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Deformable image registration is the spatial mapping of corresponding locations between images and can be used for important
applications in radiotherapy. Although numerous methods have attempted to register deformable medical images automatically,
such as salient-feature-based registration (SFBR), free-form deformation (FFD), and demons, no automaticmethod for registration
is perfect, and no generic automatic algorithm has shown to work properly for clinical applications due to the fact that the
deformation field is often complex and cannot be estimated well by current automatic deformable registration methods. This
paper focuses on how to revise registration results interactively for deformable image registration. We can manually revise the
transformed image locally in a hierarchical multigridmanner tomake the transformed image register well with the reference image.
Theproposedmethod is based onmultilevel B-spline to interactively revise the deformable transformation in the overlapping region
between the reference image and the transformed image. The resulting deformation controls the shape of the transformed image
and produces a nice registration or improves the registration results of other registration methods. Experimental results in clinical
medical images for adaptive radiotherapy demonstrated the effectiveness of the proposed method.

1. Introduction

Radiotherapy is an image-guided treatment, and imaging
is involved in every key step of the process. The evolution
of radiation therapy has been strongly correlated with the
development of imaging techniques [1]. The term of image-
guided radiation therapy (IGRT) is employed loosely to refer
to newly emerging techniques of radiation planning, patient
setup, and delivery procedures that integrate cutting-edge
image-based tumor definition methods, patient positioning
devices, and/or radiation delivery guiding tools. These tech-
niques combine new imaging tools, which interface with
the radiation delivery system through hardware or software,
and state-of-the-art 3D conformal radiation therapy (CRT)
or intensity modulated radiation therapy (IMRT) and allow
physicians to optimize the accuracy and precision of the
radiotherapy by adjusting the radiation beam based on the
true position of the target tumor and critical organs [2]. This
increased accuracy justifies a smaller clinical target volume to
planning target volume (CTV-PTV) margin, thus decreasing

the consequent collateral damage to the normal tissues.While
IGRT is certainly a step forward for radiation oncology, the
efficacy of these image-guided treatments depends on a treat-
ment plan optimized using these images.

One of the key questions in image guidance is how the
information is used to modify treatment. If the target and
organs at risk (OARs) can be delineated on online volumetric
images, it is possible to generate an adaptive treatment plan.
Replanning theoretically provides the highest precision and
does not need specialized hardware such as the robotic couch.
However, online replanning requires superior online image
quality, as well as fast and robust algorithms, to perform auto-
matic region-of-interest (ROI) delineation, dose calculation,
and beamlet weight optimization. Various methods are used
clinically to increase the speed of ROI delineation, including
atlas-based segmentation, ROI propagation, and deformable
image registration [3]. Deformable image registration is a
fundamental task in medical image processing due to its
potential clinical impact [4]. For instance, the advantage
of deformable image registration in adaptive radiotherapy
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is that the deformation field can be used for nonrigid dose
accumulation [5].

The process of deformable image registration consists
of establishing functional and/or spatial anatomical corre-
spondences between different images. The term deformation
is often used to denote the fact that the observed images
are associated through a nonlinear dense transformation or
spatially varying deformation model [6]. Deformable image
registration has been studied in great detail, and numerous
methods have attempted to register deformable medical
images automatically, such as salient-feature-based registra-
tion (SFBR) [7, 8], free-form deformation (FFD) [9], and
Demons [10, 11]. SFBR is a point-based registration approach
which uses salient features that are prominent and distinctive
features in the image.The features are extracted in two images
using an interest point detector and are then matched for
correspondence.The correspondent features are then used to
interpolate a nonrigid transformation using the thin-plate-
spline method [12]. In order to recover the local geometric
differences well between anatomic structures by SFBR, it is
also assumed that there are enough correspondent landmarks
in local geometric differences areas. Typically, a large number
of reliable corresponding anchor points are required for
accurate registration [13]. However, it is not often fulfilled in
clinical applications; for instance, in homogenous regions, the
feature-basedmethodmay fail when fewor no salient features
locate in these corresponding regions.TheDemons algorithm
uses image intensity values and assumes that pixels presenting
the same anatomical points on each image have the same
intensity values, and thus it is appropriate for monomodality
image registration. When the local geometric deformation is
large or images are in multimodality, the Demons algorithm
becomes difficult to handle. FFDs are one of the most com-
mon types of transformation models in medical images. The
advantage of the transformation model lies in its simplicity,
smoothness, and ability to describe local deformations with
few degrees of freedom. However, misregistration in the
difference image after such deformable registration is still
viable. The main reason for this is the limited flexibility of
deformation registration methods to describe complex local
deformations. In addition, most of the existing methods
based on energy minimization or optimization may fail in
clinical settings due to the suboptimal solutions and excessive
running time. Some recently proposed methods [14, 15]
attempted to solve the problem of deformable registration via
hierarchical subdivision. However, these methods can only
be applied formonomodality registration, and local deforma-
tions are linear and small. To the best of our knowledge, no
automatic method for registration is perfect, and no generic
automatic algorithm has shown to work properly for clinical
applications due to the fact that the deformation field is often
complex and cannot be estimated well by current automatic
deformable registration methods.

The aim of this study is to refine the deformable image
registration by manual revision for clinical applications. The
B-spline is a powerful tool formodeling 2D or 3D deformable
objects. The proposed method is based on multilevel B-
spline to interactively revise the misregistration regions by
manipulating an underlying mesh of control points in the

overlapping region between the reference image and the
transformed image in RGB color model. This paper is orga-
nized as follows. Section 2 describes material and proposed
registration refinement technique. In Section 3, we show the
experimental results on clinical images. Section 4 concludes
this paper.

2. Materials and Methods

2.1. The Framework of Interactive Multigrid Refinement Algo-
rithm. We explored digital B-splines to devise an interactive
multigrid refinement that consists of automatic process and
manual process to improve the accuracy of deformable
registration. As shown in Figure 1, the proposed framework
of multigrid refinement algorithm consists of two steps. The
first is the automatic process inwhich conventional automatic
deformation registration methods or rigid and linear trans-
formation model can be used to coarsely register deformable
images.The second is the manual process in whichmultilevel
B-splines are used in the overlapping region of the trans-
formed image and the reference image in RGB model for
manual revision. The misregistered areas are represented by
colors and the registered areas by gray level to show alignment
of the two images. If the automatic registration methods can
register deformable images well, there is no need to use the
second manual process. In clinical applications, however, the
automatic methods often do not register well. The second
step will attempt to eliminate the errors visually by manual
revision in the misregistered areas. In order to describe the
deformation field, we chose the B-splines tomodel 2D and 3D
deformations. Due to the fact that misregistered areas may be
large or small in different clinical cases, multilevel B-spline
is designed to generate control point mesh at decreasing
spacing in a coarse-to-fine manner. Misregistered areas will
be reduced coarsely by dragging control points with large
spacing mesh. As the misregistered areas are reduced, fine
control point mesh will be generated with small spacing.
Only control points in misregistered areas need to be revised
in the fine level. The process will be stopped until visually
satisfying registration results are displayed. Registration of
the revised transformed image and the reference image will
make the overlapping image in RGB model become gray. We
will illustrate the proposed technique in the next sections in
detail.

2.2. B-Splines and Local Deformation Model. As introduced
in the previous section, the goal of interactive multigrid
refinement is to reduce the local registration error of
deformable registration methods. The nature of local defor-
mation of anatomic structures can vary significantly across
patients and ages.Therefore, it is difficult to describe the local
deformation via parametric transformations, such as rigid
transformation, or affine transformation, which can capture
only the global motion of organs. Free-form deformation
based on the B-splines is a powerful tool for modeling 3D
deformation objects. However, optimization of a cost func-
tion associated with the global transformation parameters
and the local transformation parameters in the framework
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Figure 1: The framework of interactive multigrid refinement algo-
rithm.

of free-form deformation uses an iterative multiresolution
search strategy, which is often computationally expensive
and prone to local minimum. Generally, the deformation
results of free-form deformation contain errors which are
visually distinctive from corresponding difference images.
Such cases also exist in other kinds of automatic deformation
registration methods. To this end, we propose a manual
revision process to refine the local deformation model based
on multilevel B-splines. Only the misregistration areas are
revised by manipulating an underlying mesh of control
points. The revision process can be fast and efficient.

To define a local deformation model, B-splines are used
formodeling the deformation fields.The domain of the image
volume is denoted as Ω = {(𝑥, 𝑦, 𝑧) | 0 ⩽ 𝑥 < 𝑋, 0 ⩽
𝑦 < 𝑌, 0 ⩽ 𝑧 < 𝑍}. The control lattice Φ is denoted by a
mesh of control points Φ

𝑖,𝑗,𝑘
with uniform spacing overlaid

on the domain Ω. Let Φ
𝑖,𝑗,𝑘

be the 𝑖𝑗𝑘th control point on the
lattice Φ for 𝑖 = −1, 0, . . . , 𝑋 + 1, 𝑗 = −1, 0, . . . , 𝑌 + 1, and
𝑘 = −1, 0, . . . , 𝑍 + 1. The deformation function 𝑇 is defined
in terms of these control points by

𝑇 (𝑥, 𝑦, 𝑧) =
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where 0 ≤ 𝑢 ≤ 1. In general, the transformations that
result from cubic B-splines are smooth and able to describe
local deformation with few degrees of freedom. In contrast
to thin-plate spline [12] or elastic body splines [16], B-splines
are locally controlled; in particular, the basis functions of
cubic B-splines have a limited support that changing control
pointΦ

𝑖,𝑗,𝑘
affects the transformation only in the local neigh-

borhood of that control point. If any data points are added,
removed, or modified, B-splines can be computationally
efficient. This is the reason we chose B-spines for local
deformation model.

The control pointsΦ
𝑖,𝑗,𝑘

are the parameters of the B-
splines, and the degree of deformation field is essentially
dependent on the spacing of control points. A large spacing
of control points allows modeling of global deformation
with large displacement, and hence, one control point will
influence the deformation of large local areas, while a
small spacing of control points allows modeling of local
deformation within small areas. The resolution of control
point mesh generally determines the degrees of freedom.
Therefore, hierarchical B-spline refinement can be used to
refine the deformation field. We have designed a hierarchical
multiresolution B-spline refinement tool in which the resolu-
tion of control mesh is increased to revise the deformation
field in a coarse-to-fine manner. Let Φ1, Φ2, . . . , Φ𝐿 denote
hierarchical control point meshes at different spacings for
deformation revision. For each control point mesh Φ𝑖 and
its associated B-spline define a local transformation 𝑇𝑖local,
and their sum defines the overall local transformation of
deformation revision 𝑇local as

𝑇local (𝑥, 𝑦, 𝑧) =
𝐿

∑

𝑖=1

𝑇
𝑖

local (𝑥, 𝑦, 𝑧) . (3)

In this way, the overall local transformation of deforma-
tion revision is represented as a combination of B-splines
at increasing resolution of control point mesh. For those
misregistered areas, large spacing of control point mesh is
generated when misregistered areas are large. After manual
revision with related control points, the overall misregistered
areas will be reduced. In order to refine the results further,
the control point mesh is progressively refined. In this case,
the control point mesh at level 𝑖 is refined by inserting new
control points to create the control point mesh at level 𝑖 + 1.
Therefore, the control point spacing is halved at every step.
With the revision of control point at different levels, the final
deformation field will be generated to make the reference
image coincide with the transformed image.

2.3. Manual Refinement in RGB Model. In order to observe
the misregistered area between the reference image and
the transformed image well, we designed the RGB model.
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Without loss of generality, we take the case of 2D image
registration for explanation. In RGB model, the reference
image is shown in the green band, and the transformed
test image is shown in the red and blue bands of a color
image.Therefore, when the images register perfectly, all three
color bands at a pixel will have the same or similar values,
producing gray scale. In areas where the images do not
register well, the pixels will appear green or purple. Also
appearing in green or purple are occluded areas. Thus, the
misregistered areas will be displayed in green or purple in
RGB model. The manual refinement which is based on the
B-splines will revise the deformation transformation through
manipulating control points in the transformed image. With
the revision of the transformed image, the misregistered
areas would be reduced or even eliminated because the local
anatomic structures in the transformed images are revised to
be aligned with the corresponding structures in the reference
image. Meanwhile, the pixels in the misregistered areas that
appear green or purple will become gray due to overlapping
of the corresponding anatomic structures. The process of
manual revision will be stopped until satisfying results are
achieved.That is, the overlapping area in RGBmodel appears
gray.

Due to the local geometric differences from large defor-
mation or gray level change between the reference image
and the test image, it is not easy to obtain perfect reg-
istration between corresponding structures. Therefore, the
finally obtained overlapping area does not appear to be gray
everywhere. In such case, we take the distinctive edge or
salient object as the criterion for manual refinement. For
example, if a distinctive edge in the transformed image is
revised to be coincided with the corresponding edge in the
reference image in RGB model, we consider that the manual
refinement is good in such local areas around the distinctive
edge. In our experiments, there is no need to revise every
control point because the two images have been registered
coarsely by automatic deformation registration methods and
the misregistered areas are assumed to be limited. Our pro-
posed manual revision is only used to improve the coarsely
obtained registration results if the deformable registration
methods do not work well. To our knowledge, the whole
process of automatic deformable registration methods may
not be satisfactory in clinical applications if these registration
methods do not work well or if large registration errors are
visible. Our proposed method provides a means to aid the
process to be successful and allows the user to drag control
points to get a better image alignment. If the automatic
registrationmethods do notworkwell in clinical applications,
the clinicians can use our tool to efficiently revise the former
registered results directly.

To demonstrate the scheme of the manual refinement in
RGB model, lung CT images in different respiratory phases
are used for illustration. Precise targeting of lung tumors is
of great importance in conformal radiotherapy, particularly
stereotactic body radiation therapy (SBRT) for lung cancer.
The discontinuity of the sliding behavior of the lungs makes
the registration of lungs in different respiratory phases very
challenging. Figure 2 shows the lung images in inhale and
exhale phases of a patient’s 4D CT set. Due to the local

deformation of the shape of lungs, we can register the two
images by our manual revision technique. As shown in
Figure 2(c), the RGB model consists of three color com-
ponents resulting from the test image and the reference
image. Purple or green shows the misregistered area between
the two images, and the well registered area appears to be
gray. It should be noted that the two input images can be
either two unregistered images or two images that have
been previously registered, while one is the reference image
and the other is the transformed image. That is to say, the
proposed technique can be a manual registration tool, or
it can be a revision tool to improve the registration results
of other deformable registration methods by the clinician.
In the control point mesh with large spacing, the mouse
dragging of one control point will vary the local deformation
of large areas as shown in Figure 2(d). With the decreasing
of grid spacing, the revision of two or three control points
will deform the transformed image locally and makes it
align well with the reference image. The mesh grids can be
chosen by clinicians’ selection. If large misregistered areas
exist in the RGB model, mesh grids with large spacing will
be generated. Subsequently, the control point mesh will be
progressively refined for further revision until satisfactory
results are achieved.

3. Results and Discussion

3.1. Evaluation Measure. To assess the quality of the regis-
tration in images, we have calculated the mean and variance
of the squared sum of intensity differences (SSD) [9]. In
images before and after deformable registration and manual
refinement, the SSD provides an indirect measure of the
registration quality as the position of tissue changes. Since the
deformation is often local between images, we have manually
defined regions of interest (ROIs) around each image and
then registered both ROIs independently:

SSD = 1
𝑛

√∑(𝐼 (𝑡
0
) − 𝑇 (𝐼 (𝑡)))

2
, (4)

where 𝐼(𝑡
0
) and 𝐼(𝑡) denote the intensities of the images

before and after motion and the summation includes all
voxels within the overlap of both images. In addition to using
the color model to represent misregistered areas visually, we
calculate the SSD of the transformed image and the reference
image at the same time when each step of manual revision
is done. Thus, the evaluation measure SSD can supervise
our interactive revision process in realtime. If the value of
SSD becomes larger when the clinician is revising the control
point, the moving direction of the control point should be
inverted to make SSD become small. Meanwhile, the color
of local areas in our RGB model is also the indication of
alignment. If the local areas of misregistered become small,
it is possible to reduce the stepsize to a finer grid for further
refinement.The color of local areas becomes gray if registered
well.

There are several reasons that we choose the evaluation
metric SSD. Firstly, SSD is a good metric to evaluate the
difference between two images. If two images registered well,
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Figure 2: Manual refinement in RGB model. (a) Test image, (b) reference image, (c) overlapping of test image and reference image and large
gridmesh in RGBmodel, (d)manually revise several related control points to reduce themisregistered area (purple or green), (e) progressively
refine control point mesh and (f) manually revise related control points further.

SSD should be small. On the other hand, the evaluation
metric of SSD is simple and can be calculated very fast. In
our work, the value of evaluation metric should be displayed
in realtime when the user is revising the local deformation.
That is to say, the evaluation metric should supervise the
interactive revision process. Therefore, we choose SSD for
the interactive process. Other evaluation metrics, such as
normalized correlation and mutual information, are very
common for deformable image registration. If the interactive
refinement is done, the transformed image and the reference
image can be evaluated using kinds of metrics, such as SSD,
mutual information, and normalized correlation.

3.2. Test Results. Two prostate images of the same patient
were acquired from clinical applications. These two images
contained both global and local deformations, and the
gray intensities were different as well. We chose the affine
transformation, FFD, and Demons for coarse registration,
respectively. If the two images were registered well, the
overlapping area would be in gray, and the color shows the
registration errors. As shown in Figure 3, the results of these
automatic registration methods all contained errors due to

the large local deformable variation between the two prostate
images. Affine transformation is a global mapping function
for image registration, and there were large registration errors
for deformation registration as shown in Figure 3(g). Typi-
cally, both FFDandDemons are commonly used deformation
registrationmethods, and their results weremuch better than
those of affine transformation.The color areas in overlapping
images as shown in Figures 3(h) and 3(i) were much smaller
than the color area in Figure 3(g).The contours of soft tissues
were mostly aligned well by FFD and Demons. However,
registration errors still existed around some branches of
anatomic structures between the two images.The registration
results can be improved further by our proposedmethod.Our
proposed tool will generate uniform grids from larger spacing
to smaller spacing, and the clinician can select the knot point
for mouse draggling. Then, the local area of transformed
image will be tuned with the moving of its close knots. The
process will be stopped until the color region is eliminated or
distinctive branches are almost aligned between two images
by the interactive adjustment.

The results of manual revision for affine, FFD, and
Demons deformable registration methods are shown in
Figure 4, respectively. The registration errors of affine, FFD,
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Figure 3: Registration results of affine, FFD, and Demons for two clinical prostate images. (a) Test image, (b) reference image, (c) direct
overlapping of (a) and (b) in RGBmodel, (d) transformed image from affine transformation, (e) transformed image fromFFD, (f) transformed
image from Demons, (g) overlapping of affine transformed image with the reference image, (h) overlapping of FFD transformed image with
the reference image and (i) overlapping of Demons transformed image with the reference image.

and Demons were reduced by manipulating progressively
refined control point mesh. For affine transformation, our
proposedmethod can improve results distinctively. Typically,
the registration results of FFD and Demons were remark-
ably good due to the high performance of those methods.
However, the proposed method can further improve the
registration results and reduce registration errors. From the
above experimental results, we have shown the effectiveness
of the proposed method for deformable image registration

in clinical applications. Although our given test data were
clinical CT images, other kinds of medical modality can also
be used directly. With the development of more complex
deformable registration methods, our proposed tool can
directly improve the registration results further.

3.3. Discussion. In this work, we tried to reduce deformable
registration errors in a multigrid process. Large errors are
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SSD = 0.0358 SSD = 0.0316 SSD = 0.0294

(a)

SSD = 0.0192 SSD = 0.0188 SSD = 0.0182

(b)

SSD = 0.0132 SSD = 0.0130 SSD = 0.0129

(c)

Figure 4: Registration results of manual revision of affine, FFD, and Demons for two clinical prostate images, respectively. (a) Affine, (b)
FFD and (c) Demons. The value of SSD shows the performance of registration in overlapping areas. Generally, the lower the SSD, the better
the registration results. Note that the SSD for Demons only calculates the areas of overlapping between two images.

reduced by revising control points in coarse grids, and
small errors are reduced by revising control points in fine
grids. Generally, our method is similar to multiscale image
registration [17, 18], which uses hierarchical multiscale infor-
mation to recover deformations.We usemultigrids to recover
deformation from large deformation with sparse grids to
local small deformation with fine grids, and those multiscale
registration methods are usually using images in different
scales (or resolution) for registration, and the deformation
can be recovered from global to local. However, focuses are
different between our method and those multiscale image

registrationmethods.We concentrate on how to interactively
reduce errors of deformable image registration if automatic
registration methods cannot work well or registration errors
are distinctive in clinical applications. On the other hand,
those multiscale image registration methods are trying to
register images automatically in a coarse-to-fine manner,
and their purposes are generally reducing computational
complexity of registration and making the registration more
robust and reliable.

Themanual revision processmay be tedious for clinicians
when large misregistered areas exist. That is the truth if the
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registration error is large and large areas are needed to be
revised withmore control points. In our work, the framework
of the proposed interactive multigrid refinement algorithm
consists of two steps: one is the automatic deformable
registration method and the second is the manual revision
process. We first of all assume that the automatic registration
can obtain registration results which are not too bad. That
is, the automatic deformation registration can be accurate
and reliable to make the misregistered area small in clinical
applications. Basically, some deformation registration meth-
ods, such as feature-based or intensity-based methods, can
generate good results to some extent. Unfortunately, some
areas may contain errors practically. Therefore, regions that
need to be revised are often limited or very small. Hence, we
provide the tool to quickly revise such errors in our proposed
RGB model.

In this work, the smoothness is not considered as a
metric in the interactive process which may be the limitation
of our method. In general, the local deformation of the
anatomic structures should be characterized by a smooth
transformation [9]. It is known that SSD is a “similarity”
measure, which is not the only consideration in evaluating the
performance of registration. In some registration algorithms
[9, 13], “smoothness” is also considered for the mapping
function, but this is not included in SSD. In our interactive
process, we consider how to revise the registration error
conceptually from multi-grid refinement to make images
align better under the evaluation metrics of SSD and color
model. B-spline is smooth to some extent to make sure
that the deformation field appears to be smooth. However,
the “smoothness” is not easy to be considered much in the
interactive process. Maybe we can add another metric of
smoothness in the interactive process, like (5) in [9]. How-
ever, the balance between the similarity and smoothness may
be also a problem. Therefore, the finally revised transformed
image may be accurate in similarity but not much smooth by
our proposed method due to the only use of SSD.

In addition, the evaluation metric of SSD is used for
monomodality images. Actually, correspondent features in
monomodality images are distinctive for manual revision
perceptually. Therefore, the proposed method can obtain
reliable and accurate results for monomodality image regis-
tration, which is suitable formonomodality images. However,
it may not be good and convenient for images in different
modalities because of few visual corresponding anatomic
structures. If gray scale and image contrast are very different
in multimodality images, the manual revision for further
refinement of automatic deformable image registration will
be difficult. This is also the limitation of our proposed
method. In the future, we will also consider the metric of
normalized mutual information for multimodality images in
our proposed framework.

4. Conclusions

In this paper, we propose an interactive tool for deformable
registration revision by using multigrid B-spline refinement.
This technique can be used to improve registration results of

other deformable image registration methods. Experimental
results showed that this tool could be used to model defor-
mation accurately and efficiently. The application of this tool
can be formedical image registration in clinical cases, such as
treatment planning. We believe that it will be a useful tool for
clinical applications. In the future work, we will try to register
multimodality images well using our proposed method by
extracting salient features in the transformed image and the
reference image to facilitate visualization.
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