its life-cycle, e.g. by offering new
services or learning to differentiate normal from
abnormal situations.

3.1 Building Smart Control Components

Intelligent and distributed manufacturing control
systems can be seen as compositions of smart
manufacturing components that can be reused
whenever necessary. The composition of components
is achieved by introducing electronics, intelligence
and communication in each mechanic device (e.g. a
sensor, a gripper, an actuator or a PLC), leading to
the concept of smart control component, Fig. 1.

+

electronics intelligence
mechanic device,

e.g. a gripper communication

Fig. 1 – Smart Control Component

The smart control components have embedded
control and intelligence in processing units (for
example microcontrollers) with possibly more
computational power than personal computers had
some years ago. Each smart control component must
encapsulate functions and services that the physical
device can perform, e.g. open or close the gripper.
These services, that can be modified, added or
removed (e.g. a new piece can be handled by a robot
after the aggregation of a new gripper), are then
exposed to be invoked by other smart control
components that want to use them.

Self-organization (i.e. the capability to dynamically
re-organize itself in presence of disturbances) and
learning (i.e. the capability to acquire new knowledge
supporting the dynamic behavior evolution)
mechanisms should be considered to provide each
component with capability to dynamically evolve
during its life-cycle. Additionally, re-configurability
is only completely achieved if smart control
components can enter or exit the system on the fly,
i.e. without the need to re-initialize and re-program
the other control components of the system.

The integration of mechatronic devices in such smart
control components still presents some problems,
mainly due to the heterogeneity of these devices. In
fact, the majority of agent-based laboratorial control
applications use software agents without the need to
integrate physical devices (for example in the supply
chain case) or emulators when they are needed (for
example, in manufacturing control systems). But in
the real situations, industrial applications require the
integration of physical mechatronic devices,
normally tens or hundreds. Methodologies to support
an easy, fast, transparent and re-usable integration of
mechatronic devices is then required.

The design of a system based in distributed smart
control components raise a pertinent question related
to the granularity of the system. In fact, fine-
granularity, considering simple local units, implies a
high complexity of the system due to the high degree
of interactions involved. On the other hand, coarse-

granularity, considering large units, implies a lower
complexity of the system but a higher difficulty to
evolve and to adapt to change. The best solution
depends on the envisaged scenarios, the short or long
term perspectives, and may require a careful balance
of the weak and strong points of each view.

3.2 Smart Control Components Working Together

The smart control components, as parts of a complex
and distributed real-time system, are distributed
autonomous entities which only have local
knowledge and act to fulfill their own goals. The
desired production process is achieved by putting
these smart control components working together to
achieve global production objectives.

Orchestration mechanisms may be of crucial
importance to coordinate the complex and emergent
behaviors of individual smart control components.
These coordination mechanisms, that include
orchestration engines for service composition,
coordination and collaboration, must also consider
interaction mechanisms that combine the component
level with higher-levels of supervision to achieve
cohesive distributed intelligent control.

In distributed manufacturing environments it is
important to guarantee the interoperability between
the distributed entities or applications and to verify
that the semantic content is preserved during the
exchange of messages between them. In fact, a study
commissioned by NIST (National Institute of
Standards and Technology) reported that the U.S.
automotive sector alone expends one billion dollars
per year to solve interoperability problems [6]. The
solution to those problems requires the use of
standard platforms that support transparent
communication between distributed smart control
components or applications. Ontologies play a
decisive role to support interoperability problems.
Their ultimate goal is the description, possibly
without ambiguity, of a certain “reality” of interest,
in this case related to production systems. The
development of an ontology may take from a few
hours up to months or even years depending on the
choice of the language, the covered topics, and the
level of formality and precision [7].

3.3 Dynamic and Evolvable Reconfiguration

The needs for re-configuration can appear in several
manufacturing situations, from the virtual
organization level, where reconfiguration of partners
is frequent, to the shop floor level, for example in the
re-configuration of the part transportation flow,
passing by the machine level, for example by
changing the set of grippers aggregated to a robot.

The application of multi-agent systems and holonic
architectures by themselves does not solve the
current manufacturing problems, being necessary to

combine them with mechanisms to support the
dynamic structure re-configuration, thus dealing
more effectively with unexpected disturbances and
minimizing their effects. In other words, questions
like how the global production optimization is
achieved in decentralized systems, how temporary
hierarchies are dynamically formed, evolved and
removed, how individual smart components self-
organize and evolve to support evolution and
emergency, and how to adapt their emergent
behavior using learning algorithms, are yet far from
being answered.

The achievement of dynamic evolution and
reconfiguration requires the introduction of self-
organization mechanisms associated to emergent
behaviors that support the evolution and
reconfiguration of the system based in the self-
organization of each individual smart control
component. Ideally, re-configuration should appear
to users like “drag-and-drop” applications where
complexity and details are handled by background
services. The reconfiguration of any smart control
component should be done on the fly, maintaining
unchanged the behavior of the entire system which
should continue to run smoothly after the change.

Another requirement to support the dynamic
evolution of the system is the introduction of learning
mechanisms, allowing the evolution of the
functionalities and behavior of individual smart
control components and consequently the evolution
of entire system. Indeed, learning mechanisms
strongly influence the performance of the self-
organization mechanism, being critical to support the
identification of re-configuration opportunities.

Local and global mechanisms are required to identify
the reconfiguration and evolution opportunities,
while maintaining system behavior predictable and
stable. During the reconfiguration process, some
instability can appear as the result of not properly
synchronized evolution processes. This implies the
need to build up the reconfigurable production
system from simple to self-organized and emergent
reconfiguration.

4. A NEW PERSPECTIVE TO IMPLEMENT
RE-CONFIGURABLE PRODUCTION

SYSTEMS

Multi-agent systems [8] is a suitable approach to
develop the new class of reconfigurable production
systems since they already support the idea of
interaction within a society of individual agents,
fitting well with the idea of a community of smart
control components. Additionally, emergence can be
mapped to the evolution of the society of agents
when identifying re-configuration opportunities and
defining new complex functionalities and behavior.
The great advantage of this approach is the

possibility to create complex functionalities and
behaviors based on the interaction among distributed
smart control components.

However, some unanswered problems in multi-agent
systems, namely those related to interoperability,
how knowledge is shared during the interaction
processes and reconfiguration of the control
components, by removing, adding or modifying the
services they provide, still constitute a barrier to the
easy development of such kind of systems.

A current challenge in production control, in the
opinion of the authors, is to approach multi-agent
systems with new emergent technologies, such as
Service-Oriented Architectures (SOA). The best
features of these technologies will hopefully support
the development of more powerful re-configuration
mechanisms, using more complex self-organization
and learning techniques. In fact, web services
technologies have potential to solve problems
concerning heterogeneity of knowledge
representation between distributed agents; on the
other hand, agent technologies brings solutions in
issues that are now becoming important in SOA, such
as coordination, negotiation and agreement [11].

In this chapter, the basic concepts about SOAs will
be reviewed and the benefits of combining these
concepts to support re-configurability and
interoperability will be discussed.

4.1 Basic Concepts about SOA

A SOA [9-10] is a middleware that faces the
problems of interoperability in autonomous,
heterogeneous and distributed systems in the form of
service requester and service provider mechanisms,
see Fig. 2. A provider hides its internal structure and
shows only the necessary functionalities to the
outside world, in the form of services. The list of
provided services must be published, so they can be
discovered by the service requester. A service
discovery facility acts like a directory in which
services can be added, removed and located.

Fig. 2 – Illustration of SOA’s Concepts

Commonly SOAs are based on web services (WS),
using standard and open protocols to provide a
communication platform between distributed and
heterogeneous systems and applications. Most of the
web service platforms are made of SOAP (Simple
Object Access Protocol), WSDL (Web Services

Description Language) and UDDI (Universal
Description, Discovery and Integration) that use the
combination of HTTP (Hypertext Transfer Protocol)
and XML (Extensible Markup Language) as the basic
foundation of WS (Fig. 3).

Fig. 3 – Web Service's Building Blocks

One of the challenges of SOA is to reconcile the
opposing principles of autonomy and interoperability
[12]. Autonomous units have an independent
condition, each of them regarding its own structure
and conditions. By bridging them together, there is a
path that allows the interoperability in a mutual
service offer and request.

4.2 Service Orchestration and Choreography

In SOAs, a pertinent question is about how services
interact. Service composition [13] is the combination
of single services and all the interaction patterns
between them. Commonly, terms as service
orchestration and choreography are used for this
purpose. Orchestration is the practice of sequencing
and synchronizing the execution of services, which
encapsulate business or manufacturing processes [12-
13]. An orchestration engine implements the logic for
workflow-oriented execution and sequencing of
atomic services, and provides a high-level interface
for the composed process. Service choreography is a
complementary concept, which considers the rules
that define the messages and interaction sequences
that must occur to execute a given process through a
particular service interface. Additionally,
choreography can be used independently in a
collaborative system without a centralized approach.
Fig. 4 illustrates the service orchestration and
choreography concepts.

Fig. 4 – Example of Service Orchestration and
Choreography

In this example, different available resources in the
system expose their services. The workflow model,
representing the high-level service, is interpreted by

the orchestration engine, which is responsible to call
the necessary services in the way described by the
model. The choreographed sequences are used for the
interaction between the elements and therefore the
correct execution of individual services when
required. When the workflow model reaches the final
stage, the high level service is concluded and the
external requester notified.

The Petri nets formalism is a mathematical and
graphical oriented language for the design,
specification, simulation and validation of systems,
particularly those in which concurrency and
parallelism, synchronization, resource sharing and
mutual exclusion are important. Petri nets can be
used to design and validate the process model, i.e. the
workflow model, which translates the system goal.
Orchestration engines have to interpret the workflow
model expressed in Petri nets and execute it. In real-
time execution, the enabled transition must be
detected, services associated with the enabled
transition must be called and, after that, the workflow
model has to be updated to reflect the actual state of
the system. Orchestration engines synchronize and
control the whole process until it reaches the goal,
based on the elaborated model, i.e. they have to
orchestrate the production system.

As shown in the Fig. 5, the workflow modeled using
Petri nets has two parallel processes, e.g. two
different products are produced independently, but
for reaching the goal, the two products must be
concluded successfully. The production is behind the
two services (one for each type of product) that only
exposes the required operations to the outside. The
transition produce1() should be invoked to begin the
production of product #1 and the transition finish1()
doesn’t fire until that production is concluded.

work flow
model

produce2()

begin

produce1() finish1()

finish2()

end
(objective
reached)

Fig. 5 – Service Orchestration by using the Petri Nets

Formalism

The same is also valid for the production of the
product #2, but asynchronously from the product #1.
The process is terminated only if the last place (end)
is marked with a token, i.e. after firing the transitions
finish1() and finish2().

4.3 Multi-agent Systems using Web Services

The integration of web services with software agents
will bring benefits from both technologies. From the
perspective of agents, web services are a way to

communicate and interoperate using web-specific
protocols. To web services, agents can form a
powerful means of indirection and control decision
by masking the web service. With these aspects in
mind, the control architecture may be improved in
terms of software flexibility and self-configuration.

The adoption of web services by multi-agent systems
satisfies the following requirements:

− Resources (e.g. physical devices, software
modules, intelligent units, sub-systems) can be
encapsulated with a service provider that acts like
a bridge between the internal structure and the
exposed interface to the outside world. The access
to this kind of resource is via the invocation of the
services described by its interface.

− Some services can be composed by other
services, creating a leveled structure of services.

− Interoperability in a heterogeneous environment
can be addressed by using common
communication semantics based on the use of
open protocols, namely web technologies, e.g.
web services. The distributed nature of the
architectures suggests the definition of
interoperability functionalities based on service-
oriented architecture and the realization of
efficient, flexible and robust overall plant control.

− Fault-tolerant systems can consider anomalies
that may occur during the production process,
identifying in advance possible future occurrence
of disturbances.

The re-configurability and evolution of the system is
facilitated using multi-agent systems supported by
web services technology since it is possible to add,
remove and modify dynamically resources and
services without interrupting the processes. This
allows changing on fly the agents in the system, the
services provided by each one of them and the way
they are organized.

5. CONCLUSIONS

The objective of this paper was to discuss the main
guidelines of the next generation of reconfigurable
production systems, based in the experience gained
with the ADACOR holonic control architecture,
which in its time proved to be an innovative and
successful approach to address the re-configurability
at shop floor level.

Reconfigurable production systems will be built upon
the concept of smart control components, whose
individual self-organization and emergent behavior
will contribute for the re-configurability and
evolution of entire production system. For this
purpose, concepts like self-organization, learning and
emergent theory should be considered. Multi-agent
systems technology appears to be a good solution to

develop these systems, which supported by web
service technology may deal completely with
interoperability and re-configurability needs.

The development of orchestration and choreography
mechanisms and tools, including orchestration
engines, for service composition, coordination and
collaboration, will play a crucial role to support
intelligent, re-configurable and modular production
control systems.

An important aspect to be taken in the future for the
success of this new generation of production control
systems, is to proof its real applicability and merits,
since industry has afraid to introduce, in its
production processes, emergent technologies that are
not yet proved, and particularly from the usage of
emergent terms like ontologies, self-organization,
emergence, distributed thinking and learning. The
solution is to demonstrate that reconfigurable
production systems based in those concepts, work
better than the existing ones.

REFERENCES

[1] P. Leitão and F. Restivo, “ADACOR: A Holonic
Architecture for Agile and Adaptive Manufacturing
Control”, Computers in Industry, vol. 57, nº 2, 2006, pp.
121-130.

[2] H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts and
P. Peeters, “Reference Architecture for Holonic
Manufacturing Systems: PROSA”, Computers in Industry,
37, 1998, pp. 255-274.

[3] J.-L. Chirn and D. McFarlane, “A Holonic Component-
Based Approach to Reconfigurable Manufacturing Control
Architecture”, Proc. of the International Workshop on
HoloMAS, 2000, pp. 219-223.

[4] S. Bussmann and K. Schild, “An Agent-based Approach to
the Control of Flexible Production Systems”, Proc. of 8th
IEEE International Conference on Emerging Technologies
and Factory Automation, vol. 2, 2000, pp. 481-488.

[5] P. Leitão, A. W. Colombo and F. Restivo, “ADACOR, A
Collaborative Production Automation and Control
Architecture”, IEEE Intelligent Systems, vol. 20, nº 1, 2005,
pp. 58-66.

[6] S. B. Brunnermeier and S. A. Martin, “Interoperability Cost
Analysis of the U.S. Automotive Supply Chain” (Planning
Report #99-1), Technical report, NIST, 1999.

[7] S. Borgo and P. Leitão, “Foundations for a Core Ontology
of Manufacturing”, in “Ontologies: A Handbook of
Principles, Concepts and Applications in Information
Systems”, Springer, 2006, pp. 751-776.

[8] M. Wooldridge, “An Introduction to Multi-Agent Systems”,
John Wiley & Sons, 2002.

[9] F. Jammes and H. Smit, “Service-oriented Architectures for
Devices: the SIRENA View”, Proceedings of the 3rd IEEE
International Conference on Industrial Informatics, 2005,
pp. 140-147.

[10] J. Lastra and I. Delamer, “Semantic Web Services in
Factory Automation: Fundamental Insights and Research
Roadmap”, IEEE Transactions on Industrial Informatics, 2
(1), 2006, pp. 1-11.

[11] T. Payne, “AgentLink News Editorial”, AgentLink Issue 17,
April 2005.

[12] F. Jammes, H. Smit, J. L. Martinez Lastra and I. Delamer,
“Orchestration of Service-Oriented Manufacturing
Processes”, Proceedings of the 10th IEEE International
Conference ETFA, Vol. 1, 2005, pp. 617-624.

[13] C. Peltz, “Web Services Orchestration”, Hewlett Packard,
Co., 2003.

