180 research outputs found

    An Extensive Investigation on Coronory Heart Disease using Various Neuro Computational Models

    Get PDF
    The diagnosis of heart disease at the early time is important to save the life of people as it is absolutely annoying process which requires extent knowledge and rich experience. By and large the expectation of heart infections in conventional method for inspecting reports, for example, Electrocardiogram-ECG, Magnetic Resonance Imaging- MRI, Blood Pressure-BP, Stress tests by medicinal professionals. Presently a-days a huge volume of therapeutic information is accessible in restorative industry in all maladies and these truths goes about as an incredible source in foreseeing the coronary illness by the professionals took after by appropriate ensuing treatment at an early stage can bring about noteworthy life sparing. There are numerous systems in ANN ideas which are likewise contributing themselves in yielding most elevated expectation precision over medical information. As of late, a few programming devices and different techniques have been proposed by analysts for creating powerful decision supportive systems. More over many new tools and algorithms are continued to develop and representing the old ones day by day. This paper aims the study of such different methods by researchers with high accuracy in predicting the heart diseases and more study should go on to improve the accuracy over predictions of heart diseases using Neuro Computing

    Application of artificial intelligence to evaluate the fresh properties of self-consolidating concrete

    Get PDF
    This paper numerically investigates the required superplasticizer (SP) demand for self-consolidating concrete (SCC) as a valuable information source to obtain a durable SCC. In this regard, an adaptive neuro-fuzzy inference system (ANFIS) is integrated with three metaheuristic algorithms to evaluate a dataset from non-destructive tests. Hence, five different non-destructive testing methods, including J-ring test, V-funnel test, U-box test, 3 min slump value and 50 min slump (T50) value were performed. Then, three metaheuristic algorithms, namely particle swarm optimization (PSO), ant colony optimization (ACO) and differential evolution optimization (DEO), were considered to predict the SP demand of SCC mixtures. To compare the optimization algorithms, ANFIS parameters were kept constant (clusters = 10, train samples = 70% and test samples = 30%). The metaheuristic parameters were adjusted, and each algorithm was tuned to attain the best performance. In general, it was found that the ANFIS method is a good base to be combined with other optimization algorithms. The results indicated that hybrid algorithms (ANFIS-PSO, ANFIS-DEO and ANFIS-ACO) can be used as reliable prediction methods and considered as an alternative for experimental techniques. In order to perform a reliable analogy of the developed algorithms, three evaluation criteria were employed, including root mean square error (RMSE), Pearson correlation coefficient (r) and determination regression coefficient (R2). As a result, the ANFIS-PSO algorithm represented the most accurate prediction of SP demand with RMSE = 0.0633, r = 0.9387 and R2 = 0.9871 in the testing phase

    Towards the prediction of renewable energy unbalance in smart grids

    Get PDF
    The production of renewable energy is increasing worldwide. To integrate renewable sources in electrical smart grids able to adapt to changes in power usage in heterogeneous local zones, it is necessary to accurately predict the power production that can be achieved from renewable energy sources. By using such predictions, it is possible to plan the power production from non-renewable energy plants to properly allocate the produced power and compensate possible unbalances. In particular, it is important to predict the unbalance between the power produced and the actual power intake at a local level (zones). In this paper, we propose a novel method for predicting the sign of the unbalance between the power produced by renewable sources and the power intake at the local level, considering zones composed of multiple power plants and with heterogeneous characteristics. The method uses a set of historical features and is based on Computational Intelligence techniques able to learn the relationship between historical data and the power unbalance in heterogeneous geographical regions. As a case study, we evaluated the proposed method using data collected by a player in the energy market over a period of seven months. In this preliminary study, we evaluated different configurations of the proposed method, achieving results considered as satisfactory by a player in the energy market

    Combining semantic web technologies with evolving fuzzy classifier eClass for EHR-based phenotyping : a feasibility study

    Get PDF
    In parallel to nation-wide efforts for setting up shared electronic health records (EHRs) across healthcare settings, several large-scale national and international projects are developing, validating, and deploying electronic EHR oriented phenotype algorithms that aim at large-scale use of EHRs data for genomic studies. A current bottleneck in using EHRs data for obtaining computable phenotypes is to transform the raw EHR data into clinically relevant features. The research study presented here proposes a novel combination of Semantic Web technologies with the on-line evolving fuzzy classifier eClass to obtain and validate EHR-driven computable phenotypes derived from 1956 clinical statements from EHRs. The evaluation performed with clinicians demonstrates the feasibility and practical acceptability of the approach proposed

    Lipase Mediated Transesterification Of Waste Cooking Palm Oil For Biodiesel Production : Batch And Continuous Studies [TP359.B46 S623 2008 f rb].

    Get PDF
    Pembangunan strategi baru yang lebih cekap untuk menghasilkan biodiesel adalah perkara yang sangat penting. Ini kerana biodiesel telah diterima di seluruh dunia sebagai bahan bakar alternatif untuk enjin diesel. The development of new strategies to efficiently synthesize biodiesel is of extreme important. This is because biodiesel has been accepted worldwide as an alternative fuel for diesel engines

    Hybrid Computational Intelligence Models With Symbolic Rule Extraction For Pattern Classification

    Get PDF
    Tesis ini adalah berkenaan dengan pembangunan model kecerdikan berkomputer hibrid bagi menangani masalah pengelasan corak. This thesis is concerned with the development of hybrid Computational Intelligence (CI) models for tackling pattern classification problems
    corecore