14 research outputs found

    Generalized 3D and 4D motion compensated whole-body PET image reconstruction employing nested em deconvolution

    Get PDF
    Whole-body dynamic and parametric PET imaging has recently gained increased interest as a clinically feasible truly quantitative imaging solution for enhanced tumor detectability and treatment response monitoring in oncology. However, in comparison to static scans, dynamic PET acquisitions are longer, especially when extended to large axial field-of-view whole-body imaging, increasing the probability of voluntary (bulk) body motion. In this study we propose a generalized and novel motion-compensated PET image reconstruction (MCIR) framework to recover resolution from realistic motion-contaminated static (3D), dynamic (4D) and parametric PET images even without the need for gated acquisitions. The proposed algorithm has been designed for both single-bed and whole-body static and dynamic PET scans. It has been implemented in fully 3D space on STIR open-source platform by utilizing the concept of optimization transfer to efficiently compensate for motion at each tomographic expectation-maximization (EM) update through a nested Richardson-Lucy EM iterative deconvolution algorithm. The performance of the method, referred as nested RL-MCIR reconstruction, was evaluated on realistic 4D simulated anthropomorphic digital XCAT phantom data acquired with a clinically feasible whole-body dynamic PET protocol and contaminated with measured non-rigid motion from MRI scans of real human volunteers at multiple dynamic frames. Furthermore, in order to assess the impact of our method in whole-body PET parametric imaging, the reconstructed motion-corrected dynamic PET images were fitted with a multi-bed Patlak graphical analysis method to produce metabolic uptake rate (Ki parameter in Patlak model) images of highly quantitative value. Our quantitative Contrast-to-Noise (CNR) and noise vs. bias trade-off analysis results suggest considerable resolution enhancement in both dynamic and parametric motion-degraded whole-body PET images after applying nested RL-MCIR method, without amplification of noise

    Physical Constraint Finite Element Model for Medical Image Registration

    Get PDF
    Due to being derived from linear assumption, most elastic body based non-rigid image registration algorithms are facing challenges for soft tissues with complex nonlinear behavior and with large deformations. To take into account the geometric nonlinearity of soft tissues, we propose a registration algorithm on the basis of Newtonian differential equation. The material behavior of soft tissues is modeled as St. Venant-Kirchhoff elasticity, and the nonlinearity of the continuum represents the quadratic term of the deformation gradient under the Green- St.Venant strain. In our algorithm, the elastic force is formulated as the derivative of the deformation energy with respect to the nodal displacement vectors of the finite element; the external force is determined by the registration similarity gradient flow which drives the floating image deforming to the equilibrium condition. We compared our approach to three other models: 1) the conventional linear elastic finite element model (FEM); 2) the dynamic elastic FEM; 3) the robust block matching (RBM) method. The registration accuracy was measured using three similarities: MSD (Mean Square Difference), NC (Normalized Correlation) and NMI (Normalized Mutual Information), and was also measured using the mean and max distance between the ground seeds and corresponding ones after registration. We validated our method on 60 image pairs including 30 medical image pairs with artificial deformation and 30 clinical image pairs for both the chest chemotherapy treatment in different periods and brain MRI normalization. Our method achieved a distance error of 0.320±0.138 mm in x direction and 0.326±0.111 mm in y direction, MSD of 41.96±13.74, NC of 0.9958±0.0019, NMI of 1.2962±0.0114 for images with large artificial deformations; and average NC of 0.9622±0.008 and NMI of 1.2764±0.0089 for the real clinical cases. Student's t-test demonstrated that our model statistically outperformed the other methods in comparison (p-values <0.05)

    Self-navigation with compressed sensing for 2D translational motion correction in free-breathing coronary MRI:a feasibility study

    Get PDF
    PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted

    Interactive Multigrid Refinement for Deformable Image Registration

    Get PDF
    Deformable image registration is the spatial mapping of corresponding locations between images and can be used for important applications in radiotherapy. Although numerous methods have attempted to register deformable medical images automatically, such as salient-feature-based registration (SFBR), free-form deformation (FFD), and demons, no automatic method for registration is perfect, and no generic automatic algorithm has shown to work properly for clinical applications due to the fact that the deformation field is often complex and cannot be estimated well by current automatic deformable registration methods. This paper focuses on how to revise registration results interactively for deformable image registration. We can manually revise the transformed image locally in a hierarchical multigrid manner to make the transformed image register well with the reference image. The proposed method is based on multilevel B-spline to interactively revise the deformable transformation in the overlapping region between the reference image and the transformed image. The resulting deformation controls the shape of the transformed image and produces a nice registration or improves the registration results of other registration methods. Experimental results in clinical medical images for adaptive radiotherapy demonstrated the effectiveness of the proposed method

    Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data

    Get PDF
    The investigation of the performance of different positron emission tomography (PET) reconstruction and motion compensation methods requires accurate and realistic representation of the anatomy and motion trajectories as observed in real subjects during acquisitions. The generation of well-controlled clinical datasets is difficult due to the many different clinical protocols, scanner specifications, patient sizes, and physiological variations. Alternatively, computational phantoms can be used to generate large data sets for different disease states, providing a ground truth. Several studies use registration of dynamic images to derive voxel deformations to create moving computational phantoms. These phantoms together with simulation software generate raw data. This paper proposes a method for the synthesis of dynamic PET data using a fast analytic method. This is achieved by incorporating realistic models of respiratory motion into a numerical phantom to generate datasets with continuous and variable motion with magnetic resonance imaging (MRI)-derived motion modeling and high resolution MRI images. In this paper, data sets for two different clinical traces are presented, ¹⁸F-FDG and ⁶⁸Ga-PSMA. This approach incorporates realistic models of respiratory motion to generate temporally and spatially correlated MRI and PET data sets, as those expected to be obtained from simultaneous PET-MRI acquisitions

    Dual registration of abdominal motion for motility assessment in free-breathing data sets acquired using dynamic MRI.

    Get PDF
    At present, registration-based quantification of bowel motility from dynamic MRI is limited to breath-hold studies. Here we validate a dual-registration technique robust to respiratory motion for the assessment of small bowel and colonic motility. Small bowel datasets were acquired in breath-hold and free-breathing in 20 healthy individuals. A pre-processing step using an iterative registration of the low rank component of the data was applied to remove respiratory motion from the free breathing data. Motility was then quantified with an existing optic-flow (OF) based registration technique to form a dual-stage approach, termed Dual Registration of Abdominal Motion (DRAM). The benefit of respiratory motion correction was assessed by (1) assessing the fidelity of automatically propagated segmental regions of interest (ROIs) in the small bowel and colon and (2) comparing parametric motility maps to a breath-hold ground truth. DRAM demonstrated an improved ability to propagate ROIs through free-breathing small bowel and colonic motility data, with median error decreased by 90% and 55%, respectively. Comparison between global parametric maps showed high concordance between breath-hold data and free-breathing DRAM. Quantification of segmental and global motility in dynamic MR data is more accurate and robust to respiration when using the DRAM approach
    corecore